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Abstract

It is known that the three-dimensional Navier–Stokes system for an incom-
pressible fluid in the whole space has a one parameter family of explicit stationary
solutions that are axisymmetric and homogeneous of degree −1. We show that
these solutions are asymptotically stable under any L2-perturbation.

1. Introduction

The initial value problem for the Navier–Stokes system describing a motion of
a viscous incompressible fluid in the whole three-dimensional space has the form

ut −�u + (u · ∇)u + ∇ p = F, (x, t) ∈ R
3 × (0,∞) (1.1)

div u = 0, (1.2)

u(x, 0) = u0(x). (1.3)

Here, the velocity u = (u1, u2, u3) and the scalar pressure p are unknown. More-
over, u0 and F denote a given initial velocity and a given external force, respectively.

It is well known, since the pioneering work of Leray [18], that for each u0 ∈(
L2(R3)

)3
satisfying div u0 = 0 and for F ≡ 0, problem (1.1) possesses a weak

solution, satisfying a suitable energy inequality (see the monograph [28] for anal-
ogous results with nonzero F). The uniqueness and the regularity of weak solu-
tions still remain open. In [18], Leray posed a question whether a weak solution
u = u(x, t) tends to zero in L2(R3) as t → ∞, which was affirmatively solved
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by Kato [12] in the case of strong solutions and Masuda [21] for weak solutions
satisfying a strong energy inequality. Next, Schonbek [24] obtained decay rates
for the L2-norm of weak solutions using elementary properties of the Fourier trans-
form. The ideas from [24] were developed and generalized by Wiegner [30]. We
refer the reader to monographs [17,28] for results on the existence of weak and
strong solutions to (1.1)–(1.3) and to the review article [7] for a discussion of recent
results of the large time behavior of solutions.

If F ≡ 0 in problem (1.1)–(1.3), the L2-decay of weak solutions can be under-
stood as the global asymptotic stability in L2(R3) of the trivial stationary solu-
tion (u, p) = (0, 0). In this work, we address analogous questions on the global
asymptotic stability of the family of stationary solutions to (1.1)–(1.2) given by the
following explicit formulas

v1
c (x) = 2

c|x |2 − 2x1|x | + cx2
1

|x |(c|x | − x1)2
, v2

c (x) = 2
x2(cx1 − |x |)

|x |(c|x | − x1)2
,

v3
c (x) = 2

x3(cx1 − |x |)
|x |(c|x | − x1)2

, pc(x) = 4
cx1 − |x |

|x |(c|x | − x1)2
, (1.4)

where |x | =
√

x2
1 + x2

2 + x2
3 and c is an arbitrary constant such that |c| > 1. The

functions vc and pc defined in (1.4) satisfy (1.1) with F ≡ 0 in the pointwise sense
for every x ∈ R

3\{0}. On the other hand, if one treats them as a distributional or
generalized solution to (1.1) in the whole R

3, they correspond to the very singular
external force F = (b(c)δ0, 0, 0), where the parameter b �= 0 depends on c and δ0
stands for the Dirac measure. Indeed, in [5, Proposition 2.1.] (see also [1, p. 206]),
it was shown that for every test function ϕ ∈ C∞

c (R
3) the following equalities hold

true
∫

R3
vc(x) · ∇ϕ(x) dx = 0

and
∫

R3

(
∇vk

c · ∇ϕ − vk
cvc · ∇ϕ − pc

∂

∂xk
ϕ

)
dx =

{
b(c)ϕ(0) if k = 1,
0 if k = 2, 3,

where

b(c) = 8πc

3(c2 − 1)

(
2 + 6c2 − 3c(c2 − 1) log

(
c + 1

c − 1

))
. (1.5)

In particular, the function b = b(c) is decreasing on (−∞,−1) and (1,+∞).
Moreover, limc→1 b(c) = +∞, limc→−1 b(c) = −∞ and lim|c|→∞ b(c) = 0.

These explicit stationary solutions to (1.1)–(1.2) were first calculated by
Landau [15] and now they can be found in standard textbooks (see for example [16,
p. 82] and [1, p. 206]). Let us also recall that the stationary solutions (1.4) were
also independently found by Squire [26] and discussed in [5,29] from a slightly
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different point of view. The main idea of Landau’s calculation is that if we impose
the additional axi-symmetry requirement, the stationary Navier–Stokes system

−�u + (u · ∇)u + ∇ p = 0, div u = 0, (1.6)

reduces to a system of ODEs which can be solved explicitly in terms of elemen-
tary functions. Moreover, Šverák [27] proved recently that even if we drop the
requirement of axi-symmetry, then the Landau solutions (1.4) are still the only
solutions of (1.6) which are invariant under the natural scaling. More precisely, he
proved that if u : R

3\{0} → R
3 is a non-trivial smooth solution of (1.6) satisfying

λu(λx) = u(x) for all x ∈ R
3\{0} and each λ > 0, then (u, p) = (vc, pc) is given

by formulas (1.4) (modulo a rotation of R
3).

