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Abstract The production of prompt photons is measured in
the photoproduction regime of electron–proton scattering at
HERA. The analysis is based on a data sample correspond-
ing to a total integrated luminosity of 340 pb−1 collected by
the H1 experiment. Cross sections are measured for photons
with transverse momentum and pseudorapidity in the range
6 < E

γ

T < 15 GeV and −1.0 < ηγ < 2.4, respectively. Cross
sections for events with an additional jet are measured as a
function of the transverse energy and pseudorapidity of the
jet, and as a function of the fractional momenta xγ and xp

carried by the partons entering the hard scattering process.
The correlation between the photon and the jet is also stud-
ied. The results are compared with QCD predictions based
on the collinear and on the kT factorization approaches.
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Fig. 1 Examples of diagrams for the production of prompt photons in photoproduction: (a) direct and (b) resolved interaction with a parton from
the proton, (c) box diagram and (d) radiation of a photon from an outgoing quark

1 Introduction

Isolated photons emerging from the hard subprocess ep →
eγX, so called prompt photons, are a powerful probe of
the underlying dynamics, complementary to jets. Produc-
tion of isolated photons with high transverse momentum can
be calculated in perturbation theory. High energy electron–
proton scattering is dominated by so-called photoproduc-
tion processes, in which a beam lepton emits a quasi-real
photon which either interacts directly with the proton (di-
rect process) or fluctuates into partons which then partic-
ipate in the hard scattering process (resolved process). In
prompt photon production, the direct process is sensitive to
the quark content of the proton through the Compton scat-
tering of the exchanged photon with a quark (γ q → γ q) as
depicted in Fig. 1(a). The resolved process (qg → γ q) is
sensitive to the partonic structure of both the photon and the
proton. A typical diagram is shown in Fig. 1(b). Figures 1(c)
and 1(d) show typical higher order diagrams.

The H1 collaboration has previously measured prompt
photon cross sections in photoproduction [1] and in deep
inelastic scattering (DIS) [2]. The ZEUS collaboration has
also reported measurements of prompt photon produc-
tion [3–5]. Both experiments found that in photoproduction
the inclusive prompt photon cross section is underestimated
by next-to-leading order (NLO) QCD calculations [6–8],
while there is reasonable agreement for events with a prompt
photon and a jet (photon plus jet). In DIS, a leading order
QCD calculation [9] significantly underestimates the pro-
duction of isolated photons and of photons plus jets. NLO
predictions [10] are only available for the latter and also
underestimate the cross section.

This paper presents results of a measurement of prompt
photons in photoproduction. The data used for the measure-
ment were collected with the H1 detector in the period from
2004 to 2007 and correspond to a total integrated luminosity
of 340 pb−1. This amounts to an increase in statistics by a
factor of three compared to the previous measurement [1].
During this data taking period HERA collided positrons or
electrons1 of energy Ee = 27.6 GeV with protons of energy

1Unless otherwise stated, the term electron refers to both the electron
and the positron.

Ep = 920 GeV corresponding to a center-of-mass energy of√
s = 319 GeV.
Isolated photons with transverse energy 6 < E

γ

T <

15 GeV and pseudorapidity2 −1.0 < ηγ < 2.4 are measured
in events with the inelasticity y in the range 0.1 < y < 0.7.
This extends the phase space of previous measurements at
HERA towards larger pseudorapidities of the photon and to
smaller event inelasticities.

The main background is due to photons produced in
hadron decays. For its discrimination from prompt photons,
various shower shape variables are used. Differential cross
sections are presented as a function of the transverse energy
and pseudorapidity of the photon. For the photon plus jet
sample, differential cross sections are measured as a func-
tion of transverse energy and pseudorapidity of the photon
and the jet and the momentum fractions xγ and xp carried
by the participating parton in the photon and the proton, re-
spectively. Azimuthal angle and transverse momentum cor-
relations between the photon and the jet are also studied.
The cross sections are compared to QCD calculations based
on collinear factorization in NLO [6, 7] and to calculations
based on the kT factorization approach [11].

2 Theoretical predictions

The calculation by Fontannaz, Guillet and Heinrich (FGH)
[6, 7] based on the collinear factorization approach includes
the leading order direct and resolved processes γ q → γ q

and their NLO corrections. Besides the production of a
prompt photon in the hard interaction, photons may orig-
inate from the fragmentation of a high momentum quark
or gluon in the final state. The fragmentation process, de-
scribed by a fragmentation function, is included in the cal-
culation as well as the direct box diagram as shown in
Fig. 1(c). The contribution from quark to photon fragmen-
tation to the total cross section of isolated photons is at the
level of 4%. The contribution from the box diagram amounts
to about 10% on average. The calculation uses the parton

2The pseudorapidity is related to the polar angle θ as η =
− ln tan(θ/2), where θ is measured with respect to the direction of the
outgoing proton beam (forward direction).
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density functions (PDFs) CTEQ6L [12] for the proton and
AFG04[13] for the photon. The scales for renormalization
μR and factorization μF , are chosen to be μR = μF = E

γ

T .
The NLO corrections to the LO cross section are significant
for the inclusive sample. They increase the predicted cross
section by a factor 1.15–1.42, the corrections being largest
at low E

γ

T and large ηγ . For the photon plus jet sample the
corrections are much smaller and below 10% on average.

The leading order predictions of Lipatov and Zotov
(LZ) [11] are based on the kT factorization approach. The
calculation uses the unintegrated quark and gluon den-
sities of the photon and the proton using the Kimber–
Martin–Ryskin (KMR) prescription [14] with the GRV para-
meterizations for the collinear quark and gluon densities [15,
16]. The kT factorization approach is expected to account
for the main part of the collinear higher order QCD cor-
rections [11]. Direct and resolved processes are considered
in the calculation, but contributions from fragmentation and
from the box diagram are neglected.

To ensure isolation of the photon, the total transverse en-
ergy within a cone of radius one in the pseudorapidity - az-
imuthal angle plane surrounding the prompt photon, exclud-
ing its own energy, is required to be below 10% of E

γ

T in
both calculations. This requirement slightly differs from the
one used in the data analysis as described in Sect. 4.1.

