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1. Introduction

The information theoretic characterization of secrecy in
communication systems has attracted considerable attention
in recent years. (See [1] for an exposition of progress in this
area.) In this paper, we consider the general multiple-input
multiple-output (MIMO) wiretap channel, presented in [2],
with t transmit antennas and r and e receive antennas at the
legitimate recipient and the eavesdropper, respectively:

Yr[m] = HrX[m] +Wr[m],

Ye[m] = HeX[m] +We[m],
(1)

where Hr ∈ Rr×t and He ∈ Re×t are assumed to be fixed
during the entire transmission and are known to all three
terminals. The additive noise terms Wr[m] and We[m] are
zero-mean Gaussian vector processes independent across the
time index m. The channel input satisfies a total power
constraint:

1
n

n∑

m=1
‖X[m]‖2 ≤ P. (2)

The secrecy capacity of a wiretap channel, defined by Wyner
[3], as “perfect secrecy” capacity is themaximal rate such that

the information can be decoded arbitrarily reliably by the
legitimate recipient, while insuring that it cannot be deduced
at any positive rate by the eavesdropper.

For a discrete memoryless wiretap channel with transi-
tion probability P(Yr ,Ye | X), a single-letter expression for
the secrecy capacity was obtained by Csiszár and Körner [4]:

Cs = max
P(U ,X)

{I(U ;Yr)− I(U ;Ye)}, (3)

where U is an auxiliary random variable over a certain
alphabet that satisfies the Markov relationship U − X −
(Yr ,Ye). This result extends to continuous alphabet cases
with power constraint (2). Thus, in order to evaluate the
secrecy capacity of the MIMO Gaussian wiretap channel we
need to evaluate (3) under the power constraint (2). For the
degraded case Wyner’s single-letter expression of the secrecy
capacity results from setting U ≡ X [3]:

Cs = max
P(X)

{I(X;Yr)− I(X;Ye)}. (4)

The problem of characterizing the secrecy capacity of
the MIMO Gaussian wiretap channel remained open until
the work of Khisti and Wornell [5] and Oggier and Hassibi
[6]. In their respective work, Khisti and Wornell [5] and
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Oggier and Hassibi [6] followed an indirect approach using
a Sato-like argument and matrix analysis tools. In [2] Liu
and Shamai propose a more information-theoretic approach
using the enhancement concept, originally presented by
Weingarten et al. [7], as a tool for the characterization of
the MIMO Gaussian broadcast channel capacity. Liu and
Shamai have shown that an enhanced degraded version
attains the same secrecy capacity as does the Gaussian input
distribution. From the mathematical solution in [2] it is
evident that such an enhanced channel exists; however it is
not intuitive why, or how to construct such a channel.

A fundamental relationship between estimation theory
and information theory for Gaussian channels was presented
in [8]; in particular, it was shown that for the MIMO
standard Gaussian channel,

Y = √snrHX +N (5)

and regardless of the input distribution, the mutual infor-
mation and the minimum mean-square error (MMSE) are
related (assuming real-valued inputs/outputs) by

d

dsnr
I
(
X;
√
snrHX +N

)

= 1
2
E
{∥∥HX−HE

{
X | √snrHX +N

}∥∥2
}
,

(6)

where E{X | Y} stands for the conditional mean of X given
Y . This fundamental relationship and its generalizations
[8, 9], referred to as the I-MMSE relations, have already been
shown to be useful in several aspects of information theory:
providing insightful proofs for entropy power inequalities
[10], revealing the mercury/waterfilling optimal power allo-
cation over a set of parallel Gaussian channels [11], tackling
the weighted sum-MSE maximization in MIMO broadcast
channels [12], illuminating extrinsic information of good
codes [13], and enabling a simple proof of the monotonicity
of the non-Gaussianness of independent random variables
[14]. Furthermore, in [15] it has been shown that using this
relationship one can provide insightful and simple proofs
for multiuser single antenna problems such as the broadcast
channel and the secrecy capacity problem. Similar techniques
were later used in [16] to provide the capacity region for the
Gaussian multireceiver wiretap channel.

