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Abstract In this article, an iterative procedure is proposed
for the training process of the probabilistic neural network
(PNN). In each stage of this procedure, the Q(0)-learning
algorithm is utilized for the adaptation of PNN smoothing
parameter (σ ). Four classes of PNN models are regarded
in this study. In the case of the first, simplest model, the
smoothing parameter takes the form of a scalar; for the sec-
ond model, σ is a vector whose elements are computed with
respect to the class index; the third considered model has the
smoothing parameter vector for which all components are
determined depending on each input attribute; finally, the
last and the most complex of the analyzed networks, uses
the matrix of smoothing parameters where each element is
dependent on both class and input feature index. The main
idea of the presented approach is based on the appropriate
update of the smoothing parameter values according to the
Q(0)-learning algorithm. The proposed procedure is veri-
fied on six repository data sets. The prediction ability of
the algorithm is assessed by computing the test accuracy on
10 %, 20 %, 30 %, and 40 % of examples drawn randomly
from each input data set. The results are compared with
the test accuracy obtained by PNN trained using the conju-
gate gradient procedure, support vector machine algorithm,
gene expression programming classifier, k–Means method,
multilayer perceptron, radial basis function neural network
and learning vector quantization neural network. It is shown
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that the presented procedure can be applied to the automatic
adaptation of the smoothing parameter of each of the con-
sidered PNN models and that this is an alternative training
method. PNN trained by the Q(0)-learning based approach
constitutes a classifier which can be treated as one of the top
models in data classification problems.
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1 Introduction

Probabilistic neural network (PNN) is an example of the
radial basis function based model effectively used in data
classification problems. It was proposed by Donald Specht
[37, 38] and, as the data classifier, draws the attention of
researchers from the domain of data mining. For example,
it is applied in medical diagnosis and prediction [23, 25,
28], image classification and recognition [7, 20, 27], bear-
ing fault detection [32], digital image watermarking [45],
earthquake magnitude prediction [1] or classification in a
time-varying environment [31].

PNN is a feed-forward neural network with a complex
structure. It is composed of an input layer, a pattern layer, a
summation layer and an output layer. Despite its complexity,
PNN only has a single training parameter. This is a smooth-
ing parameter of the probability density functions (PDFs)
which are utilized for the activation of the neurons in the
pattern layer. Thereby, the training process of PNN solely
requires a single input-output signal pass in order to com-
pute network response. However, only the optimal value of
the smoothing parameter gives the possibility of correctness
of the model’s response in terms of generalization ability.
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The value of σ must be estimated on the basis of the PNN’s
classification performance which is usually achieved in an
iterative manner.

Within the process of the smoothing parameter estima-
tion two issues must be addressed. The first one pertains
to the selection of σ in PDF for the pattern layer neurons
of PNN. Four possible approaches are applied, i.e. a single
parameter for the whole model [37, 38], a single parameter
for each class [1], a single parameter for each data attribute
[11, 39], and a single parameter for each attribute and a class
[7, 11, 12].

The second problem related to the smoothing parame-
ter estimation for PNN is concerned with the computation
of the σ value. In literature, different procedures have been
developed. For example, in [39], the conjugate gradient
descent (ascent) is used to find iteratively the set of σ ’s
which maximize the optimization criterion. Chtioui et al [7]
exploit the conjugate gradient method and the approximate
Newton algorithm to determine the smoothing parameters
associated with each data attribute and class. In [12], the
authors utilize the particle swarm optimization algorithm
to estimate the matrix of the smoothing parameters for
the probability density functions in the pattern layer. An
interesting study is presented in [47], where the gap-based
approach for smoothing parameter adaptation is proposed.
The authors provide the formula for σ on the basis of the
gap computed between the two nearest points of the data
set. The solution is applied to PNN for which the smoothing
parameter takes the form of a scalar and the vector whose
parameters are associated with each data feature.

As one can observe, the choice of the smoothing param-
eter plays a crucial role in the training process of the proba-
bilistic neural network. This fact is of particular importance
when PNN has different σ for: each class, each attribute,
and each class and attribute. The task of smoothing param-
eter selection can then be considered as a high-dimensional
function optimization problem. The reinforcement learning
(RL) algorithm is an efficient method in solving such type
of problems, e.g. finding extrema of some family of func-
tions [46] or the computation of the set of optimal weights
for multilayer perceptron [40]. The RL method is also fre-
quently applied in various engineering tasks. It is used in
nonstationary serial supply chain inventory control [18],
adaptive control of nonlinear objects [43], adjusting robot
behavior for autonomous navigation system [26] or path
planning for improving positioning accuracy of a mobile
microrobot [22]. There are also studies which propose the
use of RL in non-technical domains, e.g. in the explana-
tion of dopamine neuronal activity [5] or in an educational
system to improve the pedagogical policy [16].

In this work, we introduce a novel procedure for the com-
putation of the smoothing parameter of the PNN model.
This procedure uses the Q(0)-learning algorithm. The

method adjusts the smoothing parameter according to four
different strategies: single σ for the whole network, single
σ for each class, single σ for each data attribute and sin-
gle σ for each data attribute and each class. The results
of our proposed solution are compared to the outcomes
of PNN for which the smoothing parameter is calculated
using the conjugate gradient procedure and, additionally,
to the support vector machine classifier, gene expression
programming algorithm, k–Means clustering method, mul-
tilayer perceptron, radial basis function neural network and
learning vector quantization neural network in medical data
classification problems.

The authors of the present study have already proposed
the application of the reinforcement learning algorithm to
the computation of the smoothing parameter of radial basis
function based neural networks [19]. In that work, the
stateless Q-learning algorithm was used for the adaptive
computation of the smoothing parameter of the networks.

