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Abstract The possibility of a spontaneous spin-triplet
paired phase of the Fulde-Ferrell-Larkin-Ovchinnikov type
is studied. As it is shown in a system with the dominant
interband pairing and two distinct Fermi surface sheets,
the Fermi wave-vector mismatch can be compensated by
a nonzero center-of-mass momentum of the Cooper pairs.
This idea is examined with the use of a model which
describes the two hole-like bands in the iron-based super-
conductor. It is shown that for the proper range of model
parameters, the minima of the free energy appear which
correspond to a nonzero Cooper pair momentum. Differ-
ent superconducting gap symmetries are analyzed, and the
corresponding phase diagrams are shown.

Keywords Unconventional superconductivity · FFLO
phase · Iron pnictides

1 Introduction

The so-called Fulde-Ferrel-Larkin-Ovchinnikov (FFLO)
phase has been proposed decades ago [1, 2] and attracted
much attention over the years. This unconventional super-
conducting phase can be induced by the external magnetic
field in systems with high Maki parameter [3] for the case
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of spin-singlet pairing. The Fermi wave-vector mismatch
which appears in such conditions can be compensated by
a nonzero center-of-mass momentum of the Cooper pairs.
Experimental signs of the FFLO phase have been reported in
the heavy fermion compound CeCoIn5 [4–6], as well as in
organic superconductors [7–11]. Also, an indirect evidence
of a superfluid FFLO phase in a system of ultracold atomic
gas trapped in an array of one-dimensional tubes has been
reported [12].

It has been proposed by us recently (M. Zegrodnik and
J. Spałek, 2014, A spontaneous paired state with nonzero
Cooper-pair momentum: Possible application to iron pnic-
tides, unpublished) that a paired phase with nonzero Cooper
pair momentum can appear in the absence of an external
magnetic field in systems with dominant interband pair-
ing and two distinct Fermi surface sheets. The high value
of the Maki parameter would not be required for the for-
mation of such phase. However, the electronic structure
of the system at hand should exhibit certain features to
create favorable conditions for nonzero momentum pair-
ing. To study this idea, we use the interband spin-triplet
pairing mechanism [13, 14] suggested for iron pnictides
in [15]. It should be noted that with respect to the iron-
based superconductors both spin-singlet [16–19] and spin-
triplet [15, 19, 20], gap symmetries have been consid-
ered. In this work, we use the tight binding model which
reflects the two hole-like bands of the iron-based com-
pound LaFeAsO1−xFx . The stability of the proposed phase
against both the normal and the homogeneous paired phases
is analyzed. Different symmetries of the superconducting
gap are considered, and their influence on the properties
of the nonzero momentum pairing is studied. One should
note that our approach could be applied to other multi-
band systems with either spin-singlet or spin-triplet types
of pairing.
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2 Theoretical Model

Following Raghu et al. [21], we use the tight binding model
which describes the electronic structure of the Fe-As layer
of LaFeAsO1−xFx . However, we limit to the two hole-
like bands only. Additionally, spin-triplet pairing term is
added (similarly as in [15]). The model Hamiltonian has the
following form:

Ĥ =
∑

klσ

(Ekl − μ)n̂klσ − 2

N

∑

kk′Qm

Jk−k′Â†
k′mQÂkmQ, (1)

where l = 1, 2 labels the bands, μ is the chemical poten-
tial, N is the number of Fe atoms in the lattice, and Ekl

are the dispersion relations which are plotted in Fig. 1b.
One should note that the summations in the Hamiltonian
are over the folded Brillouin zone which is marked by the
solid line in Fig. 1a (for details of the folding procedure, see
[21]). The second term in (1) is responsible for the inter-
band spin-triplet pairing with the possibility of nonzero total
momentum of the Cooper pairs, Q. An analogical term has
been introduced in [15] but for the two electron-like bands
of the iron-based superconductor and without the inclusion
of the nonzero momentum pairing. The spin-triplet pairing
operators are defined as follows:

Â
†
k,mQ ≡

⎧
⎪⎨

⎪⎩

ĉ
†
k1↑ĉ

†
−k+Q2↑ m = 1,

ĉ
†
k1↓ĉ

†
−k+Q2↓ m = −1,

1√
2
(ĉ

†
k1↑ĉ

†
−k+Q2↓ + ĉ

†
k1↓ĉ

†
−k+Q2↑) m = 0.

