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1 Introduction

There are several proposals claiming that a good starting point to describe more than one

strongly interacting topological phase is dual QED3: a single two-component (composite)

Dirac fermion coupled to an emergent U(1) gauge field [1–3]:

Lcf = ψ̄
(
i/∂ + ē/a

)
ψ + . . . . (1.1)

Here ψ̄ are not the fundamental electrons but two-component composite fermions. And ē

is not the physical, electric charge but the charge with respect to the emergent gauge field

aµ. There is no Chern-Simons term for aµ and this can be attributed to a restricted set of

large gauge transformations. That is, only certain types of electric fluxes are allowed on the

surface of the topological insulator [2]. A more complete and general derivation of various

possibilities for gauge and symmetry transformations appeared shortly after completion of

the present manuscript [4, 5]. The dots stand for terms that are allowed by symmetries to
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be generated under a renormalization group (RG) flow, such as four-fermi interactions and

radiative corrections to the propagators.

In high-energy physics, Dirac fermions are typically collected in a 4D-representation

of the fermion spinor algebra; the case of interest in the present paper therefore laxly cor-

responds to “NF ≡ N
(4)
f = 1/2”. It has not received much attention so far due to its

novelty and only very recent association to topological condensed matter systems. More-

over, this case falls outside the region of validity of the Vafa-Witten theorem, which states

that vector-like gauge theories cannot dynamically generate fermion masses in ψ̄ψ chan-

nels, thereby breaking time-reversal and space-reflection symmetry [6]. But their proof

only holds for a number of two-component fermions N
(2)
f ≥ 4 and even.

More broadly, a Dirac fermion analog to the particle-vortex duality of bosons has been

proposed [2] and an explicit construction of a possible “strong” duality of eq. (1.1) to a

free Dirac cone of electrically charged electrons on the level of partition functions has been

put forward in ref. [7].

It is fair to say that whether, and in what form, and on what energy scales this Dirac

fermion duality holds is an open question with fundamental implications across a variety of

physical systems. In particular, not much is known about the low-energy fate and ground

state phase diagram of eq. (1.1), which we will refer to as dual QED3 in what follows.

In this paper, we want to start filling this knowledge gap and we ask if/under what con-

ditions the low-energy dynamics of weakly coupled dual QED3, eq. (1.1), remains conformal

and by which mechanism interactions can generate a mass for the (composite) fermions at

low energies. To achieve this, we will adapt the symmetry-breaking analysis of N
(4)
f four-

component fermions coupled to a U(1) gauge field of ref. [8] to a single two-component

N
(2)
f = 1 fermion and compute the low-energy fixed-point structure for an initially weakly

coupled eq. (1.1). The question of (chiral) symmetry-breaking of QED3 has been tackled

intensely and we refer to the Introduction and Bibliography of refs. [8–10] for an overview.

1.1 Key results and outline of paper

Our main result is that eq. (1.1), if initially weak-to-moderately coupled, flows toward

an interacting conformal field theory (CFT) in the infrared in which generated four-fermi

couplings attain finite values. In the condensed matter context of dual QED3 as a surface

description for topological insulators, this implies that interactions preserve the gapless

responses and the system remains a topological (semi-)metal also at lowest energies. This

result is derived and presented in subsection 4.1.

In light of strong (chiral and vector) symmetry-breaking tendencies for QED3 at single-

digit flavor number N
(4)
f [8], this result may seem surprising. On the other hand, the

N
(2)
f = 1 case does not have the full chiral symmetry to begin with, as it may be viewed

to operate within one chiral sector. The number of symmetries that can be broken is now

reduced and there remains essentially only one independent four-fermi coupling (λ) of the

associated Fierz algebra (see section 3). With this, we find that gauge fluctuations never

destabilize the four-fermi sector toward symmetry-breaking sufficiently strongly; instead,

the flow is always attracted toward an infrared stable fixed-point for the four-fermi coupling,

which preserves the scaling/conformal symmetry of the gauge sector. Surprisingly, this is
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due to the absence of a λ2 term in the β-function for the four-fermi coupling: the flavor

trace carries a ∼ (N
(2)
f − 1)λ2. This is what stabilizes the CFT at N

(2)
f = 1. Related

cancellations of β-functions in the single-flavor case also appear in the Gross-Neveu model;

in particular these also hold at higher loop orders [11–13].

We believe our results are not limited to the RG technique used. An ε-expansion [14]

around the weakly interacting Gaussian fixed-point in D = 4 should recover the

same physics.

In section 2, we recapitulate how related runaway flows of different physical origin have

been detected in ref. [8]. We present the Fierz-complete action of N
(4)
f 4-component Dirac

fermions from which we project out the β-functions for a single two-component fermion,

N
(2)
f = 1 in section 3.