Motivated by these successes, this paper provides an
alternative proof for the secrecy capacity of the MIMOGaus-
sian wiretap channel using the fundamental relationship
presented in [8, 9], which results in a closed-form expression
for the secrecy capacity, that is, an expression that does not
include optimization over the input covariance matrix, a
difficult problem on its own due to the nonconvexity of
the expression [5]. Thus, another important contribution
of this paper is the explicit characterization of the optimal
input covariance matrix that attains the secrecy capacity. The
proof presented here provides the intuition regarding the
existence and construction of the enhanced degraded channel
which is central in the approach of [2]. Furthermore, the
methods presented here could be used to tackle other MIMO
problems, using the fundamental relationships shown in
[8, 9].

2. Definitions and Preliminaries

Consider a canonical version of the MIMO Gaussian wiretap
channel, as presented in [2]:

Yr[m] = X[m] +Wr[m],

Ye[m] = X[m] +We[m],
(7)

where X[m] is a real input vector of length t, andWr[m] and
We[m] are additive Gaussian noise vectors with zero means
and covariance matrices Kr and Ke, respectively, and are
independent across the time index m. The noise covariance
matrices Kr and Ke are assumed to be positive definite. The
channel input satisfies a power-covariance constraint:

1
n

n∑

m=1

(
X[m]X[m]T

)
� S, (8)

where S is a positive semidefinite matrix of size t × t, and
“�” denotes “less or equal to” in the positive semidefinite
partial ordering between real symmetric matrices. Note that
(8) is a rather general constraint that subsumes constraints
that can be described by a compact set of input covariance
matrices [7]. For example, assuming Cs(S) is the secrecy
capacity under a covariance constraint (8) we have according
to [7] the following:

Cs(P) = max
tr(S)≤P

Cs(S),

Cs(P1,P2, . . . ,Pt) = max
Sii≤Pi ,i=1,2,...,t

Cs(S),
(9)

where Cs(P) is the secrecy capacity under a total power
constraint (2), and Cs(P1,P2, . . . ,Pt) is the secrecy capacity
under a per antenna power constraint. As shown in [2, 7],
characterizing the secrecy capacity of the general MIMO
Gaussian wiretap channel (1) can be reduced to character-
izing the secrecy capacity of the canonical version (7). For
full details the reader is referred to [7], and [17, Theorem 3].

We first give a few central definitions and relationships
that will be used in the sequel. We begin with the following
definition:

E = E
{
(X− E{X | Y})(X− E{X | Y})T

}
, (10)

that is, E is the covariance matrix of the estimation error
vector, known as the MMSE matrix. For the specific case in
which the input to the channel is Gaussian with covariance
matrix Kx, we define

EG = Kx −Kx(Kx +K)−1Kx, (11)

where K is the covariance matrix of the additive Gaussian
noise, N. That is, EG is the error covariance matrix of the
joint Gaussian estimator.

The fundamental relationship between information the-
ory and estimation theory in the Gaussian channel gave rise
to a variety of other relationships [8, 9]. In our proof, we will
use the following relationship, given by Palomar and Verdú
in [9]:

∇KI(X;X +N) = −K−1EK−1, (12)
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where K is the covariance matrix of the additive Gaussian
noise, N.

Our first observation regarding the relationship given in
(12) is detailed in the following lemma.

Lemma 1. For any two symmetric positive semidefinite matri-
cesK1 andK2, such that 0 � K1 � K2 and positive semidefinite
matrix A, the integral

∫
K1�K2

K−1A(K)K−1 dK is nonnegative
(where K1 � K2 is any path from K1 to K2).

The proof of the lemma is given in Appendix A.

3. The DegradedMIMOGaussian
Wiretap Channel

We first consider the degraded MIMO Gaussian wiretap
channel, that is, Kr � Ke.

Theorem 1. The secrecy capacity of the degraded MIMO
Gaussian wiretap channel (7), Kr � Ke, under the power-
covariance constraint (8) is

Cs = 1
2
log det

(
I + SK−1r

)− 1
2
log det

(
I + SK−1e

)
. (13)

Proof. Using (12) the difference to be maximized, according
to Wyner’s single-letter expression (4), can be written as

I(X;Yr)− I(X;Ye) =
∫

Kr�Ke

K−1EK−1 dK. (14)

This is due to the independence of the line integral (A.3) on
the path in any open connected set in which the gradient is
continuous [18].

