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Abstract

Background: It is not known whether genetic variation in the vitamin D binding protein (DBP) influences
25-hydroxyvitamin D levels [25(OH)D] after vitamin D supplementation. We aimed to investigate the changes of
total 25(OH)D, 25(OH)D3 and 25(OH)D2 in a Thai cohort, according to type of vitamin D supplement (vitamin D3 or
D2) and DBP genotype, after receiving vitamin D3 or D2 for 3 months.

Methods: Thirty-nine healthy subjects completed the study. All subjects received 400 IU of either vitamin D3 or D2,
plus a calcium supplement, every day for 3 months. Total serum 25(OH)D, 25(OH)D3 and 25(OH)D2 were measured
by LC-MS/MS. Individual genotyping of rs4588 in the DBP gene was performed using real-time PCR.

Results: Vitamin D3 supplementation of 400 IU/d increased 25(OH)D3 significantly (+16.2 ± 4.2 nmol/L, p <0.001).
Vitamin D2 (400 IU/d) caused increased 25(OH)D2 levels (+22.0 ± 2.11 nmol/L, p <0.001), together with a decrease of
25(OH)D3 (−14.2 ± 2.0 nmol/L, p <0.001). At 3 month, subjects in vitamin D3 group tended to have higher total
25(OH)D levels than those in vitamin D2 (67.8 ± 3.9 vs. 61.0 ± 3.0 nmol/L; p = 0.08). Subjects were then classified into
two subgroups: homozygous for the DBP rs4588 C allele (CC), and the rest (CA or AA). With D3 supplementation,
subjects with CA or AA alleles had significantly less increase in 25(OH)D3 and total 25(OH)D when compared with
those with the CC allele. However, no difference was found when the supplement was vitamin D2.

Conclusion: Genetic variation in DBP (rs4588 SNP) influences responsiveness to vitamin D3 but not vitamin D2.
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Background
Vitamin D insufficiency has been increasingly recognized
as a common health problem worldwide. Measures to
augment vitamin D levels include increased sun expos-
ure, higher consumption of vitamin D–rich foods, and
taking vitamin D supplements. In order to achieve a 25-
hydroxyvitamin D level [25(OH)D; a marker of vitamin
D status] higher than the current recommended thresh-
old of 50–75 nmol/L, higher doses of vitamin D than
previously suggested are required in Caucasians [1,2].
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However, it is unclear if the suggestion holds across ethnic
groups, particularly in populations with lower body fat as
compared to Caucasians. Moreover, it has never been in-
vestigated in Asians if vitamin D2 or D3 supplementation
would have a different effect on circulating vitamin D.
Vitamin D and its metabolites circulate in the plasma,

bound to vitamin D binding protein (DBP) [3]. Genetic
variations in the DBP gene have consistently been found
to be associated with 25(OH)D levels [4-7]. However, it
is currently unclear how the DBP genetic variation
would affect the increase in 25(OH)D levels after taking
vitamin D supplements.
In the present study, we investigated the changes of total

25(OH)D, 25(OH)D3 and 25(OH)D2 according to type of
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vitamin D supplement (400 IU of vitamin D3 or D2 for
3 months). Toward the end, we investigated the change in
serum 25(OH)D levels according to DBP genotypes.

Methods
Subjects
A total of 41 subjects (34 females/7 males) aged 15–70
years were enrolled in an unblinded randomized control
trial that began in August 2008. All subjects were healthy
and did not have any underlying diseases. Subjects were
excluded if they were taking vitamin D ≥400 IU/d before
being included in the study. After inclusion, subjects were
excluded from the final analysis if they were intolerant to
the supplement or were lost to follow-up. Subjects were
then randomly assigned into two groups, using a
computer-generated randomized code, to receive 400 IU/
day of either vitamin D2 or vitamin D3 for 3 months. Two
subjects (both of them were females) in the vitamin D2