In section 4, we explore consequences of a possible strong Dirac fermion duality. We

determine exactly the universal constant of the topological current correlator of eq. (1.1),

an interacting theory, by relating it to the electromagnetic response of a free Dirac cone.

Finally, in subsection 4.2 we point out the need to include the generated four-fermi cou-

pling (and possibly other ingredients) in order to establish exponent identities for operator

dimensions in compliance with the duality.

In section 5, we conclude the paper. Details of a direct derivation of the β-function

for the four-fermi coupling λ are relegated to two appendices A, B.

2 Conformal scaling and its breakdown for QED3 with N
(4)
f 4-component

fermions

In ref. [8], β-functions for QED3 were calculated using a 4D-reducible representation of the

fermionic spinor fields. The main scope of this work was an investigation of the symmetry

breaking patterns of QED3, including chiral channels, by detection of runaway flows for

fermionic couplings caused by fixed point annihilation. To set the stage for dual QED3, we

now recapitulate the key elements of this analysis.

2.1 Fierz-complete action

Based on the bare action of a Maxwell term for the photons coupled to a set of N
(4)
f flavors

of 4-component Dirac fermions (flavor index implicit)

S =

∫
d3x

{
ψ̄
(
i/∂ + ē/a

)
ψ +

1

4
FµνF

µν

}
, (2.1)

the following Fierz-complete ansatz for the euclidean, scale (k-) dependent effective

action is sufficient to study symmetry-breaking into the complete set of all possible

fermionic channels

Γk[ψ̄, ψ, a] =

∫
d3x

{
ψ̄
(
iZψ /∂ + ē/a

)
ψ +

Za
4
FµνFµν +

Za
2ξ

(∂µaµ)2

+
˜̄g

2N
(4)
f

(ψ̄γ45ψ)2 +
ḡ

2N
(4)
f

(ψ̄γµψ)2

}
. (2.2)
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Here, for µ = 1, 2, 3,

γµ = i

(
0 −σµ
σµ 0

)
, γ4 =

(
0 1

1 0

)
,

γ5 = γ1γ2γ3γ4 =

(
1 0

0 −1

)
and γ45 = iγ4γ5 = i

(
0 −1
1 0

)
.

In the ansatz eq. (2.2), the last two terms ˜̄g, ḡ are two four-fermi couplings from which

all possible interaction channels, which can lead to condensation of fermion bilinears, can

be constructed. ξ is a gauge fixing parameter which will be set to ξ = 0 in the following

(Landau gauge). In total, eq. (2.2) has 5 running couplings (Zψ, ē, Za, ˜̄g and ḡ), which

depend on the cutoff scale k. We are interested in their evolution in the infrared as we

take k → 0.

As mentioned in the Introduction above, we will here consider QED3 in the absence of

a Chern-Simons term. Admitting the presence of the latter would in principle open up the

possibility to investigate a number of other possible dualities [4, 5]. Coupling the dynamical

gauge field aµ to a background field Aµ via 1
2π

∫
d3xεµνρaµ∂νAρ, for instance, a duality

to the Wilson-Fisher fixed-point of ϕ4 theory has been conjectured recently [4, 5]. In the

future, it will be interesting to investigate this scenario within the present RG framework by

adding the corresponding terms to the ansatz for the scale dependent effective action (2.2).

2.2 β-functions

In the simplest, point-like truncation for the couplings, projected onto the most singular

point in frequency- and momentum space (the origin at q = 0), the leading order β-

functions for the gauge coupling e2 and the two four-fermi couplings g̃, g of eq. (2.2) are:

∂te
2 = (ηa − 1)e2 (2.3a)

∂tg̃ = g̃(1 + 2ηψ)− l1ψ

(
2N

(4)
f − 1

N
(4)
f

g̃2 − 3

N
(4)
f

g̃g − 2

N
(4)
f

g2

)
− l1,1a,ψ

(
2g̃e2 + 4ge2

)
+ l2,1a,ψ2N

(4)
f e4 (2.3b)

∂tg = g(1 + 2ηψ) + l1ψ

(
1

N
(4)
f

g̃g +
2N

(4)
f + 1

3N
(4)
f

g2

)
−
l1,1a,ψ
3

(
4g̃e2 − 2ge2

)
. (2.3c)

Here we have abbreviated the scale-derivative ∂t = k ∂k. The set of β-functions eq. (2.3)

is closed by two anomalous dimensions making it 5 equations and 5 couplings to solve. ηψ
for the electrons

