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Abstract: Four-form flux in F-theory compactifications not only stabilizes moduli, but

gives rise to ensembles of string vacua, providing a scientific basis for a stringy notion of

naturalness. Of particular interest in this context is the ability to keep track of algebraic

information (such as the gauge group) associated with individual vacua while dealing with

statistics. In the present work, we aim to clarify conceptual issues and sharpen methods

for this purpose, using compactification on K3 × K3 as a test case. Our first approach

exploits the connection between the stabilization of complex structure moduli and the

Noether-Lefschetz problem. Compactification data for F-theory, however, involve not only

a four-fold (with a given complex structure) Y4 and a flux on it, but also an elliptic fibration

morphism Y4 −→ B3, which makes this problem complicated. The heterotic-F-theory du-

ality indicates that elliptic fibration morphisms should be identified modulo isomorphism.

Based on this principle, we explain how to count F-theory vacua on K3×K3 while keeping

the gauge group information. Mathematical results reviewed/developed in our companion

paper are exploited heavily. With applications to more general four-folds in mind, we also

clarify how to use Ashok-Denef-Douglas’ theory of the distribution of flux vacua in order

to deal with statistics of sub-ensembles tagged by a given set of algebraic/topological in-

formation. As a side remark, we extend the heterotic/F-theory duality dictionary on flux

quanta and elaborate on its connection to the semistable degeneration of a K3 surface.
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1 Introduction

Flux compactifications of type IIB string theory / F-theory can generate large supersym-

metric masses for moduli, so that the moduli particles decay well before the period of

big-bang nucleosynthesis. In addition to this phenomenological advantage, the discretum

of vacua in this class of compactifications provides an ensemble of vacua (or landscape),

which gives rise to a scientific/stringy basis for a notion of naturalness [1, 2]. Certainly

the (geometric phase) Calabi-Yau compactifications of type IIB / F-theory are not more

than a small subset of all possible vacua in string theory. However, one can still think of

some use in such a restricted ensemble of vacua because supersymmetric extensions of the

Standard Model and grand unification can be naturally accommodated in this framework.

Given a topological configuration of three-form fluxes in type IIB string theory com-

pactified on a Calabi-Yau threefold M3, the dilaton and complex structure moduli of M3

are stabilized and their vacuum expectation values (vevs) are determined. By this mech-

anism, however, not only the moduli vevs (= the coupling constants of the low-energy

effective theories), but also a configuration of D7-branes (= (a part of) the gauge group of

the effective theories) is determined.

Low-energy effective theories in particle physics are usually crudely classified by such

information as gauge groups, matter representations, types of non-vanishing interactions

and matter multiplicity, and then the effective theories sharing this information are dis-

tinguished by the values of coupling constants. In order to fit this natural framework of

thought, ensembles of string flux vacua should also be crudely classified by algebraic and

topological information. After this, statistics should be presented in the form of distri-

butions over the moduli space of compactifications sharing the same set of algebraic and

topological information. With the statistics of flux vacua presented in this way, we begin to

be able to ask such naturalness-related questions as the ratio of the number of vacua having

various algebraic and/or topological data or the distribution of various coupling constants

(moduli parameters) in a class of theories having a give set of algebraic/topological data.

This article aims at taking one step further in this program. The distribution of gauge

groups in effective four-dimensional theories derived from string compactifications has been

studied from several perspectives in the literature, see [3–6] for examples.

Stabilization / determination of D7-brane configurations can be understood purely

in type IIB language in terms of calibration conditions [7, 8]. Another option is to use

F-theory, where the 7-brane configuration, dilaton vev and complex structure moduli of

M3 are all treated as part of the complex structure moduli of a Calabi-Yau fourfold Y4.

In F-theory language, there are two ways to understand the mechanism of determination

of the moduli vevs. One is to specify the four-form flux on an elliptic fibred Calabi-Yau

fourfold Y topologically,1

[G(4)] ∈ H4(Y ;Z) . (1.1)

1The four-form flux should be in the Abelian group
[

H4(Y ;Z) + 1
2
[c2(TY )]

]

∩ H2,2(Y ;R) [9], with a

possibly half-integral shift (1/2)[c2(TY )]. When Y is a smooth Weierstrass model, however, c2(TY ) is

always even, and the four-form flux takes its value in (1.3) [10, 11]. In the present case, where we work

with K3×K3, c2(TY ) is manifestly even and no such issue arises. Hence we ignore this point from now on.
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The Gukov-Vafa-Witten superpotential

WGVW ∝
∫

Y
ΩY ∧G(4) (1.2)

gives rise to an F-term scalar potential that depends on the complex structure moduli of Y .

The minimization of this potential determines the vevs of those moduli. Once the moduli

vevs arrive at the minimum of the potential (and if the cosmological constant happens to

vanish), the four-form flux G(4) is guaranteed to only have a (2, 2) component in the Hodge

decomposition under the complex structure corresponding to the vevs [12, 13]. In the

presence of the four-form flux, the moduli fields slide down the potential to find a vacuum

complex structure, so that [G(4)] only has the (2, 2) component. If we are to allow large

vacuum expectation values of WGVW [G(4)] may also have (4, 0) and (0, 4) components.

An alternative way to characterize the vacuum choice of the complex structure of Y is

available by focussing on the finitely generated Abelian group

H4(Y ;Z) ∩H2,2(Y ;R)
(
or H4(Y ;Z) ∩H2,2(Y ;R)⊕ [H4,0(Y ;C) + h.c]

)
. (1.3)

The rank of this Abelian group remains constant almost everywhere on the moduli space

of the complex structure of Y , but it jumps at special loci. In mathematics, this problem

— at which loci in the moduli space the rank of this Abelian group jumps, and how it

changes there — is known as the Noether-Lefschetz problem. Once we find a point in

the Noether-Lefschetz locus and insert four-form flux in the enhanced part of the Abelian

group (1.3), we can no longer go away continuously from the Noether-Lefschetz loci in the

moduli space while keeping the flux purely of type (2, 2). The higher the codimension of

a Noether-Lefschetz locus is in the complex structure moduli space, the more moduli are

given masses and stabilized. Therefore, the problem of determination of vacuum complex

structure is equivalent to the Noether-Lefschetz problem (e.g., [14]).2

This article begins, in sections 2.2, 4.1, 4.3 and 5.2 in particular, with exploiting this

equivalence3 to see how the Noether-Lefschetz problem in F-theory determines statistics of

such things as gauge group, discrete symmetry and moduli vevs. We focus our attention

on K3×K3 compactifications of F-theory, as in [15, 16, 18, 21–25]. This compactification

cannot be considered realistic enough for an immediate use in particle physics (e.g. there are

no matter curves), but a sufficient complexity is involved in this toy model of landscape

to make it suitable for the purpose of clarifying various concepts as well as sharpening

technical tools.

In the process of deriving statistics, one cannot avoid asking about the modular group

(e.g., [17]). In other words, we have to understand when a pair of seemingly different

compactification data actually correspond to the same vacuum in physics. In F-theory we

have to introduce some equivalence relation among the space of elliptic fibrations that are

2We can also draw an analogy with the attractor mechanism [14], although the analogy is particularly

good in the case with G1 6= 0 and G0 = 0 in (2.15), (2.16).
3This is an obvious continuation of a program initiated a decade earlier. This idea is already evident

in pioneering works such as [14–18], to name a few, and has also been reflected in recent articles such

as [19, 20].
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admitted by Y4, so that the quotient space corresponds to the set of physically distinct

vacua. In section 3.2, we use the duality between heterotic string theory and F-theory, and

find that the modulo-isomorphism classification of elliptic fibrations should be adopted.

This observation yields two problems. One is purely mathematical: how can we work out

the modulo-isomorphism classification of elliptic fibration for a given Y4? A companion

paper by the present authors [26] is dedicated to this problem, with a Calabi-Yau fourfold

Y4 replaced by a K3 surface, and the results in [26] are reviewed mainly in section 4.1 in

this article. The other problem is how to use such results in mathematics to carry out

vacuum counting in physics. We take on this issue in section 4.2.

Sample statistics, which give us some feeling of what string landscapes can do to answer

statistical/naturalness questions in particle physics, are obtained in sections 4.3 and 5.2.

At the same time, though, the study running up to section 5.2 in this article along

with [26] also hints that it may not be easy to pursue the Noether-Lefschetz problem

approach for Calabi-Yau fourfolds which are not as simple as K3×K3 or K3-fibration over

some complex surface. One may of course always use the strategy of computing periods,

as done e.g. in [27] in the present context. Of course, this approach has its own technical

challenges.

The theory of [2, 28, 29] is a promising direction to go beyond a case-by-case study

for different choices of fourfolds Y . Therefore, the second theme begins to dominate in

section 5.4 toward the end of this article. Since articles as [29] and [17] seemed to have had

applications in Type IIB orientifold compactifications in mind primarily, we clarify how to

use the Ashok-Denef-Douglas theory to study statistics of flux vacua in F-theory, with the

total ensemble resolved into sub-ensembles according to their algebraic and/or topological

data such as gauge groups and matter multiplicity. The presentation in [17] sits in the

middle between our discussion up to section 5.2 and that of [28, 29], and makes it easier

to understand how the conceptual issues discussed in the sections up to 5.3 fit into the

Ashok-Denef-Douglas theory. Although the presentation in section 5.4 and appendix C

uses K3 × K3 compactification as an example, we tried to phrase it in a way ready for

generalization at least to cases with K3-fibred Calabi-Yau fourfolds, and possibly to general

F-theory compactifications.

There is also the third theme behind sections 4.3.2, 5.3 and appendix B in this article.

In the duality between heterotic string theory and F-theory, the dictionary of flux data

has been mostly phrased by using the stable degeneration limit of [30, 31]. This was for

good reasons, because [32–34] focused on fluxes in F-theory that are directly responsible

for the chirality of non-Abelian (GUT gauge group) charged matter fields on the matter

curves. There is an extra algebraic curve in the singular fibre over the matter curve in

the F-theory geometry, and a flux can be introduced in this algebraic cycle [33, 34]. For

more general flux configurations, however, it is not a priori clear to what extent we can

use the dP9 ∪ dP9 limit in the duality dictionary, because dP9 ∪ dP9 is quite different

from a K3 surface when it comes to whether two-cycles are algebraic or not. There is

the work of [20], indicating that U(1) flux associated with an elliptically fibred geometry

with an extra section stabilizes some complex structure moduli. Furthermore, the spectral

cover description of vector bundles in heterotic string theory [30] did not rule out twisting

– 3 –
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information γ which is more general than (5.26) for special choices of complex structure.

Section 5.3 and the appendix B provide a comprehensive understanding of this material,

generalizing the duality dictionary of the flux data in the literature without relying on the

dP9∪dP9 limit. Appendix B also makes a trial attempt of studying how much information

of such fluxes can be captured by the dP9 ∪ dP9 limit.

A similar theme has already been studied extensively in the series of papers [35–40]. It

will be interesting to clarify the relation between the logical construction given there and

the presentation in this article, but this task is beyond the scope of this present article.

All K3 surfaces which appear as solutions in this article have Picard number 20, which

fixes the rank of the total gauge group to be 18 (this is the ‘geometric’ gauge group,

which can still be further broken by fluxes). Whenever the non-abelian part of the gauge

group has rank less than 18, there are U(1) factors which are geometrically realized as

extra sections of the elliptic fibration. The explicit construction of extra section has been

an active research program in recent years. As discussed in [20, 41, 42], sections can

be realized by demanding appropriate factorization conditions in the Weierstrass model.

A study of fluxes in (a resolution of) the scenario of [41] appeared in [43]. As already

discussed in [41], extra sections can equivalently be obtained by realizing the elliptic fibre

as a hypersurface in ambient spaces with more than a single toric divisor. This strategy is

systematically exploited in [44–47]. Using toric techniques, in particular the classification

of tops, models with I5 fibres and extra sections were constructed in [48–51]. Given a

specific embedding of the fibre, one can also use a similar approach as [52], i.e. use Tate’s

algorithm, to find all possible degenerations leading to a prescribed gauge group [53]. F-

theory compactifications with U(1) symmetries also give rise to an interesting interplay

between geometry and anomalies of the effective field theory, see [54–57] for some recent

works in this direction.

We regret that we use some mathematical jargon and notations, which are non-

standard in the physics literature, without explanations. Sections 2–4 of the mathematical

companion paper of the present article [26] should contain the necessary background.

2 Four-form flux in M/F-theory on K3 × K3

2.1 Review of known results

Compactification of F-theory on Y = K3×K3 has been studied from various perspectives

in the literature. To start off, we begin this section with a review of a result in [18].4 Their

results are immediate for M-theory compactification down to 2+1-dimensions, but it is

clear that we can build a study of F-theory compactification down to 3+1-dimensions by

adding extra structure and imposing conditions on top of the discussion for M-theory [18].

When the Calabi-Yau fourfold Y is a product of two K3 surfaces, S1 and S2, the

complex structure moduli space of Y , Mcpx(Y ), is the product of the complex structure

moduli space of S1 and S2, Mcpx(S1) ×Mcpx(S2). A discussion of the modular group is

postponed to later sections. Over the moduli space of [h3,1(Y ) = h1,1(S1) + h1,1(S2) = 40]

4See also sections 2.2, 5.1 and 5.2 in this article, where the material reviewed in this section is extended.
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dimensions, the Hodge decomposition of H4(Y ;C) varies, because the decompositions of

H2(S1;C) and H
2(S2;C) vary on the moduli spaces of the two K3 surfaces.5

H2,2(Y ;R) = H1,1(S1;R)⊗H1,1(S2;R)+[H2,0(S1;C)⊗H0,2(S2;C)+h.c.] , (2.1)

[H4,0(Y ;C) + h.c.] = [H2,0(S1;C)⊗H2,0(S2;C) + h.c.] , (2.2)

where [V + h.c.] for a complex vector space V with dimCV = 1 denotes the corresponding

2-dimensional vector space over R. The Hodge components [H4,0(Y ;C) + h.c] are also

included here for now, partly because the four-form flux with non-vanishing (4, 0) and

(0, 4) components still preserves AdS supersymmetry. The overlap between H2(S1;Z) ⊗
H2(S2;Z) ⊂ H4(Y ;Z) and H2,2 ⊕ [H4,0 + h.c.] has the maximal rank, 404, when

rank
[
H2(S1;Z) ∩H1,1(S1;R)

]
= 20, rank

[
H2(S2;Z) ∩H1,1(S2;R)

]
= 20 . (2.3)

The loci satisfying these conditions have complex codimension 40 in the moduli space

Mcpx(S1)×Mcpx(S2), and hence are isolated points. Once plenty of fluxes are introduced

in this rank 404 free Abelian group, all the complex structure moduli are stabilized.

The Abelian group

SX =
[
H1,1(X;R) ∩H2(X;Z)

]
⊂ H2(X;Z) (2.4)

for a K3 surface X is called Neron-Severi lattice (or group), and the rank of SX — denoted

by ρX or ρ(X) — is called the Picard number of X. SX is empty for X with a generic

complex structure, but its rank can be as large as 20, which is possible only in points of

Mcpx(X). K3 surfaces with ρX = 20 are called attractive K3 surfaces in [58, 59].6 Thus,

the ensemble of flux vacua of M-theory/F-theory compactifications on Y = K3 × K3 are

mapped into a subset of Mcpx(S1) ×Mcpx(S2) where both S1 and S2 are attractive K3

surfaces.

It is convenient for the classification of K3 surfaces with large Picard number to use

the transcendental lattice. For a K3 surface X, it is defined as the orthogonal complement

of SX under the intersection form in H2(X;Z):

TX :=
[
(SX)⊥ ⊂ H2(X;Z)

]
. (2.5)

5The H4(S1;Z) ⊗ H0(S2;Z) ⊕ H4(S1;Z) ⊗ H4(S2;Z) components in H4(Y ;Z) (and their R-coefficient

versions) are ignored here, because fluxes in these components do not preserve the SO(3, 1) symmetry in

the application to F-theory compactifications. This extra assumption is made implicitly everywhere in this

article.
6In the mathematics literature, a K3 surface with ρX = 20 is sometimes called a singular K3 surface,

although the word “singular” only means “very special” in this case, and does not imply that the surface

has a singularity. Ref. [58, 59] introduced the term attractive K3 surface for K3 surfaces satisfying the

same condition, which allows us to avoid confusing terminology. This terminology is a natural choice: just

like the complex structure of Calabi-Yau threefolds for type IIB compactifications is attracted towards

special loci in Mcpx near the horizon of a BPS black hole in 4D N = 2 effective theory of IIB/CY3 in

the attractor mechanism [60], the complex structure of fourfold for F-theory/M-theory should be driven

towards special loci in Mcpx in a cosmological evolution in the presence of (G1-type) flux due to the F-term

potential from (1.2). In both cases, special loci are characterized by the condition that some topological

flux falls into some particular Hodge component. [58, 59]. In this article, we follow [58, 59] and use the

word attractive K3 surface.