(2)

The second term in (1) is associated with the pairing mech-
anism induced by Hund’s rule [13, 14]. As the Hund’s
coupling operates on particles from different bands, the
resultant pairing has an interband character. Such approach
results in spin-triplet, band-singlet paired phase with a sym-
metric gap parameter (even parity, e.g., s-wave, extended
s-wave, d-wave). In the absence of magnetic ordering, one
can focus on the superconducting A phase (equal spin) in
which the Cooper pairs are in the states corresponding to

m = ±1 only and �k,1Q = �k,−1Q ≡ �kQ is fulfilled,
where

�k,±1Q = − 2

N

∑

k′
Jk−k′ 〈Âk′,±1Q〉, (3)

is the gap parameter corresponding to spin-up and spin-
down Cooper pairs. This phase is equivalent to the one cor-
responding to the following relations: �k,1Q = �k,−1Q ≡
0, �k,0Q 	= 0, where

�k,0Q = − 2√
2N

∑

k′
Jk−k′ 〈Âk′,0Q〉 , (4)

is the gap parameter. For simplicity, we have assumed that
in the superconducting state, all the pairs have the same total
momentum Q (the Fulde-Ferrell phase) and we take Jk in
the following form:

Jk = J0 + J1(cos kx + cos ky), (5)

where J0 and J1 determine the pairing strength. Such form
of Jk has also been chosen in [15]. By using the mean
field (Bardeen-Cooper-Schrieffer, BCS) approximation, one
obtains the following form of the effective Hamiltonian:

ĤHF =
∑

klσ (Ekl − μ)n̂klσ + ∑
k,m=±1(�kQÂ

†
kmQ + H.C.) (6)

+N(�
(0)
Q )2

J0
+ 2N(�

(1)
Q )2

J1
, (7)

where the gap is a mixture of s-wave and extended s-wave
gap symmetries, i.e.,

�kQ = �
(0)
Q + �

(1)
Q (cos kx + cos ky). (8)

However, other gap symmetries can also be analyzed, e.g.,
the d-wave:

�kQ = �
(1)
Q (cos kx − cos ky). (9)

The amplitudes �(0), �(1) and the chemical potential are
calculated by solving the set of self-consistent equations

Fig. 1 Two hole-like Fermi
surface sheets in the folded
Brillouin zone (a) and the
electronic structure (b) for band
filling n = 1.78838. The
energies are normalized to the
bare bandwidth W . Note the
Fermi wave-vector mismatch
�k between the states
(k = kF , l = 1) and
(k = −kF , l = 2)
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numerically, whereas the vector Q is determined by mini-
mizing the free energy of the system.

It should be noted that with respect to the considered
tight binding model, the even-parity pairing can be also
analyzed within the spin-singlet, band-triplet channel. The
corresponding Hamiltonian has the following form:

Ĥs =
∑

klσ

(Ekl − μ)n̂klσ − 2

N

∑

kk′
Jk−k′B̂†

k′QB̂kQ , (10)

where the spin-singlet pairing operator has been introduced:

B̂
†
kQ = 1√

2
(ĉ

†
k1↑ĉ

†
−k+Q2↓ − ĉ

†
k1↓ĉ

†
−k+Q2↑). (11)

In such case, the gap parameter is defined as follows:

�s
kQ = − 2√

2N

∑

k′
Jk−k′ 〈B̂k′mQ〉 . (12)

In the absence of magnetic ordering, the self-consistent
equations corresponding to both spin-triplet paired phase of
type A and spin-singlet paired phase (with nonzero �s

kQ)
have the same form. Moreover, the free energies of those
two phases are equal. In effect, the results presented in the
next section are valid for both situations. This is caused by
the fact that for the considered phases, the spin and band
indices are treated on equal footing so the spin-triplet band-
singlet situation is equivalent to that with the spin-singlet
band-triplet.

3 Results and Discussion

In our study, we consider the following phases: the normal
phase (NS) with �Q = 0, the homogeneous supercon-
ducting phase (SC-A) with �Q 	= 0, Q ≡ 0, and the
inhomogeneous superconducting phase (FF-A) with �Q 	=
0, Q 	= 0.