This paper is organized as follows. Section 2 discusses
the probabilistic neural network highlighting its basics,
structure, principle of operation and the problem of smooth-
ing parameter selection. Section 3 presents the basis of
one of the reinforcement learning algorithms which is
applied in this work, namely the Q(0)-learning algorithm.
In Section 4, we present the proposed procedure. Here the
problem statement is provided, a general idea of applying
the Q(0)-learning algorithm to the choice of the smoothing
parameter is described and, finally, the details of the algo-
rithm are given. Section 5 presents the data sets used in this
research, the algorithm settings and the obtained empirical
results along with the illustration of the PNN training pro-
cess. In this part of the work, we compare the performance
of our method with the efficiency of the PNN whose σ is
determined by means of the conjugate gradient method and,
additionally, to the efficiency of the reference classifiers
and neural networks. Finally, in Section 6, we conclude our
work.

2 Probabilistic neural network

Probabilistic neural network is a data classification model
which implements the Bayesian decision rule. This rule is
defined as follows. If we assume that: (1) there is a data
pattern x ∈ R

n which is included in one of the predefined
classes g = 1, . . . , G; (2) the probability of x belong-
ing to the class g equals pg ; (3) the cost of classifying
x into class g is cg ; (4) the probability density functions
y1(x), y2(x), . . . , yG(x) for all classes are known. Then,
according to the Bayes theorem, when g �= h, the vector x
is classified to the class g, if pgcgyg(x) > phchyh(x). Usu-
ally pg = ph and cg = ch, thus if yg(x) > yh(x), the vector
x is classified to the class g.
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In real data classification problems, any knowledge on
the probability density functions yg(x) is not given since a
data set distribution is usually unknown. Therefore, some
approximation of the PDF must be determined. Such an
approximation can be obtained using the Parzen method
[29]. Commonly, the Gaussian function is a choice for PDF
since it satisfies the conditions required by Parzen’s method.

The assumption of using the Gaussian density for PDF
gives the possibility of constructing a feed-forward classi-
fier. It is composed of the input layer represented by the
attributes of x, the pattern layer and the summation layer
consisting of G neurons where each one computes the signal
only for patterns which belong to g-th class

yg (x; σ) = 1

lg (2π)n/2 σn

lg∑

i=1

exp

⎛

⎜⎝−
n∑

j=1

(
x

(g)
ij − xj

)2

2σ 2

⎞

⎟⎠ ,

(1)

where lg is the number of examples of class g, σ denotes

the smoothing parameter, x
(g)

ij is the j -th element of the i-
th training vector (i = 1, . . . , lg) which is contained in the
class g and xj is the j -th coordinate of the unknown vector
x. Finally, the output layer estimates the class of x in accor-
dance with the Bayes’s decision rule based on the outputs of
all the summation layer neurons

G∗ (x) = arg max
g

{
yg (x)

}
, (2)

where G∗ (x) denotes the predicted class of the pattern x.
Since yg defined in (1) depends on scalar σ , this type of
PNN is henceforth named PNNS. The architecture of the
probabilistic neural network is depicted in Fig. 1.

If we consider that the patterns of particular classes differ
in their densities, then the summation layer signal defined

in (1) has a different shape depending on the value of the
smoothing parameter in relation to the class (such a model
is called PNNC)

yg (x; σC) = 1

lg (2π)n/2 (σ (g)
)n
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where σC = [
σ (1), . . . , σ (G)

]T
is the smoothing parame-

ter vector consisting of σ (g) elements associated with g-th
class.

It is also possible to differentiate the smoothing parame-
ter with respect to each attribute of the input data. In such a
case, the formula in (1) takes the following form

yg (x; σ V ) = 1

lg (2π)n/2
n∏

j=1

σj

lg∑
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exp
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2σ 2
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⎞

⎟⎠ , (4)

where σV = [σ1, . . . , σn] is the smoothing parameter vec-
tor consisting of σj elements associated with the j -th input
variable. PNN with the smoothing parameters different for
each variable is denoted as PNNV.

Finally, if one regards a PNN model, whose smoothing
parameter is different for each data variable and each class,
the network’s summation layer signal can be expressed in
the most general form (such a model is named PNNVC)

yg (x; σ V C) = 1

lg (2π)n/2
n∏

j=1

σ
(g)
j

lg∑
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(5)

Fig. 1 The architecture of the
probabilistic neural network
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where
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(6)

is the matrix of the smoothing parameters where each σ
(g)

j

element is associated with the j -th input variable and g-th
class.

Taking into account the four above possibilities of com-
puting summation layer signal, the PNN output defined in
(2) is generalized to the following form

G∗ (x; sigma) = arg max
g

{
yg (x; sigma)

}
, (7)

where

sigma =

⎧
⎪⎪⎨

⎪⎪⎩

σ for PNNS
σC for PNNC
σV for PNNV
σV C for PNNVC

, (8)

where yg is computed according to (1), (3), (4) and (5) for
PNNS, PNNC, PNNV and PNNVC, respectively.

Figure 2 shows the difference between the PNN mod-
els expressed in terms of the smoothing parameter selection
and computation for the summation neuron output signal yg

defined by the formulas (1), (3), (4) and (5). In this figure,
we can see five points in R

2 space which belong to two
classes. The summation layer signals y1 and y2 are only
marked for PNNS. One can observe that a single σ for the
whole network (PNNS) does not enable the consideration
of the input data densities of each class. Different shapes
of PDFs for a PNNC model allow the dispersion of data of
each class to be taken into account. When the smoothing
parameter is different for each variable (PNNV), the partic-
ular PDFs take an elliptical form. This approach does not
consider the input data densities of each class but provides
information about the influence of input attribute values on
yg. Finally, PNNVC is the network which integrates data
classes densities and the influence of the particular input
features. This is the most general form of the model since
PNNS, PNNC and PNNV are special cases of PNNVC.

