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Genomic deletions in OPA1 in Danish patients
with autosomal dominant optic atrophy
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Abstract

Background: Autosomal dominant optic atrophy (ADOA, Kjer disease, MIM #165500) is the most common form of
hereditary optic neuropathy. Mutations in OPA1 located at chromosome 3q28 are the predominant cause for
ADOA explaining between 32 and 89% of cases. Although deletions of OPA1 were recently reported in ADOA, the
frequency of OPA1 genomic rearrangements in Denmark, where ADOA has a high prevalence, is unknown. The aim
of the study was to identify copy number variations in OPA1 in Danish ADOA patients.

Methods: Forty unrelated ADOA patients, selected from a group of 100 ADOA patients as being negative for OPA1
point mutations, were tested for genomic rearrangements in OPA1 by multiplex ligation probe amplification
(MLPA). When only one probe was abnormal results were confirmed by additional manually added probes.
Segregation analysis was performed in families with detected mutations when possible.

Results: Ten families had OPA1 deletions, including two with deletions of the entire coding region and eight with
intragenic deletions. Segregation analysis was possible in five families, and showed that the deletions segregated
with the disease.

Conclusion: Deletions in the OPA1 gene were found in 10 patients presenting with phenotypic autosomal
dominant optic neuropathy. Genetic testing for deletions in OPA1 should be offered for patients with clinically
diagnosed ADOA and no OPA1 mutations detected by DNA sequencing analysis.

Background
Autosomal dominant optic atrophy (ADOA) is the most
common hereditary optic neuropathy. The phenotype is
characterized by bilateral subnormal visual acuity, colour
vision defect, a partial or absolute centrocoecal scotoma,
optic nerve pallor, and subnormal retinal nerve fiber
layer and ganglion cell layer thickness [1,2]. The disease
has incomplete penetrance and variable expression, ran-
ging from subclinical visual manifestations to legal
blindness [3]. The highly variable phenotype, both
within and between pedigrees, suggests that genetic
and/or environmental cofactors influence the expression
of the disease. Kjer’s optic atrophy or optic atrophy 1
(MIM #165500) [4], the ADOA originally described by
Kjer, is caused by mutations in OPA1 (chromosome
3q28-q29). A specific frameshift mutation in exon 28 is
particularly common in Denmark with evidence for a

founder effect [5-7]. Other loci for ADOA include
OPA4 on chromosome 18q12.2-q12.3 [8] and OPA5
on chromosome 22q12.1-q13.1 [9]. Dominant mutations
in OPA3 have been recently reported in ADOA asso-
ciated with cataract [10]. The gene most commonly
involved in ADOA is OPA1 [11,12] in which 205
unique pathogenic mutations have been identified
http://lbbma.univ-angers.fr/eOPA1 [13]. Many muta-
tions have only been found in a single family. The pre-
valence of OPA1 mutations in ADOA patients ranges
from 32 to 89%, suggesting the existence of other causa-
tive genes or alternative types of genetic defects, includ-
ing genomic rearrangements [14-18].
Genomic deletions or duplications have been found to

account for various genetic disorders [19-21]. March-
bank et al. [22] were first to identify complete deletion
of OPA1 as a cause of ADOA. Recently, Fuhrmann et al.
have shown that genomic aberrations may explain up to
12.9% of cases of Kjer-type ADOA [23].
Because a large fraction of our ADOA cases lacked a

molecular diagnosis, in spite of having typical family
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histories in most cases, we initiated a study of copy
number variation and other genomic rearrangements at
the OPA1 locus to supplement the results of direct
sequencing. We investigated 40 index patients diagnosed
on clinical grounds with ADOA who had previously
been found negative for mutations in OPA1 by DNA
sequence analysis.