The error covariance matrix of any optimal estimator is
upper bounded (in the positive semidefinite partial ordering
between real symmetric matrices) by the error covariance
matrix of the joint Gaussian estimator, EG, defined in (11),
for the same input covariance. Formally, E � EG, and thus
one can express E as follows: E = EG − E0, where E0 is some
positive semidefinite matrix.

Due to this representation of E we can express the
mutual information difference, given in (14), in the following
manner:

I(X;Yr)− I(X;Ye)

=
∫

Kr�Ke

K−1EK−1 dK

=
∫

Kr�Ke

K−1(EG − E0)K−1 dK

=
∫

Kr�Ke

K−1EGK−1 dK−
∫

Kr�Ke

K−1E0K−1 dK

≤
∫

Kr�Ke

K−1EGK−1 dK,

(15)

where the last inequality is due to Lemma 1 and the fact that
Kr � Ke. Equality in (15) is attained when X is Gaussian.
Thus, we obtain the following expression:

Cs = max
0�Kx�S

{
1
2
log det

(
I +KxK−1r

)− 1
2
log det

(
I +KxK−1e

)}

= max
0�Kx�S

{
1
2
log det(Kr +Kx)− 1

2
log det(Ke +Kx)

}

+
1
2
log

det Ke

det Kr

= max
0�Kx�S

{
−1
2
log

det((Kr +Kx) + (Ke −Kr))
det(Kr +Kx)

}

+
1
2
log

det Ke

det Kr

= max
0�Kx�S

{
−1
2
log det

(
I + (Kr +Kx)

−1(Ke −Kr)
)}

+
1
2
log

det Ke

det Kr

= −1
2
log det

(
I + (Kr + S)−1(Ke −Kr)

)

+
1
2
log

det Ke

det Kr

= 1
2
log det

(
I + SK−1r

)− 1
2
log det

(
I + SK−1e

)
.

(16)

4. The General MIMOGaussian
Wiretap Channel

In considering the general case, we first note that one can
apply the generalized eigenvalue decomposition [19] to the
following two symmetric positive definite matrices:

I + S1/2K−1r S1/2, I + S1/2K−1e S1/2. (17)

That is, there exists an invertible general eigenvector matrix,
C, such that

CT
[
I + S1/2K−1e S1/2

]
C = I,

CT
[
I + S1/2K−1r S1/2

]
C = Λr ,

(18)

where Λr = diag{λ1,r , λ2,r , . . . , λt,r} is a positive definite
diagonal matrix. Without loss of generality, we assume that
there are b (0 ≤ b ≤ t) elements of Λr larger than 1:

λ1, r ≥ . . . ≥ λb, r > 1 ≥ λb+1, r ≥ · · · λt, r . (19)

Hence, we can write Λr as

Λr =
⎛
⎝
Λ1 0

0 Λ2

⎞
⎠, (20)
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where Λ1 = diag{λ1, r , . . . , λb, r}, and Λ2 =
diag{λb+1, r , . . . , λt, r}. Since the matrix I + S1/2K−1e S1/2 is
positive definite, the problem of calculating the generalized
eigenvalues and the matrix C is reduced to a standard
eigenvalue problem [19]. Choosing the eigenvectors of the
standard eigenvalue problem to be orthonormal, and the
requirement on the order of the eigenvalues, leads to an
invertible matrix C, which is I + S1/2K−1e S1/2-orthonormal.
Using these definitions we turn to the main theorem of this
paper.

Theorem 2. The secrecy capacity of the MIMO Gaussian
wiretap channel (7), under the power-covariance constraint
(8), is

Cs = 1
2
log det

(
I + SK−10

)− 1
2
log det

(
I + SK−1e

)

= 1
2
log det

(
I +K∗x K

−1
r

)− 1
2
log det

(
I +K∗x K

−1
e

)
,

(21)

where, using the invertible matrixC defined in (18) one defines,

K0 = S1/2
⎡
⎣C−T

⎛
⎝
Λ1 0

0 I(t−b)×(t−b)

⎞
⎠C−1 − I

⎤
⎦
−1

S1/2, (22)

and letting C = [C1C2] where C1 is the t × b submatrix and
C2 is the t × (t − b) submatrix, one defines,

K∗x = S1/2C

⎛
⎝
(
CT
1C1

)−1
0

0 0

⎞
⎠CTS1/2. (23)

Proof. Following [7, Lemma 2], we may assume that S is
(strictly) positive definite. We divide the proof into two parts:
the converse part, that is, constructing an upper bound,
and the achievability part-showing that the upper bound is
attainable.