The theoretical predictions are compared to the data af-
ter a correction for multi parton interactions, for hadroniza-
tion effects and for the different definition of the isolation
of the photon. The total correction factors fcorr are deter-
mined with the signal MC described below as the ratios of
the cross sections on hadron level with multi-parton inter-
actions and the data isolation criteria, to the cross sections
on parton level without multi-parton interactions and using
the cone cut for the isolation of the photon. The correction
factors are calculated for each bin using the event genera-
tors PYTHIA [17] and HERWIG[18] which have a different
model for hadronization. The arithmetic means of the two
correction factors are used, while half of the difference be-
tween the two models is taken as the error. The correction
factors for the total inclusive cross section range from 0.84
to 0.99 with an average of 0.9. They are largest for low E

γ

T

and in the forward direction, where the photon isolation is
most sensitive to hadronization and to multi-parton interac-
tions. The uncertainty of the corrections is typically 8%.

The leading order MC generator PYTHIA 6.2 [17] is
used in this analysis for the prediction of the signal. The
simulation of multi-parton interactions [19, 20] is included.
The hard partonic interaction is calculated in LO QCD and
higher order QCD radiation is modeled using initial and final
state parton showers in the leading log approximation [21].
The fragmentation into hadrons is simulated in PYTHIA by
the Lund string model [22]. The simulated signal contains
contributions from direct (Fig. 1(a)) and resolved (Fig. 1(b))

production of prompt photons including QED radiation. In
addition, processes with two hard partons in the final state
(Fig. 1(d)) are simulated. The simulations use the parton
densities CTEQ6L [12] for the proton and SASG-1D [23]
for the photon. Different parton density functions for the
proton (CTEQ5L [24] and MRST04 [25]) and the photon
(GRV [15] and AFG04) are used to estimate the influence
of the parton densities on the predicted cross section, which
varies by at most 10%, mainly due to changes of the proton
PDF. The multi-parton interactions reduce the total inclusive
cross section by 6% on average. The uncertainty of the cor-
rection for multi-parton interactions is estimated by chang-
ing the default parameter for the effective minimum trans-
verse momentum for multi-parton interactions in PYTHIA
(PARP(81)) from 1.9 to 1.6 GeV and 2.2 GeV, respectively.

To estimate the uncertainty of the hadronization correc-
tion, the HERWIG [18] generator is also used to model the
prompt photon signal. HERWIG simulates the fragmenta-
tion into hadrons through the decay of colorless parton clus-
ters.

Background to the analysis of prompt photons mainly
arises from energetic photons from the decay of hadrons
like π0 and η in photoproduction events, which constitute
more than 90% of the total background prediction. Direct
and resolved photoproduction of di-jet events used to study
the background is simulated with PYTHIA.

All generated events are passed through a GEANT [26]
based simulation of the H1 detector which takes into account
the different data taking periods, and are subject to the same
reconstruction and analysis chain as the data.

3 H1 detector

A detailed description of the H1 detector can be found in
[27, 28]. In the following, only detector components relevant
to this analysis are briefly discussed. The origin of the H1
coordinate system is the nominal ep interaction point, with
the direction of the proton beam defining the positive z-axis
(forward direction). Transverse momenta are measured in
the x–y plane. Polar (θ ) and azimuthal (φ) angles are mea-
sured with respect to this reference system.

In the central region (15◦<θ <165◦) the interaction point
is surrounded by the central tracking system (CTD), which
consists of a silicon vertex detector [29] and drift cham-
bers all operated within a solenoidal magnetic field of
1.16 T. The forward tracking detector and the backward
proportional chamber measure tracks of charged particles
at smaller (7◦<θ <25◦) and larger (155◦<θ <175◦) polar
angles than the central tracker, respectively. In each event
the ep interaction vertex is reconstructed from the charged
tracks. In the polar angular region (11◦ < θ < 169◦) an ad-
ditional track signature is obtained from a set of five cylin-
drical multi-wire proportional chambers (CIP2k) [30].
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The liquid argon (LAr) sampling calorimeter [31] sur-
rounds the tracking chambers. It has a polar angle coverage
of 4◦<θ <154◦ and full azimuthal acceptance. It consists of
an inner electromagnetic section with lead absorbers and an
outer hadronic section with steel absorbers. The calorime-
ter is divided into eight wheels along the beam axis. The
electromagnetic and the hadronic sections are highly seg-
mented in the transverse and the longitudinal directions.
Electromagnetic shower energies are measured with a preci-
sion of σ(E)/E = 12%/

√
E/GeV⊕1% and hadronic ener-

gies with σ(E)/E = 50%/
√

E/GeV ⊕ 2%, as determined
in test beam experiments [32, 33]. In the backward region
(153◦<θ <178◦), particle energies are measured by a lead-
scintillating fibre spaghetti calorimeter (SpaCal) [34].

The luminosity is determined from the rate of the Bethe-
Heitler process ep→epγ , measured using a photon detector
located close to the beam pipe at z = −103 m.

The LAr calorimeter provides the trigger [35] for the
events in this analysis. The hardware trigger is comple-
mented by a software trigger requiring an electromagnetic
cluster in the LAr calorimeter with a transverse energy
E

γ

T > 5 GeV. The combined trigger efficiency is about 85%
at E

γ

T of 6 GeV rising to above 95% for E
γ

T > 7 GeV.

4 Experimental method

4.1 Event selection and reconstruction

Events are selected with a photon candidate in the LAr
calorimeter of transverse energy 6 < E

γ

T < 15 GeV and
pseudorapidity −1.0 < ηγ < 2.4. Photon candidates are de-
fined as compact clusters in the electromagnetic section of
the LAr calorimeter with no matching signals in the CIP2k.
The CIP2k veto rejects candidates, if there is a signal in at
least two layers of the CIP2k close to the expected hit posi-
tion. In addition, a track veto is applied for θ > 45◦. It rejects
candidates, if a track in the CTD extrapolated to the LAr
calorimeter front face matches the electromagnetic cluster
with a distance of closest approach to the cluster’s barycen-
ter of less than 15 cm. Photon candidates are also rejected if
they are close to inactive regions between calorimeter mod-
ules.

Neutral current (NC) deep-inelastic scattering (DIS)
events are suppressed by rejecting events with an electron
candidate not previously identified as photon candidate.
Electron candidates are defined as compact electromagnetic
clusters in the SpaCal or in the LAr calorimeter. In the LAr
calorimeter the candidates are required to have an associ-
ated track with a distance of closest approach of less than
12 cm. The electron suppression restricts the sample to NC
events where the scattered electron escapes along the beam
pipe in the negative z direction. The low electron scatter-
ing angle of such events corresponds to virtualities of the

exchanged photon in the range Q2 < 4 GeV2. In photopro-
duction the inelasticity y is expressed as y = W 2/s, where
W is the γp center of mass energy. In this analysis y is
evaluated as yh = ∑

(E − pz)/2Ee , where the sum runs
over all measured final state particles with energy E and
longitudinal momentum pz. The inelasticity is restricted to
0.1 < yh < 0.7. The cut at low yh removes residual beam gas
background and the higher cut on yh removes background
from DIS events including events with prompt photons and
events where the scattered electron is misidentified as a pho-
ton. This background is below 1.5% in the final sample and
is considered as a systematic uncertainty.