group were excluded from the study after enrollment; one
subject had gastrointestinal side effects from the calcium
supplement, and the second was lost to follow-up. Final
analysis was based on data from 39 subjects (32 females/7
males): 20 and 19 subjects in the vitamin D3 and D2

groups, respectively. All subjects were supplemented dur-
ing the rainy or winter season and we did not allow taking
any additional vitamin supplement. The treatment period
was only 3 months and all subjects stayed in the same
environment. In addition, there is less natural vitamin
D containing food and vitamin D fortified food in
Thailand. Therefore we did not assess the duration of sun
exposure and the amount of daily vitamin D intake.
All study participants arrived at the research unit at

0800 h after at least a 12 h overnight fast. Baseline
characteristics – which included age, all medications cur-
rently in use, waist circumference (WC) and body mass
index (BMI) – were recorded. Blood was collected at base-
line. Subjects received either vitamin D3 (CentrumW) or
vitamin D2 (MTV), as well as a calcium supplement
(CaCO3) every day, and were asked to return to the clinic
at 1 month and 3 months after the first visit. Fasting
plasma glucose (FPG) was measured at baseline, and total
serum 25(OH)D, 25(OH)D2 and 25(OH)D3 were mea-
sured at baseline and at every follow-up period. Intact
plasma parathyroid hormone (PTH) was measured at
baseline and 3 month. Subjects with total 25(OH)D levels
<50 nmoL/L were classified as having vitamin D defi-
ciency. 25(OH)D, 25(OH)D2 and 25(OH)D3 were reported
as levels (nmol/L) and as changes from baseline over the
follow-up period (1 and 3 month).

Vitamin D and calcium supplementation
All subjects received either vitamin D3 or vitamin D2

and a calcium supplement daily for 3 months. Subjects
in the vitamin D3 group received 400 IU/d vitamin D3 and
675 mg/d elemental calcium [1 tablet of CentrumW

(contained 400 IU of vitamin D3 and 175 mg of elemental
calcium) and 1 tablet of 1250 mg CaCO3 (contained
500 mg of elemental calcium)]; subjects in the vitamin D2

group received 400 IU/d vitamin D2 and 500 mg/d elem-
ental calcium [1 multivitamin tablet (contained 400 IU of
vitamin D2) and 1 tablet of 1250 mg CaCO3 (contained
500 mg of elemental calcium)]. Compliance was assessed
by tablet-counting at every return visit, and was reported
as % of medicine taken. All subjects had over 90% compli-
ance for calcium, vitamin D2 and vitamin D3.

Biochemical measurement
Serum and plasma samples were kept frozen at −80°C
until analysis. Plasma intact parathyroid hormone (PTH)
was determined by electrochemiluminescence immuno-
assay with an Elecsys 2010 analyzer (Roche Diagnostics,
Mannheim, Germany). Serum 25(OH)D2 and 25(OH)D3

were analyzed by LC-MS/MS with an Agilent 1200 In-
finity liquid chromatograph (Agilent Technologies,
Waldbronn, Germany) coupled to a QTRAPW 5500 tan-
dem mass spectrometer (AB SCIEX, Foster City, CA,
USA) using a MassChromW 25-OH-Vitamin D3/D2 diag-
nostics kit (ChromSystems, Munich, Germany). The
summation of serum 25(OH)D2 and 25(OH)D3 was used
to reflect vitamin D status. The inter-assay and intra-
assay coefficients of variation of serum total 25(OH)D
level were 6.3% and 5.0%, respectively.

SNP genotyping
DNA was extracted from a 200 μL serum sample using
a QIAampW DNA Blood Mini Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s protocol.
Individual genotyping of rs4588 in the DBP gene
was performed using real-time PCR (TaqManW MGB
probes): 20 ng of DNA was added into the PCR reaction,
consisting of TaqMan Universal Master Mix (1×) and
TaqMan MGB probes for intronic C/A SNP rs4588 (1×)
in a total volume of 20 μL. The real-time PCR reaction
protocol was 10 min at 95°C, 40 cycles of 15 s at 92°C,
and 1 min at 60°C using a 7500 Real-Time PCR System
(Applied Biosystems, Foster City, CA, USA).