– 5 –
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For a K3 surface with Picard number ρX , rank(TX) = 22 − ρX . K3 surfaces with a given

transcendental lattice form a (20− ρX)-dimensional subspace ofMcpx(K3), and in partic-

ular, attractive K3 surfaces are in one-to-one correspondence7 with rank-2 transcendental

lattices (modulo orientation-preserving basis change).

For an attractive K3 surface X, its rank-2 transcendental lattice has to be even and

positive definite. This is equivalent to the condition that, for a set of generators {p, q} of
TX , the intersection from is given by8

[
(p, p) (p, q)

(q, p) (q, q)

]
=

[
2a b

b 2c

]
, (2.7)

where a, b, c are all integers, Q := 4ac − b2 is positive, and a, c > 0. The 2-dimensional

vector space TX ⊗ C over C (resp. TX ⊗ R over R) agrees precisely with the vector space

H2,0(X;C) ⊕ H0,2(X;C) (resp. [H2,0(X;C) + h.c.]), and the complex vector subspace

H2,0(X;C) ⊂ TX ⊗ C is identified with C · ΩX ⊂ TX ⊗ C, where

TX ⊗ C ∋ ΩX := p+ τq, τ :=
−b+ i

√
Q

2c
. (2.8)

With orientation-preserving basis changes of TX , one can always choose the integers a, b, c

such that

0 ≤ |b| ≤ c ≤ a (but 0 ≤ b if c = a) and Q > 0 . (2.9)

An attractive K3 surface characterized by integers a, b, c in the way explained above is

denoted by X[a b c] in this article.

For a pair of attractive K3 surfaces S1 and S2, let {q1, p1} and {q2, p2} be the oriented
basis of TS1 and TS2 , respectively. The intersection form in this basis is denoted by

[
(p1, p1) (p1, q1)

(q1, p1) (q1, q1)

]
=

[
2a b

b 2c

]
,

[
(p2, p2) (p2, q2)

(q2, p2) (q2, q2)

]
=

[
2d e

e 2f

]
, (2.10)

where a, b, c, d, e and f are all integers. The positive definiteness implies that

0 ≤ |b| ≤ c ≤ a, (but 0 ≤ b if c = a), Q1 := 4ac− b2 > 0, (2.11)

0 ≤ |e| ≤ f ≤ d, (but 0 ≤ e if f = d), Q2 := 4df − c2 > 0, (2.12)

7A pair of K3 surfaces X and X ′ are regarded equivalent iff there is a holomorphic bijection between

them.
8A set of generators {q, p} of TX with the ordering between q and q specified is called an oriented basis of

an attractive K3 surface X, if Im[〈ΩX , q〉/〈ΩX , p〉] > 0. Choosing Im(τ) > 0 as in (2.8), {q, p} is indeed an

oriented basis. We follow the convention of [18], and present and parametrize the intersection form of TX

as in (2.7) in this article. But it looks more common in math literatures (such as [61]) and also in [58, 59]

to parametrize the intersection form in this way:

[

(q, q) (q, p)

(p, q) (p, p)

]

=

[

2a b

b 2c

]

. (2.6)

Thus, [a b c] here (and in [18]) correspond to [c b a] in [61].

– 6 –
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where all a, · · · , f are integers. The holomorphic (2,0)-forms on the K3 surfaces S1 =

X[a b c] and S2 = X[d e f ] can then be written as

ΩS1 = p1 + τ1q1, τ1 =
−b+ i

√
Q1

2c
, ΩS2 = p2 + τ2q2, τ2 =

−e+ i
√
Q2

2f
. (2.13)

Note that τ1 ∈ Q[
√
Q1] and τ2 ∈ Q[

√
Q2]. Both Q[

√
Q1] and Q[

√
Q2] are degree 2 (D = 2)

algebraic extensions of Q (see refs. [58, 59]).

In physics applications, we would rather like to impose one more condition. The

M2/D3-brane tadpole cancellation is equivalent to

1

2

∫

Y
(G ∧G) +NM2/D3 =

χ(Y )

24
= 24 , (2.14)

where NM2/D3 is the number of M2/D3-branes minus anti-M2/D3-branes (that are point

like) in Y . When we exclude anti M2/D3-branes on Y , NM2/D3 ≥ 0, and thus not all the

pairs of attractive K3 surfaces in Mcpx(S1) ×Mcpx(S2) qualify for the landscape of flux

vacua of M-theory compactified on Y = K3×K3.

Aspinwall and Kallosh carried out an explicit study of which pairs of attractive K3

surfaces can satisfy the condition (2.14), within a couple of constraints that make the

analysis easier [18]. In order to state one of the constraints introduced in [18], we need

the following definition. Let us focus on a pair of attractive K3 surfaces S1 and S2. Any

G(4) in (1.3) on Y = S1 × S2 can be decomposed, under the Hodge structure of Y , into

[G] = [G1] + [G0], where

[G0] ∈
[
H1,1(S1;R)⊗H1,1(S2;R)

]
= SS1 ⊗ SS2 ⊗ R, (2.15)

[G1] ∈
[
H2,0(S1;C)⊗H0,2(S2;C) + h.c.

]
, (2.16)

(
or ∈

[
H2,0(S1;C) + h.c.

]
⊗
[
H2,0(S2;C) + h.c.

]
= TS1 ⊗ TS2 ⊗ R

)
. (2.17)

The explicit study in ref. [18] assumes that

[G0] = 0, (2.18)

and9 [G1] 6= 0 is that of (2.16) rather than (2.17), so that G(4) = G1 is purely of (2, 2)

type in the Hodge structure of Y = S1 × S2, and the vev of WGVW vanishes. Another

assumption is to set

NM2/D3 = 0 , (2.19)

so that
1

2
[G1] · [G1] = 24 . (2.20)

Under these constraints, [G1] has to be an integral element of TS1 ⊗ TS2 :

[G1] ∈ [H2,0(S1;C)⊗H0,2(S2;C) + h.c.] ∩ (TS1 ⊗ TS2). (2.21)

9If the [G1] component were to vanish, then there would be no interaction in the effective theory violating

N = 2 supersymmetry in 3+1 dimensions [15, 22]. Moduli mass terms purely from the [G0] component are

consistent with N = 2 supersymmetry.
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[a b c] [d e f] γ [a b c] [d e f] γ

[8 8 8] [1 1 1] γ(6) [6 0 6] [1 0 1] γ(4)

[6 0 3] [2 0 1] ±i/
√
2 [6 0 2] [3 0 1] ±i/

√
3

[6 0 2] [1 1 1] γ(6) [6 0 1] [6 0 1] ±i/
√
6

[4 4 4] [2 2 2] γ(6) [3 0 3] [2 0 2] γ(4)

[3 0 3] [1 0 1] (1 + i)γ(4) [3 0 2] [3 0 2] ±i
√
2/3

[3 0 1] [2 2 2] γ(6) [2 2 2] [1 1 1] 2× γ(6)

[2 0 1] [2 0 1] ±1± i/
√
2

Table 1. Table 1 of ref. [18] is reproduced here (with minor modifications) for the convenience

of the reader. Intersection forms (2.10) of TS1
and TS2

are simply denoted by [a b c] and [d e

f] in this table. All the possible choices of γ ∈ C are listed; γ(6) :=
{
±2i/

√
3,±1± i/

√
3
}

=

2i/
√
3× {e2πik/6|k = 0, 1, 2, 3, 4, 5}, γ(4) := {±1,±i} = {e2πik/4|k = 0, 1, 2, 3}.

It is not always guaranteed for any pair of attractive K3 surfaces S1 and S2 that there can

be [G1] 6= 0. The Abelian group on the right hand side of (2.21) can be empty. Writing

down [G1] as

[G1] = Re
(
γΩS1 ∧ ΩS2

)
(2.22)

for some γ ∈ C and expanding this in the integral basis {p1⊗ p2, q1⊗ p2, p1⊗ q2, q1⊗ q2}
of TS1 ⊗ TS2 , Aspinwall and Kallosh found that (2.21) is non-empty if and only if

∃m ∈ Z s.t. Q1Q2 = m2 . (2.23)

This implies that the two algebraic number fields Q[
√
Q1] and Q[

√
Q2] are the same. All

the period integrals of the holomorphic (4,0) form ΩY = ΩS1 ∧ ΩS2 take values in the

common degree-2 (D = 2) algebraic extension field Q[
√
Q1] of Q (cf. [17]).

Imposing the condition (2.20) on [G1] in (2.21), [18] worked out the complete list of

pairs of attractive K3 surfaces where there exists a flux G(4) satisfying (2.18), (2.21), (2.20).

The result are 13 pairs of attractive K3 surfaces [18], which are listed in table 1 along with

all possible values of γ ∈ C.

Two remarks are in order here. First note that for a supersymmetric compactifica-

tion of M-theory on Y = S1 × S2 with a four-form flux G(4) = G1, we could think of

a compactification on Y = S1 × S2 obtained by simply declaring that the holomorphic

local coordinates on Y are anti-holomorphic coordinates on Y , keeping the underlying

real-8-dimensional manifold the same. The flux [G1] ∈ H4(Y ;Z) remains the same. This

new compactification, however, should not be regarded as a vacuum physically different

from the original one, only the role of the superpotential and its hermitian conjugate, and

that of chiral multiplets and anti-chiral multiplets in the low-energy effective theory, are

exchanged. The physics remains the same.

The transcendental lattice of the K3 surface S′
1 = S1 can be regarded as TS′

1

∼=
SpanZ{p′1, q′1} := SpanZ{p1,−q1}, where the symmetric pairing is described by [a’ b’ c’] =
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[a -b c]. The holomorphic (2, 0)-form is given by10

ΩS′
1
= p′1 + τ ′1q

′
1 := p1 + τ̄1q1 = ΩS1 . (2.24)

Thus, the four-form flux G1 = Re[γΩS1 ∧ΩS2 ] is rewritten in terms of S′
1×S′

2 = S1×S2 as

G1 = Re[γ∗ΩS′
1
∧ΩS′

2
]. Thus, Y = S1 × S2 compactification with [a b c], [d e f] and γ and

another compactification with [a -b c] and [d -e f] and γ∗ are completely equivalent, and

should not be regarded as different compactifications (or different vacua). For this reason,

only one of each such pairs is shown in table 1.

Secondly, as for M-theory compactification, Y = S1 × S2 with G1 = Re(γΩS1 ∧ ΩS2)

and Y = S2 × S1 with G1 = Re(γ∗ΩS2 ∧ ΩS1) should also be regarded equivalent. Thus,

table 1 only shows cases where a ≥ d, and furthermore, in cases with a = d, we impose

c ≥ f .

2.2 Extending the list

Before proceeding to the next section, it is worthwhile to extend the list so that the

condition (2.20) is relaxed to
1

2
[G1] · [G1] ≤ 24. (2.25)

Certainly for any compactification of M-theory over Y = S1×S2 with a four-form flux [G1]

in (2.21) satisfying the inequality above, at least we can introduce an appropriate number

of M2-branes to satisfy the tadpole condition (2.14). One might even be able to find a flux

[G0] ∈ (SS1 ⊗ SS2) to satisfy (2.14). See section 5 for more about the case with [G0] 6= 0,

however.

Straightforward analysis allows us to extend table 1, so that it contains all pairs of

attractive K3 surfaces S1 and S2 and a choice of γ ∈ C satisfying (2.18), (2.21) and (2.25),

rather than (2.18), (2.21) and (2.20). The result of our analysis is presented in table 2.

flux [a b c] [d e f] γ M F

24 [8 8 8] [1 1 1] γ(6) 6 6

[6 0 6] [1 0 1] γ(4) 3 3

[6 0 3] [2 0 1] ±i/
√
2 1 1

[6 0 2] [3 0 1] ±i/
√
3 1 1

[6 0 2] [1 1 1] γ(6) 6 6

[6 0 1] [6 0 1] ±i/
√
6 1 1

[4 4 4] [2 2 2] γ(6) 6 6

[3 0 3] [2 0 2] γ(4) 3 3

[3 0 3] [1 0 1] (1 + i)γ(4) 2 2

[3 0 2] [3 0 2] ±i
√
2/3 1 1

[3 0 1] [2 2 2] γ(6) 6 6

Table 2. continued on next page. . .

10Here, {q′1, p′1} is still an oriented basis of TS′

1
.
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Table 2. . . . continued from previous page

flux [a b c] [d e f] γ M F

[2 2 2] [1 1 1] 2γ(6) 6 6

[2 0 1] [2 0 1] ±1± i/
√
2 2 2

23 [6 1 1] [6 1 1] ±2i/
√
23 1 2

[3 1 2] [3 1 2] ±4i/
√
23 1 2

22 [6 2 2] [3 1 1] ±2i/
√
11 2 2

21 [7 7 7] [1 1 1] γ(6) 6 6

[6 3 3] [2 1 1] ±2i/
√
7 2 2

[1 1 1] [1 1 1] (2±
√
3i)γ(6) 6 12

20 [5 0 5] [1 0 1] γ(4) 3 3

[5 0 1] [5 0 1] ±i/
√
5 1 1

[3 2 2] [3 2 2] ±2i/
√
5 1 2

[1 0 1] [1 0 1] (1± 2i)γ(4) 4 4

19 [5 1 1] [5 1 1] ±2i/
√
19 1 2

18 [6 6 6] [1 1 1] γ(6) 6 6

[3 3 3] [2 2 2] γ(6) 6 6

[2 2 2] [1 1 1] 2γ(6) 6 6

17

16 [4 0 4] [1 0 1] γ(4) 3 3

[4 0 2] [2 0 1] ±i/
√
2 1 1

[4 0 1] [4 0 1] ±i/2 1 1

[4 0 1] [1 0 1] γ(4) 3 3

[2 0 2] [2 0 2] γ(4) 3 3

[2 0 2] [1 0 1] (1 + i)γ(4) 2 2

[2 0 1] [2 0 1] ±1 2 2

[1 0 1] [1 0 1] 2γ(4) 3 3

15 [5 5 5] [1 1 1] γ(6) 6 6

[4 1 1] [4 1 1] ±2i/
√
15 1 2

[2 1 2] [2 1 2] ±4i/
√
15 1 2

14 [4 2 2] [2 1 1] ±2i/
√
7 2 2

[2 1 1] [2 1 1] ±1± i/
√
7 *2 4

13

12 [4 4 4] [1 1 1] γ(6) 6 6

[3 0 3] [1 0 1] γ(4) 3 3

[3 0 1] [3 0 1] ±i/
√
3 1 1

[3 0 1] [1 1 1] γ(6) 6 6

[2 2 2] [2 2 2] γ(6) 3 6

Table 2. continued on next page. . .
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Table 2. . . . continued from previous page

flux [a b c] [d e f] γ M F

[1 1 1] [1 1 1] 2γ(6) 3 6

11 [3 1 1] [3 1 1] ±2i/
√
11 1 2

10

9 [3 3 3] [1 1 1] γ(6) 6 6

[1 1 1] [1 1 1]
√
3iγ(6) 3 6

8 [2 0 2] [1 0 1] γ(4) 3 3

[2 0 1] [2 0 1] ±i/
√
2 1 1

[1 0 1] [1 0 1] (1 + i)γ(4) 2 2

7 [2 1 1] [2 1 1] ±2i/
√
7 1 2

6 [2 2 2] [1 1 1] γ(6) 6 6

5

4 [1 0 1] [1 0 1] γ(4) 3 3

3 [1 1 1] [1 1 1] γ(6) 3 6

23 [6 -1 1] [6 1 1] ±2i/
√
23 2 2

22 [3 -1 1] [6 2 2] ±2i
√
11 2 2

21 [2 -1 1] [6 3 3] ±2i/
√
7 2 2

20 [3 -2 2] [3 2 2] ±2i/
√
5 2 2

19 [5 -1 1] [5 1 1] ±2i/
√
19 2 2

15 [4 -1 1] [4 1 1] ±2i/
√
15 2 2

14 [2 -1 1] [2 1 1] ±1± i/
√
7 *4 4

[2 -1 1] [4 2 2] ±2i/
√
7 2 2

11 [3 -1 1] [3 1 1] ±2i/
√
11 2 2

7 [2 -1 1] [2 1 1] ±2i/
√
7 2 2

Table 2. This table reproduces all the 13 cases with the total flux of G1 type being 24 in [18]. The

first 5/6 of this table covers the cases with be ≥ 0; see comments at the end of section 2.1. The

last 1/6 of this table is the list of cases with (be) < 0; this table only shows cases with b < 0 (so

e > 0), in order to reduce the redundant information associated with S2 ←→ S1 and γ ←→ γ∗. See

section 4.2 for the meaning of the last two columns.