ηψ = −e
2

3

[
2m̃1,1

a,ψ − 2m2,1
a,ψ

]
(2.4)

turns out to be negative in the regimes of interest and the threshold coefficients here take

the form

m̃1,1
a,ψ =

3

2
− 1

6
ηψ −

1

4
ηa

m2,1
a,ψ = 1− 1

4
ηa . (2.5)
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The photon anomalous dimension ηa is physically caused by decay and recombination

into electron-positron pairs. It takes the form

ηa=N
(4)
f e2 1

ζ2

∫ ∞
0

dy

{
2

3

∂trψ(y)−ηψrψ(y)
√
y [1+rψ(y)]3

− 1

2

∫ 1

−1
dx

√
yx2−ζx

y−2ζx
√
y+ζ2

(2.6)

[
[∂trψ](y)−ηψrψ(y)

[1+rψ(y)]2[1+rψ(y−2ζx
√
y+ζ2)]

+
[∂trψ](y−2ζx

√
y+ζ2)−ηψrψ(y−2ζx

√
y+ζ2)

[1+rψ(y)][1+rψ(y−2ζx
√
y+ζ2)]2

]}
,

which has a finite ζ → 0 limit. We also absorbed explicit k-dependences into renormalized

gauge and induced four-fermion couplings

g̃ ≡
˜̄gk

Z2
ψ

, g ≡ ḡk

Z2
ψ

, e2 ≡ ē2

Z2
ψZak

. (2.7)

The threshold functions appearing in eq. (2.3) are (for the linear Litim regulator)

l1ψ =
2

3
− 1

6
ηψ (2.8)

l1,1a,ψ =
4

3
− 1

6
ηψ −

2

15
ηa (2.9)

l2,1a,ψ = 2− 1

6
ηψ −

4

15
ηa (2.10)

and are positive in the regimes of interest, that is, the “RG-corrections” by the anomalous

dimensions are subdominant when compared to the leading term.

The 5 β-functions eq. (2.3) and eqs. (2.4), (2.6) have scale-invariant, real-valued solu-

tions for large enough N
(4)
f > N

(4)
f,c ; these signify a conformal phase. We now first describe

the nature of these conformal fixed-points and subsequently explain how the scaling breaks

down at N
(4)
f = N

(4)
f,c .

2.3 Recap of interacting conformal fixed point for N
(4)
f > N

(4)
f ,c

Due to charge conservation, the photon anomalous dimension is exactly equal to one for

any value of N
(4)
f > N

(4)
f,c :

ηa∗ = 1 , (2.11)

that is, along the line of interacting conformal fixed points corresponding to the conformal

phase. This follows from eq. (2.3a). Since ηa∗ depends on e2
∗ itself, this fixes the numerical

value of the gauge coupling, given in figure 1, as a function of N
(4)
f . The values of η∗ψ

depend on the number of fermion flavors. This follows from a solution of the coupled

equations for the anomalous dimensions eqs. (2.4), (2.6). Its values are given in figure 1 for

the linear regulator and ζ → 0. Alternative techniques to access the conformal phase and

its exponents and operator dimensions are the 1/Nf expansion, which offers perturbative

control for sufficiently large Nf (e.g.: [9, 15–21]), and the ε-expansion around d = 4 in the

limit ε→ 1 (e.g.: [9, 10, 14]).
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−0.4

−0.3

−0.2

−0.1

0

1 2 3 4 5 6 7 8 9 10

η
∗ ψ

N
(4)
f

N
(4)
f η∗ψ e2

∗

5 -0.066 0.195

6 -0.055 0.163

7 -0.048 0.140

8 -0.042 0.123

9 -0.037 0.109

10 -0.033 0.099

Figure 1. Fermion anomalous dimension and value of the gauge coupling in the conformal phase

as a function of the flavor number N
(4)
f . The dashed line indicates the regime below N

(4)
f,c , where

the conformal fixed point becomes unstable and likely spontaneous symmetry breaking sets in.

It is a feature of the β-functions that the flow of the gauge coupling (2.3a) and con-

sequently the universal fixed-point values e2
∗(Nf) shown in figure 1 do not depend on g̃ or

g. At the level of the perturbative Ward identity, this is diagrammatically due to Furry’s

theorem, i.e., the vanishing of graphs with an odd number of external gauge field insertions.

This decoupling of the gauge flow from the fermion sector permits a simplified analysis of

symmetry breaking patterns. e2 may be viewed as an external parameter for the fermionic

flow equations (2.3b) and (2.3c). Here we have taken the fermionic couplings to be not

fundamental in the UV, g̃k=Λ = gk=Λ = 0. They first need to be generated by gauge

field fluctuations.

We now recapitulate how to detect symmetry breaking from the flows of eqs. (2.3),

(2.4), (2.6).

2.4 Breakdown criterion of conformal scaling at N
(4)
f ,c

For sufficiently large N
(4)
f > N

(4)
f,c , the initial values, gk=Λ = g̃k=Λ = 0 lie in the basin

of attraction of a conformal fixed point. Note that in general there are four fixed point

solutions, only one of which is infrared attractive. This is the conformal fixed-point at

finite e2
k→0 = e2

∗ (labelled as O).