Statistical analysis
Data were expressed as mean ± SEM unless stated other-
wise. We performed non-parametric test to compare
the difference between parameters. We used the
Mann–Whitney test and the Chi-Square test to compare
the difference of baseline characteristics and changes in
vitamin D metabolites [total 25(OH)D, 25(OH)D2 and
25(OH)D3] between groups of subjects stratified by vita-
min D preparations and DBP genotypes. The changes of
vitamin D metabolites at the 1st and 3rd month from
baseline in each group of subjects were assessed by the
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Figure 1 Total 25(OH)D, 25(OH)D2 and 25(OH)D3 levels at
baseline, and at 1 and 3 months after vitamin D3 or vitamin D2

supplementation.
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Wilcoxon test. All statistical analyses were performed
with SPSS version 16 (SPSS, Chicago, IL). A P value of
<0.05 was considered statistically significant.

Results
Thirty-nine subjects (82.05% female) with a mean age of
36.2 ± 1.3 were included in the final analysis. All baseline
characteristics of subjects in both vitamin D3 and vita-
min D2 groups were similar (Table 1). Twenty-four out
of 39 subjects (61.5%) had vitamin D deficiency [25(OH)
D less than 50 nmol/L]: 14 and 10 subjects in the vita-
min D3 and vitamin D2 groups, respectively (p =NS). As
shown in Figures 1 and 2, after receiving 400 IU/d vita-
min D3, 25(OH)D3 levels increased significantly (7.8 ±
1.5 and 16.2 ± 4.2 nmol/L at the 1st and the 3rd month,
respectively; p < 0.001), with a small concurrent decrease
in 25(OH)D2. Among subjects who received 400 IU/d
vitamin D2, serum 25(OH)D2 levels increased by 15.6 ±
1.3 and 22.0 ± 2.1 nmol/L at the 1st and 3rd month, re-
spectively; there was, however, a significant decrease of
serum 25(OH)D3 (−14.2 ± 2.0 nmol/L at the 3rd month;
p < 0.001). This resulted in a reduction in the increase of
total 25(OH)D levels after vitamin D2 supplementation.
Nevertheless, when compared between the vitamin D2

and D3 groups, there were no significant difference in
total 25(OH)D levels at 3 months from baseline [total
25(OH)D = 61 ± 3.1 vs. 67.6 ± 3.9 nmol/L and the in-
creased of total 25(OH)D from baseline = 7.8 ± 2.2 vs.
15.9 ± 4.3 nmol/L (p = 0.08) for vitamin D2 and vitamin
D3 group, respectively; Figure 1A). At the 3rd month,
plasma intact PTH was decreased significantly from
baseline in subjects of both vitamin D2 [−0.6 ± 0.3 pmol/L,
p < 0.05] and D3 group [−0.7 ± 0.2 pmol/L, p < 0.01]. There
was no difference in the decrement in intact PTH between
2 groups (p = 0.7).
Table 2 shows the genotype distribution of the DBP

rs4588 SNP. The genotype distributions of subjects given
Table 1 Baseline characteristics according to vitamin D
supplementation