Out of the 66 entries in table 2, some pairs of K3 surfaces appear more than once. In

these cases, there are different possible choices of γ which give rise to different contributions

to the tadpole that are less than 24. For the pairs S1 × S2 = X[1 0 1] × X[1 0 1] and

X[1 1 1] × X[1 1 1], all the possible values of γ ∈ C (and the corresponding [G1] · [G1]/2

contribution to the M2/D3 tadpole) are shown in figure 1. They form a lattice within C,

and so do [G1] in (2.21) [58, 59]. In fact, one can show that that the possible values for

γ form a lattice for any pair of K3 surfaces satisfying (2.23). The upper bound (2.25),

however, allows only finitely many choices of G(4) = G1 for a given pair of attractive K3

surfaces satisfying (2.23).
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-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

(a) for X[1 0 1] ×X[1 0 1] (b) for X[1 1 1] ×X[1 1 1]

Figure 1. Possible values of γ ∈ C appearing in table 2 for X[1 0 1]×X[1 0 1] and X[1 1 1]×X[1 1 1],

respectively. In (a), black, red, green and blue points (from inside to outside) correspond to [G1] ·
[G1]/2 = 4, 8, 16 and 20, respectively, while in (b), the black, red, green and blue points give rise

to the contributions 3, 9, 12 and 21, respectively.

3 F-theory classification of elliptic fibrations on a K3 surface

The study reviewed in the previous section implies that a pair of K3 surfaces S1 and S2

corresponding to a pair of transcendental lattices TS1 =

[
2a b

b 2c

]
and TS2 =

[
2d e

e 2f

]

in tables 1 and 2 is realized in the landscape of flux compactifications of M-theory on

Y = S1×S2 down to 2+1-dimensions, with all the 40 complex structure moduli stabilised.

In order to translate this result to the landscape of F-theory compactifications to 3+1-

dimensions, however, we have to impose a couple of extra conditions [18].

One of the conditions to be imposed, of course, is that either one of the K3 surfaces

S1 or S2 admits an elliptic fibration with a section (in its vacuum complex structure), and

the vev of the Kähler moduli should be such that the volume of the elliptic fibre vanishes.

Let X be this elliptic fibred K3 surface,11 and the other one of S1 and S2 be denoted by S;

Y = X × S, πX : X → P1, σ : P1 → X. (3.1)

The authors of [18] pointed out that S1 (resp. S2) can be identified with a K3 surface of the

form X = T 4/Z2, if and only if all of a, b and c (resp. d, e and f) in table 1 are even (the

same rule applies also to table 2), based on a known fact on Kummer surfaces (see [61–63]).

Projecting down to T 2/Z2 ≃ P1, we obtain an elliptic fibration with four singular fibres of

type I∗0 (namely, D4 = SO(8) gauge groups on 7-branes); this is the F-theory/Type IIB

orientifold model in [64].

This class of F-theory vacua, which admits a type IIB orientifold interpretation without

any approximation or ambiguity, is only a subset of all possible vacua of F-theory, however.

In fact, it is known that any K3 surface with ρ ≥ 13 admits an elliptic fibration with a

section (Lemma 12.22 of [65]). Hence all the K3 surfaces in tables 1 and 2 admit an elliptic

fibration with a section, so that they all have an interpretation in terms of F-theory if the

11In this article, we always imply by “elliptic fibration” that it is accompanied by a section.
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vev of the Kähler moduli is chosen appropriately. It should be noted, however, that there

can be more than one elliptic fibration morphism πX : X −→ P1 for a given K3 surface

X, and furthermore, the type of singular fibres (type = collection of some of In, I
∗
n, II, III,

IV∗, III∗ and II∗) will in general be different for each of the fibrations. We are thus facing

at least two questions:

• How do we find out the list of all possible elliptic fibrations, when the transcendental

lattice TX ⊂ H2(X;Z) of a K3 surface X is given?

• Suppose that there are two elliptic fibrations πX : X −→ P1 and π′X : X −→ P1

available; how do we find out whether the two fibrations correspond to the same

vacuum in physics or not?

The former question is purely mathematical in nature, while the latter is a question in

physics. Our companion paper [26] is dedicated to a study of the first question, while the

latter question is addressed in this section. The primary conclusion in this section is (3.23)

and the discussion that follows immediately after.12 We begin by reviewing Torelli theorem

for K3 surface in section 3.1, as it plays a crucial role in our discussion in section 3.2.

3.1 On the Torelli theorem for K3 surfaces

In this we discuss the relation between the moduli space of complex structures of K3 surfaces

and periods of the holomorphic (2, 0) form. Statements of this type are generally referred

to as ‘Torelli theorems’. For K3 surfaces, there exist several powerful versions, which are

closely related to each other, yet shed light on the subject from slightly different angles.

Those Torelli theorems combined allow many questions on K3 moduli to be reformulated in

terms of lattice theory. The following review on Torelli theorems for K3 surfaces is designed

to serve as preparation for section 3.2. This review together with section 2 of [26] is designed

to be self-contained, all the jargon and notation without definition or explanation in this

section should be explained in section 2 of [26]. See also [63, 66] for a concise mathematical

exposition.

We begin with defining such words as “(moduli space of) marked K3 surface” and

“period domain”, and proceed to explain the period map. A marked K3 surface is a

K3 surface X for which we have fixed a set of generators for H2(X;Z), i.e. we consider

a pair (X,ϕ) which consists of the K3 surface X and an isometry between lattices ϕ :

H2(X;Z) −→ ΛK3, where

ΛK3 = U ⊕ U ⊕ U ⊕ E8 ⊕ E8 . (3.2)

The map ϕ is called the marking. Note that we use conventions in which the A–D–E

lattices have a negative definite inner product, as is natural in the present context.

Two marked K3 surfaces (X,ϕ) and (X ′, ϕ′) are said to be equivalent, if and only if

there is an isomorphism f : X → X ′ such that ϕ′ · f∗ = ϕ as an isometry from H2(X;Z)

12It is an option to skip this section and proceed to the next section, if one is happy to accept this

statement.
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to ΛK3. Each point of the moduli space of marked K3 surface N corresponds to such an

equivalence class of marked K3 surfaces.

The period domain D, on the other hand, is a subspace of P[ΛK3 ⊗ C] given by

D := {[ω] ∈ P[ΛK3 ⊗ C] | ω · ω = 0, ω · ω > 0 } ⊂ P[ΛK3 ⊗ C] . (3.3)

The global structure of D is given by

D ∼= O(ΛK3 ⊗ R)/SO(2)×O(1, 19) = Grpo(2; ΛK3 ⊗ R) , (3.4)

where the superscript “po” stands for “positive and oriented”, in the sense that we consider

the Grassmannian of oriented 2-dimensional subspaces in ΛK3 ⊗ R with signature (2, 0).13

Using the holomorphic (2, 0)-form ΩX ∈ H2(X;C) and the intersection form onH2(X;C),

we may map a point in the moduli space of marked K3 surface N to a point in the period

domain D:

P : N ∋ [(X,ϕ)] 7−→ ϕ([ΩX ]) ∈ D ⊂ P[ΛK3 ⊗ C] . (3.5)

P is called the period map. Here, [ΩX ] stands for both the complex line CΩX ⊂ H2(X;C)

as well as its image in P[H2(X;C)]; the same notation has already been used in (3.3).

The classic local Torelli theorem for K3 surface states that the period map is locally

an isomorphism between N and D. For any point in N and its image under the period

map in D, we can always take an appropriate open set in N and D so that the period map

becomes an isomorphism between the two open sets. Thus, locally in the moduli space(s),

K3 surfaces are uniquely determined by their periods.

In the following, we will turn to global aspects of the moduli spaces N and D, and the

period map P between them. While it turns out that complex deformations can be used to

introduce local coordinates on N , and to give it the structure of a complex manifold, the

moduli space N fails to be Hausdorff. The way the period maps glue globally is expressed

by the

Global Torelli Theorem, version 1 (see e.g. [66]): the moduli space of

marked K3 surfaces N consists of two connected components No and No′ , and

the period map P maps each one of them surjectively, and also generically

injectively to the period domain D.

To elaborate more on this, note first that the group of all the isometries of the lattice

ΛK3 — Isom(ΛK3) — acts naturally on D (from the left), and it also acts on N through

the marking; g ∈ Isom(ΛK3) maps [(X,ϕ)] ∈ N to [(X, g · ϕ)] ∈ N . The action of this

symmetry group on N and D commutes with the period map P : N −→ D. This isometry

group has a structure Isom(ΛK3) ∼= {±id.} × Isom+(ΛK3). The Isom+(ΛK3) subgroup is

such that the orientation of the 3-dimensional positive definite subspace of ΛK3 ⊗ R is

preserved.

13By forgetting the orientation, a twofold cover D = Grpo(2; ΛK3 ⊗ R) → Grp(2; ΛK3 ⊗ R) can be

constructed; Grp(2; ΛK3 ⊗ R) ∼= O(ΛK3 ⊗ R)/O(2)×O(1, 19).
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A pair of elements [(X,ϕ)] and [(X,−ϕ)] are different points in N because automor-

phisms of X cannot induce (−id.) on H2(X;C). The period map P : N −→ D sends these

two elements to the same point in D, [ϕ(ΩX)] = [−ϕ(ΩX)] ∈ P[ΛK3 ⊗ C]. In the Torelli

theorem above, such a pair of points in N corresponds to two inverse images14 of a given

point in D; one is in No, and the other is in the other connected component N
′o. The

action of (−id.) ∈ Isom(ΛK3) maps these two elements in N to each other, and hence the

subgroup {±id.} of Isom(ΛK3) acts trivially on D, while it exchanges the two connected

components of N .

Next we discuss the classical form of the global Torelli theorem. First, the homo-

morphism Aut(X) −→ Isom(H2(X;Z)) is injective (Prop. 2 of section 2 in [62]), where

Aut(X) is the group of automorphisms of a K3 surface X, and Isom(H2(X;Z)) is the

isometry group of H2(X;Z) endowed with a symmetric pairing from intersection number.

Note that this means that there cannot be any non-trivial automorphism which acts as the

identity on H2(X;Z). Furthermore,

Global Torelli Theorem, version 2: (Prop. of section 7 and Thm. 1 of

section 6 in [62]) the image of Aut(X) under the injective homomorphism is

Isom(H2(X;Z))(Hodge eff), the group of isometries that are both Hodge and

effective. This means that for a given ϕ ∈ Isom(H2(X;Z))(Hodge eff), there

exists a unique automorphism f ∈ Aut(X) such that ϕ = f∗. Furthermore, the

subgroup Isom(H2(X;Z))(Hodge eff.) ∼= Aut(X) sits inside the group of Hodge

isometries, which have the form

Isom (H2(X;Z))(Hodge) ∼= {±id.} ×
[
W (2)(SX)⋊Aut(X)

]
. (3.6)

For K3 surfacesX andX ′ there is an isomorphism of surfaces f : X −→ X ′ if

and only if there is a Hodge and effective isometry ϕ : H2(X;Z) −→ H2(X
′;Z).

In this case, f∗ = ϕ.

See the mathematics literature (such as [62]) or [26] for the definition of Hodge and

effective isometries. W (2)(SX) is the group generated by reflections associated with alge-

braic curves of self-intersection (−2) in the Neron-Severi lattice SX . Section 2.2 of [26]

explains the structure of the group (3.6) in more detail. Another version of the theorem,

which is equivalent to version 2, is also useful:

Global Torelli Theorem, version 3 (e.g., Chapt. 10 of [66]): For a pair of

K3 surface X and X ′, there is an automorphism f : X −→ X ′, if and only if

there is a Hodge isometry ϕ : H2(X;Z) −→ H2(X
′;Z). Furthermore, in this

case, ϕ−1 · f∗ ∈ Isom(H2(X;Z))(Hodge). When it is known that ϕ maps Pos+X
to Pos+X′ , then ϕ−1 · f∗ ∈ Isom+(H2(X;Z))(Hodge), the index 2 subgroup of

Isom(H2(X;Z))(Hodge) obtained by dropping {±id.} from (3.6).

14In this version of the Torelli theorem, we included a statement that there are just two and not more

than two connected components in the moduli space of marked K3 surfaces N . This statement comes from

the fact that the full Isom+(H2(X;Z)) subgroup of Isom(H2(X;Z)) is realized as the monodromy group on

H2(X;Z) for a given K3 surface X through continuous complex structure deformations [67–69]. See [66]

Chapt.10 for more detailed list of references.
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Having seen these three versions of the Torelli theorem, we may now use the perspec-

tive of version 3 of the global Torelli theorem to elucidate the meaning of the expression

‘generically injective’ used in version 1. Suppose that the period map P : No −→ D re-

stricted to one of the two connected components maps two points [(X,ϕ)] and [(X ′, ϕ′)] in

No to one and the same point [ω] ∈ D. That is, both [(X,ϕ)] and [(X ′, ϕ′)] are contained

in P−1([ω]) ∩ No. It then follows from version 3 of the global Torelli theorem that there

exists an isomorphism of surfaces f : X −→ X ′, because ϕ
′−1 · ϕ : H2(X;Z) −→ ΛK3 −→

H2(X
′;Z) is a Hodge isometry. This means that a marked K3 surface (X,ϕ′ · f) is equiva-

lent to the marked K3 surface [(X ′, ϕ′)] in No. Thus, if P : [(X0, ϕ0)] 7−→ [ω0] = ϕ0([ΩX ]),

then all elements of P−1([ω0]) ∩ No can be written in the form of [(X0, ϕ)] with some

marking ϕ.

Deviation from the injectiveness of the period map P|No therefore corresponds to the

variety of marking ϕ allowed for P−1([ω0]) ∩No. The remaining variety for ϕ can also be

read out from the version 3 of the global Torelli theorem. Since [(X,ϕ)] belongs to the

same connected component as [(X,ϕ0)], ϕ
−1
0 ·ϕ ∈W (2)(SX)⋊Aut(X), and conversely, any

ϕ satisfying this condition gives rise to [(X,ϕ)] ∈ P−1([ω0]) ∩ No. Therefore, reminding

ourselves of the definition of the equivalence relation between (X,ϕ) and (X,ϕ0) in the

moduli space N , we see that

P−1([ω0]) ∩No =
{
[(X,ϕ)]

∣∣∣ ϕ ∈ ϕ0 ·
[
W (2)(SX)⋊Aut(X)

]
/Aut(X)

}
. (3.7)

For a general (non algebraic) complex K3 surface X, the Neron-Severi lattice SX is

trivial, ρX = 0, so that W (2)(SX) is the trivial group. In this case, there is only one

element [(X,ϕ)] ∈ No that is mapped to a given point [ω] ∈ D, that is, the period map

P : No −→ D is injective there. Since only a measure-zero subspace of N is occupied

by algebraic K3 surfaces, the period map is indeed generically injective. For an algebraic

K3 surface X, however, the group W (2)(SX) can be non-trivial, and there can be multiple

points in the inverse image of the period map, as in (3.7). Since our interest in this article

is primarily in K3 surfaces X with large Picard number, ρX = rank(SX), this non-injective

behaviour of the period map is of particular importance.

Although we have seen above that any two points in N that are mapped to the same

point in D are represented by a common K3 surface X, there are more points in N that

share the same K3 surface X. To see this, remember that the Isom+(ΛK3) subgroup of

Isom(ΛK3) acts on individual connected components of N , that is, No and No′ , as well as on

the period domain D. If there is an isometry g ∈ Isom+(ΛK3) mapping [ω] ∈ D to [ω′] ∈ D,

then it also maps P−1([ω])∩No to P−1([ω′])∩No. For any element in these inverse images,

[(X,ϕ)] ∈ P−1([ω])∩No and [(X ′, ϕ′)] ∈ P−1([ω′])∩No, ϕ
′−1·g·ϕ : H2(X;Z) −→ H2(X

′;Z)

is a Hodge isometry, and hence the version 3 of the global Torelli theorem implies that there

is an isomorphism of surfaces f : X −→ X ′. Thus, for all the points [ω] ∈ D in a given orbit

of Isom(ΛK3), all the points in N mapped to this orbit can be represented by a common

K3 surface X and some markings. Conversely, if two points [X,ϕ] and [(X,ϕ′)] in N share

the same K3 surface, then ϕ′ · ϕ−1 is an isometry of ΛK3 mapping the image of [(X,ϕ)]

to that of [(X,ϕ′)]. Therefore, the Isom(ΛK3)-orbit decomposition of the period domain,
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Isom+(ΛK3)\D is equivalent to the classification of K3 surfaces modulo isomorphism of

surfaces.

Finally, let us take a closer look at how the Isom(ΛK3) symmetry group acts on the

moduli space N or No. Its action on D is quite simple, but its action on No has a

more interesting structure, and we will need that in section 3.2. When an element g ∈
Isom+(ΛK3) maps [ω] ∈ D to another element [ω′] 6= [ω], the fibres of those two points

under the period map can be described by {[(X,ϕ)] | ϕ ∈ ϕ0·[W (2)(SX)⋊Aut(X)]/Aut(X)}
and {[(X,ϕ′)] | ϕ′ ∈ ϕ′

0 · [W (2)(SX)⋊Aut(X)]/Aut(X)} for some ϕ0 and ϕ
′
0, respectively.

15

The action of g establishes a one-to-one correspondence between the two fibres by setting

ϕ′ = g · ϕ.
The stabilizer subgroup of [ω] ∈ D in Isom+(ΛK3) is

G[ω] = ϕ0 ·
[
W (2)(SX)⋊Aut(X)

]
· ϕ−1

0 ⊂ Isom+(ΛK3). (3.8)

This stabiliser group acts naturally on the inverse image of [ω], given in (3.7).