In order to remove background events from non-ep
sources, at least two tracks are required in the central tracker,
assuring a good reconstruction of the longitudinal event ver-
tex position which is required to be within 40 cm around
the nominal interaction point. In addition, topological filters
and timing vetoes are applied to remove cosmic muons and
beam induced background.

The shape of the photon cluster candidate is used to fur-
ther reduce the background. The transverse3 radius RT of
the photon candidate is defined as the square root of the sec-
ond central transverse moment RT = √

μ2, where the k’th
central transverse moment of the calorimeter cells distribu-
tion is given by μk = 〈|�r − 〈�r〉|k〉. Here, �r is the transverse
projection of a cell position and the averages are calculated
taking into account the cell energies as weight factors. The
requirement RT < 6 cm reduces background from neutral
hadrons that decay into multiple photons. In most cases such
decay photons are merged into one electromagnetic cluster,
which tends to have a wider transverse spread than that of a
single photon.

For events where a second electromagnetic cluster is
found, the invariant mass Mγγ of the photon candidate clus-
ter, combined with the closest neighboring electromagnetic
cluster with an energy above 80 MeV, is reconstructed. Pho-
ton candidates from π0 decays where the two decay photons
are reconstructed in separate clusters are rejected requiring
Mγγ > 300 MeV.

Tracks and calorimeter energy deposits not previously
identified as photon candidate are used to form combined
cluster-track objects. The photon candidate and the cluster-
track objects are combined into massless jets using the in-
clusive kT algorithm [36] with the separation parameter
R0 set to 1. Jets are reconstructed in the pseudorapidity
range −2.0 < ηjet < 3.0 with a transverse momentum of
E

jet
T > 4 GeV. Due to the harder kinematical cuts for the

photon candidate there is always a jet containing the photon
candidate called the photon-jet. All other jets are classified

3In the context of the cluster shape analysis the transverse plane is
defined as perpendicular to the direction of the photon candidate.
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Fig. 2 Distributions of (a) the
inelasticity yh, (b) the transverse
energy E

γ
T of the photon, (c) the

isolation parameter z and (d)
ηjet for events with prompt
photon candidates. Data are
shown as points with error bars
indicating the statistical error.
The signal prediction from
PYTHIA for prompt photons is
shown as dark full line, and the
contribution of direct
interactions as a dotted line. The
background as simulated with
PYTHIA is shown as a dashed
line. The signal and background
contributions are scaled on
average by a factor 1.5 and 1.7,
respectively. The sum of the
scaled signal and background is
shown as the light gray
histogram. The vertical dashed
lines indicate the kinematic
region of the cross section
measurement

Fig. 3 Distributions of the shower shape variables that are used to de-
fine the discriminant for isolated photon identification: (a) transverse
radius, (b) transverse symmetry, (c) transverse kurtosis, (d) the frac-
tion of energy in the first layer, (e) the fraction of energy in the hot
core of the cluster and (f) the fraction of energy in the hottest cell of
the cluster for all the photon candidates. Data are shown as points with

error bars for the statistical error. The expectation from PYTHIA for
the signal (background) is shown as a full (dashed) line. The signal and
background contributions are scaled on average by a factor 1.5 and 1.7,
respectively. The shaded band shows the sum of the MC predictions.
The width of the band corresponds to the systematic uncertainty as-
signed to the description of the shower shapes
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Fig. 4 The distribution of the
discriminant D for
0.94 < ηγ < 1.42 in four
different E

γ

T bins. D is used in
the identification of prompt
photon candidates for events
that have passed the event
selection. Data are shown as
points with error bars for the
statistical error. The expectation
from PYTHIA for the signal
(background) is shown as a full
(dashed) line. The signal and
background contributions are
scaled by a factor 1.5 and 1.7 on
average, respectively. The
shaded band shows the sum of
the MC predictions with the
systematic uncertainty from the
description of the shower shapes

as hadronic jets. To ensure isolation of the photon, the frac-
tion z = E

γ

T /E
γ−jet

T of the transverse energy of the photon-
jet carried by the photon candidate has to be larger than 0.9.
Here, E γ−jet

T is the transverse energy of the photon-jet. This
isolation requirement largely suppresses background from
photons produced in the hadron decay cascade. Only events
with exactly one isolated photon candidate are accepted.

For the photon plus jet sample, events are selected with a
photon candidate and at least one hadronic jet with −1.3 <

ηjet < 2.3. If more than one hadronic jet is selected, the one
with the highest E

jet
T is used.

Four additional observables are defined for the photon
plus jet sample which are sensitive to the underlying par-
tonic process:

• The estimators xLO
γ and xLO

p , which in the LO approxima-
tion correspond to the longitudinal momentum fractions
of the partons in the photon and the proton, respectively,
are defined as

xLO
γ = E

γ

T (e−ηjet + e−ηγ
)

(2yhEe)
and

xLO
p = E

γ

T (eηjet + eηγ
)

(2Ep)
.

These definitions [37, 38] reduce infrared sensitivity
for xγ → 1 compared to the conventional definition of

xγ = (E
γ

T e−ηγ + E
jet
T e−ηjet

)/(2yEe). The above defini-
tions make use of the energy of the photon only, which
has a better resolution than the energy of the jet. How-
ever, xLO

γ and xLO
p may become larger than unity.

• Two observables p⊥ and ΔΦ describe the transverse cor-
relation between the photon and the jet, ΔΦ is the az-
imuthal difference between the photon and the jet, and

p⊥ is the photon momentum component perpendicular to
the jet direction in the transverse plane

p⊥ ≡ | �p γ

T × �p jet
T |

| �p jet
T |

= E
γ

T · sinΔΦ.

At leading order the prompt photon and the jet are back-
to-back and p⊥ equals zero for direct processes. The ob-
servable ΔΦ is strongly correlated with p⊥, but is less
sensitive to the energies of the photon and the jet.

The yh, E
γ

T , z and ηjet distributions of events with an
isolated photon candidate are shown in Fig. 2 together with
the MC predictions from PYTHIA for the signal and the
background. The signal (background) prediction is scaled
by a factor 1.5 (1.7) on average. The scaling factors vary
as a function of η as suggested by the cross section mea-
surement (Sect. 5). In all distributions the data are described
within errors by the scaled MC predictions. At this stage of
the analysis there is still a significant contribution of back-
ground from the decay products of neutral mesons.