The goal of this work is to show that problem (1.1)–(1.3) has a weak solution
for every initial datum of the form u0 = vc +w0, wherew0 ∈ L2(R3) and the exter-
nal force F = (b(c)δ0, 0, 0) with b(c) defined in (1.5), provided |c| is sufficiently
large. Moreover, this solution converges, as t → ∞, towards the stationary solution
(1.4). In other words, we show that the flow described by the Landau solution is,
in some sense, asymptotically stable under any L2-perturbation.

The existence and stability of stationary solutions corresponding to nontrivial
external forces are well understood in the case of bounded domains, see for exam-
ple [8]. For related results in exterior domains, we refer the reader to [10,11] and
to the references therein. The existence and the stability of stationary solutions in
L p with p � n, where n is the dimension of the space, is obtained in [25], under
the condition that the Reynolds number is sufficiently small, and in [5,6,13,14,31]
under the assumption that the external force is sufficiently small. The stability of
small stationary solutions of (1.1)–(1.3) in L p(R3) with p < 3 has been studied
recently in [2,3].

Notation. In this work, the usual norm of the Lebesgue space L p(R3) is denoted
by ‖ · ‖p for any p ∈ [1,∞]. C∞

c (R
3) denotes the set of smooth and compactly

supported functions. Here, we work with the Sobolev space H1(R3) = { f ∈
L2(R3) : ∇ f ∈ L2(R3)} and with its homogeneous counterpart Ḣ1(R3) = { f ∈
L1

loc(R
3) : ∇ f ∈ L2(R3)}. We use the following notation for the Banach spaces

of divergence free vector fields: L p
σ (R

3) = {u ∈ (
L p(R3)

)3 : div u = 0} and

Ḣ1
σ (R

3) = {u ∈ (
Ḣ1(R3)

)3 : div u = 0} supplemented with usual norms. The
constants (always independent of x and t) will be denoted by the same letter C ,
even if they vary from line to line.

2. Results and comments

We denote by u = u(x, t) a solution of the Navier–Stokes system (1.1)–(1.3)
with the external force F = b(c)δ0, where b(c) is defined in (1.5), and the initial
datum u0 = vc + w0, where vc is the singular stationary solution (1.4) and w0 ∈
L2
σ (R

3). Then the functions w(x, t) = u(x, t)− vc(x) and π(x) = p(x)− pc(x)
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satisfy the initial value problem

wt −�w + (w · ∇)w + (w · ∇)vc + (vc · ∇)w + ∇π = 0, (2.1)

div w = 0, (2.2)

w(x, 0) = w0(x). (2.3)

The goal of this work is to show the existence of a global-in-time weak solution
to problem (2.1)–(2.3) in a usual energy space (see (2.7) below) and to study its
convergence in L2

σ (R
3) as t → ∞ zero. As in the classical work by Leray [18],

these solutions satisfy a suitable energy inequality. Here, however, in the proof
of the L2-decay of solutions to (2.1)–(2.3), we need a strong energy inequality,
introduced by Masuda [21] for the Navier–Stokes system (1.1)–(1.3).

In our analysis, the crucial role is played by the Hardy-type inequality

∣∣∣∣

∫

R3
w · (w · ∇)vc dx

∣∣∣∣ � K (c)‖∇ ⊗ w‖2
2, (2.4)

which is valid for all w ∈ Ḣ1(R3). Here, the function K = K (c) > 0 satisfies
lim|c|→1 K (c) = +∞ and lim|c|→+∞ K (c) = 0 (see Theorem 3.2, below); hence,
there exists c0 > 1 such that

K (c) < 1 for all ∈ R satisfying |c| � c0 > 1. (2.5)

In the next section, we deduce inequality (2.4) from the classical Hardy inequality

∫

R3

|w(x)|2
|x |2 dx � 4

∫

R3
|∇w(x)|2 dx for all w ∈ Ḣ(R3) (2.6)

which proof can be found for example in [18, Ch. I. 6].
First, we state the counterpart of the Leray result on the existence of weak

solutions to the initial value problem (2.1)–(2.2).

Theorem 2.1. Assume that c0 > 1 satisfies (2.5). For each c ∈ R such that |c| > c0,
every w0 ∈ L2

σ (R
3), and every T > 0 problem (2.1)–(2.3) has a weak solution in

the energy space

XT = L∞
w

(
[0, T ], L2

σ (R
3)

)
∩ L2

(
[0, T ], Ḣ1

σ (R
3)

)
, (2.7)

which satisfies the strong energy inequality

‖w(t)‖2
2 + 2(1 − K (c))

∫ t

s
‖∇ ⊗ w(τ)‖2

2 dτ � ‖w(s)‖2
2 (2.8)

for almost all s � 0, including s = 0 and all t � s.
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Recall that, following a classical approach, a function w ∈ XT is a weak solu-
tion of problem (2.1)–(2.3) if

(w(t), ϕ(t))+
∫ t

s
[(∇w,∇ϕ)+ (w · ∇w, ϕ)+ (w · ∇vc, ϕ)+ (vc · ∇w, ϕ)] dτ

= (w(s), ϕ(s))+
∫ t

s
(w, ϕτ ) dτ (2.9)

for all t � s � 0 and all ϕ ∈ C([0,∞), H1
σ (R

3)) ∩ C1([0,∞), L2
σ (R

3)), where
(·, ·) is the standard L2-inner product. Note that each term in (2.9) containing the
singular function vc is convergent due to the Hardy inequality (2.6), see calculations
in (3.6)–(3.7), below.