(a) Converse. Our goal is to evaluate the secrecy capacity
expression (3). Due to the Markov relationship, U − X −
(Yr ,Ye), the difference to be maximized can be written as

I(U ;Yr)− I(U ;Ye)

= {I(X;Yr)− I(X;Ye)} − {I(X;Yr | U)− I(X;Ye | U)}.
(24)

We use the I-MMSE relationship (12) on each of the two
differences in (24):

I(X;Yr)− I(X;Ye) =
∫

Kr�Ke

K−1EK−1 dK, (25)

where E = E{(X− E[X | Y])(X− E[X | Y])T}, and

I(X;Yr | U)− I(X;Ye | U)

= E{I(X;Yr | U = u)− I(X;Ye | U = u)}

= E

{∫

Kr�Ke

K−1E[(X− E[X | Y,U = u])

×(X− E[X | Y,U = u])T | U = u
]
K−1 dK

}

=
∫

Kr�Ke

K−1EuK−1 dK,

(26)

where Eu = E{(X − E[X | Y,U])(X− E[X | Y,U])T}. Thus,
putting the two together, (24) becomes

I(U ;Yr)− I(U ;Ye) =
∫

Kr�Ke

K−1(E− Eu)K−1 dK. (27)

We define, Ẽ = E− Eu, and obtain

Ẽ = E
{
(E[X | Y]− E[X | Y,U])(E[X | Y]− E[X | Y,U])T

}

= E
{
(E[E[X | Y,U] | Y]− E[X | Y,U])

×(E[E[X | Y,U] | Y]− E[X | Y,U])T
}
.

(28)

That is, Ẽ is the error covariance of the optimal estimation of
E[X | Y,U] from Y, and as such it is positive semidefinite. It
is easily verified that K0, defined in (22), satisfies both K0 �
Ke, and K0 � Kr . The integral in (27) can be upper bounded
using this fact and Lemma 1:

I(U ;Yr)− I(U ;Ye)

=
∫

K0�Ke

K−1ẼK−1 dK−
∫

K0�Kr

K−1ẼK−1 dK

≤
∫

K0�Ke

K−1ẼK−1 dK.

(29)

Equality will be attained when the second integral equals
zero. Using the upper bound in (29) we present two possible
proofs that result with the upper bound given in (30). The
more information-theoretic proof is given in the sequel,
while the second, the more estimation-theoretic proof, is
relegated to Appendix B.

The upper bound given in (29) can be viewed as the
secrecy capacity of an MIMO Gaussian model, similar to
the model given in (7), but with noise covariance matrices
K0 and Ke and outputs Y0[m] and Ye[m], respectively.
Furthermore, this is a degraded model, and it is well known
that the general solution given by Csiszár and Körner [4],
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reduces to the solution given by Wyner [3] by setting U ≡ X.
Thus, (29) becomes

I(U ;Yr)− I(U ;Ye)

≤ I(U ;Y0)− I(U ;Ye)

≤ I(X;Y0)− I(X;Ye)

≤
∫

K0�Ke

K−1EGK−1 dK

≤ max
0�Kx�S

{
1
2
log det

(
I +KxK−10

)

−1
2
log det

(
I +KxK−1e

)}

= 1
2
log det

(
I + SK−10

)

− 1
2
log det

(
I + SK−1e

)
,

(30)

where the third inequality is according to (15), and the last
two transitions are due to Theorem 1, (16). This completes
the converse part of the proof.

(b) Achievability. We now show that the upper bound given
in (30) is attainable when X is Gaussian with covariance
matrix K∗x , as defined in (23). The proof is constructed
from the next three lemmas. We first prove that K∗x is a
legitimate covariance matrix, that is, it complies with the
input covariance constraint (8).