4.2 Photon signal extraction

The photon signal is extracted from the sample with photon
candidates by means of a shower shape analysis based on
the method described in [2, 39]. It uses the following six
shower shape variables calculated from the measurements
of the individual cells composing the cluster:

• The transverse radius of the cluster, RT .
• The transverse symmetry, which is the ratio of the spread

of the transverse cell distributions along the two princi-
pal axes. Single photon clusters are expected to be more
symmetric than multi-photon clusters.
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• The transverse kurtosis, defined as KT = μ4/(μ2)
2 − 3,

with μ2 and μ4 the second and the fourth moment of the
transverse energy distribution.

• The first layer fraction, defined as the fraction of the clus-
ter’s energy detected in the first calorimeter layer.

• The hot core fraction, being the fraction of the energy of
the electromagnetic cluster contained in the hot core of
the cluster. It is defined as the energy fraction in four to
twelve contiguous cells in the first two calorimeter layers,
depending on the polar angle. The cells include the most
energetic cell and are chosen to maximize the energy.

• The hottest cell fraction, which is the fraction of the en-
ergy of the electromagnetic cluster contained in the cell
with the largest energy deposit.

The distributions of the shower shape variables are shown
in Fig. 3 for the prompt photon candidates with the kine-
matic cuts as defined above. The shaded band shows the sys-
tematic uncertainty assigned to the description of the shower
shapes as described in Sect. 4.4. The data are compared with
the sum of the background and the signal MC distributions,
which describe the data within the systematic error.

In order to discriminate between signal and background,
probability density functions pi

γ for the signal and pi
bg for

the background are defined for each of the six shower shape
variables i. Simulated events for the signal and the back-
ground are used to determine pi

γ and pi
bg . The photon and

background probability densities are taken as the product of
the respective shower shape densities with the method de-
scribed in [40]. For each event a discriminator D is formed.
It is defined as the photon probability density divided by
the sum of the probability densities for photons and back-
ground. Figure 4 shows an example of the discriminator dis-
tribution for the range 0.94 < ηγ < 1.42 and four different
bins in E

γ

T . The discriminator has in general larger values
for prompt photons than for the decay photons. The sepa-
ration power is decreasing with increasing E

γ

T . The sum of
the MC predictions describes the data within the systematic
uncertainty of the shower shapes.

Additional event samples are used for the determination
of systematic errors related to the cluster shapes. The first
sample, containing Bethe Heitler events, ep → eγp, con-
sists of events with an electron reconstructed in the LAr
calorimeter, a photon in the SpaCal and nothing else in the
detector. The second, complementary sample, in addition
containing deeply-virtual Compton scattering [46] events, is
selected by requiring an electron in the SpaCal, a photon
in the LAr calorimeter and no other particle in the detector.
These independent event selections, denoted BH and DVCS
respectively, provide a clean sample of electromagnetic clus-
ters at low transverse energies in the LAr calorimeter and
are used to study the description of the shower shapes of
the photons. A third sample is used to monitor the descrip-
tion of the shower shapes of clusters initiated by the decay

Table 1 Phase space for the measurement of prompt photon cross sec-
tions. Kinematics are defined in the H1 laboratory frame

H1 prompt photon phase space

Inclusive 6 < E
γ

T < 15 GeV

cross section −1.0 < ηγ < 2.4

z = E
γ

T /E
γ−jet
T > 0.9

Q2 < 1 GeV2

0.1 < y < 0.7

Jet definition E
jet
T > 4.5 GeV

−1.3 < ηjet < 2.3

Fig. 5 Inclusive differential prompt photon cross sections (a) dσ/dE
γ
T

and (b) dσ/dηγ in the kinematic range specified in Table 1. The inner
error bars on the data points indicate the uncorrelated error including
the statistical error, the full error bars contain in addition the correlated
errors added in quadrature. The data are compared to a QCD calcula-
tion based on the collinear factorization in NLO (FGH) [6, 7] and to
a QCD calculation based on the kT factorization approach (LZ) [11].
For each plot the lower figure shows the ratio of NLO QCD to the mea-
sured cross section (R = σFGH/σ ) as a hatched band. The width of this
band shows the uncertainty from the NLO calculation only. The data
points are shown at R = 1 and their bars indicate the experimental un-
correlated uncertainty. The correlated experimental uncertainty of the
data is indicated by the shaded area

of neutral hadrons. This sample, denoted BG, is background
enhanced by selecting events with the inverted isolation cri-
teria z = E

γ

T /E
γ−jet

T < 0.9 and no cut on the transverse ra-
dius of the photon candidate.

4.3 Cross section determination

A regularized unfolding procedure [41–45] is used to relate
distributions �yrec of reconstructed variables (input bins) to
distributions �xtrue of variables on hadron level (output bins),
to determine the fractions of signal and background and to
correct the data for the detector acceptance. The unfolding
matrix A relates the two vectors, A�xtrue = �yrec. Further de-
tails on the method can be found in [45] and are summarized
in Appendix.
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Table 2 Bin averaged
differential cross sections for
inclusive prompt photon
production as a function of ηγ

and E
γ
T in the kinematic range

specified in Table 1. The bin
ranges, the differential cross
section values, the uncorrelated
and correlated uncertainties, and
fcorr are listed, where fcorr
denotes the correction factor
applied to the theoretical cross
sections. It corrects for
multi-parton interactions,
hadronization and the different
algorithm used for the isolation
cut

H1 inclusive prompt photon cross sections

E
γ
T dσ/dE

γ
T Uncorr. Corr. fcorr

[GeV] [pb/GeV]

[6.0,7.0] 27.24 ±1.86 ±3.04 0.88+0.02
−0.04

[7.0,8.5] 12.94 ±0.71 ±1.94 0.89+0.02
−0.04

[8.5,10.0] 6.74 ±0.65 ±0.95 0.93+0.02
−0.04

[10.0,15.0] 2.02 ±0.17 ±0.24 0.96+0.02
−0.03

ηγ dσ/dηγ Uncorr. Corr. fcorr

[pb]

[−1.00,−0.57] 18.4 ±1.3 ±2.5 0.99+0.02
−0.04

[−0.57,0.20] 23.9 ±1.5 ±1.5 0.94+0.02
−0.03

[0.20,0.94] 27.7 ±1.2 ±2.3 0.90+0.01
−0.04

[0.94,1.42] 19.3 ±1.3 ±3.0 0.87+0.03
−0.04

[1.42,2.40] 11.0 ±1.0 ±3.5 0.84+0.02
−0.05

The input is binned in three dimensions in the recon-
structed quantities E

γ

T , ηγ and D; the latter allows the dis-
crimination of signal and background. The output of the un-
folding procedure contains the number of signal events Nsig

in E
γ

T -ηγ bins on hadron level and the amount of back-
ground events in any of the input bins. Additional under-
flow and overflow bins are defined for each output variable.
Therefore the unfolding matrix A also includes migrations
into or out of the phase space of the measurement. It is com-
puted using signal and background PYTHIA simulation. For
measurements including jet-related variables, both the in-
put and the output is additionally binned in some variable
u, where u is E

jet
T , ηjet, xγ , xp , ΔΦ or p⊥.