The proof of Theorem 2.1 follows the well-known argument which we recall in
Sect. 3. Here, we only recall that the most general result on the existence of weak
solutions to the Navier–Stokes system in the exterior domain satisfying the strong
energy inequality was proved by Miyakawa and Sohr [20].

The decay in L2(R3) of weak solutions from Theorem 2.1 is the main result of
this work.

Theorem 2.2. Every weak solution w = w(x, t) to problem (2.1)–(2.3) satisfying
the strong energy inequality (2.8) has the property: limt→∞ ‖w(t)‖2 = 0.

Under additional assumptions on initial data, we find also the decay rate of
‖w(t)‖2.

Corollary 2.3. Under the assumptions of Theorem 2.2 if, moreover,w0 ∈ L p(R3)∩
L2
σ (R

3) for some p ∈ ( 6
5 , 2), then there exists C > 0 such that

‖w(t)‖2 � Ct−
3
2 (

1
p − 1

2 ) (2.10)

for all t > 0.

3. Hardy-type inequality and existence of weak solutions

First, we prove elementary pointwise estimates of the components of the
matrix ∇vc.

Lemma 3.1. Let |c| > 1. There exist functions K j,k : (−∞,−1) ∪ (1,∞) →
(0,∞) for every j, k ∈ {1, 2, 3} such that for all x ∈ R

3\{0}, we have

∣∣∣∂x j v
k
c (x)

∣∣∣ � K j,k(c)

|x |2 . (3.1)

Moreover, functions K j,k = K j,k(c)have the following properties: lim|c|→1 K j,k(c)
= +∞ and lim|c|→+∞ K j,k(c) = 0 for all j, k ∈ {1, 2, 3}.
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Proof. It follows from the explicit formula for vc and pc (see (1.4)) that

v1
c (x) = 1

2
p(x)x1 + 2

c|x | − x1
, v2

c (x) = 1

2
p(x)x2, v3

c (x) = 1

2
p(x)x3,

(3.2)

and

∇ p(x) = 4

|x |3(c|x | − x1)3

⎛

⎝
(c2 − 2)|x |3 + 3c|x |2x1 − 3c2|x |x2

1 + cx3
1

cx2(2|x |2 − 3c|x |x1 + x2
1 )

cx3(2|x |2 − 3c|x |x1 + x2
1 )

⎞

⎠.

(3.3)

Moreover, using the expression for pc from (1.4) and the notation s = x1/|x |, we
obtain

|pc(x)| � 4

|x |2
∣∣∣∣∣

sup
s∈[−1,1]

cs − 1

(c − s)2

∣∣∣∣∣
= kp(c)

1

|x |2 ,

where kp(c) = 4
|c|−1 . In the same way by (3.3), we have

|xi∂x1 pc(x)| � 4

|x |2
∣
∣∣∣∣

sup
s∈[−1,1]

cs3 − 3c2s2 + 3cs + c2 − 2

(c − s)3

∣
∣∣∣∣
= ki,1(c)

1

|x |2

and

|xi∂x2 pc(x)| � 4c

|x |2
∣
∣∣∣∣

sup
s∈[−1,1]

s2 − 3cs + 2

(c − s)3

∣
∣∣∣∣
= ki,2(c)

1

|x |2 ,

where ki,1 = 8
1−|c| and ki,2 = 12c

(|c|−1)2
for i ∈ {1, 2, 3}. Now, using the representa-

tion of vc in terms of pc from (3.2), we proceed in an analogous way to estimate
all coefficients of the matrix {∂x j v

k
c (x)}3

j,k=1. �
The following theorem is the immediate consequence of Lemma 3.1 and of the

classical Hardy inequality (2.6).