Methods
Patients and control subjects
One hundred unrelated index patients, of Danish origin,
with clinically diagnosed ADOA were retrieved from the
Danish ophthalmogenetics register and DNA repository
of the National Eye Clinic at the Kennedy Center. The
study included only cases from families with at least two
affected members and an autosomal dominant pattern
of inheritance. The diagnosis was based on routine clini-
cal procedures, the standard being refraction and deter-
mination of best corrected visual acuity, color vision
testing, visual evoked potential recording, fundus photo-
graphy, Goldmann manual kinetic perimetry, and slit-
lamp biomicroscopy of the anterior segment, vitreous,
and posterior pole. No other inflammatory, ischemic,
toxic causes of optic neuropathies were detected. Geno-
mic DNA was obtained from the index patients and first
degree relatives when available. Genomic DNA was
extracted from leucocytes using Chemagic Magnetic
Separation Module I (Chemagen, Baesweiler, Germany).
The patients were screened for mutations in all coding
regions and exon-intron boundaries by direct sequen-
cing using BigDye chemistry and analyzed using an ABI
3130 instrument (Applied Biosystems, Foster City, CA,
USA) (unpublished data). Of the 100 index patients, 40
were not harboring an identifiable OPA1 mutation.
DNA from these 40 index patients was then analyzed
for genomic rearrangements in OPA1 using multiplex
ligation probe amplification (MLPA). The study was
performed in accordance to the Helsinki declaration and
was approved by the local ethics committee. Patients
and healthy relatives had given their written informed
consent.

MLPA Analysis
MLPA analysis was performed using a commercial kit
(P229-B1, MRC-Holland, Amsterdam, The Netherlands)
following the manufacturer’s instructions. The MLPA
KIT P229-B1 contains probes for 30 of 31 exons in
OPA1. Additional MLPA probes were designed in-house
to amplify regions narrowing down the identified dele-
tions and to confirm initial findings. For the reactions
we used 150 ng of patient DNA. The reactions were
separated and visualized on an ABI 3130 Genetic Analy-
zer and further analyzed using GeneMarker (SoftGe-

netics, State College, PA, USA). Patients with all OPA1
exons deleted were further analyzed using both the
P264 MLPA kit from MRC-Holland containing addi-
tional probes in the 3q29 telomere region (including
OPA1, GP5, LSG1, CENTB2, TNK2, UBXD7, PAK2,
MFI2, DLG1, BDH, KIAA0226, LMLN) and using
manually designed probes with the P200 kit from MRC-
Holland (probe sequences are available upon request).
The results were considered significant when the peak
height ratio of the normalized sample compared to the
normalized average of controls was above 1.3 or below
0.65.

Results
We identified 10 index patients with deletions in OPA1
(Figure 1 and Additional file 1), all patients being het-
erozygous. Clinical data are presented in table 1. No
rearrangements other than deletions were found. Com-
plete deletion of all 31 OPA1 exons was identified in the
index patients from families DOA109 and DOA110.
Further investigation with MLPA kit P264 showed that
the GP5 gene, which is located telomeric to OPA1, was
intact in both cases. Segregation analysis of family
DOA110 showed that the deletion segregated with the
disease (Figure 2B). Eight intragenic deletions spread
across the gene were found in OPA1. The most N-term-
inal deletion was found in index patient from family
DOA101 where exons 2-5 were deleted. In the index
patient from family DOA102 we found a deletion of
exon 10-16. In three independent families (DOA103,
DOA104 and DOA105) we identified a deletion of exon
25 and 26. In family DOA103 the deletion was also pre-
sent in an affected male and his daughter. In family
DOA105 the deletion also segregated with the disease as
it was present in two affected and absent in two unaf-
fected individuals (Figure 2A).
In family DOA106 we identified a deletion of exons 26

and 27 in the index patient. The deletion was also found
in an affected daughter. A deletion of exon 28 was
found in index patients from two independent families
(DOA107 and DOA108). Only probe 06949-L06529 of
P229 was deleted. This probe is located 104 nucleotides
downstream of exon 28, and thus a manually designed
MLPA probe located in intron 27 was made. As this
probe was also deleted we conclude that exon 28 is
deleted in these two families. In family DOA107 an
affected individual had the deletion while an unaffected
brother did not harbor the deletion. Family DOA108 is
one of the oldest and largest known families with
ADOA registered in Denmark with more than 28
affected and about 50 unaffected or unexamined indivi-
duals. Segregation analysis showed that the deletion seg-
regated with the disease (Figure 2C).
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Discussion
The main finding of our study is that in a series of 40
unrelated ADOA patients OPA1 deletions were found in
10. The 40 patients were selected from a cohort of 100
unrelated ADAO patients of whom 60 were found to have
mutations in OPA1 by sequence analysis (data not shown).
Thus assuming that the 60 patients do not have further
mutations in OPA1, we find a frequency of 10% of dele-
tions in OPA1 in Danish ADOA patients. Notably, the two