Lemma 2. The matrix K∗x defined in (23) complies with the
power-covariance constraint (8), that is,

0 � K∗x � S. (31)

The proof of Lemma 2 is given in Appendix C. In the next
two Lemmas we show that K∗x attains the upper bound given
in (30).

Lemma 3. The following equality holds:

1
2
log

det
(
I + SK−10

)

det
(
I + SK−1e

) = 1
2
log

det
(
I +K∗x K

−1
0

)

det
(
I +K∗x K−1e

) . (32)

Proof of Lemma 3. We first calculate the expression in the left
hand side (assuming S 
 0), which is the upper bound in
(30):

det
(
I + S1/2K−10 S1/2

)

det
(
I + S1/2K−1e S1/2

) = det CT(I + S1/2K−10 S1/2
)
C

det CT(I + S1/2K−1e S1/2
)
C

= det Λ1

det I
= det Λ1,

(33)

where we have used the generalized eigenvalue decomposi-
tion (18) and the definition of K0 (22). From (18) we note
that,

K−1e = S−1/2
⎡
⎣C−T

⎛
⎝
I 0

0 I

⎞
⎠C−1 − I

⎤
⎦S−1/2. (34)

Using (34) we can derive the following relationship (full
details are given in Appendix D):

det
(
I +K∗x K

−1
0

) = det
((

CT
1C1

)−1)
det(Λ1). (35)

And similarly we can derive

det
(
I +K∗x K

−1
e

) = det
((

CT
1C1

)−1)
. (36)

Thus, we have

det
(
I +K∗x K

−1
0

)

det
(
I +K∗x K−1e

) = det(Λ1), (37)

which is the result attained in (33). This concludes the proof
of Lemma 3.

Lemma 4. The following equality holds:

1
2
log

det
(
I +K∗x K

−1
0

)

det
(
I +K∗x K−1e

) = 1
2
log

det
(
I +K∗x K−1r

)

det
(
I +K∗x K−1e

) . (38)

Proof of Lemma 4. Due to the generalized eigenvalue decom-
position (18) we have,

K−1r = S−1/2
⎡
⎣C−T

⎛
⎝
Λ1 0

0 Λ2

⎞
⎠C−1 − I

⎤
⎦S−1/2. (39)

Using similar steps as the ones used to obtain (35) we can
show that,

det
(
I +K∗x K

−1
r

) = det
((

CT
1C1

)−1)
det(Λ1). (40)

Thus, concluding the proof of Lemma 4.

Putting all the above together we have that

1
2
log det

(
I + SK−10

)− 1
2
log det

(
I + SK−1e

)

= 1
2
log det

(
I +K∗x K

−1
0

)

− 1
2
log det

(
I +K∗x K

−1
e

)

= 1
2
log det

(
I +K∗x K

−1
r

)

− 1
2
log det

(
I +K∗x K

−1
e

)
,

(41)

where the first equality is due to Lemma 3, and the second
equality is due to Lemma 4. Thus, the upper bound given
in (30) is attainable using the Gaussian distribution over X,
U ≡ X, and K∗x , defined in (23). This concludes the proof of
Theorem 2.
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5. Discussion and Remarks

The alternative proof we have presented here uses the
enhancement concept, also used in the proof of Liu and
Shamai [2], in a more concrete manner. We have constructed
a specific enhanced degraded model. The constructed model
is the “tightest” enhancement possible in the sense that under
the specified transformation, thematrixCT[I+S1/2K−10 S1/2]C
is the “smallest” possible positive definitematrix, that is, both
� Λr and � I.

The specific enhancement results in a closed-form
expression for the secrecy capacity, using K0. Furthermore,
Theorem 2 shows that instead of S we can maximize the
secrecy capacity by taking an input covariance matrix that
“disregards” subchannels for which the eavesdropper has
an advantage over the legitimate recipient (or is equivalent
to the legitimate recipient). Mathematically, this allows us
to switch back from K0 to Kr , and thus to show that K∗x ,
explicitly defined, is the optimal input covariance matrix.
Intuitively, K∗x is the optimal input covariance for the
legitimate receiver, since under the transformation, C, it is
S for the sub-channels for which the legitimate receiver has
an advantage and zero otherwise.