For N
(4)
f ≤ N

(4)
f,c , however, the four-fermi couplings at O start developing imaginary

parts, which is indicative of spontaneous symmetry breaking and the phase boundary

between the conformal phase and a phase with spontaneously broken symmetry.

In figure 2, we plot the fixed-point values of g and g̃ in the complex plane for varying

N
(4)
f . We observe that at N

(4)
f ≤ N

(4)
f,c = 4.7 the couplings develop imaginary parts.

This estimate is coincidentally close to a recent computation from the F-theorem and a

resummed ε-expansion N
(4)
f,c ≈ 4.4 [10] and another recent estimate from the ε-expansion

at N
(4)
f,c ≈ 4.5 [14].

– 6 –
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Figure 2. Fixed point values of the fermionic couplings g̃ and g at the scale-invariant/conformal

fixed point O for a range of N
(4)
f > N

(4)
f,c . The gauge coupling is set to the respective fixed point

value e2
∗(N

(4)
f ). Finite imaginary parts indicate spontaneous symmetry-breaking. Here this happens

below N
(4)
f,c = 4.7.

(a) N
(4)
f = 6 > N

(4)
f,c . (b) N

(4)
f = 4 < N

(4)
f,c .

Figure 3. Explicit solutions of the flow equations in the conformal phase (a) and in the phase with

putatively broken symmetry (b). In the second case, the fermionic flow diverges at tsb = −12.9.

As shown in figure 3, an explicit solution of the 5 coupled flow equations as a function

of k confirms this picture: for N
(4)
f ≤ 4.7, the four-fermi couplings diverge at some finite

scale ksb. These runaway flows indicate that fluctuations in one, or several, fermion bilinear

channels become so strong that one, or a combination, of bilinears are likely to condense

and spontaneously break the conformal symmetry.
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3 Dual QED3 with a single 2-component fermion N
(2)
f = 1

For 2D surfaces of certain 3D topological insulators and possibly other topological phases,

we are interested in QED3 with a single two-component (composite) fermion coupled to

an emergent U(1) gauge field. Therefore, the 4D representation for the fermionic spinors

is not applicable and we need to move to the 2D-representation and set N
(2)
f = 1.

To that end, consider the two linearly independent fermionic interactions in the 2D

representation defined in the appendix of ref. [8]:(
ψ̄aγ45ψ

a
)2
a=1...N

(4)
f
→
(
χ̄iχi

)2
i=1...N

(2)
f
,

(
ψ̄aγµψ

a
)2
a=1...N

(4)
f
→
(
χ̄iσµχ

i
)2
i=1...N

(2)
f

(3.1)

In the special case of N
(2)
f = 1, it is

− 3(χ̄χ)2 = (χ̄σµχ)2. (3.2)

There is only one independent fermionic interaction term left. The ansatz for the effective

action (2.2) then reduces to

Γk[ψ̄, ψ, a] =

∫
d3x

{
χ̄
(
iZψ /∂ + ē/a

)
χ+

Za
4
FµνFµν +

Za
2ξ

(∂µaµ)2 + λ̄(χ̄χ)2

}
(3.3)

with λ̄ = ˜̄gk − 3ḡk. Making use of the flow equations (2.3), the β-function for λ̄ can be

obtained from ∂tλ̄ = ∂t ˜̄gk − 3∂tḡk. Consequently, the flow equation for the dimensionless

renormalized coupling λ = λ̄kZ−2
ψ is given by

∂tλ = λ(1 + 2ηψ) + 2l1,1a,ψλe
2 + l2,1a,ψe

4. (3.4)

The key feature of this equation is the absence of a λ2 term. This is due to cancellations

in the β-function special to the N
(2)
f = 1 case as we explain in appendix B. This structural

specialty is already visible upon setting N
(4)
f = 1/2 in eq. (2.3b); then the g̃2 in that equa-

tion disappears and the fixed-point structure qualitatively changes. Further implementing

the symmetry eq. (3.2), then yields eq. (3.4) for a single four-fermi coupling. Of course, this

β-function eq. (3.4) may also be derived directly from applying the Polchinski-Wetterich

equation [22, 23] to the ansatz (3.3). This is performed explicitly in appendix A.