Theorem 3.2. (Hardy-type inequality) There exists a function K : (−∞,−1) ∪
(1,∞) → (0,∞) with the following properties:

lim|c|→1
K (c) = +∞ and lim|c|→+∞ K (c) = 0

such that for all vector fieldsw ∈ Ḣ1(R3), we havew ·(w ·∇)vc ∈ L1(R3) together
with the inequality

∣∣∣
∣

∫

R3
w · (w · ∇)vc dx

∣∣∣
∣ � K (c)‖∇ ⊗ w‖2

2. (3.4)
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Proof. Applying Lemma 3.1, we get

H(w) ≡
∣∣
∣∣

∫

R3
w · (w · ∇)vc dx

∣∣
∣∣

�
3∑

j,k=1

∫

R3
|w jwk ||∂x j v

k
c | dx �

∫

R3

K̃ (c)

|x |2
3∑

j,k=1

|w j ||wk | dx,

where K̃ (c) = max j,k∈{1,2,3} K j,k(c). Using the elementary inequality a · b �
(a2 + b2)/2, we obtain

H(w) � 1

2

∫

R3

K̃ (c)

|x |2

⎛

⎝
3∑

j,k=1

|w j |2 +
3∑

j,k=1

|wk |2
⎞

⎠ dx = 3K̃ (c)
∫

R3

|w|2
|x |2 dx .

Finally, from the classical Hardy inequality (2.6), we have H(w) � K (c)‖∇⊗w‖2
2,

where K (c) = 12K̃ (c), which completes the proof of Theorem 3.2. �
Now, we are in a position to sketch the construction of weak solutions to problem

(2.1)–(2.3).

Proof of Theorem 2.1. This is the standard reasoning based on the Galerkin
method. Since H1

σ (R
3) is separable, there exists a sequence g1, . . . , gm, . . . which

is free and total in H1
σ (R

3). For each m, we define an approximate solution
wm = ∑m

i=1 dim(t)gi , which satisfies the following system of ordinary differential
equations

(
w′

m(t), g j
) + (∇wm(t), g j

) + (
(wm(t) · ∇)wm(t), g j

) + (
(wm(t) · ∇)vc, g j

)

+ (
(vc · ∇)wm(t), g j

) + (∇π, g j
) = 0 for j = 1, . . . ,m, (3.5)

where ( f, g) = ∫
R3 f (x) · g(x) dx .

Let us prove that both terms in (3.5) containing the singular functions ∇vc and
vc are convergent. First, using the estimates from Lemma 3.1 as in the proof of
Theorem 3.2, we obtain

(
(wm(t) · ∇)vc, g j

)
�

3∑

k,
=1

∫

R3
|wk

m g
j ||∂xkv


c | dx

� 1

2

∫

R3

K̃ (c)

|x |2

⎛

⎝
3∑

k,
=1

|wk
m |2 + |g
j |2

⎞

⎠ dx . (3.6)

Each term on the right-hand side of (3.6) is finite due to the Hardy inequality (2.6).
Next, using the explicit formulas (1.4), we immediately obtain | · |vc ∈ (

L∞(R3)
)3;

hence the Schwarz inequality implies

(
(vc · ∇)wm(t), g j

)
� ‖| · |vc‖∞

∥∥∥| · |−1g j

∥∥∥
2
‖∇wm‖2. (3.7)
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The right-hand side of this inequality is finite because | · |−1g j ∈ L2(R3) by the
Hardy inequality (2.6), again.

Now, we obtain a priori estimate of the sequence {wm}∞m=1 by multiplying (3.5)
by d jm and adding the resulting equations for j = 1, 2, . . . ,m. Taking into account
that div wm = 0, we get

1

2

d

dt
‖wm(t)‖2

2 + ‖∇ ⊗ wm(t)‖2
2 + ((wm(t) · ∇)vc, wm(t)) = 0.

Consequently, using inequality (3.4) and integrating from s to t , we obtain the
estimate

‖wm(t)‖2
2 + 2 (1 − K (c))

∫ t

s
‖∇wm(s)‖2

2 ds � ‖w(s)‖2
2.

Now, repeating the classical reasoning from for example [28, Ch. III. Thm. 3.1],
we obtain the existence of a weak solution in the energy space XT defined in (2.7),
which satisfies strong energy inequality (2.8). �

4. Linearized equation

In the proof of the L2-decay of weak solutions to problem (2.1)–(2.3), we use
properties of solutions to the linearized Cauchy problem

zt −�z + (z · ∇)vc + (vc · ∇)z + ∇π = 0, (x, t) ∈ R
3 × (0,∞), (4.1)

div z = 0, (4.2)

z(x, 0) = z0(x), x ∈ R
3. (4.3)

Let us first recall that the Leray projector on divergence-free vector fields is
defined by the formula Pv = v − ∇�−1(∇ · v) for sufficiently smooth vectors
v = (v1(x), v2(x), v3(x)). To give a meaning to P, it suffices to use the Riesz
transforms R j which are the pseudo-differential operators defined in the Fourier

variables as R̂k f (ξ) = iξ
|ξ | f̂ (ξ). Here, the Fourier transform of an integrable func-

tion v is given by v̂(ξ) = (2π)−3/2
∫
R3 e−i x ·ξ v(x) dx . Applying these well-known

operators we define (Pv) j = v j + ∑3
k=1 R j Rkvk .

Using the Leray projector P, we can formally transform system (4.1)–(4.2) into

zt −�z + P ((z · ∇)vc)+ P ((vc · ∇)z) = 0.