The enhancement concept was used in addition to the
I-MMSE approach in order to attain the upper bound in
(30). The primary usage of these two concepts came together
in (29), where we derived an initial upper bound. We have
shown that the upper bound is attainable whenX is Gaussian
with covariance matrix K∗x . Thus, under these conditions the
second integral in (29) should be zero, that is,

∫

K0�Kr

K−1ẼK−1 dK

= I(U ;Y0)− I(U ;Yr)

= I(X;Y0)− I(X;Yr)

= 1
2
log det

(
I +K∗x K

−1
0

)

− 1
2
log det

(
I +K∗x K

−1
r

)

= 0,

(42)

where the second transition is due to the choice U ≡ X, the
third is due to the choice of a Gaussian distribution for X
with covariance matrix K∗x , and the last equality is due to
Lemma 4.

Appendices

A. Proof of Lemma 1

The inner product between matrices A and B is defined as

A · B = vecATvecB, (A.1)

and the Schur product between matrices A and B is defined
as

[A� B]i j = [A]i j[B]i j . (A.2)

For a function G with gradient∇G the line integral (type II)
[18] is given by

∫

−→r 1�−→r 2

∇Gd−→r

=
∫ u=1

u=0
∇G(−→r 1 + u

(−→r 2 −−→r 1
)) · (−→r 2 −−→r 1

)
du.

(A.3)

Thus in our case, where ∇G, −→r are t × t matrices, and
∇G = K−1A(K)K−1 the integral over a path from K1 to K2 is
equivalent to the following line integral:

∫ 1

u=0
(K1 + u(K2 −K1))

−1A(K1 + u(K2 −K1))

× (K1 + u(K2 −K1))
−1 · (K2 −K1)du

=
∫ 1

u=0
1T(K1 + u(K2 −K1))

−1A(K1 + u(K2 −K1))

× (K1 + u(K2 −K1))
−1 � (K2 −K1)1du.

(A.4)

Since the Schur product preserves the positive defi-
nite/semidefinite quality [20, 7.5.3], it is easy to see that when
0 � K1 � K2, both are symmetric, and since A(K) is a
positive semidefinite matrix for all K, the integral is always
nonnegative.

B. Second Proof of Theorem 2

The error covariance matrix of the optimal estimator Ẽ can
be written as Ẽ = ẼL − E0, where both ẼL and E0 are positive
semidefinite, and ẼL is the error covariance matrix of the
optimal linear estimator of E[X | Y,U] from Y. Using this
in (29), we have

I(U ;Yr)− I(U ;Ye) ≤
∫

K0�Ke

K−1ẼK−1 dK

=
∫

K0�Ke

K−1
(
ẼL − E0

)
K−1 dK

=
∫

K0�Ke

K−1ẼLK−1 dK

−
∫

K0�Ke

K−1E0K−1 dK

≤
∫

K0�Ke

K−1ẼLK−1 dK,

(B.1)

where the last inequality is again due to Lemma 1. Equality
will be attained when ẼL = Ẽ, that is, when E0 = 0.

We denote Z = E[X | Y,U]. The optimal linear estimator
has the following form:

ẼL = Cz − CzyCy
−1Cyz, (B.2)

where Cz is the covariance matrix of Z, Czy and Cyz are
the cross-covariance matrices of Z and Y, and Cy is the
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covariance matrix of Y. We can easily calculate Czy and Cy

(assuming zero mean):

Czy = E
{
E[X | Y,U]YT

}

= E
{
E
[
XYT | Y,U

]}

= E
[
XYT

]

= Cxy = Kx

Cy = (Kx +K).

(B.3)

Regarding Cz we can claim the following:

0 � E
{
(X− E[X | Y,U])(X− E[X | Y,U])T

}

= Kx − E
{
E[X | Y,U]E[X | Y,U]T

} (B.4)

thus,

E
{
E[X | Y,U]E[X | Y,U]T

}
= Cz � Kx, (B.5)

where equality, Cz = Kx, is attained when the estimation
error is zero, that is, when X = E[X | Y,U]. Since Y =
X + N this can only be achieved when U ≡ X or U ≡ N;
however since the Markov property, U − X − (Ye,Yr), must
be preserved, we conclude that U ≡ X in order to achieve
equality.