3.2 When are two elliptic fibrations considered “different” in F-theory?

In the description of complex structure moduli of K3 surfaces, one can think of several

different moduli spaces in mathematics, such as N (or No) (the moduli space of marked

K3 surfaces), D (the period domain) and Isom+(ΛK3)\D (the moduli space of K3 surfaces

modulo automorphism). These different moduli spaces contain different information and

are mutually related in the way we have reviewed above. When we refer to “the moduli

space” in string theory applications, however, we want it to parametrize vacua (hopefully

with less redundancy in the parametrization, and at least with information on the redun-

dancy), and use it as the target space of a non-linear sigma model to describe light degrees

of freedom.

It is considered that, in M-theory compactification on Y = S1 × S2 with both S1 and

S2 being K3 surfaces, the moduli space (in the absence of four-form flux) is given by16

[
Isom+(Λ

(S1)
K3 )× Isom+(Λ

(S2)
K3 )

]
\
[
D(S1) ×D(S2)

]
. (3.9)

It makes perfect sense to take a quotient by the symmetry group Isom+(ΛK3), because two

marked K3 surfaces [(X,ϕ)] and [(X,ϕ′)] in No which differ only in the markings ϕ and ϕ′

should not be considered as different compactifications in 11-dimensional supergravity.17

15Here, ϕ′
0/∈ϕ0 · [W (2)(SX)⋊Aut(X)].

16We postpone a slightly more refined argument for the choice of the quotient group to section 4.2.2, for

M-theory moduli space as well as for F-theory. The essence of the argument in this section remains valid

after section 4.2.2.
17Homogeneous coordinates can be introduced to the period domain D by taking a basis {ΣI}I=1,··· ,22 in

the lattice ΛK3. The period integrals ΠI :=
∫

ΣI
ω can be used as the coordinates. With these coordinates,

the Kähler potential (obtained by dimensional reduction) is given by

K ∝ − ln

[
∫

Y

(ΩS1 ∧ ΩS2) ∧
(

ΩS1 ∧ ΩS2

)

]

= − ln
[

Π
(S1)
I CIJΠ

(S1)
J

]

− ln
[

Π
(S2)
I CIJΠ

(S2)
J

]

, (3.10)

where CIJ is the inverse of the intersection form of ΛK3 in the basis {ΣI}I=1,··· ,22. The action of the

Isom+(Λ
(S1)
K3 ) × Isom+(Λ

(S2)
K3 ) group on the Π

(S1,2)

I leaves the Kähler potential unchanged, because it pre-

serves the intersection form.
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Since F-theory compactification on an elliptic-fibred Calabi-Yau fourfold is regarded as a

special case of M-theory compactification on a Calabi-Yau fourfold, this moduli space can

be regarded as a reliable place to start for F-theory as well.

The moduli space of F-theory compactification on a K3 surface X (where we require

that there is an elliptic fibration πX : X −→ P1 and a section σ : P1 −→ X) without any

flux is given by

Mcpx
F ;K3 :=

[
Isom+(ΛK3)

]
\
{
(φU , [ω]) | [ω]|φU (U) = 0

}
/ {±id.U} , (3.11)

where [ω] ∈ D as before, and φU : U →֒ ΛK3 is an embedding of the hyperbolic plane

lattice U . It is a popular way to make sure that there is an elliptic fibration by specifying

a sublattice (which is isomorphic to U) generated by algebraic cycles corresponding to the

elliptic fibre and the section (e.g. [26, 70]). A remaining subtlety can arise in the choice

of the quotient group. The group Isom+(ΛK3) acts on D and embeddings of U (while

preserving [ω]|φU (U) = 0), while {±id.U} is a subgroup of Isom(U) ∼= Z2×Z2 (see section 2

of [26]), and acts on embeddings φU : U →֒ ΛK3 from the right by changing φU to ±φU . We

will see shortly that this is the right choice of the quotient group. Once this statement is

accepted, then it wouldn’t be difficult to accept the following: the moduli space of F-theory

compactification on Y = X × S (where X has an elliptic fibration as before) is given by

Mcpx
F ;K3 ×

(
Isom+(Λ

(S)
K3 )\D(S)

)
. (3.12)

Now, in order to justify the statement (3.11), we need to understand the spaceMcpx
F ;K3

better. It is often a good strategy in understanding a space M to construct a map f :

M −→ B to some simple space B, and study how the “fibres” f−1(b) ⊂ M change with

b ∈ B. First consider a projection

fgt[ω] :Mcpx
F ;K3 −→ Isom+(ΛK3)\ {φU : U →֒ ΛK3} / {±id.U} (3.13)

by throwing away the information of [ω] fromMcpx
F ;K3. The base of this forgetful map, “B”,

consists of only one point: due to the uniqueness (modulo isometry) of even unimodular

lattices of signature (n, n + 16), there always exists an isometry ϕ ∈ Isom+(ΛK3) such

that either φ′U = ϕ · φU or −φ′U = ϕ · φU holds for any two embeddings φU and φ′U of

the hyperbolic plane lattice U . Thus, the whole set Mcpx
F ;K3 can be studied by looking

at the fibre over just one point in the base; that is, we can take an arbitrary embedding

φU0 : U →֒ ΛK3, and just study the fibre fgt−1
[ω]([φU0]). The fibre over this one point is

Isom(U⊕2 ⊕ E⊕2
8 )\ {[ω] ∈ DU⊥} , (3.14)

DU⊥ := {[ω] ∈ P[(φU0(U))⊥ ⊂ ΛK3] | ω · ω = 0, ω · ω > 0} . (3.15)

Therefore, the setMcpx
F ;K3 is equivalent to (3.14), the global structure of which is

Isom(U⊕2⊕E⊕2
8 )\Grpo(2; (U⊕2⊕E⊕2

8 )⊗R) ∼= Isom(U⊕2⊕E⊕2
8 )\O(2, 18;R)/ SO(2)×O(18) .

(3.16)
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This is a double cover over what we know as the moduli space of heterotic string compact-

ifications on T 2 [71] (see e.g., also section 5 of [72]),

Isom(U⊕2⊕E⊕2
8 )\Grp(2; (U⊕2⊕E⊕2

8 )⊗R) ∼= Isom(U⊕2⊕E⊕2
8 )\O(2, 18;R)/O(2)×O(18).

(3.17)

This argument almost proves18 that we can take Mcpx
F ;K3 in (3.11) as the classification

scheme of F-theory vacua when an elliptic fibred K3 surface is involved as part of the

compactification data.

We understand that the remaining subtlety — double cover — corresponds, in F-

theory language, to a pair of (elliptic fibred) K3 surfaces X and X ′ = X where H2,0(X;C)

and H0,2(X;C) in the Hodge decomposition of H2(X;C) are identified with H0,2(X ′;C)

and H2,0(X ′;C). X and X ′ are a mutually complex conjugate pair. The difference be-

tween them is only in declaring a complex coordinate as holomorphic or anti-holomorphic,

and that should not make a difference in physics in 7+1-dimensions. Thus, even in F-

theory, the moduli space of K3 compactification to 7+1-dimensions should be (3.17), rather

than (3.16). As we proceed to consider compactifications of F-theory on Y = X × S

along with a four-form flux on Y , it does make a difference in low-energy physics in 3+1-

dimensions to take complex conjugation of X, while keeping the complex structure of S

and the flux. We therefore take (3.12) as the classification scheme for K3×K3 compactifi-

cation of F-theory for now; the Z2 quotient associated with unphysical holomorphic-anti-

holomorphic distinction will be implemented in section 4.2 after introducing fluxes.

Let us now start fromMcpx
F ;K3 in (3.11) again, and derive a useful way to look at it in

order to address the second one of the two questions raised at the beginning of this section.

Consider a projection

fgtφU
: Mcpx

F ;K3 −→ Isom+(ΛK3)\D , (3.18)

This time, we throw away the information on the embedding φU fromMcpx
F ;K3. As we have

seen in section 3.1, the “base” space of this projection, Isom+(ΛK3)\D, corresponds to the

classification of K3 surfaces modulo surface isomorphism. Thus, by studying the “fibre”

of this projection, we can find the variety of F-theory vacua that (the surface-isomorphism

class of) a K3 surface admits.

We begin this study by looking at the fibration structure of the following projection

map instead:

fgtφU
:
{
(φU , [ω]) | [ω] ∈ D, [ω]|φU (U) = 0

}
/ {±id.U} −→ {[ω] | [ω] ∈ D} = D . (3.19)

Before and after the projection, we are not taking a quotient by the symmetry group

Isom+(ΛK3) action here, which makes the problem easier to get started. For a given

[ω] ∈ D, and for any φU satisfying the condition [ω]|φU (U) = 0, φU embeds the hyperbolic

plane lattice U into S[ω] :=
[
[ω]⊥ ⊂ ΛK3

]
. That is,

fgt−1
φU

([ω]) =
{
φU : U →֒ S[ω]

}
/ {±id.U} . (3.20)

18Without microscopic foundation of F-theory, it is hard to make any precise statement about F-theory

physics directly. Here, this problem is overcome by relying on heterotic-F-theory duality.
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This means geometrically that for any one of the inverse images [(X[ω], ϕ[ω])] ∈ P−1([ω])∩
No under the period map, an embedding of the hyperbolic plane lattice into the Neron-

Severi lattice of the K3 surface X[ω], SX[ω]
, is defined:

ϕ−1
[ω] · φU : U →֒ SX[ω]

⊂ H2(X[ω];Z) . (3.21)

The inverse image P−1([ω])∩No of any given element [ω] ∈ D is described in (3.7); we can

choose an appropriate ϕ in (3.7) so that either ϕ−1 · φU or ϕ−1 · (−φU ) defines a canonical

embedding of hyperbolic plane lattice into SX[ω]
. This is a sufficient condition to construct

an elliptic fibration πX : X −→ P1 along with a zero section σ : P1 −→ X, see section 3.1

of [26] for a more detailed explanation. Each element φU in fgt−1
φU

([ω]) in (3.20) therefore

defines an elliptic fibration on X.

Let us now go back to the study of the fibre of the projection (3.18), bringing back the

quotient by Isom+(ΛK3). First of all, when an element g ∈ Isom+(ΛK3) maps [ω] ∈ D to

[ω′] := g · [ω] 6= [ω], taking a quotient does not change the fibre of the projection map. It

only establishes a one-to-one identification between the elements in the fibre fgt−1
φU

([ω]) and

fgt−1
φU

([ω′]). The stabilizer subgroup G[ω] of Isom
+(ΛK3) for [ω] ∈ D, however, can be non-

trivial, as we have seen in (3.8). We have to take a quotient of (3.20) by the stabilizer group

G[ω] in order to obtain the fibre of the projection map in (3.18) at [[ω]] ∈ Isom+(ΛK3)\D.

Therefore, we conclude that

fgt−1
φU

([[ω]]) =
[
W (2)(S[ω])⋊ ϕ0(Aut(X[ω]))

]
\
{
φU : U →֒ S[ω] ⊂ ΛK3

}
/ {±id.U} (3.22)

=
[
W (2)(SX[ω]

)⋊Aut(X[ω])
]
\
{
ϕ−1
0 · φU : U →֒ SX[ω]

⊂ H2(X[ω];Z)
}
/{±id.U}

=
[
W (2)(SX[ω]

)⋊ Isom(SX[ω]
)(Amp Hodge)

]
\
{
ϕ−1
0 · φU : U →֒ SX[ω]

}
/ {±id.U}

= J1(X[ω]) . (3.23)

As we have explained in section 3 of [26], this J1(X[ω]) corresponds to the classification

of elliptic fibrations (πX , σ) for a K3 surface X (πX : X −→ P1 along with σ : P1 −→ X

so that πX · σ = id.P1) modulo Aut(X) × Aut(P1) = Aut(X) × PGL(2;C). Therefore,

the projection map fgtφU
in (3.18) enables us to apprehend the moduli space (vacuum

classification scheme) of F-theory compactifications on K3 surface Mcpx
F ;K3 as a fibration

over Isom+(ΛK3)\D (i.e., complex structure moduli space of K3 surface modulo surface

isomorphism), with the fibre given by the J1 classification (i.e., modulo automorphism) of

elliptic fibrations.

4 A miniature landscape: F-theory on K3 × K3 with G0 = 0

4.1 J1(X) and J2(X) classification

When we classify low-energy effective theories, we normally group together theories with

the same gauge groups and matter representations first, and then pay attention to the

values of various coupling constants. Although two elliptic fibrations (πX , σ) and (π′X , σ
′)

for a K3 surface X are not regarded as the same vacuum (or the same low-energy effective
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theory) in the absence of an appropriate automorphism in Aut(X)×PGL(2;C), they might

still have the same gauge groups and matter presentations.

Corresponding to the coarse classification in terms of gauge groups and matter rep-

resentations is the J2(X) classification of elliptic fibrations on a K3 surface X. This is

close to the classification of singular fibre types, but slightly different and more suited for

physicists’ needs. As reviewed in detail in [26],

J1(X) =
[
W (2)(SX)⋊ Isom(SX)(Amp Hodge)

]
\ {U →֒ SX} / {±id.U} ,

J2(X) =
[
W (2)(SX)⋊ Isom(SX)(Amp)

]
\ {U →֒ SX} / {±id.U} . (4.1)

Here, the group Isom(SX)(Amp Hodge) is a subgroup of Isom(SX)(Amp), and hence the J2(X)

classification is obviously more coarse than the J1(X) classification.19 The J2(X) classi-

fication is equivalent to the classification of frame lattices of elliptic fibrations modulo

isometry. For an elliptic fibration π : X −→ P1 with a fibre class [F ] ∈ SX , the frame

lattice is given by

Wframe =
[
[F ]⊥ ⊂ SX

]
/ 〈[F ]〉 . (4.2)

Readers are referred to [26] for more mathematical aspects of this discussion. The frame

lattice Wframe (modulo isometry) contains all the information of 7-brane gauge groups and

representations of charged matters. Individual equivalence classes in J2(X) are referred to

as types, and those in J1(X) as isomorphism classes.

There is a systematic procedure to study the J2(X) classification for a given K3 surface

X with large Picard number ρX (see [73] or section 4 of [26]). The J2(X) classification of

elliptic fibrations has already been studied for some K3 surfaces (i.e., for some particular

choices of complex structures of K3 surface). For most generic Kummer surfaces20 X =

Km(A), for example, there are 25 different types in the J2(X) classification [74]. Roughly

speaking, this means that the compactifications of F-theory on Y = X×S withX = Km(A)

admits 25 different choices of 7-brane gauge groups and matter representations. A slightly

more special class (2-parameter family) of Kummer surfaces, X = Km(E × F ), admits

11 different types of elliptic fibrations in the J2(X) classification. Reference [73] worked

out the J2(X) classification for four attractive K3 surfaces, X[1 0 1], X[1 1 1], X[2 0 2] and

X[2 2 2] among others, and found that there are O(10 ∼ 100) inequivalent types of elliptic

fibrations in the J2(X) classification (table 3 in this article contains detailed information of

the J2(X) classification of X[1 1 1]). We also worked out the J2(X) classification partially

for another attractive K3 surface X[3 0 2] (see section4.4 of [26]) and found that there are

at least 54 inequivalent types in J2(X). Based on such an experience, it may not be too

far off the mark to guess that the attractive K3 surfaces in table 2 have O(10 ∼ 100)

inequivalent types of elliptic fibrations in the J2(X) classification.21

19The quotient group [W (2)(SX)⋊Isom(SX)(Amp)] for the J2(X) classification is equivalent to Isom+(SX)

(an index 2 subgroup of the entire isometry group of the Neron-Severi lattice).
20The Picard number of this family is ρX = 17, so that there are 3 complex structure parameters.
21A brute force calculation (or automatized/computerized calculation) following the procedure reviewed

in section4 of [26] should be able to verify or correct this statement, but this task is beyond the scope of

this article and [26].

– 21 –



J
H
E
P
0
4
(
2
0
1
4
)
0
5
0

Let us now focus on a given type of elliptic fibration in J2(X) (i.e., we focus on a

particular choice of 7-brane gauge group and matter representation) for some K3 surface

X. There can be more than one isomorphism class of elliptic fibrations in the J1(X)

classification (fine classification) that corresponds to the same type. The number of such

mutually non-isomorphic elliptic fibrations is referred to as the “number of isomorphism

classes”, or simply “multiplicity” of that type in this article. Reference [75] worked out

the multiplicity for each one of the types in J2(X) for X = Km(E × F ). There is no

theory known (at least to the authors) that computes multiplicities for any K3 surface,

and the authors of this article made an attempt at generalizing the study of [75] so the

multiplicities are estimated, if not computed, for a broader class of K3 surfaces with large

Picard number. The primary goal of section 5 of [26] is to develop a theory for this purpose.

One of the solid results obtained in [26] is that the multiplicities are at most 16 for any

type and for any one of the 34 attractive K3 surfaces that appear in table 2. For individual

attractive K3 surfaces (or for individual types of elliptic fibrations of a given attractive

K3 surface), stronger upper bounds on the multiplicity are obtained. For example, the

multiplicity is at most 2 for all types of 20 out of the 34 attractive K3 surfaces in table 2,

and furthermore, the multiplicity is 1 — any two elliptic fibrations of a given type must

be mutually isomorphic — for 10 attractive K3 surfaces among them.22 See Corollary D

in [26] for more information.