3.1 Interacting conformal fixed point

We now adapt the symmetry-breaking analysis explained above to a reduced number of

equations, feeding the gauge sector and anomalous dimensions into eq. (3.4). Given the

IR fixed point of the gauge sector (e2 = e2
∗ = 1.59, η∗a = 1, η∗ψ = −0.64) as an input, and

because ∂tλ is linear in λ, there can be only one fixed point solution to eq. (3.4):

λ∗ = −
l2,1A,ψe

4
∗

1 + 2ηψ + 2l1,1A,ψe
2
∗

= −1.20,
∂(∂tλ)

∂λ

∣∣∣∣∣
(λ∗)

= 1 + 2ηψ + l1,1A,ψe
2
∗ = 3.87 (3.5)

The numerical values are provided for the linear regulator at ζ = 0 and in Landau gauge

as before. Given the positive slope of ∂tλ, the fixed point λ∗ is found to be infrared

attractive. Therefore, no runaway flow occurs for arbitrary initial values e2
k=Λ and the

fixed-point structure and explicit flows (see figure 4) preserve scaling/conformal invariance

as k → 0.
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(a)

−1.5

−1

−0.5

0

0.5

1

1.5

2

−7 −6 −5 −4 −3 −2 −1 0

λ(k)

e2(k)

t = ln(k/Λ)

e2Λ/e
2
∗ = 0.1

e2Λ/e
2
∗ = 0.5

e2Λ/e
2
∗ = 1.2

(b)

Figure 4. (a): universal location of the interacting conformal fixed point in the plane of interaction

couplings for N
(2)
f = 1. Arrows point towards the infrared. (b): explicit numerical solutions for a

range of initial values e2
Λ showing convergence of both, the gauge coupling e2 and the four-fermi

coupling λ, toward fixed-point plateaus in the infrared as k → 0.

3.2 Discussion

In principle, by virtue of eqs. (3.1), (3.2) a runaway flow in the four-fermi sector with

gauge-invariant regularization can lead to quadratic mass terms ∼ mχ̄χ and spontaneous

background currents ∼ 〈jµ〉χ̄σµχ thereby breaking time-reversal and space-reflection sym-

metry. In fact, this parity anomaly appears generically if the entire large group of gauge

transformations is allowed and Chern-Simons terms are induced [24–27]. But eq. (2.1) with

N
(2)
f = 1 is an effective dual theory for the 2D surface of certain topological insulators.

Then χ is actually a composite fermion field, which is electrically neutral and the standard

large gauge transformations need to be modified such that no Chern-Simons term from a

parity anomaly is allowed [2].

We note that a possible “strong form” of a Dirac fermion duality would relate eq. (2.1)

with N
(2)
f = 1 to the partition function of a single, non-interacting Dirac cone [7]. In this

scenario, it can be asserted that if me = 0 for the free Dirac cone, than m = 0 for the

composite fermions of dual QED3. Our computation is in line with this reasoning.

4 Implications of a possible “strong” Dirac fermion duality

In this section, and based on the considerations above, we want to take for granted this

strong duality on the level of the path integral between eq. (1.1) and a free Dirac cone

of electrically charged fermions ψ̄e, ψe [7]. For a given physical electromagnetic field Aµ
coupling the electric charge, we have that

Lfree = ψ̄e [iγµ(∂µ − iephysAµ)]ψe , (4.1)

– 9 –
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is “dual” to the theory

Lcf = ψ̄ [iγµ(∂µ − igcfaµ)]ψ +
gcfephys

4π
εµνλAµ∂νaλ . (4.2)

The duality then implies that both eq. (1.1) and eq. (4.1) describe the same underlying

physical system and the response to actual physical electromagnetic fields must be the

same. In eq. (4.1), the physical electromagnetic field couples, as usual, to the electronic

current, whereas in eq. (4.2) Aµ couples to the gauge flux of the emergent photon.

We now survey two aspects of this duality: constraints for the topological current

correlator in subsection 4.1 and operator dimensions in subsection 4.2.

4.1 Constraining the topological current correlator

The current-current correlator on the free Dirac cone side of the duality eq. (4.1) is

〈jµ(−p)jν(p)〉 = −N (2)
f C free

j |p|
(
δµν −

pµpν
p2

)
(4.3)

where jµ = ψ̄eγµψe is the physical current dual to the physical electromagnetic gauge field

Aµ, N
(2)
f = 1 for one single two-component fermion, and

C free
j =

e2
phys

16
. (4.4)

This equation is exact; there are no interaction corrections.