3 Reinforcement learning

3.1 Introduction

Reinforcement learning addresses the problem of the agent
that must learn to perform a task through a trial and error

Fig. 2 The summation neuron signals y1 and y2 of PNNS, PNNC,

PNNV and PNNVC for σ = 1.4, σC =
[

1.4
0.4

]
, σV = [1.4, 0.4]

and σV C =
[

1.4, 0.4
0.4, 1.4

]
respectively. Graphical interpretation of the

signals is shown for five exemplary points of two classes: x(1)
1 =

[−5, 5], x(1)
2 = [−5, 0], x(2)

1 = [0,−6], x(2)
2 = [5,−6] and x(2)

3 =
[3,−2]
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interaction with an unknown environment. The agent and
the environment interact continuously until the terminal
state is reached. The agent senses the environment and
selects an action to perform. Depending on the effect of its
action, the agent obtains a reward. Its goal is to maximize
the discounted sum of future reinforcements rt received in
the long run in any time step t , which is usually formalized
as

∑∞
t=0 γ t rt , where γ ∈ [0, 1] is the agent’s discount rate

[41].
The mathematical model of the reinforcement learning

method is a Markov Decision Process (MDP). MDP is
defined as the quadruple 〈S, A, P

at
stst+1, rt 〉 where S is a set

of states, A is a set of actions, P
at
st st+1 denotes the probabil-

ity of the transition to the state st+1 ∈ S after the execution
of the action at ∈ A in the state st ∈ S.

3.2 Q(0)-learning

Different types of reinforcement learning algorithms exist.
The Q(0)-learning proposed by Watkins [44] is one of the
most often used. This algorithm computes the table of all
Q (s, a) values (called Q–table) by successive approxima-
tions. Q (s, a) represents the expected pay-off that an agent
can obtain in state s after it performs action a. In time step
t , the Q–table is updated for the state-action pair (st , at)

according to the following formula [44]

Qt+1 (st , at ) = Qt (st , at ) + α
(
rt + γ max

a
Qt (st+1, a)

−Qt (st , at )
)

,

(9)

where the maximization operator refers to the action value
a which may be performed in the next state st+1 and α ∈
(0, 1] is the learning rate. The formula (9) will be used as the
basis of the algorithm for the PNN’s smoothing parameter
optimization presented in the next section.

4 Application of Q(0)-learning based procedure
to the adaptation of PNN’s smoothing parameter

4.1 Problem statement

Assume, we are given a training set in the form of the pairs
〈xi , Ĝi〉, i = 1, . . . , l, where xi is the i-th input element
and Ĝi is its corresponding output. Assume furthermore the
following measure of the accuracy

Acc(sigma) = 1

lT

lT∑

i=1

ci(sigma), (10)

where lT is the cardinality of a training set, and ci is the indi-
cator of the classification’s correctness defined as follows

ci(sigma) =
{

1 if G∗(xi; sigma) = Ĝi

0 if G∗(xi; sigma) �= Ĝi

, (11)

where G∗(xi; sigma) is defined in (7).
The task is to find the optimal value of the smoothing

parameter which maximizes the accuracy (10). For PNNC,
PNNV and PNNVC models, this is a multivalued optimiza-
tion problem. As the solution, we propose a new procedure,
which is based on the Q(0)-learning algorithm. The set of
system states S, the set of actions A and the reinforcement
signal r which are required by the Q(0)-learning method
will be defined along with the description of the algorithm.

4.2 General idea

For the adaptation of the smoothing parameter, the pro-
cedure based on the Q(0)-learning algorithm is proposed
for PNNS, PNNC, PNNV and PNNVC models. The intro-
duction of the Q(0)-learning algorithm is based on the
assumption that in the PNN training process it is possible to
distinguish two elements which interact with each other: the
environment and the agent. The environment is composed
of the data set used for the training process, the PNN model
and the accuracy measure. The agent, on the basis of the
policy which is represented by the action value function Q,
chooses an action at in a state st . The action at is used to
modify the smoothing parameter. In this work, the state is
represented by the accuracy measure. This has some natu-
ral interpretation since the state defined in such a way is the
function of PNN output, which depends on the smoothing
parameter. The output of PNN is computed for the train-
ing and test set in order to determine the training and test
accuracies. On the basis of the training accuracy, the next
state st+1 and the reinforcement signal rt are computed. The
reinforcement signal provides information about the change
of the training accuracy taking the negative value when the
accuracy decreases and the positive value when the accu-
racy increases. The effect of interaction between the agent
and the environment results in both the modification of the
action value function Q, and the change of the smoothing
parameter.

The main assumption of the proposed procedure is to
perform the training of the PNN model on the training set
in order to maximize the training accuracy (10). Addition-
ally, PNN is tested by computing the accuracy on the test
set. The highest test accuracy and its corresponding value
of the smoothing parameter is stored. Finding the highest
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test accuracy of PNN will provide the optimal smoothing
parameter in terms of the prediction ability.

The proposed procedure for the adaptation of the smooth-
ing parameter of the network is illustrated in the form of
the flowchart in Fig. 3. We only present the application of
the procedure for the PNNV model, but it performs in a
comparable manner for the remaining networks taking the
cardinality of the smoothing parameters into account.