There are two remarks to be made: first, it is not guaranteed that Isom(SX)(Amp Hodge)

is always a normal subgroup of Isom(SX)(Amp). If it is, then the map from J1(X) to J2(X)

is regarded as the quotient map under the action of the quotient group

Isom(SX)(Amp Hodge)\Isom(SX)(Amp). The multiplicity of a given type is the number of

elements of the orbit under this group. When the quotient group is not a normal subgroup,

however, mutually non-isomorphic elliptic fibres do not necessarily form an orbit of a group

action.

There seems to be a correlation between the multiplicity of a given type and the Picard

number, at least among the examples that have been looked at in [26]. The multiplicities for

various types range in O(10)–O(100) for a 3-parameter family of K3 surfaces X = Km(A)

(where ρX = 17), while they range in a few-10 for a 2-parameter family of K3 surfaces

X = Km(E × F ) (where ρX = 18), and the multiplicities often become a few or even

less for many attractive K3 surfaces (ρX = 20) appearing in table 2. This is far from

a rigorous mathematical statement, and in particular, it is conceivable that the physics-

motivated condition (2.25) has extracted biased samples from all the attractive K3 surfaces.

For a study of supersymmetric landscapes, however, it is mandatory to set upper bounds

like (2.25) on the flux quanta. The 34 attractive K3 surfaces are then our sample of interest

(see also section 5 for a related discussion), and this bias is not a problem at all.

4.1.1 Frame lattice, Mordell-Weil group and U(1) charges

Before proceeding to section 4.2, we take a moment to give a detailed account of how

physics information is read out from the frame lattice (4.2). This is largely a well-known

22 They are X[1 0 1], X[1 1 1], X[2 0 1], X[2 1 1], X[3 0 1], X[3 1 1], X[4 0 1], X[5 1 1], X[6 1 1] and X[3 1 2].

– 22 –



J
H
E
P
0
4
(
2
0
1
4
)
0
5
0

subject, and this section is primarily meant to be a review or reading guide for section 4

of [26]. The details of the following presentation are not directly relevant to the rest of this

article. However, this section also contains a generalization of the discussion in [76] in a

way applicable to K3 surfaces away from the stable degeneration limit.

The Cartan (maximal torus) part of 7-brane gauge fields in F-theory originates from

the three-form field of 11-dimensional supergravity. These fields correspond to fluctuations

of the three-form field in the form of Aa ∧ ωa, where Aa is a vector field in the low-energy

effective theory, and ωa is chosen from

F 1/F 0 ∼= H1(B3;R
1πY ∗Z) ; (4.3)

H2(Y ;Z) for an elliptic fibred Calabi-Yau fourfold Y with πY : Y −→ B3 has a filtration

H2(Y ;R) = F 2 ⊃ F 1 ⊃ F 0 (4.4)

and

F 2/F 1 ∼= H0(B3;R
2πY ∗R) = H0(B3;R), (4.5)

F 1/F 0 ∼= H1(B3;R
1πY ∗R), (4.6)

F 0 ∼= H2(B3;R
0πY ∗R) = H2(B3;R). (4.7)

This — choosing ω from F 1/F 0 — is because two-forms purely in the base, F 0, correspond

to scalars (or two-forms) in the effective theory in 3+1-dimensions, and those containing

two-forms in the elliptic fibre, F 2/F 1, to a part of metric in 3+1-dimensions [15]. The total

rank of the 7-brane gauge group in the effective theory is therefore h2(Y )−h2(B3)−1 [31].

In the case of πY : Y = K3×K3 −→ P1 ×K3, the rank is 44− 23− 1 = 20.

In the case of Y = X×S with an elliptic K3 surface X, F 1/F 0 can simply be identified

with

F 1/F 0 ∼= H1(P1;R1πX∗R) . (4.8)

The condition that ωa be within F 1 ⊂ F 2 = H2(X;R) corresponds to ωa ∈ [[F ]⊥ ⊂
H2(X;R)]. One can see that (F 1/F 0) ∼= (TX ⊕ Wframe) ⊗ R, because i) H2(X;R) =

(TX ⊕ SX)⊗ R, and ii) the generator of F 0 ∼= H2(P1;R) = R is Poincaré dual to the fibre

class [F ] of the elliptic K3 surface X, and iii) also because of the definition of the frame

lattice (4.2). For a K3 surface X with ρX = 20, rank-2 U(1) gauge fields are associated

with TX ⊗ R, while the remaining 18 Cartan U(1)’s are related to Wframe ⊗ R.

In the presence of four-form flux purely of G1 type, the two U(1) vector fields associated

with TX ⊗ R become massive by a Stückelberg mechanism. At the level of analysis in

this article (where non-perturbative effects are not considered, and stabilization of Kähler

moduli is also ignored), those two U(1) symmetries remain in the effective theory as global

symmetries.

The frame lattice is negative definite. As we always assume that the elliptic fibration

πX : X −→ P1 has a section σ : P1 −→ X, we can identify a sublattice of SX isomorphic

to Wframe in the case of K3 surface X; it is characterized as

Wframe∗ :=
[
(SpanZ{[F ], [σ]} ∼= U)⊥ ⊂ SX

]
, (4.9)
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the orthogonal complement of a sublattice generated by the fibre class [F ] and the section

[σ], and we call this sublatticeWframe∗ the canonical frame lattice of a given elliptic fibration

(πX , σ;X,P
1).

The non-Abelian part of the gauge group in F-theory is associated with the (Poincaré

dual of the) irreducible (−2) curves in the singular fibres of X that do not meet the zero

section [σ]. They are contained in Wframe∗ and are linearly independent. The sublattice

generated by these (−2)-curves is contained in

Wroot := SpanZ
{
D ∈Wframe∗ | D2 = −2

}
, (4.10)

the sublattice generated by norm-(−2) elements of the canonical frame lattice. But this

Wroot — called the root lattice of Wframe∗ — is also known to be the same as the sublat-

tice generated by the (−2)-curves (not meeting the section) in the singular fibres of X.23

Therefore, once an elliptic fibration is specified in the form of an embedding of the lattice

U into SX , the non-Abelian part of the gauge group can be read out by calculating the

Wroot lattice from Wframe without dealing with defining equations (or the fibration map)

of the K3 surface.

When the rank of the frame lattice Wframe∗
∼= Wframe is larger than Wroot, there is a

massless U(1) vector field in the effective theory (if there is only G1 component of the flux).

Since “W-bosons” in the non-Abelian gauge groups should not be charged under such a

U(1) symmetry, the two-form ωa for such a U(1) vector field should be in the sublattice

WU(1) :=
[
W⊥

root ⊂Wframe

]
. (4.11)

This is equivalent to an object known as the essential lattice of an elliptic surface X in

the mathematics literature [65, 77], and may also be denoted by L(X). Let {ωa} be an

independent set of generators of WU(1) = L(X). The massless U(1) vector fields in the

effective theory are obtained from

C(3) =

ρX−2−rk(Wroot)∑

a=1

Aaωa , (4.12)

where ρX − 2 = rk(Wframe∗).
24 Theorem 1.3 in [77] states that the relation between the

Mordell-Weil group MW (X) and Wframe of an elliptically fibred surface is as follows:

MW(X) ∼= NS(X)/[U ⊕Wroot] ∼=Wframe/Wroot . (4.13)

Thus, the rank of Mordell-Weil lattice is the same as rank(WU(1)), the number of massless

U(1) vector fields in the effective theory (when G1 6= 0, and G0 = 0), and serves the

23To see this, suppose that D is a generator of Wroot, i.e., D ∈ W and D2 = −2. Then either D or −D

corresponds to a class containing an effective divisor (curve) due to the Riemann-Roch theorem (Lemma

2.2 in section 1 of [62]), and secondly, it should be mapped down to a point in the base space P1 of the

elliptic fibration, because the effective divisor in Wframe∗ does not intersect with the fibre class. Therefore,

it has to be contained in some singular fibres. The Wroot lattice is attributed purely to singular fibres, not

to any other sort of non-trivial sections of the elliptic fibration.
24The ωa are not necessarily Poincaré dual to effective curves. This does not pose a problem as we only

have to carry out a dimensional reduction to obtain their physics properties.
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purpose of counting degrees of freedom [31]. It should be remembered, though, that the

U(1) vector fields are directly associated with two-forms in F 1, and hence in Wframe, in

physics. The connection with the Mordell-Weil group is only through an extra theorem in

mathematics [65, 77].25 To go beyond the degree-of-freedom counting in [31], and extract

more physics information, WU(1) lattice is the right object to deal with, as will be clear in

the following discussion.

A preceding attempt of extracting more physics data, matter representations in F-

theory compactifications on K3 surfaces in particular, has been made in [76]. The discussion

in [76] leaves room for further sophistication in that

• only the stable degeneration limit of K3 surface was considered and, instead of a K3

surface, rational elliptic surfaces (X =dP9) were used for the analysis. This means

that that H2(X;Z) = SX , and the transcendental lattice is trivial. That is now

different for a K3 surface.

• The primary interest in [76] was to keep track of matter representations under the

non-Abelian part of the gauge group. But one may also be interested in classifying

matter representations using not just non-Abelian charges but also massless (as well

as global) U(1) charges. As we will see in section 4.3, it is not rare among attractive

K3 surfaces that WU(1) is non-empty.

Thus, a revised version of the discussion in [76] is provided in the following, using the

lattice-theory language that has already been explaining in this section.

Obviously we can think of (not necessarily light) matter fields originating from “some-

how quantizing” an M2-brane wrapped on a cycle in U⊕2 ⊕ E⊕2
8
∼= [U⊥

∗ ⊂ H2(X;Z)].

Their representations under the massless gauge group associated with two-forms Wgauge :=

Wroot ⊕WU(1) (resp. under the symmetry group associated with Wgauge ⊕ TX) should be

specified by their weights, elements in the dual space W ∗
gauge := Hom(Wgauge,Z) (resp.

W ∗
gauge ⊕ T ∗

X). Any quantized states arising from an M2-brane wrapped on a two-cycle

in [U⊥
∗ ⊂ H2(X;Z)] ∼= U⊕2 ⊕ E⊕2

8 are in the same weight, and the weight is deter-

mined by the pairing between the divisors in Wgauge (resp. Wgauge ⊕ TX) and the two-

cycle. The collection of weights realized in this way forms a sublattice of the weight

lattice W ∗
gauge (resp. W ∗

gauge ⊕ T ∗
X). Let Gmatter (resp. G̃matter) be the image of this sub-

lattice in the quotient space GWgauge = W ∗
gauge/Wgauge (resp. (W ∗

gauge/Wgauge) × GTX
).

Gmatter (resp. G̃matter) is referred to as the N -ality of a given effective theory. Remem-

bering that the unimodular lattice U⊕2 ⊕ E⊕2
8 is an overlattice of Wframe∗ ⊕ TX , and that

Wgauge ⊂Wframe∗ ⊂W ∗
frame∗ ⊂Wgauge, one finds an exact sequence

0 −→ (Wframe∗/Wgauge) −→ G̃matter −→ ∆ −→ 0 , (4.14)

25If we are to exploit this connection, the narrow Mordell-Weil latticeMW (X)0 will be a more appropriate

object than MW (X). MW (X)0 is defined as the subgroup of MW (X) that consists of sections of an elliptic

fibration (πX , σ;X,P1) that cross singular fibres only through the (−2) curves meeting the zero section σ,

rather than through (−2) curves generating A–D–E root lattices in Wroot. Theorem 8.9 in [77] states that

the narrow Mordell-Weil lattice is isomorphic to WU(1) = L(X) as an Abelian group, and the height pairing

of MW (X)0 (positive definite) is precisely the intersection form of L(X) (negative definite) times (−1).
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where ∆ is the diagonal subgroup of GSX
× GTX

∼= GWframe∗
× GTX

. This characterizes

the N -ality of matter representations G̃matter under the symmetry group. For definitions

of lattice theory jargon as well as reviews on background material, see e.g., [26]. If we are

to ignore the U(1) symmetry charges associated with the vector fields from Tx (which are

not massless in the presence of G1 type flux), then the N -ality is given by

0 −→ (Wframe∗/Wgauge) −→ Gmatter −→ [(W ∗
frame∗/Wframe∗) ∼= GSX

] −→ 0 . (4.15)

The matter fields in Wframe∗/Wgauge form a subgroup in Gmatter, which means that in-

teractions among these fields must be closed within themselves. Techniques to calcu-

late Wframe∗/Wgauge as well as GSX
∼= ∆ are presented in [26], section 4. Note that

W ∗
frame∗ ⊂W ∗

gauge is now regarded as the kernel of

[W ∗
gauge = Ext0(Wgauge,Z)] −→ [Ext1(Wframe∗/Wgauge,Z) =W ∗

gauge/W
∗
frame∗] , (4.16)

rather than the kernel of

[W ∗
root = Ext0(Wroot,Z)] −→ [Ext1(Wframe∗/Wgauge,Z) ∼= Tor(MW (X))] (4.17)

as presented in [76]. This difference from [76] is due to the generalization from the stable

degeneration limit (rational elliptic surface) to K3 surfaces and the inclusion of information

on Abelian charges of the matter fields. It is thus best for physics purposes to extract the

information of an elliptic fibration in the form of the sublattice Wgauge and the quotient

Wframe∗/Wgauge. Consequently. computation results in [26] are presented in this way.

Explicit examples will help understand the abstract theory above. In this article,

we only show table 3, more examples are found in [26]. For an attractive K3 surface

X = X[1 1 1] (often denoted also byX3), which has 6 different types of elliptic fibrations, the

Mordell-Weil group has been computed for any one of these types (see table 1.1 of [73]). It is

certainly well-motivated to study Mordell-Weil groups of elliptic fibrations in mathematics,

to begin with, and decompose them into their free part and torsion part. However, more

suitable for physicists’ needs is to extract information from Wframe∗ in the form of Wgauge,

(Wframe∗/Wgauge) and Gmatter. The subtle differences between them should be visible in

the examples in table 3.

When we employ the expansion in the form of (4.12), the gauge kinetic term of the

vector fields on S × R3,1 is given by

∝ −
∫

R3,1

d4x

∫

S
d4y
√
g(y)M4

∗

(
T−1
R trR [FmnF

mn]− 2(ωa, ωb)F
a
mnF

b
mn

)
; (4.18)

the normalization of the second term is set relatively to that of the first term, so that the

maximal torus part of the non-Abelian components also have the same normalization26 as

26When the maximal torus part of a non-Abelian An−1 component is expanded as C(3) =
∑n−1

a=1 CaA
a,

with Aa being R-valued vector fields, then this corresponds to diag(−A1, A1−A2, · · · , An−2−An−1, An−1)

in the fundamental (n-dimensional) representation of SU(n), since an M2-brane wrapped on Cb — usually

assigned to the (b, b + 1) entry of the n × n matrix representation — should have a covariant derivative

involving Ab−1−2Ab+Ab+1. Then T−1
n trn

[

(diag(−F 1, F 1 − F 2, · · · , Fn−1))2
]

= 4[(F 1)2+· · ·+(Fn−1)2]−
4[F 1F 2 + · · ·+ Fn−2Fn−1] = −2(Ca, Cb)F

a
mnF

b
mn.
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Wgauge MW Wframe∗/Wgauge

GWgauge
:=W ∗

gauge/Wgauge Gmatter :=W ∗

frane∗/Wgauge

A2E8E8 {1} {1}
Z3 〈a3〉 Z3 〈a3〉

A2D16 Z2 〈sp〉 Z2 〈sp〉
Z3 〈a3〉 × Z2 〈sp〉 × Z2 〈sp〉 Z3 〈a3〉 × Z2 〈sp〉

D10E7(−6) Z 〈(sp, 0,56)〉 × Z2 〈(sp,56, 0)〉 Z2 〈(sp, 0,56)〉 × Z2 〈(sp,56, 0)〉
(Z2 〈sp〉 × Z2 〈sp〉)× Z2 〈56〉 × Z6 〈56/3〉 Z2 〈(sp,56, 0)〉 × Z6 〈(sp, 0,56/3)〉

A17(−6) Z 〈(3a18,56)〉 × Z3 〈(0, 2 · 56)〉 Z6 〈(3a18,56)〉
Z18 〈a18〉 × Z6 〈56/3〉 Z3 〈(6, 0)〉 × Z3 〈(0, 2)〉 × Z2 〈(9, 3)〉

E6E6E6 Z3 〈(1, 1, 1)〉 Z3 〈(1, 1, 1)〉
Z3 〈27〉 × Z3 〈27〉 × Z3 〈27〉 Z3 〈(1, 1, 1)〉 × Z3 〈(0, 2, 1)〉

A11D7 Z4 〈(3a12, sp)〉 Z4 〈(3a12, sp)〉
Z12 〈a12〉 × Z4 〈sp〉 Z4 〈(3a12, sp)〉 × Z3 〈(4a12, 0)〉

Table 3. The N -ality Gmatter ⊂ GWgauge
of the six different types of elliptic fibrations in J2(X)

for an attractive K3 surface X = X3. In this table, one can confirm that i) (Wframe/Wgauge) ⊂
Gmatter ⊂ GWgauge

, ii) MW ∼= Wframe∗/Wroot −→ (Wframe∗/Wgauge) is a quotient, and iii) the

quotient of (Wframe∗/Wgauge) →֒ Gmatter is always GTX
∼= Z3 of the attractive K3 surface X3. In

the 3rd and 4th entries, the generators of the rank-1 lattice (−6) are denoted by 2 ·56, because the
generator is that of the weight 2 · 56 in E∗

7 , when this rank-1 lattice is regarded as [E⊥

6 ⊂ E7].

the Abelian components given by the intersection form on the K3 surface X. T−1
R trR[· · · ]

is the ordinary convention adopted for non-Abelian gauge theories. The gauge coupling

constant27 of the massless U(1) vector fields is given by the opposite of the intersection

form on the essential lattice L(X) = WU(1), −(ωa, ωb) = −
∫
X ωa ∧ ωb, which is equivalent

to the (positive definite) height pairing of the narrow Mordell-Weil lattice MW (X)0.