Now, for simplicity, let us denote the linear operator

Lz = −�z + P
(
(z · ∇)vc

) + P
(
(vc · ∇)z) (4.4)

and its adjoint operator in L2
σ (R

3) given by the formula

L∗z = −�z + (∇vc)
T z − (vc · ∇)z. (4.5)



Asymptotic Stability of Landau Solutions to Navier–Stokes System 123

In the following, we study these operators via the corresponding sesquilinear forms
which defined for all z, v ∈ H1

σ (R
3) as follows:

aL(z, v) =
∫

R3
∇z · ∇v dx +

∫

R3
(z · ∇)vc · v dx +

∫

R3
(vc · ∇)z · v dx (4.6)

and

aL∗(z, v) =
∫

R3
∇z · ∇v dx +

∫

R3
(∇vc)

T z · v dx −
∫

R3
(vc · ∇)z · v dx . (4.7)

Our goal is to show that both operators −L and −L∗ (in fact, their closures in
L2
σ (R

3)) are infinitesimal generators of analytic semigroups of linear operators on
L2
σ (R

3), provided condition (2.5) is satisfied. Here, we use the following abstract
criterion.

Proposition 4.1. Let H be a Hilbert space and let V ⊂ H be a dense subspace.
Assume that V is a Hilbert space with the inner product (·, ·)V , and with the norm
‖ · ‖V such that for a constant C > 0, we have ‖x‖H � C‖x‖V for all x ∈
V . Let a(x, y) be a bounded sesquilinear form on V , which defines an operator
A : D(A) → H as follows

D(A) = {z ∈ V : |a(z, v)| � C‖v‖H, v ∈ V}, (Az, v)H = a(z, v).

Suppose that for some α > 0 and λ0 ∈ R we have

α‖z‖2
V � Re a(z, z)+ λ0‖z‖2

H. (4.8)

Then −A is the infinitesimal generator of a strongly continuous semigroup of linear
operators on H which is holomorphic in a sector Sε = {s ∈ C : |Arg s| < ε} for
some ε > 0.

The result stated in Proposition 4.1 is essentially due to Lions [19]. Its proof
is a combination of theorems from [19] and [23] and we do not include it here,
because this is more or less standard reasoning. A detailed proof can be found for
example either in [9, Prop. 1.1] or in [22, Prop. 1.51].

Now, we apply Proposition 4.1 to study operator L and L∗.

Theorem 4.2. Assume that |c| � c0, where c0 is defined in (2.5). Then the opera-
tors −L and −L∗ defined in (4.4) and (4.5) are infinitesimal generators of strongly
continuous semigroups of linear operators on L2

σ (R
3) which are holomorphic in a

sector {s ∈ C : |Arg s| < ε} for a certain ε = ε(c) > 0.

Proof. We apply Proposition 4.1 with H = L2
σ (R

3) and V = H1
σ (R

3). To show
that the sesquilinear forms aL and aL∗ are bounded on V , it suffices to follow
estimates from (3.6) and (3.7).

Condition (4.8) for the sesquilinear form aL defined in (4.6) results immediately
the following inequality

α‖∇ ⊗ z‖2
2 � aL(z, z) (4.9)



124 Grzegorz Karch & Dominika Pilarczyk

for a certain α > 0 and all z ∈ H1
σ (R

3). Here, we would like to recall that
∫
R3(vc ·

∇)z ·z dx = 0 for div vc = 0. Hence, estimate (4.9) is a consequence of Hardy-type
inequality (3.4):

aL(z, z) = ‖∇ ⊗ z‖2
2 + ∫

R3(z · ∇)vc · z dx � (1 − K (c)) ‖∇ ⊗ z‖2
2, (4.10)

where K (c) < 1 for |c| � c0 > 1 by (2.5). Using Proposition 4.1 we complete the
proof that the operator −L generates a holomorphic semigroup of linear operators
on L2

σ (R
3).

An analogous argument applies to the adjoint operator −L∗, where by
Lemma 3.1, we get

aL∗(z, z) = ‖∇ ⊗ z‖2
2 +

∫

R3
(∇vc)

T z · z dx

� ‖∇ ⊗ z‖2
2 −

∫

R3

3∑

j,k=1

|∂x j v
k
c ||z j ||zk | � (1 − K (c)) ‖∇ ⊗ z‖2

2.

Applying Proposition 4.1, we complete the proof of Theorem 4.2. �
The following corollaries describe typical properties of generators of analytic

semigroups. We state them for the operator L, however, they are obviously valid
for the adjoint operator L∗, as well.

Corollary 4.3. Under the assumptions of Theorem 4.2, the following inequality

‖∇ ⊗ z‖2 � (1 − K (c)) ‖L1/2z‖2 (4.11)

holds true for all z ∈ Ḣ1
σ (R

3).