As shown, the procedure consists of M stages. In the first
stage, the smoothing parameter vector σV of PNNV is ini-
tialized with ones. Such an initialization is proposed in the
exemplary experiments in [8]. The actions from the set A(1)

are assigned some values which should be large. The defi-
nition of the action along with the details concerning action
set selection will be provided later in subsection 4.3. Then
the model is trained on the training set using the proposed

Fig. 3 The iterative procedure
of the training process for the
PNNV model
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Algorithm 1, which will be explained later in detail, finds
the smoothing parameter vector σ (1)

max which maximizes the
training accuracy. Algorithm 1 is performed for each time
step t and in short, for m-th stage of the procedure, consists
of the following steps:

– choose at action using an actual policy derived from the
action value function Q;

– update a single element of σV with the value of at ;
– compute training and test accuracy Acct according to

(10);
– actualize the maximal test accuracy Accmax and the

corresponding σ
(m)
max;

– calculate the reinforcement signal rt on the basis of
training accuracy;

– update the action value function Q.

Once the first stage of the procedure is completed, the
second one begins. Here, σ (2)

max is initialized with the optimal
value from the previous stage and the action set is changed.
In our approach, this change relies on the decrease of all
action values by an order of magnitude. The PNNV model
is trained using Algorithm 1 and the smoothing parameter
vector which maximizes the training accuracy is updated.

The procedure is performed M-times, each time: (1) –
updating σ

(m)
max on the basis of σ (m−1)

max , (2) – decreasing the
absolute values of the actions and (3) – finding new smooth-
ing parameter values which maximize training accuracy.
Such a type of approach, where the initial absolute values
of the actions are large, gives the possibility of the selection
of the smoothing parameter values within a broad range.
The iterative decrease of actions in subsequent stages makes
σ

(m)
max narrow its values. This, in turn, allows us to search for

a more optimal parameter of the PNNV model.
Once all M stages are performed, the highest test accu-

racy Accmax is computed for σ (M)
max. Such a solution provides

the highest prediction ability of PNNV.
As shown, the above procedure utilizes RL in the prob-

lem of smoothing parameter adjustment to perform a clas-
sification task. However, it is also possible to combine
PNN and RL in the other way. In the work of Heinen and
Engel [15], a new incremental probabilistic neural network
(IPNN) is proposed. The matrix of the smoothing param-
eters of IPNN is used for the action selection in the RL
problem. IPNN is therefore utilized as the action value
function approximator.

4.3 Application of the Q(0)-learning algorithm to adaptive
computation of the smoothing parameter

In this subsection, we explain the details concerning the
application of the Q(0)-learning algorithm to the prob-
lem of σV adaptive selection for the PNNV classifier. As
mentioned before, the algorithm is solely highlighted for

this type of network since Q(0)-learning works in a similar
manner for PNNS, PNNC and PNNVC. The only difference
is related to the number of the smoothing parameters which
have to be updated. For PNNV, there is n parameters of the
model while for PNNS, PNNC and PNNVC, there exist 1,
G and n × G smoothing parameters, respectively.

The use of the Q(0)-learning algorithm for the choice of
σV parameter requires the definition of the set of the system
states, the action set and the reinforcement signal.

A(1) = {−10,−1,−0.1, 0.1, 1, 10},
A(2) = {−1,−0.1,−0.01, 0.01, 0.1, 1},
A(3) = {−0.1,−0.01,−0.001, 0.001, 0.01, 0.1} .

(12)

In each stage of the procedure, the smoothing parame-
ters of PNNV are increased or decreased by the element
values of A(m) action set. The proposition of the action set
in the first stage (A(1)) allows the modification of σV with
large values. This gives the possibility of searching opti-
mal parameters inside a broad range of values. Maximally,
the elements of σV can be modified by the value of ±10.
The first stage of the procedure ends up with finding a
candidate for optimum of the smoothing parameter. Subse-
quent decreases of absolute values of actions in A(2), shrink
the domain of possible optimal parameter values. Finally,
in A(3), the absolute values of the actions are so small so
that the smoothing parameters of PNNV slightly change. A
large change of σV in the third stage of the procedure is not
required because the optimal modification route has already
been established (in the first two stages).

In order to maximize the training accuracy of PNNV, the
actual reinforcement signal rt should reward an agent when
the training accuracy increases and punish an agent when
the accuracy decreases. This idea can be simply formalized
as follows.

Definition 1 The set of system states is defined by the accu-

racy measure: S =
{

0, 1
lT

, 2
lT

, . . . , lT −1
lT

, 1
}

. S takes the real

values from the interval [0, 1]. The total number of states is
therefore lT + 1.

Definition 2 A(m) is the symmetric set of actions of

the following form: A(m) =
{
−a

(m)
1 ,−a

(m)
2 , . . . ,−a

(m)

p(m) ,

a
(m)

p(m) , . . . , a
(m)
2 , a

(m)
1

}
where p(m) denotes the half of the

cardinality of this set in stage m of the procedure.

Since p(m) in each iteration of the proposed procedure
may be different, the cardinality of A(m) may vary and
equals 2p(m). The action set should be chosen so that
max

(
A(1)

)
> . . . > max

(
A(m)

)
> . . . > max

(
A(M)

)

holds. In our work, we assume the number of stages to be
M = 3 which provides three action sets. For each m-th set,
the following action values are proposed
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Such a form of the reinforcement signal combined with
the action value function update strengthens the confidence
if the choice of an action is beneficial or not.

Algorithm 1 shows the application of the Q(0)-learning
method to the adaptive choice of σV for the PNNV clas-
sifier. This algorithm is executed in each m-th stage of the
procedure shown in Fig. 3.

The algorithm starts with the initialization of Accmax on
the basis of the smoothing parameter values found in the
previous stage of the procedure except from the first stage,
when σV is initialized with ones. Accmax will store the
maximal test accuracy computed on the test set during the
training process. Then, in step 2, the action value function
Q is set to zero.