On the composite fermion (cf) side, the physical electromagnetic gauge field couples

(via a AµJ
top
µ term in the Lagrangian) to the topological current via

J top
µ =

gcf

4π
ενκµ ∂νaκ . (4.5)

Since both sides of the duality should describe the same physical reality, we should have

〈jµ(−p)jν(p)〉free = 〈J top
µ (−p)J top

ν (p)〉cf (4.6)

Now, for zero doping and in a conformal phase with conserved topological current

∂µJ
top
µ = 0, the correlator must also have the form of eq. (4.3) but with an independent

universal constant

〈J top
µ (−p)J top

ν (p)〉 = −N (2)
cf C

top
J |p|

(
δµν −

pµpν
p2

)
(4.7)

with N
(2)
cf = 1. However, the number Ctop

J is not known, since the composite fermion

theory is interacting. We can now use eq. (4.6) to determine Ctop
J exactly thus constraining

perturbative computations for Ctop
J . The best estimate for Ctop

J is in eq. (4.3.) of ref. [9],

abbreviated as GTK:

〈J top,GTK
µ (−p)J top,GTK

ν (p)〉 = − 8|p|
π2NGTK

(
1 +

1

NGTK

(
8− 736

9π2

)
+O(1/N2

GTK)

)(
δµν −

pµpν
p2

)
≡ −|p|

[
8

π2NGTK

(
1 +

1

NGTK

(
8− 736

9π2

))
+ ∆Xtop(NGTK)

]
×
(
δµν −

pµpν
p2

)
, (4.8)
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where in the second line we have subsumed the unknown interaction corrections to all

orders in 1/NGTK into the variable ∆Xtop(NGTK). After matching conventions

NGTK = 2N
(2)
f

J top,GTK
µ = 2J top

µ (4.9)

and invoking eqs. (4.4), (4.6), we obtain for N
(2)
f = 1 (in units where coupling constants

are unity)

〈J top,GTK
µ (−p)J top,GTK

ν (p)〉 = −|p|
[
0.347365 + ∆Xtop(NGTK = 2)

](
δµν −

pµpν
p2

)
∆Xtop(NGTK = 2) = −0.0973652 . (4.10)

Knowledge of the exact value for this and other universal constants may help to constrain

perturbative computations of thermodynamics, entanglement, and response functions of

interacting, dual QED3 and possibly extensions thereof.

4.2 Scaling dimension of composite mass operator at one-loop

Here we compute the singular corrections to the scaling dimension of the composite mass

operator m = ψ̄ψ for the fermion fields at the fixed-point of subsection 3.1:∫
d3xmZmZψ ψ̄ψ (4.11)

Defining the anomalous exponents (Λ is the running cutoff scale),

ηψ = −∂ logZψ
∂ log Λ

, ηm = −∂ logZm
∂ log Λ

, (4.12)

the total correction to the scaling dimension of the mass operator is then

ηmass = ηm + ηψ . (4.13)

We first compute the fermionic field renormalization Zψ and ηψ from the one-loop self-

energy shown in figure 5. The photon anomalous dimension is ηa = 1 and we can use the

standard overdamped one-loop form for N
(2)
f = 1:

Dµν(q) =
16

g2
cf |q|

(
ηµν − (1− ξ)qµqν

q2

)
, (4.14)

where gcf is the photon-fermion coupling as denoted in eq. (4.2). We may use Feynman

gauge ξ = 1 in what follows. With this, the singular fermion self-energy correction is:

δΣψ(q) = g2
cf

∫
d3p

(2π)3
(−γµ)Gψ(k + q)(−γν)Dµν(q)

= − 8

3π2
/k log

(
Λ

|k|

)
. (4.15)
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q

k k

Figure 5. One-loop fermion self energy for Zψ and the corresponding anomalous dimension ηψ.

q

k

k

1

(a)

1

k k

(b)

Figure 6. One-loop graphs for insertions of the mass operator m = ψ̄ψ. (a) is computed in the

text. (b) arises from the four-fermi coupling λ and does not produce singular corrections, when

approximating λ as momentum-independent. Upon keeping the momentum-dependence of the four-

fermi coupling, for example via σ-meson exchange [29], (b) can also generate singular corrections

to operator dimensions.

Invoking the usual RG improvement, the anomalous dimension for the electrons obtains as

ηψ =
8

3π2
, (4.16)

in agreement with a previous calculation upon setting their N to 1/2 and gauge fixing

ξ = 1 [28].

The one-loop graphs for the correction to the mass operator δm(k) are shown in fig-

ure 6. Graph (a) is non-vanishing and yields the divergent correction

δm(k) = 1
24

π2
log

(
Λ

|k|

)
, ηm = −24

π2
. (4.17)

Adding the exponents as per eq. (4.13) we get the final result

ηmass = − 64

3π2
, (4.18)

which agrees with the leading term in a computation of the same quantity by Gracey upon

setting his Nf = 1/2 [30].

A strong form Dirac fermion duality would require ηmass = 0 [7]. Implementing the

momentum-dependent four-fermi coupling via σ-meson exchange [29] will produce cor-

rections to eq. (4.18), as may other additional terms to the truncation eq. (3.3). It is an

interesting project to establish explicitly the exponent identities conjectured by the duality.