We haveKx−C0 = Cz, whereC0 is a positive semidefinite
matrix, and the linear estimator is

ẼL = Kx − C0 −Kx(Kx +K)−1Kx. (B.6)

Substituting this into the integral in (B.1) we have

I(U ;Yr)− I(U ;Ye)

≤
∫

K0�Ke

K−1ẼLK−1 dK

≤
∫

K0�Ke

K−1
(
Kx −Kx(Kx +K)−1Kx

)
K−1 dK

= 1
2
log det

(
I +KxK−10

)− 1
2
log det

(
I +KxK−1e

)

≤ 1
2
log det

(
I + SK−10

)− 1
2
log det

(
I + SK−1e

)
,

(B.7)

where the second inequality is due to Lemma 1, and the last
inequality is due to Theorem 1, (16). The resulting upper
bound equals the one given in (30). The rest of the proof
follows via similar steps to those in the proof given in
Section 4.

C. Proof of Lemma 2

Since the sub-matrix CT
1C1 is positive semidefinite it is

evident that 0 � K∗x . Thus, it remains to show that K∗x � S.

Since C is invertible, in order to prove K∗x � S, it is enough
to show that

⎛
⎝
(
CT
1C1

)−1
0

0 0

⎞
⎠ � C−1C−T =

(
CTC

)−1
. (C.1)

We notice that,

CTC = [C1C2]
T[C1C2] =

⎛
⎝
CT
1C1 CT

1C2

CT
2C1 CT

2C2

⎞
⎠. (C.2)

Using blockwise inversion [20] we have

(
CTC

)−1

=
⎛
⎝
I + ICT

1C2M−1CT
2C1I −ICT

1C2M−1

−M−1CT
2C1I M−1

⎞
⎠,

(C.3)

where I denotes (CT
1C1)

−1
and

M = CT
2C2 − CT

2C1

(
CT
1C1

)−1
CT
1C2 
 0 (C.4)

due to the positive definite quality of CTC and the Schur
Complement Lemma [20]. Hence,

(
CTC

)−1 −
⎛
⎝
I 0

0 0

⎞
⎠

=
⎛
⎝
ICT

1C2M−1CT
2C1I −ICT

1C2M−1

−M−1CT
2C1I M−1

⎞
⎠

=
⎛
⎝
I −ICT

1C2

0 I

⎞
⎠
⎛
⎝
0 0

0 M−1

⎞
⎠
⎛
⎝

I 0

−CT
2C1I I

⎞
⎠

� 0.

(C.5)
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D. Deriving Equation (35)

det
(
I +K∗x K

−1
0

)

= det

⎛
⎝I + S1/2C

⎛
⎝
I 0

0 0

⎞
⎠CT

×
⎡
⎣C−T

⎛
⎝
Λ1 0

0 I

⎞
⎠C−1 − I

⎤
⎦S−1/2

⎞
⎠

= det

⎛
⎝I +

⎛
⎝
I 0

0 0

⎞
⎠CT

⎡
⎣C−T

⎛
⎝
Λ1 0

0 I

⎞
⎠C−1 − I

⎤
⎦C

⎞
⎠

= det(

⎛
⎝I−

⎛
⎝
I 0

0 0

⎞
⎠CTC +

⎛
⎝
IΛ1 0

0 0

⎞
⎠
⎞
⎠

= det

⎛
⎝I−

⎛
⎝
I 0

0 0

⎞
⎠
⎛
⎝

I−1 CT
1C2

CT
2C1 CT

2C2

⎞
⎠

+

⎛
⎝
IΛ1 0

0 0

⎞
⎠
⎞
⎠

= det

⎛
⎝I−

⎛
⎝
I ICT

1C2

0 0

⎞
⎠ +

⎛
⎝
IΛ1 0

0 0

⎞
⎠
⎞
⎠

= det

⎛
⎝
IΛ1 −ICT

1C2

0 I

⎞
⎠

= det I det(Λ1).
(D.1)
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[9] D. P. Palomar and S. Verdú, “Gradient of mutual information
in linear vector Gaussian channels,” IEEE Transactions on
Information Theory, vol. 52, no. 1, pp. 141–154, 2006.

[10] D. Guo, S. Shamai (Shitz), and S. Verdú, “Proof of entropy
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