Proof. By the definition of a square root of nonnegative operators, we have
‖L1/2z‖2

2 = aL(z, z). Hence to complete this proof, it suffices to recall inequal-
ity (4.10). �
Corollary 4.4. Under the assumptions of Theorem 4.2,

‖e−tLz0‖2 � ‖z0‖2 (4.12)

for all z0 ∈ L2
σ (R

3) and t > 0.

Proof. Multiplying equation (4.1) by z and integrating over R
3, we easily obtain

energy equality

1

2

d

dt
‖z(t)‖2

2 + ‖∇ ⊗ z(t)‖2
2 +

∫

R3
(z · ∇)vc · z dx = 0,

because
∫
R3(vc∇)z · z dx = 0 by the condition div vc = 0. Hence, the Hardy-type

inequality (3.4) yields

1

2

d

dt
‖z(t)‖2

2 + (1 − K (c)) ‖∇ ⊗ z(t)‖2
2 � 0, (4.13)

where 1 − K (c) � 0 by (2.5). Now, it is sufficient to integrate from 0 to t to obtain
the inequality (4.12). �
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Corollary 4.5. There exists a constant C > 0 such that for all z0 ∈ L2
σ (R

3) the
following inequalities

‖Le−tLz0‖2 � Ct−1‖z0‖2 (4.14)

and

‖L1/2e−tLz0‖2 � Ct−
1
2 ‖z0‖2 (4.15)

hold true for all t > 0.

Proof. Inequality (4.14) is the well-known property of analytic semigroups of lin-
ear operators (see for example [23, Theorem 5.2] for more details). Using properties
of a square root of a nonnegative operator, the Schwarz inequality, inequality (4.14)
and Corollary 4.4, we obtain

‖L 1
2 e−tLψ‖2

2 = |(Le−tLψ, e−tLψ)| � ‖Le−tLψ‖2‖e−tLψ‖2 � Ct−1‖ψ‖2
2

for all t > 0. �
Corollary 4.6. Under the assumptions of Theorem 4.2, for all z0 ∈ L2

σ (R
3)

lim
t→∞ ‖e−tLz0‖2 = 0. (4.16)

Proof. Let z0 ∈ L2
σ (R

3). Since the range of the operator L is a dense subspace of
L2
σ (R

3), for every ε>0 there exists a functionϕ ∈ Range(L) such that ‖ϕ−z0‖2<ε.
Consequently, applying Corollary 4.5 and Corollary 4.4, we obtain

‖e−tLz0‖2 � ‖e−tL(z0 − ϕ)‖2 + ‖e−tLϕ‖2 � ε + ‖Le−tLψ‖2

� ε + Ct−1‖ψ‖2,

where ψ ∈ D(L). Hence, lim supt→∞ ‖e−tLz0‖2 � ε. Since ε > 0 is arbitrarily
small, we complete the proof. �
Corollary 4.7. Under the assumptions of Theorem 4.2, for all z0 ∈ L2

σ (R
3)

lim
t→∞

1

t

∫ t

0
‖e−sLz0‖2 ds = 0. (4.17)

Proof. Substituting s = tτ , we get

1

t

∫ t

0
‖e−sLz0‖2 =

∫ 1

0
‖e−tτLz0‖2 dτ.

Now, the desired result follows from Corollaries 4.4 and 4.6 combined with the
Lebesgue dominated convergence theorem. �

We conclude this section by showing the decay estimates of the semigroup e−tL.
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Proposition 4.8. (Hypercontractivity) Assume that |c| � c0 > 1, where c0 satisfies
(2.5). For each p ∈ ( 6

5 , 2) there exists a constant C = C(p) > 0 such that for
every z0 ∈ L p

σ (R
3)

‖e−tLz0‖2 � Ct−
3
2 (

1
p − 1

2 )‖z0‖p (4.18)

for all t > 0.

Proof. First, we consider the semigroup generated by the adjoint operator L∗
defined in (4.5). For every q ∈ (2, 6), using the Gagliardo–Nirenberg–Sobolev
inequality, we obtain

‖e−tL∗
z0‖q

q � C‖e−tL∗
z0‖

1
2 (6−q)
2 ‖∇e−tL∗

z0‖
3
2 (q−2)
2 .

Next, applying Corollaries 4.4 and 4.5 with L replaced by L∗, we get

‖e−tL∗
z0‖q

q � C‖z0‖
1
2 (6−q)
2 ‖(L∗)1/2e−tL∗

z0‖
3
2 (q−2)
2

� C
(

t−
3
2 (

1
2 − 1

q )‖z0‖2

)q
for all t > 0.