We checked that for the insertion of the (conserved) current operator,
∫
d3x jµ ZjµZψ

ψ̄cfγ
µψcf , with jµ = ψ̄cfγµψcf , these cancellations appear explicitly.

ηcurrent = ηjµ + ηψ = − 8

3π2
+

8

3π2
= 0 . (4.19)
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q

k

k

jµ

Figure 7. One-loop correction to insertions of the current operator jµ = ψ̄cfγµψcf .

Evaluating figure 7 results in

δjµ(k) =
8

3π2

(
γµ log

(
Λ

|k|

)
− kµ

k2
/k

)
, (4.20)

and produces a singular correction with opposite sign ηjµ = −ηψ ensuring the cancellation

eq. (4.19).

5 Conclusions

This paper explored aspects of a particle-vortex duality for Dirac fermions in two space

dimensions. We raised the question whether a single two-component Dirac fermion coupled

to U(1) gauge field can have a conformally invariant ground state and found indications

that this may be the case, at least for the initially only weakly coupled model. The CFT we

found is not free but has non-trivial anomalous dimensions and finite four-fermi couplings.

It would be desirable to have a (non-perturbative) proof of the absence of spontaneous

symmetry-breaking in the ground state of eq. (1.1) by generalizing the Vafa-Witten theorem

to smaller flavor numbers down to N
(2)
f = 1.

A strong-form duality between dual QED3 and a free Dirac cone would constrain

operator dimensions and, as we tried to show, also universal constants of electromagnetic

response functions.

In the future, it will be interesting to establish exponent identities and possibly emer-

gent conservation laws of dual QED3 more completely and to higher loop order. To

strengthen the link to a specific condensed matter situation, a further topic of interest

are the “non-universalities” of dual QED3 such as the kinematics, velocities, additional

interactions, and energy scales below which the continuum field theories for the effective

degrees of freedoms emerge.
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A Derivation of β-function ∂tλ for four-fermi coupling λ

The beta function for the single fermionic coupling λ can be derived without making

reference to the flow equations (2.3). Here we employ the Polchinski-Wetterich equation [23]

∂tΓk =
1

2
STr

[
∂tRk

Γ
(2)
k +Rk

]
=

1

2
STr

[
∂̃tPk

]
+

1

2
STr

[
∂̃t

∞∑
n=1

(−1)n−1

n
(P−1

k Fk)n
]

(A.1)

to extract ∂tλ from the ansatz (3.3). The expansion of this equation on terms of propagator

and fluctuation matrices Γ
(2)
k +Rk = P−1

k +Fk facilitates a projection onto the respective

operator structures. The propagator matrix is given by

P−1
k = δ(3)(p− q)

P
µν
a 0 0

0 0 −Pχ
0 −P Tχ 0

 , Pχ = /q · [Zψ(1 + rψ)]−1,

Pa = [δµνq
2 − qµqν ] · [Zaq2(1 + ra)]

−1. (A.2)

Here, only terms ∼ (χ̄χ) are of interest. Therefore, any explicit dependence of the fluctu-

ation matrix on the gauge field aµ can safely be dropped from the outset and we get

Fk =

 0 ēχ̄q−pσµ −ēχTp−qσTµ
−ēσTν χ̄Tq−p −2λ̄

∫
p1
χ̄Tp1 χ̄p−q+p1 2λ̄

∫
p1

[
χ̄Tp1χ

T
p−q+p1 − (χ̄p1χp−q+p1)1

]
ēσνχp−q 2λ̄

∫
p1

[(χ̄p1χp−q+p1)1 + χp1 χ̄p−q+p1 ] −2λ̄
∫
p1
χp1χ

T
p−q−p1


(A.3)

Projecting onto spatially constant fermion fields χp := χδ(3)(p), the basic building block of

the expansion (A.1) can be expressed as

[
P−1
k Fk

]
µν

= δ(3)(p− q)

 0 Pµνa ēχ̄σν −Pµνa ēχTσTν
−Pχēσµχ −Pχ2λ̄ [(χ̄χ)1 + χχ̄] Pχ2λ̄χχT

P Tχ ēσ
T
ν χ̄

T P Tχ 2λ̄χ̄T χ̄ −P Tχ 2λ̄
[
χ̄TχT − (χ̄χ)1

]
 .

(A.4)

There are three contributions to the flow of the bare coupling λ̄ which can be depicted

diagrammatically as in figure 8 below.

Here, double lines symbolize the (full) renormalized propagators in (A.2).