The stability of the unfolding procedure is checked by
varying the number of input bins and changing the bin
boundaries. The results from the unfolding procedure are
compared to a bin-by-bin correction method. Agreement is
seen within errors for most of the analysis bins.

Cross sections are presented for Q2 < 1 GeV2. The ex-
tracted number of signal events in each bin Nsig is cor-
rected for a small contribution of DIS events at virtualities
1 < Q2 < 4 GeV2. For this kinematic region the scattered
electron has a non-negligible probability to escape detection.
If such events contain in addition photons at high transverse
momentum, their signatures are very similar to the signal
process. The corresponding correction factor fDIS is deter-
mined with the PYTHIA signal MC and is found to be above
0.98 for most of the analysis bins. The bin-averaged double
differential cross section on hadron level is obtained as

d2σ

dE
γ

T dηγ
= Nsig · fDIS

(L · 
E
γ

T 
ηγ )
,

where L is the luminosity, 
E
γ

T (
ηγ ) is the bin width
in E

γ

T (ηγ ) and Nsig corresponds to the number of signal
events in the bin E

γ

T -ηγ . Single differential cross sections as
a function of E

γ

T (ηγ ) are then obtained by summing bins
of the double differential cross sections in ηγ (Eγ

T ), taking
into account the respective bin widths. The total inclusive
cross section is obtained by summing the measured double
differential cross section over all analysis bins. The differ-
ential cross sections in bins of some jet-related variable u

is obtained by unfolding triple-differential cross sections in
E

γ

T , ηγ and u, which then are summed over the bins in E
γ

T

and ηγ . For the calculation of cross section uncertainties,
correlations between bins are taken into account.

4.4 Systematic uncertainties

The following experimental uncertainties are considered:

• The measured shower shape variables in the DVCS and
BH event samples defined in Sect. 4.2 are compared to
MC simulations. The uncertainty on the shower shape
simulation for the photon is estimated by varying the dis-
criminating variables within the limits deduced from the
differences between data and simulation. The uncertainty
of the description of the background composition and the
shower shapes of neutral hadrons is obtained accordingly
by comparing the shower shapes of the BG event sample
with the background MC from PYTHIA. The resulting
variation of the total inclusive cross section is 11%. The
uncertainty varies between 10% and 25% for the single
differential cross sections increasing towards large ηγ .

• An uncertainty of 1% is attributed to the energy of the
photon[46] and an uncertainty of 3 mrad to the measure-
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Fig. 6 Inclusive double
differential prompt photon cross
sections d2σ/dE

γ
T dηγ for five

bins in ηγ . The errors between
different ηγ bins are correlated.
The kinematic range is specified
in Table 1. The cross sections
are compared to theoretical
calculations (see caption of
Fig. 5). In addition the
prediction from PYTHIA [17] is
shown as dashed line

ment of the scattering angle [2] for events with ηγ < 1.4.
For ηγ > 1.4 the uncertainty is 4% on the energy scale
and 4 mrad on the scattering angle. The resulting error on
the total inclusive cross section is ±1.5%.

• A 2% uncertainty is attributed to the measurement of the
hadronic energy [45]. The corresponding uncertainty of
the total cross section amounts to ±1%.

• An uncertainty of ±3% is attributed to the determination
of the trigger efficiency.

• The uncertainty on the CIP2k and track veto efficiency
results in an error of ±2.5% on the total inclusive cross
section.

• Background from DIS events leads to a systematic uncer-
tainty of 1.5%.

• An uncertainty in the description of the dead material in
the simulation is accounted for by varying the probability
of photon conversion before the calorimeter by ±10%.
For polar angles θ < 20◦ it is varied by ±30% because of
more dead material in the forward region. This results in a
1% uncertainty for the cross section measurements in the
central region and 3% in the most forward ηγ bin.

• The ratio of resolved to direct photoproduction events in
the MC simulation is changed within limits deduced from
the measured xγ distribution [45], leading to ±1% sys-
tematic error due to a different acceptance.

• The luminosity measurement has an error of 3.4%.

The effects of each systematic error on the cross sections
are determined by evaluating an alternative unfolding matrix



Eur. Phys. J. C (2010) 66: 17–33 27

Table 3 Bin averaged double
differential cross section for
inclusive prompt photon
production in bins of transverse
energy and pseudorapidity of
the photon. The errors are
correlated between different E

γ
T

and different ηγ bins. More
details are given in the caption
of Table 2

H1 inclusive prompt photon cross sections

ηγ E
γ
T d2σ/dE

γ
T dηγ Uncorr. Corr. fcorr

[GeV] [pb/GeV]