Hence, by a duality argument, we immediately deduce the inequality

‖e−tLz0‖2 � Ct
− 3

2

(
1
p − 1

2

)

‖z0‖p for all t > 0,

with p = q
q−1 ∈ ( 6

5 , 2). �

5. Asymptotic stability of weak solutions

To show the decay of ‖w(t)‖2, we use the approach from [4] which involves the
weak L p-spaces. By this reason, let us recall the weak Marcinkiewicz L p-spaces
(1 < p < ∞), denoted as usual by L p,∞ = L p,∞(R), which belong to the scale
of the Lorentz spaces and contain measurable functions f = f (x) satisfying the
condition

|{x ∈ R : | f (x)| > λ}| � Cλ−p (5.1)

for all λ > 0 and a constant C . One check that (5.1) is equivalent to
∫

E
| f (x)| dx � C̃ |E | 1

q

for every measurable set E with a finite measure, another constant C̃ , and 1
q + 1

p = 1.
This fact allows us to define the norm in L p,∞

‖ f ‖p,∞ = sup

{
|E |−1+ 1

q

∫

E
| f (x)| dx : E ∈ B

}
(5.2)

where B is the collection of all Borel sets with a finite and positive measure. Recall
the well-known imbedding L p ⊂ L p,∞ being the consequence of the Markov
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inequality |{x ∈ R : | f (x)| > λ}| � λ−p
∫
R

| f (x)|p dx . Moreover, the following
inequalities hold true: the weak Hölder inequality:

‖ f g‖r,∞ � ‖ f ‖p,∞‖g‖q,∞ (5.3)

for every 1 < p � ∞ (here L∞,∞ = L∞), 1 < q < ∞ and 1 < r < ∞ satisfying
1
r = 1

q + 1
p , and the weak Young inequality

‖ f ∗ g‖r,∞ � C‖ f ‖p,∞‖g‖q,∞ (5.4)

for every 1 < p < ∞, 1 < q < ∞ and 1 < r < ∞ satisfying 1 + 1
r = 1

p + 1
q . We

refer reader to [4] for the proofs of the results stated above.
The following lemma is extracted from reasonings contained in [4] and its proof

is based on properties of the weak L p-spaces.

Lemma 5.1. Assume that f ∈ L1 ((0,+∞)). For every α ∈ (1,+∞] there exists
a constant C > 0 such that

1

t

∫ t

0

(
| · |− 1

2 ∗
(
| · |− 1

α f
3
4

))
(s) ds � Ct−

1
4 − 1

α ‖ f ‖
3
4
1 . (5.5)

for all t > 0. Here, for α = +∞, the quantity 1/α should be replaced by 0.

Proof. First, consider 1/α = 0. Using the definition of the norm (5.2) in the weak
L p-spaces, we have

L1 = 1

t

∫ t

0

(
| · |− 1

2 ∗ f
3
4

)
(s) ds � t−

1
q

∥∥∥| · |− 1
2 ∗ f

3
4

∥∥∥
q,∞

for every q ∈ (1,∞) to be chosen later. Since, ‖g‖p,∞ � C‖g‖p for all p ∈ [1,∞],
the weak Young inequality (5.4) implies

L1 � Ct−
1
q

∥∥
∥| · |− 1

2

∥∥
∥

2,∞ ‖ f ‖
3
4
3
4 r
,

where 1 + 1
q = 1

2 + 1
r . Hence, however, we require 3r/4 = 1; hence q = 4. Since

the function | · |− 1
2 ∈ L2,∞ ((0,+∞)), we complete the proof of (5.5) in case

α = +∞.
For α ∈ (0,+∞), applying an analogous argument involving the definition of

the norm (5.2) in the weak L p-spaces, the weak Young inequality (5.4), we obtain

L2 = 1

t

∫ t

0

(
| · |− 1

2 ∗ | · |− 1
α f

3
4

)
(s) ds � t−

1
p

∥∥∥| · |− 1
2 ∗ | · |− 1

α f
3
4

∥∥∥
p,∞

� t−
1
p

∥
∥∥| · |− 1

2

∥
∥∥

2,∞

∥
∥∥| · |− 1

α f
3
4

∥
∥∥

q,∞

for every p, q ∈ (1,∞) satisfying 1+ 1
p = 1

2 + 1
q . Now, the weak Hölder inequality

(5.3) gives us

L2 � Ct−
1
p

∥
∥∥| · |− 1

2

∥
∥∥

2,∞

∥
∥∥| · |− 1

α

∥
∥∥
α,∞ ‖ f ‖

3
4
3
4 r
,

where 1
q = 1

r + 1
α

. Assuming 3r/4 = 1, we get 1/p = 1/4 + 1/α. �
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Lemma 5.2. There exists C > 0 such that for all v,w ∈ H1
σ (R

3) andψ ∈ L2
σ (R

3)

the following estimate
(
(w · ∇)v, e−tL∗

ψ
)

� Ct−
1
2 (‖w‖2‖v‖2)

1
4 (‖∇w‖2‖∇v‖2)

3
4 ‖ψ‖2 (5.6)

holds true for all t > 0.