The main loop begins in step 4, which runs over the
maximum number of training steps tmax. Since the PNNV
training process is considered, in step 5 the inner loop begins
which iterates over the number of input features. At the
beginning of this loop, the actual state st is observed on the

basis of the training accuracy (step 6). Next, on the basis of
the Q–table values, the actual action at is chosen at the state
st using the ε-greedy method. Then, in step 8, the smooth-
ing parameter is updated by adding the value of the action
at as follows

σj,t = σj,t−1 + at . (14)

Modification of σj,t throughout the addition of the action
value allows us to find the optimal smoothing parameter
within the range determined by the extreme values of A(m)

multiplied by the maximum number of training steps tmax.
Once a new value of the smoothing parameter is determined,
the training accuracy Acctrain

j,t

(
σV,t

)
is calculated (step 9),

which then (step 10) becomes the state of the system in t+1
time step. Next, the test accuracy Acctest

j,t

(
σV,t

)
is com-

puted on the test set. If an actual test accuracy is greater than
the maximum one, both σ

(m)
max and Accmax are updated (steps

12–15). Afterwards, the reinforcement signal is calculated
using (13) and the actualization of the action value func-
tion is performed (steps 16 and 17, respectively). Finally,
if the current training accuracy reaches the value of 1, the
algorithm stops and the next step of the procedure begins.
If the algorithm is not able to find the most optimal solu-
tion (Acctrain

j,t

(
σV,t

)
< 1), the condition in step 18 is never

fulfilled. In such a case, (m + 1)-th stage of the procedure
starts after tmax training steps of PNNV has been performed.

Algorithm 1 The proposed algorithm of smoothing parameter adaptation of PNNV model with the use of Q(0)-learning
method for m-th stage of the procedure

Definition 3 For the accuracy computed on the training
set in the actual and previous step Acctrain

t

(
σV,t

)
and

Acctrain
t−1

(
σV,t−1

)
, the reinforcement signal is realized as

follows

rt = Acctrain
t

(
σV,t

)− Acctrain
t−1

(
σV,t−1

)
. (13)

Since the training accuracy is normalized, rt ∈ [−1, 1].
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It is worth noting that the type of the PNN model influ-
ences the number of smoothing parameter updates. For
PNNS, PNNC, PNNV and PNNVC, the number of the
smoothing parameter updates is equal tmax, tmax×G, tmax×n

and tmax × n × G, respectively.

5 Experiments

In this section, we present the simulation results in the
classification of medical databases obtained by PNNS,
PNNC, PNNV and PNNVC trained by the proposed
procedure. These results are compared with the out-
comes obtained by PNN trained using the conjugate gra-
dient procedure (PNNVC–CG), support vector machine
(SVM) algorithm, gene expression programming (GEP)
classifier, k–Means method, multilayer perceptron (MLP),
radial basis function neural network (RBFN) and learn-
ing vector quantization neural network (LVQN). The
data sets used in these experiments are also briefly
described and the adjustments of the algorithm are provided.
Moreover, the illustration of the PNNS training process is
presented.

5.1 Data sets used in the study

In the simulations, six UCI machine learning repository
medical data sets are used:

– Wisconsin breast cancer database [24] that consists of
683 instances with 9 attributes. The data is divided into
two groups: 444 benign cases and 239 malignant cases.

– Pima Indians diabetes data set [36] that includes 768
cases having 8 features. Two classes of data are consid-
ered: samples tested negative (500 records) and samples
tested positive (268 records).

– Haberman’s survival data [21] that contains 306 patients
who underwent surgery for breast cancer. For each
instance, 3 variables are measured. The 5-year survival
status establishes two input classes: patients who sur-
vived 5 years or longer (225 records) and patients who
died within 5 years (81 records).

– Cardiotocography data set [3] that comprises 2126 mea-
surements of fetal heart rate and uterine contraction
features on 22 attribute cardiotocograms classified by
expert obstetricians. The classes are coded into three
states: normal (1655 cases), suspect (295 cases) and
pathological (176 cases).

– Dermatology data [13] that includes 358 instances
each of 34 features. Six data classes are considered:
psoriasis (111 cases), lichen planus (71 cases), sebor-
rheic dermatitis (60 cases), cronic dermatitis (48 cases),
pityriasis rosea (48 cases) and pityriasis rubra pilaris
(20 cases).

– Statlog heart database [3] that consists of 270 instances
and 13 attributes. There are two classes to be predicted:
absence (150 cases) or presence (120 cases) of heart
disease.

5.2 Algorithms’ settings

In the case of the proposed algorithm, the initial values
of the action value function Q are set to zero. Three
six–element action sets proposed in (12) are used. The max-
imum number of the training steps tmax = 100 is assumed.
We apply such a value of tmax in order to show that at a rela-
tively small number of training steps it is possible to achieve
satisfactory results. Additionally, the Q(0)-learning algo-
rithm requires appropriate selection of its intrinsic parame-
ters: the greedy parameter, the update rate and the discount
factor.

The greedy parameter ε determines the probability of
random action selection and must be taken from the set
[0, 1]. If ε = 0.05, only 5 actions out of 100 are cho-
sen randomly from the action set. The remaining 95 % of
action selections are performed according to learned policy
represented by the Q–table. If the elements of the Q–table
are the same (initial iterations of Algorithm 1), the actions
are selected randomly. In this work, the greedy parame-
ter is chosen experimentally from the set {0.5, 0.05, 0.005}.
Unfortunately, for tmax = 100, the use of ε = 0.5 does not
yield repeatable results. In turn, for ε = 0.005, it is observed
that some actions have never been selected. Therefore, ε =
0.05 is utilized in the experiments.