Fermionic self interaction. This contribution does not involve the gauge vertex. Con-

sequently, only the lower right submatrix of eq. (A.4) is needed. Projecting onto (χ̄χ)2 gives

∂tλ̄|λ̄2(χ̄χ)2 =
1

Ω

1

2

−1

2
STr

[(
P−1
k Fk

)2
λ̄2

]
= 0 (A.5)

where Ω is the three-dimensional spacetime volume. Thus, tracelessness of the quadratic

term in the expansion enforces linearity of the β-function. This finding is crucial for QED3

being conformal for N
(2)
f = 1 and it only occurs for this flavor number. Some details of

why this is the case are given in appendix B below.
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Figure 8. Diagrammatic representation of the contributions to ∂tλ̄. It is a special feature here

that diagram (a) vanishes after the trace.

Triangle diagram. Both gauge and fermionic sectors are involved in the computation

of this diagram. It is given by

∂tλ̄|λ̄ē2(χ̄χ)2 =
1

Ω

1

2

1

3
STr

[(
P−1
k Fk

)3
λ̄ē2

]
=
l1,1a,ψ
π2

2

kZ2
ψZa

(χ̄χ)2 (A.6)

Here, the usual compact notation in terms of a threshold function has been introduced,

l
na,nψ
a,ψ = k2nA−2nψ−3

∫
dqq4

[
na
∂tra − ηara

Pra
+ 2nψ

1 + rψ
Prψ

(∂trψ − ηψrψ)

]
P−nara P

−nψ
rψ ,

(A.7)

with

Pra = q2 [1 + ra] , Prψ = q2[1 + rψ]2. (A.8)

Box diagram. The last diagram is particularly important as it is responsible to generate

the fermionic interaction when starting from the QED3 action in the UV, where λ̄Λ = 0.

When computing its value, the lower right submatrix of eq. (A.4) may be ignored as only

the gauge vertex contributes.

∂tλ̄|ē4(χ̄χ)2 =
1

Ω

1

2

−1

4
STr

[(
P−1
k Fk

)4
ē4

]
=
l2,1a,ψ
π2

1

k3Z2
ψZ

2
a

ē4(χ̄χ)2 (A.9)

Renormalization and rescaling. In a last step, a renormalization of the couplings as

in eq. (2.7) and the fields as χ → χ/
√
Zψ as well as a rescaling of e2 and λ with π2

provides the final result for the β-function:

∂tλ = λ(1 + 2ηψ) +
k

Z2
ψ

∂tλ̄ = λ(1 + 2ηψ) + 2l1,1A,ψλe
2 + l2,1A,ψe

4. (A.10)

This reproduces eq. (3.4) of the main text.

B Cancellation of λ2 term from flavor trace in ∂tλ

In order to understand the origin of the cancellation enforcing linearity of the

β-function (A.10) with respect to λ, it is necessary to revisit the corresponding contribu-

tions for general flavor number N
(2)
f . Although there are two independent quartic fermion

terms for N
(2)
f > 1 (see eq. (3.1)), it is sufficient to consider the generalized interaction

(χ̄χ)2 →
(
χ̄iχi

)2
i=1...N

(2)
f
. (B.1)
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The fermion sector of the analog to eq. (A.4) is then given by

[
P−1
k Fk

]ij
χ̄χ

= δ(3)(p− q) 2λ̄

N
(2)
f

(
−Pχ

[
(χ̄χ)1δij + χiχ̄j

]
Pχχ

i
(
χj
)T

P Tχ
(
χ̄i
)T
χ̄j −P Tχ

[(
χ̄i
)T (

χj
)T − (χ̄χ)1δij

]) ,
(B.2)

where the flavor dependence of the fermion propagator has already been absorbed. It

is then

∂tλ̄|λ̄2(χ̄iχi)2 =
N

(2)
f

Ω

1

2

(−1

2

)
STr

[(
P−1
k Fk

)2
λ̄2

]
= 2

l1ψ

N
(2)
f π2

Trf

[
(χ̄aχa) χ̄iχj−(χ̄aχa)2 δij

]
= 2

l1ψ

N
(2)
f π2

(
1−N (2)

f

)
λ̄2
(
χ̄iχi

)2
(B.3)

where in the first line all traces but the flavor one have been performed and

lnψ = 2nk2n−3

∫
dqq4(∂trψ − ηψrψ)

1 + rψ

Pn+1
rψ

. (B.4)

We emphasize the prefactor in this expression vanishes for the case of interest N
(2)
f = 1

as announced in the main text. This is due to the absence of flavor off-diagonal terms in

eq. (B.3) for this case. For N
(2)
f = 1, the flavor indices a = i = j must fall onto each other

and the bracket [. . .] in the first line of eq. (B.3) vanishes. Related vanishing of β-functions

in the single-flavor case also appears in the Gross-Neveu model and in particular also holds

at higher loop orders [11–13]. Complete cancellations of individual contractions in a β-

function for a four-fermion vertex also appear in Luttinger liquids [31], although these are

specific to spatial dimension D = 1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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