Clinical characteristics Vitamin D3

(n = 20)
Vitamin D2

(n = 19)
P value

Age (years) 36.0 ± 1.9 36.7 ± 1.7 NS

Sex (M/F) 3/17 4/15 NS

Body weight (kg) 56.9 ± 2.0 59.5 ± 2.7 NS

Waist circumference (cm) 75.9 ± 1.5 78.4 ± 2.1 NS

BMI (kg/m2) 22.4 ± 0.5 23.2 ± 0.8 NS

FPG (mmol/L) 4.6 ± 0.1 4.5 ± 0.1 NS

Total 25(OH)D (nmol/L) 51.8 ± 3.8 53.2 ± 3.6 NS

25(OH)D3 (nmol/L) 50.3 ± 3.8 51.7 ± 3.6 NS

25(OH)D2 (nmol/L) 1.5 ± 0.1 1.5 ± 0.2 NS

PTH (pmol/L) 3.9 ± 0.3 4.0 ± 0.4 NS

Data is presented as mean ± SEM.
vitamin D3 or vitamin D2 supplements were not signifi-
cantly different. Subjects in each vitamin D supplemen-
tation group were then divided into two subgroups
based on the presence of the A (minor) allele: those
homozygous for the C allele (group 1), and the rest
(CA or AA: group 2). When we compared baseline
25(OH)D and 25(OH)D3 levels in subjects between
group 1 (n = 22) and group 2 (n = 17), there was no dif-
ference in either baseline 25(OH)D (52.9 ± 4 vs. 52.1 ±
3 nmol/L, p = 0.5) or baseline 25(OH)D3 levels (51.4 ±
4.1 vs. 50.6 ± 3 nmol/L, p = 0.6). We further classified
subjects into 4 groups according to DBP genotype and
type of vitamin D supplement (Table 3). While there
was no difference in age, gender, BMI, and baseline
25(OH)D2, 25(OH)D3 and total 25(OH)D between the
genotypes among subjects in the vitamin D2 group,
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Figure 2 The differences of total 25(OH)D, 25(OH)D2 and 25(OH)D3 levels from baseline at 1 and 3 months after vitamin D3 or vitamin
D2 supplementation.
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some differences were found in gender, baseline 25(OH)
D3 and total 25(OH)D between the genotypes among
subjects in the vitamin D3 group (Table 3). When com-
paring changes in vitamin D metabolites at 3 months
with baseline values (Table 4), it was found that subjects
in group 2 (CA or AA alleles) had significantly less in-
crease in 25(OH)D3 levels after taking vitamin D3.
Table 2 Genotype distribution of the DBP rs4588 SNP in
the study population

DBP genotype D3 supplement
(n = 20)

D2 supplement
(n = 19)

Total

CC (%) 12 (60%) 10 (52.6%) 22 (56.4%)

CA (%) 6 (30%) 5 (26.3%) 11 (28.2%)

AA (%) 2 (10%) 4 (21.1%) 6 (15.4%)
Likewise, the increment in total 25(OH)D was lower. On
the other hand, no difference in the increments of
25(OH)D3, 25(OH)D2 or total 25(OH)D was detected
between the two genotype groups when the supplement
was vitamin D2. There was no difference in changes in
serum intact PTH between two DBP genotype sub-
groups after 3 months of vitamin D supplementation
(Table 4).

Discussion
In the present study, 400 IU/day of vitamin D3 tended
to increase total 25(OH)D levels more when compared
with the same dosage of vitamin D2 (p = 0.08). The
underlying basis for this finding appears to be a concur-
rent decrease in 25(OH)D3 after supplementation with
vitamin D2. This finding is in keeping with a number of



Table 3 Baseline characteristics according to DBP genotype and type of vitamin D supplement

D3 supplement D2 supplement

CC (n = 12) CA/AA (n = 8) P value CC (n = 10) CA/AA (n = 9) P value

Age (years) 37.6 ± 2.6 33.5 ± 2.8 NS 36.1 ± 2.1 37.4 ± 2.8 NS

% female 100 62.5 <0.05 72.7 88.9 NS

BMI (kg/m2) 22.0 ± 0.7 22.9 ± 0.9 NS 23.6 ± 1.1 22.7 ± 1.2 NS

25(OH)D3 (nmol/L) 47.4 ± 5.7 55.0 ± 4.2 <0.05 56.3 ± 5.7 46.8 ± 3.9 NS

25(OH)D2 (nmol/L) 1.6 ± 0.3 1.3 ± 0.1 NS 1.4 ± 0.2 1.6 ± 0.3 NS

total 25(OH)D (nmol/L) 49.0 ± 5.8 56.3 ± 4.2 <0.05 57.7 ± 5.7 48.3 ± 3.9 NS

PTH (pmol/L) 4.0 ± 0.5 3.7 ± 0.5 NS 4.0 ± 0.6 3.9 ± 0.6 NS

Data is presented as mean ± SEM.
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studies which demonstrated a decrease in 25(OH)D3