[−1.00,−0.57] [6.00,7.00] 9.24 ±0.93 ±1.06 0.99+0.02
−0.04

[7.00,8.50] 3.75 ±0.57 ±0.44 0.99+0.02
−0.05

[8.50,10.00] 1.43 ±0.41 ±0.24 0.99+0.02
−0.02

[10.00,15.00] 0.27 ±0.10 ±0.07 1.01+0.01
−0.03

[−0.57,0.20] [6.00,7.00] 9.19 ±1.04 ±0.59 0.93+0.02
−0.04

[7.00,8.50] 5.02 ±0.59 ±0.48 0.94+0.02
−0.02

[8.50,10.00] 2.29 ±0.46 ±0.19 0.96+0.02
−0.03

[10.00,15.00] 0.76 ±0.12 ±0.06 1.00+0.02
−0.03

[0.20,0.94] [6.00,7.00] 10.90 ±0.86 ±0.78 0.87+0.01
−0.05

[7.00,8.50] 5.15 ±0.43 ±0.52 0.89+0.02
−0.03

[8.50,10.00] 3.28 ±0.34 ±0.24 0.94+0.01
−0.04

[10.00,15.00] 0.83 ±0.10 ±0.07 0.96+0.02
−0.04

[0.94,1.42] [6.00,7.00] 7.68 ±1.02 ±1.18 0.83+0.04
−0.04

[7.00,8.50] 3.31 ±0.51 ±0.51 0.85+0.02
−0.05

[8.50,10.00] 2.27 ±0.44 ±0.38 0.90+0.03
−0.04

[10.00,15.00] 0.66 ±0.12 ±0.09 0.95+0.03
−0.03

[1.42,2.43] [6.00,7.00] 4.54 ±0.90 ±1.29 0.79+0.02
−0.05

[7.00,8.50] 2.12 ±0.41 ±0.72 0.82+0.02
−0.05

[8.50,10.00] 0.86 ±0.31 ±0.35 0.88+0.02
−0.06

[10.00,15.00] 0.40 ±0.08 ±0.09 0.93+0.03
−0.03

A′ using the MC prediction made with the corresponding
systematic variation applied. The differences to the default
unfolding matrix A′–A are used to evaluate the contributions
to the error matrices of the results using standard error prop-
agation. The final error matrix is split into fully correlated
and fully uncorrelated parts which are listed in Tables 2 to 7.
The systematic uncertainty obtained on the total inclusive
cross section is ±13%. The largest contribution to this un-
certainty arises from the systematic uncertainties attributed
to the description of the shower shapes.

5 Results

The prompt photon cross sections presented below are given
for the phase space defined in Table 1.

Bin averaged differential cross sections are presented in
Figs. 5 to 9 and in Tables 2 to 7. For all measurements
the total uncertainty is dominated by the systematic errors.

The figures also show the ratio of the NLO QCD prediction
(FGH) [6, 7] to the measured cross section R = σFGH/σmeas

with the uncertainty of the NLO calculation. The factors
fcorr (see Sect. 2) for the correction of the theoretical calcu-
lations for hadronization, multi-parton interactions and the
definition of the isolation are given in the cross section ta-
bles with their errors.

The measured inclusive prompt photon cross section in
the phase space defined in Table 1 is

σ(ep → eγX) = 66.9 ± 1.8 (stat) ± 8.7 (syst) pb.

Both calculations predict lower cross sections of 52.1+5.3
−3.4 pb

(FGH) and 56.7+2.3
−3.1 pb (LZ), while the MC expectation

from PYTHIA is 46.4 pb. Theoretical uncertainties due to
missing higher orders are estimated by simultaneously vary-
ing μR and μF by a factor of 0.5 to 2.0. In addition, the er-
rors on the theoretical predictions include uncertainties due
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Fig. 7 Differential prompt photon plus jet cross sections (a) dσ/dE
γ

T ,

(b) dσ/dηγ , (c) dσ/dE
jet
T and (d) dσ/dηjet in the kinematic range spec-

ified in Table 1. The cross sections are compared to theoretical calcu-
lations (see caption of Fig. 5)

to the error of fcorr and due to the PDFs. All these error
sources are added in quadrature.

Differential inclusive prompt photon cross sections
dσ/dE

γ

T and dσ/dηγ are presented in Table 2 and in Fig. 5.
The results are compared to a QCD calculation based on
the collinear factorization in NLO (FGH) [6, 7], to a cal-
culation based on the kT factorization approach (LZ) [11].
Both calculations are below the data, most significantly at
low E

γ

T . The LZ calculation gives a reasonable description
of the shape of ηγ , whereas the FGH calculation is signif-
icantly below the data for central and backward photons
(ηγ < 0.9).

Double differential cross sections d2σ/dE
γ

T dηγ are
shown in Fig. 6 and Table 3 for all five bins in ηγ . The ηγ

bins correspond to the wheel structure of the LAr calorime-
ter. LZ provides a reasonable description of the data with
the exception of the lowest E

γ

T bin in the central ηγ (0.2 <

ηγ < 0.9) region. The FGH calculation underestimates the
cross section in the central (0.2 < ηγ < 0.9) and backward
(ηγ < −0.6) region. Here, it is significantly below the data.
The prediction from PYTHIA is also shown. It underesti-
mates the measured cross section by roughly 45%, most
significantly at low E

γ

T .

Fig. 8 Differential prompt photon plus jet cross sections (a) dσ/dxLO
γ

and (b) dσ/dxLO
p , in the kinematic range specified in Table 1. The cross

sections are compared to theoretical calculations (see caption of Fig. 5)

The prompt photon plus jet cross section is

σ(ep → eγ jet X) = 50.1 ± 1.7 (stat) ± 6.5 (syst) pb.

It is similar to the inclusive cross section, since the prompt
photon recoils most of the time against a prominent hadronic
jet. The theoretical calculations predict cross sections of
40.6+5.3

−1.9 pb (FGH) and 45.7+4.7
−2.1 pb (LZ). Both are compat-

ible with the measurement within the errors. The PYTHIA
expectation of 33.9 pb is again too low.

Cross sections for the production of a prompt photon plus
jet are presented in Fig. 7 and Tables 4, 5 as a function of
the variables E

γ

T , ηγ , E
jet
T and ηjet. Both calculations give a

reasonable description of the E
γ

T and E
jet
T cross sections but

show deficits in the description of the ηjet shape. Here, the
LZ prediction is too high for jets with ηjet < 0.5, and both
calculations underestimate the rate of events with forward
jets. As in the inclusive case, the FGH prediction is too low
for ηγ < 0.2.

Photon plus jet cross section as a function of the estima-
tors xLO

γ and xLO
p are shown in Fig. 8 and Table 4. Both

distributions are described by the calculations within errors.
Cross sections for the two observables describing the

transverse correlation between the photon and the jet, p⊥
and ΔΦ , are shown in Fig. 9 and Tables 6, 7. Both vari-
ables are expected to be sensitive to higher order gluon emis-
sion. The phase-space is divided into two parts: one with
xLO
γ > 0.8 where the direct interaction of a photon with the

proton dominates and one with xLO
γ < 0.8, including sig-

nificant contributions from events with a resolved photon.
For xLO

γ > 0.8 both predictions underestimate the tails of
the distributions suggesting that there is more decorrelation
in the data than predicted. For xLO

γ < 0.8 the p⊥ distrib-

ution is harder than for xLO
γ > 0.8, which reflects the in-

creased contributions from events with a resolved photon
and from photons radiated from quarks in di-jet events. The
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Table 4 Bin averaged
differential cross section for
prompt photon plus jet
production as a function of E