4.2 Moduli space of F-theory with flux

4.2.1 Subspace of K3 moduli space with a given Picard number

The discussion in sections 2.1 and 2.2 centres on (pairs of) attractive (ρ = 20) K3 surfaces,

while that of sections 3 and 4.1 is applicable for K3 surfaces with any Picard number ρ.

Thus all the statements in sections 3 and 4.1 are applicable to the special cases treated

in sections 2.1 and 2.2. As a warming up for the discussion in section 4.2.2 and later,

however, let us first elaborate a little more about the relation between the characterization

of attractive K3 surfaces in terms of (2.7), (2.8), (2.9) and the complex structure moduli

space Isom+(ΛK3)\D. This is only to repeat material presented in [18, 58, 59, 78], apart

from the purpose of setting up notations that we need later.

27Note that this kinetic term most likely corresponds to the one renormalized at the Kaluza-Klein scale,

since this is obtained from a simple dimensional reduction (truncation) of 11-dimensional supergravity on a

flat spacetime, whose infrared physics (especially when it comes to renormalization) is quite different from

what we are really interested in.
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Let us first define a pair of sublattices (T[ω], S[ω]) for [ω] ∈ D as

S[ω] :=
[
ω⊥ ⊂ ΛK3

]
, T[ω] :=

[
S⊥
[ω] ⊂ ΛK3

]
. (4.19)

These two sublattices are mutually orthogonal complements in ΛK3 (which also means that

they are primitive sublattices of ΛK3). Thus, one can define a map

D ∋ [ω] 7→ (T[ω], S[ω]) ∈ {(T, S)| mutually orthog. sublattices of ΛK3} =: C . (4.20)

C is further decomposed into Cρ with ρ = 0, 1, · · · , 20 where T[ω] and S[ω] have signature

(2, 20−ρ) and (1, ρ−1), respectively, and others which we are not interested in.28 D is also

decomposed into Dρ with ρ = 0, · · · , 20, where Dρ is the fibres over Cρ. Each irreducible

component of the fibres is of complex dimension 20− ρ. The group Isom+(ΛK3) acts also

on the Cρ, and the action on Dρ and Cρ commutes with the map introduced above.

The Theorem 2.10 of [78] states that there is a map that is both injective and surjective

between Isom+(ΛK3)\Cρ and the classification of even lattice T of signature (2, 20 − ρ)

modulo isometry, if ρ ≥ 12 (which comes from a condition rank(T ) ≤ rank(S) − 2). In

the case of ρ = 20, Isom+(ΛK3)\Dρ=20 −→ Isom+(ΛK3)\Cρ=20 (or, equivalently, Dρ=20 −→
Cρ=20) is surjective29 and the fibre consists of 2 elements; they correspond to the two

different choices of an orientation in T[ω] ⊗ R that turns it into a complex line [ω] ∈
ΛK3 ⊗C. Thus, the scan over even lattices of signature (2, 0) with orientation in the basis

— the scanning in [18] and in sections 2.1 and 2.2 — is in one-to-one correspondence with

Isom+(ΛK3)\Dρ=20 [18]. Therefore, the entries in table 2 are regarded as a subset of
[
Isom+(Λ

(X)
K3 )\D(X)

ρ=20

]
×
[
Isom+(Λ

(S)
K3 )\D

(S)
ρ=20

]
, (4.21)

specified by the condition (2.25).

4.2.2 Moduli space in the presence of flux

Moduli spaces such as (3.9), (3.11), (3.12) arise from compactifications of M/F-theory

without flux. Let us now move on formulate the moduli spaces for compactifications

including fluxes, paying close attention to the choice of the quotient group which should

tell us when a pair of vacua should be regarded the same in physics and when as distinct.

To get started, let us return to M-theory compactification on Y = S1 × S2 down to

2+1-dimensions. Remembering that the moduli space was (3.9) because we take a quotient

by Isom+(Λ
(S1)
K3 )× Isom+(Λ

(S2)
K3 ) in order to reduce the unphysical difference in the choice

of marking, we claim that the complex structure moduli space30 of compactifications on

28Either T[ω] or S[ω] contains all three positive directions in such cases. They are not in the image of D,

however.
29The original proof of surjectivity of the map from Isom+(ΛK3)\Dρ=20 to the set of even lattices of

signature (2, 0) with orientation in [61] was to show that, for any even (2, 0) lattice with orientation, T or, a

K3 surface can be constructed whose transcendental lattice with an oriented basis becomes the even (2, 0)

lattice T or.
30There is nothing wrong to introduce the flux G(4) also in H4(S1;Z)⊗H0(S2;Z)⊕H0(S1;Z)⊗H4(S2;Z)

in M-theory compactifications down to 2+1-dimensions, where we do not have to preserve SO(3, 1) Lorentz

symmetry. Strictly speaking, H2,2(Y ;R) in this equation should be replaced by its image under the marking.

We do not try to be precise beyond our need.
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Y = S1 × S2 in the presence of 4-from flux should be given by the quotient space of

{(
[ω1], [ω2], G

(4)
) ∣∣∣ [ωi] ∈ D(Si), [G(4)] ∈

(
Λ
(S1)
K3 ⊗ Λ

(S2)
K3

)
∩H2,2(Y ;R)

}
(4.22)

by31,32

Γ = Z2 〈c.c.〉 × Z2 〈exch12〉⋉
[
Isom+(Λ

(S1)
K3 )× Isom+(Λ

(S2)
K3 )

]
, (4.23)

where exch12 exchanges S1 and S2, and c.c. denotes complex conjugation of the entire

Y = S1 × S2. As stated at the end of section 2.1, a pair of descriptions related by

Z2 〈c.c.〉 × Z2 〈exch12〉 should not be regarded distinct vacua in physics.

This moduli space has a number of disconnected components corresponding to topo-

logical choices of the four-form flux. For non-trivial fluxes, some moduli have masses, and

such connected components of the moduli space have reduced dimensions. Thus, this mod-

uli space should be that of effective theories below the mass scale of stabilized moduli,33

and can be used at least for the purpose of parametrizing/counting vacua.34

It is instructive to use the landscape of vacua already shown in table 2, where G0 = 0,

to see what the isolated (completely stabilized) components of this moduli is like. Al-

ready the table serves as the list of quotient of D
(S1)
ρ=20 × D

(S2)
ρ=20 by the group (4.23). The

rest is to work out the number of different choices of fluxes G(4) = G1 (or equivalently

the number of different choices of γ) modulo the action of the residual symmetry in the

group (4.23). Written in the second to last column of table 2 is the number of different

γ modulo the residual symmetry in Z2 〈c.c.〉 × Z2 〈exch12〉. Assuming further that all of

the Isom(TS1)
(Hodge) × Isom(TS2)

(Hodge) ∼= Zm1 × Zm2 (m1,2 = 2, 4, 6) symmetries of the

transcendental lattices TS1 and TS2 can be lifted to isometries of the entire lattice ΛK3,

however,35 all the γ’s are equivalent for all the entries, except in two entries marked by

∗ in the table, where there are two inequivalent values of γ. Thus, we conclude — under

this assumption — that the landscape of M-theory compactification on Y = S1 × S2 with

a four-form flux purely of type G1 and completely stabilized complex structure moduli

consists 1× 64 + 2× 2 = 68 vacua.

Let us now turn to F-theory and try to figure out the moduli space for F-theory

compactifications on elliptically fibred X × S, with a four-form flux preserving SO(3, 1)

symmetry. From the experience so far, it is natural to consider that the moduli space is

31Note that Z2 〈exch12〉 in the modular group Γ also acts on the Kähler moduli.
32To be more precise, we only know that the true modular group should contain this Γ in (4.23) as

a subgroup. To draw an analogy, T 2 × T 2 × · · · compactifications of type II string theory has a larger

duality group than just SL(2;Z)× SL(2;Z)× · · · . The same comment applies also to the choice of modular

group (4.26) for F-theory.
33In the case of type IIB/F-theory compactifications, the mass scale is typically M3

KK/M
2
str [13].

34In order to use this as the target space of a non-linear sigma model below the mass scale of the

stabilized moduli, one has to study corrections to the metric (Kähler potential) on moduli space. Note

that the classification of matter representations in section 4.1.1 includes information on stringy states, and

hence is not a classification of effective field theories below the scale of moduli masses. Note also that the

restricted moduli space M∗ to be introduced in section 5.4 should be regarded more as a mathematical

(rather than physical) object on which the ρind distribution is presented.
35This assumption is satisfied, if pS : Isom(SS1,2) −→ Isom(q1,2) is surjective. It is known that this is the

case for some K3 surfaces with large Picard number. See [26] for more information.
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given by

Γ\
{(

[ωX ], [ωS ], G
(4), φU

) ∣∣∣ G(4) ∈ L,
}
/{±id.U} , (4.24)

where ([ωX ], [ωS ]) ∈ D(X) × D(S), φU : U →֒
[
[ωX ]⊥ ⊂ ΛK3

]
, and the four-form flux G(4)

is in

L :=
([
φU (U)⊥ ⊂ Λ

(X)
K3

]
⊗ Λ

(S)
K3

)
∩ (4.25)

[
ϕ[ωX ](H

2,0(X[ωX ];C))⊗ ϕ[ωS ](H
0,2(S[ωS ];C)) + h.c.

+ϕ[ωX ](H
1,1(X[ωX ];R))⊗ ϕ[ωS ](H

1,1(S[ωS ];R))
]
,

where (X[ωX ], ϕ[ωX ]) and (S[ωS ], ϕ[ωS ]) are either one of two inverse images of [ωX ] and [ωS ],

respectively, under the period map. When only flux of G1 type is introduced, the last line

in L is dropped. The quotient group is given by

Γ = Z2 〈c.c.〉 × Isom+(Λ
(X)
K3 )× Isom+(Λ

(S)
K3 ) . (4.26)

The Z2 〈exch12〉 is gone at this point, because we have already set up a convention that it

is X, rather than S, whose vev of the volume of elliptic fibre goes to zero. If we are to focus

on vacua with ρX = ρS = 20, then simply the condition that ([ωX ], [ωS ]) ∈ D(X) ×D(S) is

replaced by ([ωX ], [ωS ]) ∈ D(X)
ρ=20 ×D

(S)
ρ=20.

4.2.3 How to carry out the vacuum counting for F-theory on K3×K3 in practice

As long as we consider compactifications on Y = K3 × K3 = X × S, with the elliptic

fibration implemented as πX : X −→ P1, all the 7-branes are in the form {point} × S;
in particular, there are no matter curves. Thus, all algebraic information (such as gauge

groups and matter representations) of low-energy effective theories is captured by the frame

lattice Wframe(X) and TX . This means that

∐[a b c] J2(X[a b c]) (4.27)

serves as the classification of effective theories by their algebraic information.36 Here, [a b c]

runs over the thirty-four choices of the three integers characterizing the transcendental

lattice of either S1 or S2 in table 2.

Let us take X[1 0 1] (also denoted by X4 in the mathematics literature) as the first

example. There are 13 different types of elliptic fibrations for this K3 surface [73], i.e.,

#[J2(X[1 0 1])] = 13. When this K3 surface X[1 0 1] is to be used for the X of Y = X × S
in (3.1), one can use table 2 to see that the other K3 surface S can be X[6 0 6] or X[3 0 3]

(when ND3 = 0), X[5 0 5] or X[1 0 1] (when ND3 = 4), X[4 0 4], X[4 0 1], X[2 0 2] and X[1 0 1]

(when ND3 = 8), X[3 0 3] (when ND3 = 12), X[2 0 2], X[1 0 1] (when ND3 = 16) and finally

X[1 0 1] (when ND3 = 20). There are 12 options for the choice of (S,ND3). For any one of

36It may be possible that the difference between a pair of non-equivalent embedding of TX ⊕Wframe ⊕U

into H2(X;Z) is absorbed by rescaling of U(1) charges, only to result in different gauge coupling constants

(gauge kinetic terms). We are not paying attention at this level of detail in this article, however.
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these 12 choices of (Y = X[1 0 1] × S,ND3), the stabilizer subgroup of Γ (i.e., the residual

modular group) is

Z2 〈c.c.〉 ×
[
W (2)(SX)⋊Aut(X)

]
×
[
W (2)(SS)⋊Aut(S)

]
, (4.28)

which acts on the possible choices of elliptic fibrations (φU : U →֒ SX) and flux of G1 type

(γ in table 2). This is quite a complicated problem to work out. If we are to first exploit

this remaining symmetry in Γ in (4.26) to eliminate a redundant description of elliptic

fibrations, we can use the Corollary D of [26]), which states that any one of the 13 types

of elliptic fibrations of X[1 0 1] consists of a unique isomorphism class. There is no extra

multiplicity coming from the difference between the J1(X) and the J2(X) classifications.

The Z2 〈c.c.〉 action in Γ is not necessary in eliminating redundant descriptions of elliptic

fibrations on X[1 0 1], and we can exploit this to see that the number of inequivalent choices

of the flux G(4) = G1 is not more than the numbers presented in the last column of table 2.

Furthermore, in the cases S = X[1 0 1] or X[2 0 2], we can also see that the combined

choice of flux and elliptic fibration is unique under the action of the whole group Γ because

Isom(TS)
(Hodge) ∼= Z4 and the generator of this group can be extended37 to an isometry of

H2(S;Z) for S = X[1 0 1] and X[2 0 2]. For other S, the number of non-equivalent choices of

flux and elliptic fibration combined cannot be determined without more information. We

thus conclude that for any one of the 13 types of elliptic fibrations in J2(X[1 0 1]), the total

number of inequivalent choices of (S,ND3, γ, φU ), and hence the number of inequivalent

choices of vacua, is somewhere in between 12 and 23.

The attractive K3 surface X[2 1 1] is another example for which there is a unique

isomorphism class in each type of elliptic fibration (see Corollary D of [26] or footnote 22 in

this article). Thus, for theories in the classification of J2(X[2 1 1]) in (4.27), the counting

of inequivalent vacua arises only from the choice of fluxes (γ), not in the isomorphism

classes of elliptic fibrations. Thus, for any type of elliptic fibration in J2(X[2 1 1]), the

number of inequivalent vacua lies somewhere in between 9 and 18. These statistics originate

from (S,ND3) being (X[4 2 2], 10), (X[2 1 1], 10), (X[2 1 1], 17), (X[6 −3 3], 3), (X[4 −2 2], 10),

(X[2 −1 1], 10), (X[2 −1 1], 17) in table 2. Note that we have exploited Z2 〈c.c.〉 to set X =

X[2 1 1] rather than X[2 −1 1].

As an example of attractive K3 surfaces where there can be multiple isomorphism

classes of elliptic fibrations of the same type, let us first consider X = X[2 2 2]. This K3

surface admits 30 different types of elliptic fibrations, #
[
J2(X[2 2 2])

]
= 30 [73]. The

number of isomorphism classes of each type can be either one or two, and it turns out

(Example J of [26]) that there is a unique isomorphism class in at least 15 out of the

30 different types. The number of remaining inequivalent choices of flux G1 ∝ γ can be

estimated as above, and it falls within 7–22, using the information in the last column of

table 2. Thus, in conclusion, at least 15 classes of effective theories in J2(X[2 0 2]) consist

of 7–22 inequivalent vacua individually, and there may be 2× (7–22) inequivalent effective

theories of a given algebraic information corresponding to any one of the remaining 15

types in J2(X[2 0 2]).

37This is because pS : Isom(SS) −→ Isom(q) is known to be surjective for S = X[1 0 1] and X[2 0 2].
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Finally, let us take a look at the cases X = X[6 0 6] and X = X[6 6 6]. For these two

attractive K3 surfaces, there is only one possible choice of (S,ND3); (S,ND3) = (X[1 0 1], 0)

and (X[1 1 1], 6), respectively. All the choices of the flux G1 ∝ γ turn out to be equivalent

under the residual W (2)(SS) ⋊ Aut(S) ⊂ Isom+(Λ
(S)
K3 ) symmetry in Γ, because of the

surjectiveness of pS : Isom+(SS) −→ Isom(q) for S = X[1 0 1] and X[1 1 1]. The number of

distinct isomorphism classes of elliptic fibrations is not more than 16 and 12 forX = X[6 0 6]

and X = X[6 6 6], respectively, for any types in J2(X) (Corollary D of [26]). Thus, for these

two attractive K3 surfaces chosen as X, the number of inequivalent vacua is bounded from

above by 16 and 12, respectively.