Proof. By inequalities (4.11) and (4.15) (with L replaced by L∗), we have

‖∇e−tL∗
ψ‖2 � Ct− 1

2 ‖ψ‖2. Hence, a direct calculation involving the integration
by parts, the Hölder inequality and inequality (4.12) leads to

|
(
(w · ∇)v, e−tL∗

ψ
)

| = |
(
v,w · ∇e−tL∗

ψ
)

| � ‖v‖4‖w · ∇e−tL∗
ψ‖ 4

3

� ‖v‖4‖w‖4‖∇e−tLψ‖2 � Ct−
1
2 ‖v‖4‖w‖4‖ψ‖2.

Hence, the proof is completed by the Sobolev inequality ‖v‖4 � C‖∇v‖
3
4
2 ‖v‖

1
4
2 ,

which holds true for all v ∈ H1
σ (R

3). �
Proof of Theorem 2.2. Let w be a weak solution of system (2.1)–(2.3) in the space
XT defined in Theorem 2.1 which satisfies the strong energy inequality (2.8). First,
we show that

lim
t→∞

1

t

∫ t

0
‖w(s)‖2 ds = 0. (5.7)

Observe that inequality (2.8) implies ‖w(·)‖2 ∈ L∞(0,∞) and ‖∇w(·)‖2
2 ∈

L1(0,∞). Now, with an arbitraryψ ∈ C∞
c,σ (R

3), we substituteϕ(τ) = e−(s−τ)L∗
ψ

into equation (2.9) (with s = 0 and t replaced by s) to obtain the following integral
formulation of problem (2.1)–(2.3)

(w(s), ψ) =
(

e−sLw0, ψ
)

+
∫ s

0

(
(w · ∇w)(τ), e−(s−τ)L∗

ψ
)

dτ. (5.8)

Here, in calculations leading to (5.8), one should transform the last term on the
right-hand side of (2.9) in the following way:

∫ s

0
(w, ϕτ ) dτ =

∫ s

0

(
w,L∗ϕ

)
dτ =

∫ s

0
(Lw, ϕ) dτ

=
∫ s

0
[(∇w,∇ϕ)+ (w · ∇vc, ϕ)+ (vc · ∇w, ϕ)] dτ,

because div ϕ = 0.
Hence, applying Lemma 5.2 to estimate the nonlinear term in (5.8) and the

L2-duality argument, we get

‖w(s)‖2 � ‖e−sLw0‖2 + C
∫ s

0
(s − τ)−

1
2 ‖w(τ)‖

1
2
2 ‖∇w(τ)‖

3
2
2 dτ

� ‖e−sLw0‖2 + C sup
τ>0

‖w(τ)‖
1
2
2

∫ s

0
(s − τ)−

1
2 ‖∇w(τ)‖

3
2
2 dτ
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since ‖w(·)‖2 ∈ L∞(0,∞). Integrating from 0 to t and multiplying by 1/t, we
obtain

1

t

∫ t

0
‖w(s)‖2 ds � 1

t

∫ t

0
‖e−sLw0‖2 ds + C

t

∫ t

0

(
| · |− 1

2 ∗ ‖∇w(·)‖
3
2
2

)
(s) ds.

Now, since ‖∇w‖2
2 ∈ L1 ((0,+∞)), we apply Lemma 5.1 with 1/α = 0 to get the

estimate

1

t

∫ t

0
‖w(s)‖2 ds � 1

t

∫ t

0
‖e−sLw0‖2 ds + Ct−

1
4 , (5.9)

which proves (5.7) by Corollary 4.7.
Next, notice that, by the strong energy inequality (2.8), ‖w(t)‖2 is a non-

increasing function of t for almost all t � 0. Hence, for t > 0 we obtain

‖w(t)‖2 = 1

t
‖w(t)‖2

∫ t

0
ds � 1

t

∫ t

0
‖w(s)‖2 ds. (5.10)

The proof is completed by (5.7). �

Proof of Corollary 2.3. Using the decay estimate from Proposition 4.8, we have

1

t

∫ t

0
‖e−sLw0‖2 ds � Ct−

3
2 (

1
p − 1

2 )‖w0‖p

for each p ∈ ( 6
5 , 2) and all t > 0. Applying this inequality in (5.9) and recalling

(5.10), we complete the proof of the corollary in the case of p ∈ [ 3
2 , 2).

Now, we notice that for p ∈ ( 6
5 ,

3
2 ) inequality (5.9) implies ‖w(t)‖2 � Ct− 1

4

for all t > 0. Hence, repeating the reasoning from the proof of Theorem 2.2 and
applying Lemma 5.1 with α = 8, we get the estimate

1

t

∫ t

0
‖w(s)‖2 ds � 1

t

∫ t

0
‖e−sLw0‖2 ds

+C

t

∫ t

0

(
| · |− 1

2 ∗ | · |− 1
8 ‖∇w(·)‖

3
2
2

)
(s) ds

� Ct−
3
2 (

1
p − 1

2 )‖w0‖p + Ct−
3
8 ,

which proves decay estimate (2.10) for p ∈ [ 4
3 ,

3
2 ). Repeating this procedure finitely

many times, we complete the proof for each p ∈ ( 6
5 , 2). �
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