γ

T ,

ηγ , E
jet
T and ηjet. More details

are given in the caption of
Table 2

H1 prompt photon plus jet cross sections

E
γ
T dσ/dE

γ
T Uncorr. Corr. fcorr

[GeV] [pb/GeV]

[6.0,7.0] 18.53 ±1.61 ±2.21 0.82+0.05
−0.06

[7.0,8.5] 9.93 ±1.06 ±1.39 0.87+0.04
−0.05

[8.5,10.0] 5.50 ±0.45 ±0.73 0.92+0.03
−0.04

[10.0,15.0] 1.68 ±0.23 ±0.16 0.95+0.03
−0.03

ηγ dσ/dηγ Uncorr. Corr. fcorr

[pb]

[−1.00,−0.57] 14.79 ±1.25 ±1.70 0.94+0.06
−0.07

[−0.57,0.20] 18.57 ±1.47 ±1.75 0.90+0.04
−0.05

[0.20,0.94] 21.12 ±1.21 ±1.77 0.87+0.03
−0.04

[0.94,1.42] 13.88 ±3.15 ±2.12 0.86+0.04
−0.04

[1.42,2.40] 7.31 ±2.73 ±1.54 0.84+0.03
−0.05

E
jet
T dσ/dE

jet
T Uncorr. Corr. fcorr

[GeV] [pb/GeV]

[4.5,6.2] 6.60 ±0.74 ±1.42 0.85+0.04
−0.05

[6.2,8.0] 6.93 ±1.08 ±0.84 0.83+0.05
−0.06

[8.0,10.0] 6.15 ±0.78 ±0.65 0.90+0.03
−0.05

[10.0,15.0] 1.88 ±0.33 ±0.17 0.96+0.03
−0.04

ηjet dσ/dηjet Uncorr. Corr. fcorr

[pb]

[−1.3,−0.4] 7.1 ±0.7 ±1.0 0.80+0.03
−0.04

[−0.4,0.5] 14.9 ±0.8 ±2.1 0.86+0.03
−0.04

[0.5,1.4] 18.7 ±1.1 ±2.7 0.91+0.04
−0.06

[1.4,2.3] 15.3 ±1.2 ±2.2 0.94+0.04
−0.06

FGH calculation poorly describes the p⊥ distribution but
gives a reasonable description of the measurement in ΔΦ

for xLO
γ < 0.8, except for the highest bin in ΔΦ . The re-

gions ΔΦ → 180◦ and p⊥ → 0 are sensitive to multiple soft
gluon radiation which limits the validity of fixed order cal-
culations [47]. The LZ calculation includes multiple gluon
radiation in the initial state before the hard subprocess and
describes ΔΦ > 170◦ and p⊥ < 2 GeV, but predicts a sig-
nificantly lower contribution of events in the tails of both
distributions as compared to the data.

The present measurement is compared to the published
results of H1 [1] and ZEUS [5] in the restricted phase space
0.2 < yh < 0.7. For the comparison with the inclusive mea-
surement of H1 the ηγ range is restricted to −1.0 < ηγ <

0.9. For the comparison with the ZEUS results for isolated
photons with a jet, the kinematic range is changed to 7 <

E
γ

T < 15 GeV, 6 < E
jet
T < 17 GeV and −1.6 < ηjet < 2.4.

The results of this analysis are found in agreement with the
previous measurements [45].

6 Conclusions

The photoproduction of prompt photons is measured in ep

collisions at a center-of-mass energy of 319 GeV with the
H1 detector at HERA using a data sample corresponding
to an integrated luminosity of 340 pb−1. Photons with a
transverse energy in the range 6 < E

γ

T < 15 GeV and with
pseudorapidity −1.0 < ηγ < 2.4 are measured in the kine-
matic region Q2 < 1 GeV2 and 0.1 < y < 0.7. Compared to
previous measurements, the range of ηγ is significantly ex-
tended, and the luminosity of the measurement is increased
by a factor three.
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Table 5 Bin averaged
differential cross section for
prompt photon plus jet
production as a function of xLO

γ

and xLO
p . More details are given

in the caption of Table 2

H1 prompt photon plus jet cross sections

xLO
γ dσ/dxLO

γ Uncorr. Corr. fcorr

[pb]

[0.0,0.5] 23.0 ±3.3 ±3.8 0.78+0.04
−0.08

[0.5,0.7] 44.1 ±9.6 ±8.1 0.89+0.06
−0.08

[0.7,0.9] 70.3 ±12.3 ±10.9 1.24+0.04
−0.06

[0.9,1.1] 75.9 ±9.8 ±8.4 0.82+0.04
−0.04

xLO
p dσ/dxLO

p Uncorr. Corr. fcorr

[pb]

[0.001,0.010] 1257 ±91 ±102 0.84+0.04
−0.05

[0.010,0.025] 1325 ±65 ±150 0.88+0.04
−0.05

[0.025,0.040] 698 ±90 ±134 0.90+0.03
−0.05

[0.040,0.060] 341 ±47 ±66 0.91+0.03
−0.06

Table 6 Bin averaged
differential cross sections for
prompt photon plus jet
production as a function of p⊥,
the photon’s momentum
perpendicular to the jet direction
in the transverse plane,
separated into two regions with
xLO
γ > 0.8 and xLO

γ < 0.8. More
details are given in the caption
of Table 2

H1 prompt photon plus jet cross sections

xLO
γ p⊥ dσ/dp⊥ Uncorr. Corr. fcorr

[GeV] [pb/GeV]

[0.8,1.1] [0,2] 7.75 ±0.50 ±0.32 0.89+0.04
−0.04

[2,4] 3.96 ±0.43 ±0.53 0.87+0.01
−0.01

[4,6] 2.16 ±0.55 ±0.56 0.84+0.07
−0.07

[6,8] 0.60 ±0.53 ±0.36 0.81+0.08
−0.08

[0.0,0.8] [0,2] 7.14 ±0.48 ±1.04 0.84+0.08
−0.11

[2,4] 4.52 ±0.49 ±0.80 0.91+0.03
−0.08

[4,6] 2.91 ±0.40 ±0.56 0.96+0.03
−0.04

[6,8] 2.35 ±0.44 ±0.37 1.07+0.09
−0.10

Table 7 Bin averaged
differential cross sections for
prompt photon plus jet
production as a function of ΔΦ ,
the difference in azimuthal
angle between the photon and
the jet, separated into two
regions with xLO

γ > 0.8 and

xLO
γ < 0.8. More details are

given in the caption of Table 2

H1 prompt photon plus jet cross sections

xLO
γ ΔΦ dσ/dΔΦ Uncorr. Corr. fcorr

[pb]