The α parameter determines the update rate for the action
value function Q. The small value of this factor increases
the time of the training process. Its large value introduces
the oscillations of Q elements [34]. The proper selection
of α has a significant influence on the convergence of the
training process. From the theoretical point of view, one
requires that α is large enough to overcome any initial
conditions or possible random fluctuations and it should
decrease its value in time. However, in practical applica-
tions, the constant values of this factor are mostly used.
Admittedly, this approach does not assure the convergence
of the learning process, but a stable policy can be reached.
In our study, we choose α experimentally from the set
{0.1, 0.01, 0.001}. For all three parameter values, similar
results are obtained. In the final simulation, we assume
α = 0.01.

The discount factor γ determines the relative importance
of short and long termed prizes. This parameter is mostly
picked arbitrarily near 1, e.g. 0.8 [6], 0.9 [2], [33] or 0.95
[4]. In this contribution, γ = 0.95.

PNNVC–CG used in the simulations is the probabilistic
neural network trained by the conjugated gradient proce-
dure. The model is a built-in tool of DTREG predictive
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modeling software [35]. In the experiments, we use the net-
work for which the smoothing parameter is adapted for each
input feature and class separately. The starting values of the
smoothing parameters for PNNVC–CG are between 0.0001
and 10 [35].

SVM algorithm [42] is used in this work as the data
classifier. The model is trained by means of the SMO algo-
rithm [30] available in Matlab’s Bioinformatics Toolbox.
Multiclass classification problems are solved by applying
the one-against-all method. In all data classification cases,
radial basis function kernel is applied with experimental
grid search for both C constraint and sc spread constant:
C = {

10−1 , 100, 101, 102, 103, 104, 105, 106
}

and
sc = {0.08, 0.2, 0.3, 0.5, 0.8, 1.2, 1.5, 2, 5, 10, 50, 80, 100,
200, 500}, respectively.

The classification of considered data sets with the use of
the GEP algorithm [9, 10] is performed in GeneXproTools
software. For the simulation purposes, the GEP’s parame-
ters are chosen on the basis of Table 1. In all experiments,
the number of chromosomes in the population is set to 30.
For genetic computations, we use 10 random floating point
constants per gene from the range [−1000, 1000]. Evolution
is performed until 10000 generations are reached.

The k–Means clustering algorithm [14] is used in the
comparison for classification purposes. The predictions are
made for the unknown cases by assigning them the category
of the closest cluster center. In the simulations, the opti-
mal number of clusters is found which provides highest test
accuracy.

Table 1 The head size, the number of genes within each chromosome,
the linking functions between genes, the computing functions in the
head, the fitness functions and the genetic operators used for the GEP
classifier

Head size 3,4,5,6,7,8

Number of genes 1, 2, . . . , 12

Linking function Addition, Multiplication, Logical OR

Computing functions +, −, ∗, /, −x, 1/x

b/ (1 + exp (ax)), exp
(− (x − a)2 /

(
2b2

))

Fitness function Sensitivity/Specificity

Number of hits with penalty

Mean squared error

Genetic operators Mutation = 0.044

Inversion = 0.1

IS Transposition = 0.1

RIS Transposition = 0.1

Gene Transposition = 0.1

One-Point Recombination = 0.3

Two-Point Recombination = 0.3

Gene Recombination = 0.1

MLP neural network is simulated with one or
two hidden layers activated by the transfer func-
tions from the set {linear, hyperbolic tangent, logistic}.
The same set of transfer functions is applied for the output
neurons, for which the sum squared error function is calcu-
lated. The number of hidden layer neurons is optimized in
order to minimize the network error. The model is trained
with gradient descent with momentum and adaptive learning
rate backpropagation algorithms [8].

For RBFN and LVQN neural networks, the number
of hidden neurons is selected empirically from the set
{2, 4, 6, . . . , 100}. The optimal number of hidden neurons is
taken so that the sum squared error for each model is mini-
mized. The spread constant in RBFN hidden layer activation
function is chosen experimentally from the interval [0.1, 10]
with the step size 0.1.

5.3 Empirical results

In this study, the performance of PNN models, for which the
smoothing parameter is determined using the Q(0)-learning
based procedure, is evaluated on the input data partitioned
in the following way. Firstly, the testing subsets are created
by applying a random extraction of 10 %, 20 %, 30 % and
40 % of cases out of the input database. Then, the train-
ing sets are created using the rest of the patterns, i.e. 90
%, 80 %, 70 % and 60 % of data, respectively. This type
of data division is introduced on purpose since considering
all possible training–test subsets is complex from a com-
putational point of view – the number of ways of dividing
l training patterns into v sets, each of size k, is large and
equals l!/ (v! · (k!)v) [17].

The remaining classifiers used in the comparative
research: PNNVC–CG, SVM, GEP, k–Means, MLP, RBFN
and LVQN are trained and validated on the same data sub-
sets. The use of the same training/test sets for all the models
makes the obtained results comparable.