4.3 Sample statistics

The example-based study in section 4.2.3 indicates that each class of theories in (4.27)

consists of O(10) vacua inequivalent under the modular group Γ in (4.26). Although the

study only covers five attractive K3 surfaces X[a b c] out of thirty-four, small as well as

large a, c are covered in the five examples. We expect that an estimate of the vacuum

counting would not be different so much for the other twenty-nine attractive K3 surfaces.

This fact — the numbers of vacua in individual classes of effective theories in (4.27) are

much the same — allows us to take a short-cut approach in studying statistical distributions

of more inclusive classifications of effective theories. By more inclusive classifications, we

mean classifications of low-energy effective theories coarser than in (4.27). One might be

interested, for example, in the number of effective theories that contain a certain gauge

group G (such as SU(3)C × SU(2)L ×U(1)Y , SU(5) or SO(10)), and compare the numbers

for various choices of G. When we ask this question, we have to include all the vacua

from (4.27) containing the specified gauge group, regardless of the gauge groups in the

hidden sector. Given the fact that the number of vacua in each class of theories in (4.27)

are much the same, we can simply count the number of classes of effective theories contained

in inclusive classes of theories, because more or less “the same” multiplicity O(10) factors
out in the ratio. In this section, we take this short-cut approach in order to address three

questions of interest.

4.3.1 Statistics on 7-brane gauge groups and CP violation

7-brane Gauge Groups. It is one of the most important questions we can address

by using a toy/miniature supersymmetric landscape whether or not there are more vacua

with an SU(5) unified gauge group than those with SU(3)C ×SU(2)L×U(1)Y gauge group

that just happens to satisfy gauge coupling unification “by accident”. As is well-known, it

makes sense in the context of unified theories to focus on vacua of string theory realized as

compactifications for which the volume of internal space is parametrically larger than the

string length. This is because in SU(5) unified gauge theories, for example, the doublet-

triplet splitting problem will be too difficult to solve within string theory38 in a form other

than implementing a non-trivial line bundle (flat or non-flat) in the hypercharge direction.

The Kaluza-Klein scale has to be set at the scale of gauge coupling unification then. If it

38Imagine implementing the missing partner mechanism in string theory, for example.
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group (non-Abelian) rk 0 rk 1 rk 2 rk 3 tot.

E8+ any other 5 2 3 0 10

E7+ any other 3 5 2 0 10

E6+ any other 3 5 5 0 13

Table 4. This table shows the number of different types of elliptic fibrations in X[1 0 1], X[1 1 1],

X[2 0 2] and X[2 2 2] that contain one of IV∗, III∗ and II∗ type singular fibres, and have Mordell-Weil

lattice of a given rank. One type, where Wframe = E8 ⊕ E6 ⊕ D4 for X[2 2 2], is counted twice in

this table.

turns out, however, that there are more vacua with the SU(3)C × SU(2)L × U(1)Y gauge

group and accidental gauge coupling unification than those with SU(5) gauge group in

the landscape obtained by assuming geometric compactification, then there must be much

more SU(3)C × SU(2)L × U(1)Y vacua when we include string vacua with non-geometric

(just CFT-based) “internal space”. Therefore, it is a necessary condition that there are

more SU(5) vacua than SU(3)C × SU(2)L×U(1)Y vacua in landscapes based on geometric

compactification for the study of SU(5) unification in string compactification. It is this

necessary condition that we intend to test below.

Instead of carrying out this test itself, we consider a similar (and a little easier) test

in this article. Instead of studying the ratio of vacua with SU(5) × (any non-Abelian)

and those with SU(3)× SU(2) × U(1)× (any non-Abelian), we study the ratio39 of vacua

with En×U(1)r × (any non-Abelian) and those with En−1×U(1)r+1× (any non-Abelian)

(n = 6, 7, 8).

The J2(X) classification has been worked out completely for four attractive K3 sur-

faces, X = X[1 0 1], X[1 1 1], X[2 0 2] and X[2 2 2] [73]. Let us first use these statistics — a

subset of (4.27) — and further use the short-cut approach we explained above to see the

ratio of vacua with a E6,7,8 gauge group on 7-branes along with how many U(1) vector

fields they are accompanied. There are 112 different types of elliptic fibrations in J2(X)

for the four K3 surfaces combined, and 32 among them contain one of E6,7,8 as a part of

the 7-brane gauge group.40 Using the information in table 1.1–1.4 of [73], the statistics

turns out to be the following (table 4).

In addition to the four attractive K3 surfaces, the authors have partially carried out

the J2(X) classification for another attractive K3 surface41 X[3 0 2] in [26], so that the same

statistics as above can be extracted. There are 43 different types of elliptic fibrations on

X[3 0 2] which contain either one of the IV∗, III∗ or II∗ type singular fibres. The distribution

of the rank of the Mordell-Weil lattice turns out be the following (table 5).

39It must be a reasonable assumption that such gauge groups originate from 7-branes rather than D3-

branes; D3-branes (rather than fractional 3-branes) only give rise to N = 4 super Yang-Mills theory, and

furthermore, their gauge couplings are parametrically larger than those of 7-branes because of the volume

of four-cycles that the 7-branes are wrapped.
40Here, 23/112 is the fraction of the types of elliptic fibration containing IV∗, III∗ or II∗ type singular

fibres in X[1 0 1], X[1 1 1], X[2 0 2] and X[2 2 2]. Such a fraction for an attractive K3 surface X[a b c] may,

however, have some correlation with whether a, c are large or small.
41There is no particular reason to choose this attractive K3 surface (rather than thirty-three others) from

the perspective of physics.
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group (non-Abelian) rk 0 rk 1 rk 2 rk 3 tot.

E8+ any other 2 5 2 0 9

E7+ any other 2 9 7 0 18

E6+ any other 0 8 8 3 19

Table 5. The number of different types of elliptic fibrations of J2(X[3 0 2]) containing either one

of IV∗, III∗ or II∗ type singular fibres and having Mordell-Weil lattice with various ranks. Three

types with Wroot = A2E7E8, A1E7E8 and A3E6E7 contribute twice in this table, so that the total

number is summed up to 46, rather than 43.

When we compare the numbers in the two tables (tables 4 and 5) for En with

rank(MW ) = r (En × U(1)r × (any non Abelian) massless gauge fields on 7-branes) and

for En−1 with rank(MW ) = r + 1 (En−1 × U(1)r+1 × (any non Abelian) massless gauge

fields on 7-branes), we cannot observe a clear tendency. There are as many En×U(1)r (i.e.,
more unified) vacua as En−1×U(1)r+1 (i.e., less unified) vacua in this sample. Although we

cannot hope to extract too many lessons from this study based on a miniature landscape,

it may not be too outrageous to say that this statistics does not indicate that it is nonsense

to study unified theories in compactifications.

CP Violation. Just like in earlier work such as [17], the miniature landscape in this

section can also be used to study the fraction of vacua preserving CP symmetry. To be

more specific, we study the fraction of CP preserving vacua in the class of effective theories

containing E8 × E8 gauge group from 7-branes. Such a formulation of the problem is

meaningful, because we would eventually like to ask the fraction of CP-preserving/violating

vacua in effective theories with the Standard Model gauge group. The choice of the gauge

group — E8×E8 — is entirely for a technical reason. For most other choices of the gauge

group, we would have to work out the J2(X) classification for all the 34 attractive K3

surfaces appearing in table 2. It is known, however, (see [16, 26, 58, 59] or Footnote 49

for an explanation) that any attractive K3 surface admits an elliptic fibration whose frame

lattice contains the E8 ⊕ E8 lattice, so that there must be two fibres of type II∗.

In table 2, there are 66 pairs of attractive K3 surfaces Y = S1 × S2 for M-theory

compactifications. From these, one can find 98 choices of Y = X × S = X[a b c]×X[a′ b′ c′]

for F-theory compactifications, where elliptic fibrations (with the vanishing volume of the

fibre) are implemented in X[a b c]. Exploiting the Z2 〈c.c.〉 in the modular group Γ in (4.26),

we can always take b ≥ 0. We take these 98 different choices as the denominator (whole

ensemble) of the statistics (see the cautionary remark at the end of this CP study).

In order to see when the low-energy effective theory possesses CP symmetry, let us

write down the Gukov-Vafa-Witten superpotential (1.2), (2.22) explicitly in terms of local

coordinates of the moduli space M(S1)
K3 ×M

(S2)
K3 . Let Ωtot

Si
for i = 1, 2 be the total holo-

morphic (2, 0)-form on the K3 surface Si for i = 1, 2, including both the vacuum value and

fluctuation around it:

Ωtot
Si

= 〈ΩSi〉+ δΩSi = pi + qi(τi + Π̃i) + C
(i)
I δΠ

(i)
I , i = 1, 2 . (4.29)

– 34 –



J
H
E
P
0
4
(
2
0
1
4
)
0
5
0

The ΩSi which appeared in section 2.1 corresponds to the vacuum value 〈ΩSi〉 here, and
{C(i)

I }I=1,··· ,20 is a basis of the Neron-Severi lattice SSi . δΠ
(i)
I for i = 1, 2 and I = 1, · · · , 20

combined are the independent local coordinates ofM(S1)
K3 ×M

(S2)
K3 , and Π̃i are determined

by the condition (ΩSi + δΩSi)
2 = 0. In practice,

τ1+Π̃1 =
−b+i

√
Q1+2c(δΠ(1))2

2c
= τ1+

i
√
Q1

2c


c(δΠ

(1))2

Q1
− 1

2

(
c(δΠ(1))2

Q1

)2

+· · ·


 ,

(4.30)

τ2+Π̃2 =
−e+i

√
Q2+2f(δΠ(2))2

2f
= τ2+

i
√
Q2

2f


f(δΠ

(2))2

Q2
− 1

2

(
f(δΠ(2))2

Q2

)2

+· · ·


 ,

(4.31)

where (δΠ(i))2 is the norm of C
(i)
I δΠ

(i)
I under the symmetric pairing of the Neron-Severi

lattices SSi . Substituting (4.29) into (1.2), (2.22), we obtain

W ∝
(
G1, (Ω

tot
S1
⊗ Ωtot

S2
)
)

(4.32)

=
√
Q1Q2

[
Re(γτ1τ̄2) + Re(γ)(τ1 + Π̃1)(τ2 + Π̃2)

−Re(γτ̄2)(τ1 + Π̃1)− Re(γτ1)(τ2 + Π̃2)
]
, (4.33)

This potential contains mass terms of all the fluctuations,42 as expected (moduli sta-

bilization), and furthermore quartic and higher order interactions, as is known very

well [16, 18, 22, 24].

Note first the vacuum expectation value of this superpotential vanishes. One can see

this by expanding (4.33) in a power series of (δΠ(i))2 and evaluating the zero-th order term.

The vanishing vev of WGVW, however, is a straightforward consequence of choosing the

four-form flux to be purely of (2, 2) type in the Hodge decomposition. It will be difficult to

find a symmetry reason for this vanishing vev of WGVW covering all the 66 pairs of S1×S2
for M-theory compactification, or all the 98 choices of X × S for F-theory. It seems more

appropriate to consider that the D = 2 condition (2.23) is essential, see the discussion right

after (2.23) and (5.11), and also [17]. The integral structure of the flux quanta plays an

essential role in determining the moduli vev through WGVW. Hence it is not appropriate

to apply naive naturalness arguments of bottom up phenomenology.

In a subset of vacua where b = e = 0 for M-theory (b = b′ = 0 for F-theory), both

τ1 and τ2 are purely imaginary and the GVW superpotential becomes CP invariant when

42Chiral multiplets in the adjoint representation of the non-Abelian 7-brane gauge groups (in Wroot), i.e.,

transverse fluctuations of the 7-branes, also become massive because of this. This mass term, due to the

G1 type four-form flux, has nothing to do with the level-2 differential

d2 : [E0,1
2 = H0(S;KS)] → [E2,0

2 = H2(S;OS)] (4.34)

that we encounter in the spectral sequence calculation in heterotic language [34, 79]. It is only the kernel

of this d2 that remains massless (in the absence of the G1 type flux), but this d2 is always trivial for the

case of our interest, for reasons that are explained in [80].
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we choose γ to be either purely real or pure imaginary. In the first case, the two terms in

the second line of (4.33) vanish, and all the terms in the superpotential have real valued

coefficients. In the latter case, the two terms in the first line of (4.33) vanish, and all the

remaining terms — those in the second line — have purely imaginary coefficients. With

an appropriate phase redefinition of fermion fields (R-symmetry transformation), those

coefficients can be made real valued. Thus, for these two case, all of the coefficients in the

effective superpotential can be made real valued (by field redefinitions, if necessary), and CP

symmetry is preserved. Following [17], we understand that the CP invariance in the former

case is due to the compactification data ([a b c], [d e f ], γ) invariant under the Z2 〈c.c.〉
subgroup of the modular group Γ, and is due, in the latter case, to the compactification

data being invariant under the combination of the c.c. operation followed by a non-modular

group symmetry operation (that somehow becomes an R-symmetry transformation).

Among the 66 pairs of attractive K3 surfaces in table 2, there are 20 pairs where

b = e = 0 and γ is either purely real or purely imaginary. To turn this statistics into

that of F-theory compactifications, note that among the 98 different ways of identifying

the 66 pairs with X × S for F-theory, 30 different ways correspond to b = b′ = 0 and a

purely real/imaginary choice of γ. Although such precise values as 30/98 do not have much

importance,43,44 it will not be too outrageous to conclude that a non-negligible fraction of

vacua possesses CP symmetry in the landscape of K3 × K3 compactifications of F-theory

with all the 40 complex structure moduli stabilized by the G1 type four-form flux. See also

related discussion in section 5.

4.3.2 Stable degeneration “limit”

F-theory compactifications on Y = K3×K3 = X×S (without a four-form background) are

dual to heterotic string compactifications on Z = T 2×K3 [30, 31, 52, 71, 79, 81–83]. From

the heterotic string picture, one would naively expect that the Kaluza-Klein reduction of

metric and B-field on T 2 gives rise to 4 massless U(1) vector fields in 7+1-dimensions,

in addition to the at most rank-16 gauge group from either E8 × E8 or SO(32). Since

F-theory compactifications on an attractive K3 surface X have rank 20 gauge groups on

7-branes (two U(1)’s from TX and rank 18 from Wframe), there is no mismatch in the rank

of the gauge groups. It often happens in the miniature landscape we studied, however,

that there are not more than four U(1) factors in the 7-brane gauge group. In tables 4

43It should be noted that we ignore the possibility that an attractive K3 surface may admit more than

one type of elliptic fibration where E8 × E8 ⊂ Wroot ⊂ Wframe. In fact, one can find an example of this in

section4.4 of [26]: the attractive K3 surface X[3 0 2] admits a pair of elliptic fibrations where Wroot are the

same, but their Wframe are not isometric. We also ignore multiple inequivalent choices of γ (G1 type flux)

and the number of isomorphism classes of elliptic fibrations. These factors should, in principle, be treated

as a non-trivial weight on the 98 different choices in the main text. Thus, the precise value of the fraction

of CP-invariant vacua does not have much importance.
44Complex conjugation Z2 〈c.c.〉 of the M-theory real 8-dimensional manifold is included as a part of the

modular group (4.23), (4.26) in this article, while it is not in [17]. This subtle differences, however, only

leads to at most a factor of 2 difference in the fraction of CP-preserving vacua. Given the other factors

that we did not try to bring under control, this issue would not be particularly important from practical

perspectives.
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and 5, for example, the rank of Mordell-Weil lattice is less than two (meaning that the

number of U(1) gauge group is less than four) in a large fraction of the types of elliptic

fibrations. By looking at the tables in [73], one can confirm that this phenomenon is not an

artefact of requiring either one of E6, E7 or E8 in the 7-brane gauge group. An appropriate

interpretation of this phenomenon should be that the large fraction of attractive K3 surfaces

in Isom+(ΛK3)\D(X)
ρ=20 satisfying both the D3-tadpole condition (2.25) and the pure G1-

type assumption (2.18) does not correspond to the large vol(T 2)/ℓ2s region of the heterotic

string moduli space. In this case, the supergravity approximation is not valid and some of

the non-Abelian 7-brane gauge groups should be understood as stringy effects in heterotic

language.

Corresponding to the supergravity (large vol(T 2)/ℓ2s) “limit” in heterotic string theory

is the stable degeneration “limit” of a K3 surface in F-theory [30, 31]. In this section, we

discuss a couple of issues associated with this supergravity/stable degeneration “limit”,

based on the statistics in the miniature landscape. In this article, we mean by large/small

“limit” of a moduli parameter xxx the region of moduli space where xxx is parametrically

large/small, i.e., xxx ≫ 1 or xxx ≪ 1. However, we still assume xxx to be different from

literally being ∞ or 0.