[0.8,1.1] [130,150] 0.19 ±0.04 ±0.01 0.82+0.03
−0.04

[150,165] 0.46 ±0.06 ±0.06 0.84+0.01
−0.01

[165,172] 0.89 ±0.14 ±0.07 0.93+0.00
−0.01

[172,180] 1.38 ±0.04 ±0.17 0.89+0.05
−0.05

[0.0,0.8] [130,150] 0.27 ±0.03 ±0.04 0.94+0.03
−0.05

[150,165] 0.52 ±0.06 ±0.08 0.91+0.04
−0.08

[165,172] 0.91 ±0.14 ±0.18 0.83+0.07
−0.09

[172,180] 1.21 ±0.11 ±0.15 0.84+0.08
−0.12
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Fig. 9 Differential prompt photon plus jet cross sections dσ/dΔΦ and
dσ/dp⊥ the photon momentum transverse to the jet direction, the dif-
ference in azimuthal angle between the photon and the jet. The kine-
matic range is specified in Table 1. Figures (a) and (b) show the cross
section for xLO

γ > 0.8, (c) and (d ) for xLO
γ < 0.8. The cross sections

are compared to theoretical calculations (see caption of Fig. 5)

Single differential and double differential cross sections
are measured. The data are compared to a QCD calculation
based on the collinear factorization in NLO (FGH) [6, 7], to
a QCD calculation based on the kT factorization approach
(LZ) [11], and to the MC prediction from PYTHIA. The pre-
dicted total cross section is lower than the measurement by
around 20%. Both theoretical calculations underestimate the
data at low E

γ

T . While the LZ prediction describes the shape
of dσ/dηγ reasonably well, the FGH prediction is signifi-
cantly below the data for backward photons (ηγ < −0.6).
PYTHIA underestimates the data by roughly 45%, most sig-
nificantly at low E

γ

T .
Differential cross sections for photon plus jet are mea-

sured as a function of the observables E
γ

T , ηγ , ηjet, E
jet
T ,

xLO
γ , and xLO

p . The measured cross sections as a function of
the transverse energy of the photon and the jet as well as
xLO
γ and xLO

p are described within errors by the calculations.
However, neither of the predictions is able to describe the
measured shape as a function of ηjet.

Correlations in the transverse plane between the jet and
the photon are investigated by measurements of the differ-
ence in azimuthal angle ΔΦ and of the photon’s momentum

perpendicular to the jet direction, p⊥. A significant fraction
of events shows a topology which is not back-to-back. Nei-
ther calculation is able to describe the measured correlations
in the transverse plane.

Prompt photon cross section in photoproduction are now
measured at a precision of about 10%, with hadronization
corrections known at the level of 5%. The challenge remains
to further improve the theoretical calculations and arrive at
a deeper understanding of the underlying QCD dynamics in
this interesting channel.
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Appendix: Unfolding procedure

The photon signal is extracted using an unfolding procedure
to relate distributions �yrec of reconstructed variables to dis-
tributions �xtrue of true variables on hadron level, to deter-
mine the fractions of signal and background and to correct
the data for the detector efficiency. The unfolding matrix A
which reflects the acceptance of the H1 detector relates the
two vectors, A�xtrue = �yrec. Each matrix element Aij is the
probability for an event originating from bin j of �xtrue to be
measured in bin i of �yrec. The matrix A is computed using
the PYTHIA simulation for the signal and the background,
interfaced to the GEANT simulation of the H1 detector.

A schematic view of the simplified unfolding matrix A is
shown in Fig. 10. Each row of the matrix corresponds to one
element of the vector �xtrue. The elements of �xtrue are: signal,
migration and background bins. Each column of the matrix
corresponds to one element of the vector �yrec. The elements
of �yrec are: reconstructed bins and side bins. When solving
the equation for �xtrue the number of efficiency corrected sig-
nal, migration and background events is determined in one
step.

The input �yrec is binned in three dimensions in the re-
constructed quantities E

1,2,3
T , η1,2 and D. The binning in D

is required for the discrimination of signal and background.
Figure 10 shows 3 × 2 × 5 “Reconstructed Bins”. The sig-
nal is binned in the hadron-level quantities E

A,B
T and ηA,B .

Figure 10 shows 2 × 2 “Signal” bins in these variables.
In addition, �xtrue includes “background” bins in E

1,2,3
T

and η1,2, in parallel to the reconstructed quantities. These
bins give the amount of background in each reconstructed
bin. The background is determined in the unfolding together
with the signal contribution.
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Fig. 10 Schematic sketch of the
unfolding matrix for 2 × 2
signal bins and 3 × 2 × 5
reconstructed bins. Two
generator cuts (z and y) and the
background are taken into
account. The size of the boxes
reflects the number of entries in
a bin

The final unfolding matrix A also takes into account mi-
grations into or out of the phase space of the measurement.
For each cut on hadron level, used to define the measure-
ment phase space (Table 1), a migration bin is added, con-
taining events generated outside of the phase space but re-
constructed in any of the input bins. In Fig. 10, two such
“Migr.” bins are shown. In order to minimize possible biases
introduced by the signal MC simulation outside the phase
space, each migration bin is subdivided into E

γ

T and ηγ bins
(not shown in the figure).

The amount of migration from outside of the generated
phase space is controlled by including “Side” bins on detec-
tor level for each of the “Migration” bins on hadron level. A
side bin is defined as a narrow slice outside the nominal cut
value of the reconstructed variable. The side bins are also
subdivided into E

γ

T and ηγ bins.
Using matrix A the unfolded distribution �xtrue is obtained

from the observed distribution �yrec by minimizing a χ2 func-
tion given by

χ2 = χ2
A + τ 2χ2

L,

where

χ2
A = 1/2 · (�yrec − A�xtrue)

T V−1(�yrec − A�xtrue)

measures the deviation of A�xtrue from the data bins �yrec.
Here, V = Cov(yi, yj ) is the covariance matrix of the data,
initially approximated by the observed statistical errors. In
order to avoid a known bias of this procedure [48], the un-
folding is iterated using an updated covariance matrix [45],
constructed from the expected statistical uncertainties. For
a given regularization parameter τ the regularization term is
defined as χ2

L = (�xtrue)
2. The minimum χ2 can be calculated

analytically and is found as

�xtrue = ((
AT V−1A

) + 1τ
)−1AT V−1 �yrec.

The size of the regularization parameter τ is chosen using
the L-curve method [49–51].
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