patients with complete deletions of OPA1 did not present
with any other symptoms than classical ADOA, support-
ing that haploinsufficiency is the pathogenic mutational
mechanism causing classical non-syndromic ADOA phe-
notype. Additional studies are needed to determine the
extent of the deletion by mapping the deletion break-
points, which is beyond the scope of this report.
Our study is an agreement with the report of Fuhr-

mann et al. [23] who showed that ADOA can be related
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Figure 1 Deletions and duplications identified in the OPA1 gene. Black boxes illustrate exons and light grey boxes illustrate alternative
spliced exons. Arrows above the gene show the functional domains. Arrows below the gene show localization of deletions identified in the
present study (blue arrows) and deletions (green arrows) and duplication (red arrow) identified by Fuhrmann et al. (2009) [23].

Table 1 Clinical data of ADOA patients with deletions in OPA1

Patient Age at
diagnosis
(y)

BCVA at
diagnosis

Refraction,
spherical
equivalent

Color vision, Farnsworth
Panel D-15

Visual Field Disc and
fundus
appearance

VEP

DOA101 23 0.4/0.3 -6.5/-7.0 Dyschromatopsia, tritan axis Normal outer boundaries,
relative central scotoma

Temporal pallor Borderline
subnormal

DOA102 52 0.7/0.9 -3.5/-4.25 Temporal pallor Pathological

DOA103 12 1.0/1.0 (0.2/
0.2 at age 37
y)

-4.25/-3.5 Few errors on saturated,
more on unsaturated, tritan
axis

Centrocoecal scotoma OU,
age 37 y

Small, evenly
shaped disks

N/A

DOA104 28 0.4/0.2 +0.75/+1.0 No significant abnormality Outer borders normal,
mild relative central
scotoma

Small, evenly
shaped disks

Normal

DOA105 43 0.4/0.2 -3.75/-3.25 Tritan errors Outer borders normal,
mild relative central
scotoma

Temporal pallor Borderline
subnormal

DOA106 52 0.5/0.5 plano/plano N/A N/A Temporal pallor N/A

DOA107 54 0.1/0.3 plano/-2.75 Dyschromatopsia, no specific
axis

Outer borders normal Atrophy,
temporal pallor

Normal

DOA108 33 0.6/0.6 -1.25/-1.5 Mild trian-axis
dyschromatopsia

Outer borders normal Mild temporal
pallor

Normal

DOA109 30 0.3/0.4 +4.0/+3.0 Dyschromatopsia, no specific
axis

Outer borders normal,
mild relative central
scotoma

Temporal pallor
and atrophy

Anomalous
configuration

DOA110 16 0.3/0.3 -1.75/-1.25 Dyschromatopsia, no specific
axis

Outer borders normal,
mild relative central
scotoma

Temporal pallor Delayed
implicit
times
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to genomic rearrangements of OPA1. We found OPA1
deletions in 10 out of 40 patients selected from a cohort
of 100 patients corresponding to a frequency of 10%,
which is comparable to 12.9% found by Fuhrmann et al.
[23], however, contrary to Fuhrmann et al. [23] we
found no duplications. The rearrangements are scattered
throughout the gene, affecting single or multiple exons,
or even whole gene deletions. Furthermore, the dele-
tions described in this study are different from the rear-
rangements found by Fuhrmann et al. [23], showing that
they arise as separate events, rather than being hotspots
for rearrangements. Therefore, we suggest that deletion
and duplication analysis of OPA1 should be included in
the routine genetic analysis of ADOA patients.
Several studies of various genes have shown that dele-

tions or duplications not detectable with sequencing or
screening strategies such as single strand conformational
polymorphism (SSCP), contribute to the mutational load,
which is confirmed by our study [20,24]. Thus, genomic
rearrangements have to be considered in diseases where
a proportion of patients apparently do not harbor muta-
tions in the disease causing gene/genes, since these will
be left unrecognized by sequence analysis which is the

preferred method for mutation analysis. MLPA is a fast
and relatively cheap method to analyze for gene dosage
differences among large groups of patients.

Conclusion
OPA1 genomic deletions account for about 10% of
ADOA cases in a Danish population, registered at the
national center for hereditary eye diseases. Our findings
suggest that an analysis of genomic rearrangements is
mandatory in the investigation and diagnosis of ADOA.

Additional material

Additional file 1: Overview of deletions found in the presented
families
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