after vitamin D2 supplementation either daily or weekly
[8-10]. However, there was also one other study which
could not demonstrate a concurrent decrease in 25(OH)
D3, and found that vitamin D2 and D3 were equipotent
in improving vitamin D status [11]. It is noteworthy
that nearly all of the studies that demonstrated less
efficacy of vitamin D2 in increasing 25(OH)D levels used
relatively higher doses of vitamin D, indicating that the
less efficacy of vitamin D2 may be dose-dependent
[9,12]. The recent meta-analysis indicated that vitamin
D3 is more efficacious at raising serum 25(OH)D con-
centration when given as a bolus dose [50,000 IU single
dose (oral), 300,000 IU single dose (oral and intramuscu-
lar) and 50,000 IU/month (oral); p = 0.0002] compared
with administration of vitamin D2, but the effect was lost
with daily supplement [1,000-4,000 IU/d; p = 0.10] [13].
However, our findings suggest that this is not the case,
since we were able to demonstrate the trend of the dif-
ference between D3 and D2 supplementation even at a
lower dose, i.e. 400 IU daily. All of the previous studies
were performed in Caucasians, and it is unclear if ethnic
differences in vitamin D metabolism could be the basis
of our findings. The decrease in 25(OH)D3 after vitamin
D2 supplementation, same as reported in the study of
Demetriou ET, et al. [14], likely due to competition for
the 25-hydroxylase enzyme by vitamin D3 and vitamin
D2. However, it is probable that enzymatic catalyzation
by other enzymes with relatively minor roles, such as
CYP24A1 [8] and CYP3A4, may be different for
Table 4 Changes in vitamin D metabolites and PTH at 3 mont
and vitamin D preparations

D3 supplement

CC (n = 12) CA/AA (n = 8)

Δ 25(OH)D3 (nmol/L) 22.98 ± 6.00 6.09 ± 3.03

Δ 25(OH)D2 (nmol/L) −0.39 ± 0.36 −0.28 ± 0.10

Δ 25(OH)D (nmol/L) 22.58 ± 6.18 5.84 ± 3.07

Δ PTH (pmol/L) −0.8 ± 0.3 −0.7 ± 0.4

Data is presented as mean ± SEM.
vitamin D3 and D2, and thus be partially accountable for
the observation.
The ability of either vitamin D2 or vitamin D3 to in-

crease circulating 25(OH)D varies considerably among
individuals. The explanations for the large between-
individual difference include differences in adiposity
[15], enzymatic degradation of vitamin D metabolites
[8], and dietary composition [16], as well as fat
malabsorption [17]. In the present study, vitamin D2

or vitamin D3 supplementation resulted in varying in-
creases in 25(OH)D. No association with adiposity as
assessed by BMI, however, was demonstrated. Since the
number of study subjects was small, the lack of power to
detect association could possibly be responsible. Dietary
composition and enzymatic degradation of vitamin D
metabolites were not assessed in the present study.
The present study demonstrated that DBP genetic

variation is another factor which can influence the re-
sponsiveness to vitamin D supplementation. The major
function of DBP is the binding, solubilization and
transport of vitamin D and its metabolites [18]. A
previous study found that both serum 25(OH)D3 and 1,
25(OH)2D3 concentrations were significantly lower in
mice lacking DBP, compared to wild-type mice [19]. In
another recent study, Lauridsen et al. showed that DBP
phenotype determines the median plasma concentration
of 25(OH)D3 and 1, 25(OH)2D3 [5]. With regard to
genetic variation, single nucleotide polymorphisms in
the DBP gene have been demonstrated to be related to
25(OH)D levels in Caucasians and Africans [4,6]. A
hs compared to baseline according to DBP genotypes