In the subsequent discussion, n expresses the number
of electrons per one Fe ion; the wave-vectors are given
in the units of 1/a, where a is the lattice parameter; and
all the energies have been normalized to the bare band-
width W , whereas T represents the reduced temperature
T ≡ kBT/W .

One should note that our model with the interband pair-
ing between the two Fermi surface sheets shown in Fig.
1a resembles the situation of one-band model with the
spin-singlet pairing between the two spin subbands. The
difference is that, here, the bottoms of the bands between
which the pairing occurs coincide but the shape of the dis-
persion relations leads to Fermi wave-vector mismatch (c.f.
Fig. 1a); whereas in the original idea of the FFLO phase,
under the influence of the Zeeman term, the spin subbands
are shifted as a whole. In our model, the mismatch can be
tuned by changing n, because by increasing the Fermi level,

one increases the distance between the Fermi sheets (c.f.
Fig. 1).

We analyze first the gap symmetry given by (8) with two
pairing components (J0 	= 0, J1 	= 0). In Fig. 2, we show
that for the proper values of the band filling n, the free-
energy minima appear for nonzero values of the Cooper pair
momentum Q, which correspond to the stability of the FF-
A phase. As one can see in Fig. 2f, for n = 1.77514, the
free energy in the homogeneous paired phase (for Q ≡ 0)
is already greater than the free energy in the normal phase
(�F > 0). However, by setting the proper value of Q, the
stability of the superconducting phase can still be obtained.
For the chosen gap symmetry, it is possible to connect the
largest parts of the Fermi surfaces when Q is parallel to
either the kx- or ky-axis. In the FF-A phase, the population
imbalance between the two bands occurs. As a result, some
of the particles from the second band (l = 2) are not paired.
The region in the reciprocal space which is occupied by
the unpaired particles is shown in Fig. 3b. The correspond-
ing quasiparticle dispersion relations in the FF-A phase are
plotted in Fig. 3a.

In Fig. 4a, b, we show the stability regions of the con-
sidered phases in the (n, J0) space together with the values
of the gap amplitudes. As one can see, the behavior of �(0)

and �(1) is very similar except that the values of �(1) are 1
order of magnitude smaller than those of �(0). The critical
temperature is the same for both, as it should be. The bor-
der between the stability regions of the SC-A phase and the
NS phase for the case of no-FF-A phase included is marked
by the solid line. One can see that the nonzero values of
the Cooper pair momentum allows for the paired phase to
adapt to the unfavorable conditions of the system with large
Fermi wave-vector mismatch (the larger the band filling, the
larger the mismatch). In effect, the region of stability of the
paired phase is broadened by the FF-A phase. The transition
from SC-A to FF-A phase has a discontinuous nature as the
drop in both �(0) and �(1) occurs along the transition line.
Additionally, in Fig. 4c, we show the free-energy difference
between the inhomogeneous paired phase and the next low-
est free-energy phase as a function of n and J0. The values
of Qx which correspond to the free-energy minimum (FF-A
phase stability) are provided in Fig. 4b.

According to our analysis, the FF-A phase can also be
stable for the case of extended s-wave gap symmetry with-
out the admixture of s-wave (J0 = 0, J1 	= 0). The
corresponding phase diagram on the (T , n) plane is pre-
sented in Fig. 5. Here, also the discontinuous nature of the
SC-A → FF-A transition is seen (the sudden drop of �(1) in
Fig. 5a). For the sake of completeness, we have made calcu-
lations for the d-wave gap symmetry given by (9). However,
the J1 parameter has to be quite large to obtain a stable d-
wave paired solution. In Fig. 6, we show that also in the
last case, the free-energy minimum can appear for nonzero
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Fig. 2 Free energy in the paired
state as a function of Q for the
three values of the band filling:
a n = 1.75, b n = 1.76709, and
c n = 177514. The pairing
strength is set to J0 = 0.371992
and J1 = J0/5. In d–f, the
difference between the free
energy in the paired and the
normal phases (�F ) is shown as
a function of Qx for Qy = 0.
The values of n chosen for d–f
correspond to those from a–c,
respectively

values of Q. As one can see, the choice of the pairing sym-
metry influences the direction of the Q vector for which
the free-energy minimum appears. In this case, the mini-
mum is obtained for Qx = Qy (and Qx = −Qy) direction,
whereas for the case of s-wave symmetry (or the mixture of
s-wave and extended s-wave symmetries) similar minimum
is located on the Qx- or Qy-axis (c.f. Fig. 2).