Tables 2, 3, 4, 5, 6, 7 show the test accuracy values
computed in terms of the percentage of correctly classi-
fied examples for PNNS, PNNC, PNNV and PNNVC with
the smoothing parameter adapted by the proposed proce-
dure for particular training–test set partitions on each of
the six data bases. Additionally, for comparison purposes,
the results are presented for PNNVC–CG, SVM, GEP,
k–Means, MLP, RBFN and LVQN. For all models, the max-
imum (max), average (avr) and standard deviation (sd)
values are provided. The results presented in the tables lead
to the following observations:
1. In the classification of Wisconsin breast cancer data, out

of all compared models, PNNC and PNNVC reach the
highest average test accuracy which is equal 99.0 %.
In the case of Haberman and dermatology data classi-
fication problems, the highest average test accuracy is
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Table 2 The test accuracy values (in %) determined for four considered training-test subsets for Wisconsin breast cancer data set

Data partitions [%]

Model 60/40 70/30 80/20 90/10 max avr sd

PNNS 97.8 97.1 93.4 98.5 98.5 96.7 2.3

PNNC 99.6 98.5 97.8 100.0 100.0 99.0 1.0

PNNV 99.0 98.5 96.3 100.0 100.0 98.4 1.5

PNNVC 99.6 98.5 97.8 100.0 100.0 99.0 1.0

PNNVC–CG 95.3 96.6 90.5 89.7 96.6 93.1 3.4

SVM 98.9 97.6 95.6 97.1 98.9 97.3 1.4

GEP 99.3 97.6 96.3 98.5 98.5 96.8 1.5

k–Means 96.7 97.1 94.9 98.5 98.5 96.8 1.5

MLP 97.7 96.4 93.9 96.8 97.7 96.2 1.7

RBFN 97.4 96.1 95.6 95.6 97.4 96.2 0.9

LVQN 97.8 97.6 92.3 96.9 97.8 96.2 2.6

Table 3 The test accuracy values (in %) determined for four considered training-test subsets for Pima Indians diabetes data set

Data partitions [%]

Model 60/40 70/30 80/20 90/10 max avr sd

PNNS 69.7 66.1 69.5 75.3 75.3 70.1 3.8

PNNC 69.1 71.3 72.1 75.3 75.3 71.9 2.6

PNNV 73.9 76.5 76.0 80.5 80.5 76.7 2.8

PNNVC 74.6 76.5 75.3 79.2 79.2 76.4 2.0

PNNVC–CG 65.5 30.5 68.2 66.3 68.2 57.6 18.1

SVM 78.2 78.7 75.3 76.6 78.7 77.2 1.5

GEP 72.6 77.4 76.0 80.5 80.5 76.6 3.3

k–Means 68.3 70.0 70.8 71.4 71.4 70.2 1.2

MLP 73.2 73.6 74.8 73.2 74.8 73.7 0.8

RBFN 65.8 67.8 65.6 68.8 68.8 67.0 1.6

LVQN 65.8 65.9 67.4 66.1 67.4 66.3 0.7

Table 4 The test accuracy values (in %) determined for four considered training-test subsets for Haberman survival data set

Data partitions [%]

Model 60/40 70/30 80/20 90/10 max avr sd

PNNS 77.0 75.0 73.0 74.2 77.0 75.8 1.5

PNNC 79.5 77.2 78.7 77.4 79.5 78.2 1.1

PNNV 76.2 78.3 82.0 87.1 87.1 80.9 4.8

PNNVC 77.9 79.3 80.3 87.1 87.1 81.2 4.1

PNNVC–CG 50.0 69.6 68.8 51.6 69.6 60.0 10.6

SVM 78.7 76.1 78.7 80.6 80.6 78.5 1.9

GEP 75.4 75.0 73.8 77.4 77.4 75.4 1.5

k–Means 69.7 69.6 70.5 67.7 70.5 69.4 1.2

MLP 74.2 74.2 74.9 76.4 76.4 74.9 1.0

RBFN 74.6 73.9 75.4 74.2 75.4 74.5 0.7

LVQN 76.4 75.8 78.4 74.2 78.4 76.2 1.7
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Table 5 The test accuracy values (in %) determined for four considered training-test subsets for cardiotocography data set

Data partitions [%]

Model 60/40 70/30 80/20 90/10 max avr sd

PNNS 88.9 84.4 85.9 85.0 88.9 86.0 2.0

PNNC 90.2 88.4 87.3 93.0 93.0 89.7 2.5

PNNV 97.3 93.9 93.2 97.2 97.3 95.4 2.2

PNNVC 95.8 91.9 93.2 94.9 95.8 93.9 1.7

PNNVC–CG 11.9 72.0 74.5 65.4 84.5 58.5 32.0

SVM 97.2 94.4 97.2 98.1 98.1 97.2 0.7

GEP 92.4 92.3 94.1 96.7 96.7 93.9 2.1

k–Means 89.4 89.7 85.6 93.9 93.9 89.7 3.4

MLP 89.1 89.0 89.5 91.7 91.7 89.8 1.3

RBFN 77.9 77.8 77.9 77.6 77.9 77.8 0.1

LVQN 78.1 77.8 77.9 77.6 78.1 77.9 0.2

Table 6 The test accuracy values (in %) determined for four considered training-test subsets for dermatology data set

Data partitions [%]

Model 60/40 70/30 80/20 90/10 max avr sd

PNNS 85.9 89.6 87.5 91.7 91.7 88.7 2.5

PNNC 89.4 90.6 90.3 94.4 94.4 91.2 2.2

PNNV 96.5 97.2 95.8 100.0 100.0 97.6 1.8

PNNVC 90.1 96.2 91.7 97.2 97.2 93.8 3.4

PNNVC–CG 55.6 89.6 86.2 94.4 94.4 81.5 17.5

SVM 98.6 96.2 97.2 94.4 98.6 96.6 1.8

GEP 97.2 98.1 94.4 94.4 98.1 96.0 1.9

k–Means 87.3 89.6 88.9 88.9 89.6 88.7 1.0

MLP 73.9 70.7 75.6 76.7 76.7 74.2 2.6

RBFN 78.9 79.3 76.4 80.6 80.6 78.8 1.8

LVQN 66.4 31.1 73.2 69.4 73.2 60.0 19.5

Table 7 The test accuracy values (in %) determined for four considered training-test subsets for Statlog heart data set

Data partitions [%]