D2 supplement

P value CC (n = 10) CA/AA (n = 9) P value

<0.01 −15.38 ± 2.60 −12.85 ± 3.21 NS

NS 23.31 ± 3.59 20.47 ± 2.11 NS

<0.01 7.93 ± 3.10 7.61 ± 3.35 NS

NS −0.6 ± 0.5 −0.7 ± 0.4 NS
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difference in the response of serum 25(OH)D after vita-
min D3 supplementation according to DBP genetic vari-
ants has also been reported [7]. It is of note that the
DBP genetic variants affected the change in vitamin D
status only for vitamin D3 but not vitamin D2 supple-
mentation in our study. One study reported that vitamin
D3 had greater affinity for the DBP than vitamin D2 and
25(OH)D3 also had greater affinity for the DBP than
25(OH)D2 [20]. However, the binding capacity of DBP
cannot totally explain the difference in responsiveness to
vitamin D3 supplementation as demonstrated in Armas,
LA.’s study [9]. After receiving single dose of 50,000 vita-
min D3 or vitamin D2 orally, a similar rising of 25(OH)D
levels in the first 3 days were observed in both group.
However, much more rapid decline of serum 25(OH)D
in the vitamin D2-treated subjects after 3 days seem to
reflect substantially more rapid metabolism or clearance
of the vitamin D2 metabolite [9]. We speculated that the
greater affinity of 25(OH)D3 for the DBP and less clear-
ance of 25(OH)D3 would maintain its serum levels and
accountable for the influence of DBP genetic variants in
the case of vitamin D3,not vitamin D2. Further studies
such as the differences in metabolism between vitamin
D2 and vitamin D3 after binding to DBP are warranted.
There are a number of limitations in this study. The

sample size is relatively small and may not have enough
power to detect small changes, particularly those related
to vitamin D2 supplementation. A 50 nmol/L difference
in baseline 25(OH)D2 and 25(OH)D3 was present. This
may influence the increment of 25(OH)D2 or 25(OH)D3

levels after receiving vitamin D2 or vitamin D3 supple-
mentation, and thus possibly affect the total 25(OH)D
levels at the end of the study. The change in 25(OH)D
at the end of the study may also be influenced by
lifestyle factors influencing the degree of sun exposure
during the course of the study. This potential con-
founding effect cannot be assessed since there was not a
non-supplemented group in our study. It would be im-
portant to know if both the vitamin D2 and vitamin D3

supplements had the same amount of vitamin D. How-
ever, vitamin D contents of both preparations were not
measured. However, total 25(OH)D levels of subjects in
both groups were similar at 3 months, suggesting that
the variability in vitamin D content between vitamin D2

and vitamin D3 preparations, if any existed, was likely to
be small. The other limitation is that multivitamin tab-
lets containing vitamin D were used (in the vitamin D2

group), and it is unknown if other constituents of the
multivitamin would affect vitamin D absorption or me-
tabolism. It has been demonstrated that statins, atorva-
statin and rosuvastatin in particular, can influence the
circulating levels of 25(OH)D [21-23]. To our know-
ledge, no interference from common vitamins and min-
erals with vitamin D metabolism has been reported.
Conclusion
Daily supplementation with vitamin D2 tended to result in
lower total 25(OH)D levels than supplementation with
vitamin D3 due to a concurrent decrease in 25(OH)D3

levels in the former case. Genetic variation in vitamin D
binding protein (rs4588 SNP) influences responsiveness to
vitamin D3 but not vitamin D2.
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