4 Conclusions

We have analyzed the possibility of a new kind of super-
conducting phase with a spontaneous nonzero Cooper pair
momentum. This phase can occur without the external
magnetic field in systems with the dominant interband
pairing and two distinct Fermi surface sheets. The corre-
sponding Fermi wave-vector mismatch which appears in

such situation can be compensated by nonzero center-of-
mass momentum of the Cooper pairs. In our study, we
use as an example a tight binding model which describes
the two hole-like bands of the iron-based superconductor
LaFeAsO1−xFx . The calculations have been carried out for
different even-parity gap symmetries (s-wave, extended s-
wave, and d-wave). We have shown that for proper values of
the band filling and of the pairing strength, the free-energy
minima appear which correspond to nonzero Cooper pair
momentum. The direction of the Q vector depends on the
selected gap symmetry (c.f. Figs. 2 and 6). For the case of
the d-wave symmetry, the values of the pairing strength J1

have to be very large (J1 > 1) to obtain a paired solution in
the considered model.

In our approach, we use the mean field (BCS) approx-
imation which overestimates both the values of the order
parameters and the critical temperature, so it would be

Fig. 3 The quasiparticle
dispersion relations in the FF-A
phase: a for
n = 1.798, J0 = 0.3913, and
J1 = J0/5 along the trajectory
in the folded Brillouin zone
marked in b by the dashed line.
The so-called depairing region
for the same model parameters
is shown in b
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Fig. 4 The phase diagram in the
(n, J0) space together with the
values of �(0) (a) and �(1) (b)
gap amplitudes. The solid line in
a and b marks the stability
border between the SC-A and
NS phases for the case of
no-FF-A phase included. c The
free-energy difference between
the FF-A phase and the next
lowest free-energy phase (�F ).
d Values of the Qx component
for Qy = 0, which minimize the
free energy and lead to FF-A
phase stability. For all points of
the diagram, we set J1 = J0/5

Fig. 5 The phase diagram in the
(T , n) space a for J1 = 0.4836
and J0 = 0. b Values of the Qx

component of the Cooper pair
momentum (for Qy = 0) which
correspond to FF-A stability

Fig. 6 Free energy of the paired
phase as a function of the
Cooper pair momentum for the
case of d-wave gap symmetry
with the pairing strength J0 = 0
and J1 = 1.2066 and n = 1.5
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interesting to analyze the considered problem with the inclu-
sion of interelectronic correlations. The spin-triplet inter-
band pairing induced by the combined effect of Hund’s
rule and the correlations have been analyzed by us recently
within the Gutzwiller approximation but without the pos-
sibility of a nonzero momentum pairing [22, 23]. Also,
application of the proposed idea to other systems with
the interband pairing seems reasonable. Namely, pairing
between two species of particles with different (effective)
masses could lead to a similar Fermi wave-vector mis-
match as that considered above. Such an unconventional
phase could be realized in systems of ultracold atomic
gases in optical lattices. Spin-singlet pairing between par-
ticles with different effective masses has been theoretically
investigated in [24, 25]. However, in these considerations,
the so-called spin-dependent masses are induced by inter-
electronic correlations and appear in an external magnetic
field. As a result, the appearance of the nonzero momen-
tum pairing is both due to the energy shift of the spin
subbands and the corresponding modification of the dis-
persion relations due to spin-dependent renormalization
factors.

As we have mentioned, the pairing induced by Hund’s
rule has an interband character. However, when it comes
to other mechanisms, both inter- and intra-band compo-
nents of the pairing can appear. The former can lead to
the non-zero momentum of the Cooper pairs, whereas
when the latter is strong, the homogeneous supercon-
ducting phase should be favored. It would be interesting
to see to what extent the energy gain coming from the
nonzero momentum pairing can survive in a model with
both inter- and intra-band pairing. Another issue which
would require further studies is the appearance of the degen-
eracy of the spin-triplet and spin-singlet pairings within
our approach. This degeneracy should be broken by the
spin-orbit coupling which has not been included by us at
this stage of research. Moreover, the spin-orbit coupling
would probably lead to a mixed ground state. These issues
should be analyzed separately and are beyond the scope of
this paper.
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