Model 60/40 70/30 80/20 90/10 max avr sd

PNNS 75.9 87.6 77.8 92.6 92.6 83.5 8.0

PNNC 79.6 90.1 79.6 96.3 96.3 86.4 8.2

PNNV 83.3 91.4 83.3 100.0 100.0 89.5 8.0

PNNVC 83.3 91.4 87.0 100.0 100.0 90.4 7.2

PNNVC–CG 63.0 59.3 51.9 74.1 74.1 62.1 9.3

SVM 80.6 90.1 81.5 88.9 90.1 85.3 4.9

GEP 76.9 86.4 81.5 88.9 83.4 94.6 2.7

k–Means 63.9 76.9 66.7 81.5 81.5 70.0 7.8

MLP 75.8 86.4 76.5 87.8 87.8 81.6 6.4

RBFN 81.5 88.9 81.5 92.6 92.6 86.1 5.6

LVQN 76.9 86.9 75.2 82.6 86.9 80.4 5.4
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Fig. 4 The changes of Acctrain

[%], Acctest [%], σ and r within
the training process of PNNS in
the classification task of
Wisconsin breast cancer data set
(partition: 80/20)

obtained for PNNVC (81.2 %) and PNNV (97.6 %),
respectively.

2. The SVM model provides the highest average test accu-
racy in the classification of the Pima Indians diabetes
data set (77.2 %) and cardiotocography database (97.2

%). In these two classification tasks, PNNV is the
second best model with the test accuracy lower by
0.5 % and 1.8 %, respectively. For the Statlog clas-
sification problem, GEP algorithm yields the highest
average test accuracy which equals 94.6 %. This result

Fig. 5 The changes of Acctrain

[%], Acctest [%], σ and r within
the training process of PNNS in
the classification task of Pima
Indians diabetes data set
(partition: 80/20)
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Fig. 6 The changes of Acctrain

[%], Acctest [%], σ and r within
the training process of PNNS in
the classification task of
Haberman survival data set
(partition: 60/40)

is followed by the outcomes of PNNVC, PNNV and
PNNC.

3. Except for the dermatology classification problem,
PNNVC–CG turns out to be the worst classifier. The

k–Means algorithm and the remaining reference neural
networks (MLP, RBFN and LVQN) achieve lower test
accuracy than the PNNV, PNNVC, SVM and GEP
classifiers.

Fig. 7 The changes of Acctrain

[%], Acctest [%], σ and r within
the training process of PNNS in
the classification task of
cardiotocography data set
(partition: 60/40)
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Fig. 8 The changes of Acctrain

[%], Acctest [%], σ and r within
the training process of PNNS in
the classification task of
dermatology data set (partition:
80/20)

5.4 Illustration of the PNN training process

Figures 4, 5, 6, 7, 8, 9 illustrate the changes of Acctrain,
Acctest , σ and r as a function of time steps for six data set

classification problems. These changes are only shown for
one exemplary data set partition. The plots are depicted for
PNNS since for this model the smoothing parameter takes
the form of a scalar. In each figure, we mark the maximum

Fig. 9 The changes of Acctrain

[%], Acctest [%], σ and r within
the training process of PNNS in
the classification task of Statlog
heart data set (partition: 90/10)
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values of Acctrain, Acctest and its corresponding smoothing
parameter.

We can observe that the changes of the smoothing param-
eter values within the training process result from the
implementation of the proposed procedure. The magnitude
of these changes becomes smaller in subsequent stages of
the procedure (e.g. Figs. 4, 6 and 9). Large modifications
of the smoothing parameter provide the possibility of either
finding optimal σ after a small number of steps (t = 6 in
Fig. 5), or narrowing the range of its possible optimal val-
ues (Fig. 9). Another interesting feature worth noting is that
the reinforcement signal follows the changes of the training
accuracy. r becomes negative when Acctrain decreases and
r takes the positive value when Acctrain increases.

On the basis of the figures, the following observation can
also be noticed. (i) In the dermatology and Statlog heart
data classification tasks, the maximal value of Acctest is
obtained for Acctrain = 100 %. In the remaining classi-
fication problems, the maximal value of Acctrain does not
guarantee the highest value of the test accuracy; (ii) Only
for the Haberman survival data set classification problem it
is impossible to achieve 100 % of the training accuracy; (iii)
The classification problem of the Haberman survival and
Statlog heart data sets confirm that it is necessary to perform
all stages of the procedure. In the first case, 100 % of the
training accuracy is not reached in any stage. In the second
one, the maximum value of Acctest = 92.6 % is obtained in
the third stage of the procedure.

6 Conclusions

In this article, the procedure based on the Q(0)-learning
algorithm was proposed to the adaptive choice and computa-
tion of the smoothing parameters of the probabilistic neural
network. All possible classes of the PNN models were
regarded. These models differed in the way of the smooth-
ing parameters representation. Application of the procedure
based on the Q(0)-learning algorithm for PNN parameter
tuning is the element of novelty. It is worth to note that the
comparison of all types of probabilistic neural networks has
not been presented in literature.

The proposed approach was tested on six data sets and
compared with PNN trained by the conjugate gradient pro-
cedure, SVM algorithm, GEP classifier, k–Means method,
multilayer perceptron, radial basis function neural network
and learning vector quantization neural network. In three
classification problems, at least one of the PNNC, PNNV or
PNNVC models trained by the proposed procedure provided
the highest average accuracy. Four out of six times, PNNS
was the second to last data classifier. This means that the
representation of the smoothing parameter, either in terms of
a vector or a matrix, contributes to higher PNN’s prediction

ability. As one can observe, for PNN trained by the conju-
gate gradient procedure the lowest accuracy was obtained
for all six data classification cases. Thus, the proposition
of any alternative method for probabilistic neural network
training is by all means justified.
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