Let us begin with reminding ourselves of the following. Suppose that the elliptic

fibration of a K3 surface πX : X −→ P1 is given by the generalized Weierstrass form (or

Tate form)

y2 = x3 + xf0z
4 + g0z

6

+ǫη(a
v
0∗z

5 + ǫ2Ka
v
2∗xz

3 + ǫ3Ka
v
3∗yz

2 + ǫ4Ka
v
4∗x

2z + · · · )
+ǫη(a

h
0∗z

7 + ǫ2Ka
h
2∗xz

5 + ǫ3Ka
h
3∗yz

4 + · · · ) , (4.35)

where (x, y) are the coordinates of the elliptic fibre, z the inhomogeneous coordinate of the

base P1, and f0, g0, a
v
r∗’s (r = 0, 2, · · · ) and ahr∗’s are complex numbers of order unity. In

the heterotic dual, vol(T 2)/ℓ2s is parametrically large when45 |ǫη| ≪ 1, |ǫK | . O(1). K3

surfaces with an elliptic fibration with small ǫη are said to be in the stable degeneration

“limit” [30, 31].46

45The Wilson lines on T 2 are small, so the 8D field theory approximation is valid when one more condition,

|ǫK | ≪ 1, is also satisfied.
46A family of K3 surfaces π′ : X ′ −→ D was introduced in [31], where D := {t ∈ C | |t| ≤ 1} is the

unit disc, X ′ is given by y2 = x3 + f0xz
4 + (g0z

6 + ǫηa
vz5 + ǫηa

hz7) defined as a subspace of (y, x, z, ǫη)

for some complex valued parameters f0, g0, a
v and ah. The morphism π′ is defined by π′ : (y, x, z, ǫη) 7→

t = ǫη. Instead of this family of K3 surfaces, one can also consider another family π : X −→ D given by

X :=
{

(η, ξ, u, v, t) ∈ C5 | η2 = ξ3 + f0ξ + (g0 + avu+ ahv), uv = t
}

(to be more precise, (η, ξ) and (u, t)

are affine coordinates of projective space). The original family π′ : X ′ 7−→ D is regarded as the base change

of order 2 of the second family π : X 7−→ D, D ∋ ǫη 7→ ǫ2η = t ∈ D. Other coordinates are mapped by

(u, v) = (ǫη/z, ǫηz), η = y/z3 and ξ = x/z2. The second family shows a semistable degeneration, in that i)

the threefold X is non-singular, and ii) the central fibre X0 := π−1(t = 0) consists of two rational elliptic

surfaces (a.k.a “dP9”) crossing normally along an elliptic curve at u = v = 0. See [84] for more information.

Provided that f0, g0, a
v and ah are generic, Xt := π−1(t) for any t ∈ D has II∗ + II∗-type singular fibre in

the non-singular model at (u, v) = (∞, 0) and = (0,∞). The Weierstrass model version of this family has

two ordinary E8 + E8 singularities.
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When |ǫη| ≪ 1, and the heterotic dual (in the supergravity approximation) corresponds

to Ev
8 × Eh

8 theory with the structure group Gv
str ×Gh

str ⊂ Ev
8 × Eh

8 , so that the unbroken

symmetry group in the visible and hidden sector are Hv × Hh, the non-U∗ part of the

cohomology group of K3 surface X,

[U⊥
∗ ⊂ H2(X;Z)] ∼= [U⊕2 ⊕ E⊕2

8 ] = II2,18 , (4.36)

contains Hv +Gv
str + U + U +Gh

str +Hh. The moduli spaces on both sides of the duality

are identified by identifying the right-moving momenta (see appendix A for conventions on

the description of T 2 compactification of heterotic string theory)

ZR :=

√
α′

2
(kR8 + ikR9 ) ∈ Hom(II2,18,C) (4.37)

in heterotic string theory with the period integral Ωnorm. ∈ [U⊥
∗ ⊂ ΛK3]

∗⊗C satisfying the

normalization47

(ZR,ZR) = 2↔ (Ωnorm.,Ωnorm.) = 2 . (4.38)

Parametrically large volume vol(T 2)/ℓ2s with ℓ2s := (2π)2α′ in heterotic string theory cor-

responds to the behaviour

ZR|U⊕U ∼
1√
2

(√
α′

R8
,− R8√

α′
, i

√
α′

R9
,−i R9√

α′

)
, ZR|Gv

str⊕Gh
str
∼
√
α′

R
, (4.39)

while the period integral becomes

Ωnorm.|U⊕U ∼
1√
2

(
1√

ln(1/ǫη)
,
√
ln(1/ǫη),

1√
ln(1/ǫη)

,
√
ln(1/ǫη)

)
. (4.40)

for small ǫη in F-theory. Hence the relation is vol(T 2)/ℓ2s ∼ (R8R9)/α
′ ∼ ln(1/ǫη) (see e.g.

appendix B of [85]).48

Let us now study the distribution of vacua in the miniature landscape, focusing on

whether the vacua are close to the stable degeneration “limit” of a K3 surface, or to

the large large vol(T 2)/ℓ2s “limit” in heterotic language. For this purpose, the volume in

heterotic string theory can be defined easily and unambiguously by using the Narain moduli

(see below), and we use this [vol(T 2)/ℓ2s]Het as the parameter of distribution.

It is then more direct and convenient to deal with the F-theory data in terms of period

integrals, rather than the defining equation(s) of K3, since we use the heterotic-F-theory

47For the period integral Ω, we can always take Ωnorm. =
√

2/(Ω,Ω)× Ω.
48 In physics, it is an interesting question whether or not the t = 0 point should be included in the string-

theory moduli space. Along a one-dimensional subspace parametrized by ǫη, the distance from a point with

finite ǫη to the ǫη −→ 0 limit diverges, when the metric from the Kähler potential K = − ln[
∫

Ω∧Ω] is used

(section 5 [72]). It is also impossible to stay within the period domain D while setting ǫη = 0 (see (4.40)).

Note also, however, that ǫη can always be absorbed by redefinition of the coordinates (y, x, z) in a special

locus ah
0 = ah

2 = · · · = 0. In this special locus, the K3 surface has a bad singularity in the fibre over the

z = ∞ point in the base P1. Although this singularity can be removed by a birational transformation, the

new geometry is a rational elliptic surface (where c1 6= 0), rather than a K3 surface. Physics implications

of this mathematical facts should be considered separately.
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duality. Let us follow [16, 58, 59] and consider (for simplicity and concreteness) only the

case in which the gauge groups in the visible and hidden sector E8 both remain unbroken.

For any attractive K3 surface X = X[a b c] with TX =

[
2a b

b 2c

]
there always exists such an

elliptic fibration.49 TX⊕TX [−1] forms a sublattice of U⊕U , andWframe = E8⊕E8⊕TX [−1].
To be more explicit, let the oriented basis of TX be {q, p} and TX [−1] = SpanZ{Q,P}. Then
we can embed TX and TX [−1] primitively into U ⊕U = SpanZ{v, V } ⊕ SpanZ{v′, V ′} as50

(p, q, P,Q) =
(
v, V, v′, V ′

)




1 −1
a b a

1 −1
c b c



. (4.41)

The period vector 〈ΩX〉 = (p+ τXq, •) (with τX and QX given by τ in (2.8)) is written as

〈ΩX〉 |U⊕U = (v+(a+bτX)V +τXv
′+cτXV

′, •) =⇒ 〈Ωnorm.
X 〉 =

√
2c

QX
((a+bτX), 1, cτX , τX)

(4.42)

in the component description of [U ⊕ U ]∗ ⊗ C. This moduli data for F-theory is to be

identified with

Z :




n1

−w1

n2

−w2



−→ i√

2(ImτH)(ImρH)
(−τH ,−ρH , 1,−ρHτH)




n1

−w1

n2

−w2




(4.43)

modulo Isom(U ⊕U). Here τH is the complex structure modulus of T 2 for heterotic string

compactification and ρH = (B + iJ)/ℓ2s is the complexified Kähler modulus of T 2. With

the condition (2.11), the best identification is [58, 59]

τH ↔ τX , ρH ↔ cτX , τHρH ↔ −(a+ bτX) . (4.44)

From this, we can read off that

[
vol(T 2)

ℓ2s
= Im(ρH)

]

Het

=

[√
QX

2
=

√
4ac− b2

2

]

F

, |ρH | =
√
ac . (4.45)

Vacua parametrically close to the stable degeneration limit (i.e., parametrically large

vol(T 2)/ℓ2s for heterotic string theory) are realized when the attractive K3 surface is char-

acterized by large ac or QX . There is an upper limit on the value of a and c, which comes

from the D3-brane tadpole condition (2.25). For moderate choices of a, b and c, neither

49 Indeed, we can always embed T0 into one of the Niemeier lattices, T0 →֒ E8 ⊂ E8 + E8 + E8,

precisely in the same way T0 is obtained, T0 := [TX [−1]⊥ ⊂ E8]. The frame lattice then becomes simply

TX [−1]+E8 +E8. See [73] or section 4 of [26] for a more detailed explanation. No special condition on TX

needs to be satisfied for this fibration to exist in the J2(X) classification.
50The symmetric pairing is given by (v, V ) = (v′, V ′) = 1, zero otherwise.
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Figure 2. Distribution of
√
Q/2 = [vol(T 2)/ℓ2s]Het in the miniature landscape (condi-

tions (2.18), (2.25)) from F-theory on K3×K3.

|(a + bτ)| nor |c| are large, and hence the F-theory flux vacua are not attracted towards

the region where the heterotic dual has a good supergravity approximation.

The distribution of [vol(T 2)/ℓ2s]Het, and hence of
√
QX/2 in F-theory, is determined

and presented in figure 2, using the 98 different identifications of S1 × S2 for M-theory in

table 2 with X ×S = X[a b c]×X[a′ b′ c′] for F-theory. It is clear that only a small fraction

of vacua in the tail of the distribution in figure 2 are in the moduli space of K3 surfaces X

in the stable degeneration “limit”, or in the large vol(T 2)/ℓ2s region of heterotic E8 × E8

compactification.

This distribution can be regarded as that of an ensemble of effective theories containing

E8 × E8 7-brane gauge groups (which are left unbroken), but it can also be regarded as

that of theories with SO(32) 7-brane gauge group.51

For moderate choices of a, b and c, we should not expect that ǫK is small, either.

In other words, all the period integrals in such a K3 surface either vanish or are of order

unity. This means that there is no extra singular fibre located closely to a singular fibre

supporting 7-brane non-Abelian gauge groups, like Hv and Hh in the visible and hidden

sector. Correspondingly, the appropriate field theory local model is to take Hv and Hh as

the gauge group everywhere52 on the other K3 surface S.

Let us now turn our attention back to the defining equation (4.35) of the K3 surface.

Certainly it is a better and more direct approach for a systematic search for the Noether-

Lefschetz locus of Y to parametrize the moduli space by period integrals and deal with the

lattices TX , SX etc., but it is also nice if we can figure out what kind of defining equations

such vacua correspond to. Precisely the same problem has been addressed by [74, 86] for

a specific class of K3 surfaces. In the following, we provide a simplified summary of their

results so it fits to the context in this article.

51See footnote 49, and replace the lattice L(γ) = E8 ⊕ E8 ⊕ E8 with L(β) = E8 ⊕ D16;Z2. See [26] for

more explanations.
52When Y is a non-trivial K3 fibration over some surface S, then there will usually be matter curves

and possibly Yukawa points. That is where “singular fibres collide” and the field theory local model

should be such that the rank of the gauge group is higher than that of Hv or Hh by (at least) 1 or 2,

respectively [33, 87–89]. In the class of models studied in this article, however, such loci are absent because

of the direct product structure X × S.
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Consider an attractive K3 surface X[2A 2B 2C] (i.e., special case a = 2A, b = 2B and

c = 2C). Such a K3 surface corresponds to Km(Eρ1 × Eρ2) = (Eρ1 × Eρ2)/Z2 with

ρ1 =
−B + i

√
4AC −B2

2C
, ρ2 =

−B + i
√
4AC −B2

2
= Cρ1 . (4.46)

Eρi (i = 1, 2) is an elliptic curve with the complex structure ρi, and we let its defining

equation53 be y2 = x(x − 1)(x − λi). Kummer surfaces associated with a product type

Abelian surface, which have ρX = 18, are known to have at least 11 different types of

elliptic fibrations [75]. One of them (type 3 in [75]) has 2IV∗ + 8I1 type singular fibres

(including two “E6-type” fibres) in the Kodaira classification. Let us take this type of

elliptic fibration as an example. Ref. [86] found that the Weierstrass model for this type of

fibration (Inose’s pencil) is given by

Y 2 = (X+4u2)(X+4u2(λ1+λ2))(X+4u2λ1λ2)+
(4u2)3

4

{
λ2(λ2−1)

u
+λ1(λ1−1)u

}2

, (4.48)

where u is the inhomogeneous coordinate on the base P1, or equivalently,

Ỹ

{
Ỹ −(2u)3

(
λ2(λ2−1)

u
+λ1(λ1−1)u

)}
= (X+4u2)(X+4u2(λ1+λ2))(X+4u2λ1λ2) .

(4.49)

Tate’s condition for a IV∗ fibre is satisfied at u = 0 and u =∞. To turn this ρX = 18 K3

surface into an attractive K3 surface (ρX = 20), we only have to make a specific choice of ρ1
and ρ2 (and hence λ1,2) in terms of integers A, B and C as in (4.46). The second equation

above is already in the form of the generalized Weierstrass form (Tate form, (4.35)), apart

from a shift in X that does not play an essential role.54 The defining equation of the

spectral surface can be read off from the Tate form: av0 = av2 = 0, and av3y = 0. Thus,

in the language of the supergravity approximation of heterotic string theory, the ρX = 20

vacua of F-theory are realized due to spectral surfaces (gauge field configurations) which

are far from generic and imply an intricate conspiracy among f0, g0, a
v
3 and ah3 . We will

come back to this issue in section 5.3 and appendix B.

5 Landscapes of F-theory on K3 × K3 with G0 6= 0 flux

The study in the previous section is for a landscape with a limited choice of four-form flux;

the condition (2.18) has been imposed. Consequently, the number of vacua is limited and

the level of complexity of the analysis remains (barely) manageable. One can maintain

full control of details, if one wishes, which enables us to understand various subtleties

53From the definition given in the main text, it follows that

211(λ2
i − λi + 1)3

(λi − 1)2λ2
i

= j(ρi) = q−1
i + 744 +O(qi), qi = exp(2πiρi) . (4.47)

Thus, for large Im(ρi), small |qi| and large λi, 2
11λ2

i ∼ e−2πiρi .
54 The stable degeneration “limit” corresponds to large A and C, and hence to large Im(ρ2) and large

|λ2|. With the coordinate redefinition Ỹ → λ
9/2
2 Ỹ ′, X → λ3

2X
′ and u → λ2u

′, one finds that ǫη ∼ 1/
√
λ2,

and hence t = ǫ2η = 1/λ2.
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associated with multiplicity counting and the role played by the modular group. The

G0 = 0 assumption on the flux, however, has much to do with this advantage.

Suppose that Y = X ×S for F-theory compactification is given by a pair of attractive

K3 surfaces X and S, as in section 2.1. The G0 type flux is then in SX ⊗ SS ⊗ R and can

be written in the form

[G0] =
18∑

I=1

CI ⊗ FI , (5.1)

where {CI}I=1,··· ,18 is chosen as a basis ofWroot⊕WU(1) ⊂Wframe ⊂ SX and FI ∈ SS⊗Q ⊂
H1,1(S;R). The gauge bosons corresponding to the Cartan part of the 7-brane gauge fields

remain massless for a rank-rk7 group when the {FI}s span an (18 − rk7)-dimensional

subspace of H1,1(S;R). The rest of the Cartan gauge fields become massive through the

Stückelberg mechanism. There will be (18−rk7) global U(1) symmetries left in the effective

theory. Non-perturbative corrections break these symmetries, but they may still look like

approximate symmetries if the non-perturbative corrections break them only weakly.

Therefore it is not a complete nonsense to focus on a sub-ensemble of vacua of F-

theory on K3 × K3 with Gtot = G1 + G0 flux of a given value of (18 − rk7) and to study

the statistics of this sub-ensemble, as those compactifications share a common property

of the resulting effective theories. In this context, the statistical results of the G0 = 0

landscape in section 4.3 are also of some value. They are regarded as the statistics in the

sub-ensemble characterized by the rank rk7 = 18 massless gauge group on 7-branes and

N = 1 supersymmetry.

There is hence a physical motivation to study the statistics of the sub-landscape char-

acterized by some properties of the G0 flux, such as rk7 (see sections 5.3 and 5.4 for more),

and also to compare the numbers of vacua that have G0 with different properties. These

are the kind of problems we address in this section.

5.1 General remarks

5.1.1 Primitivity

Let us begin with a brief remark on the Kähler moduli. For supersymmetric compactifica-

tions, Gtot = G1 +G0 not only has to be purely of Hodge type (2, 2), but also primitive:

JY ∧Gtot = JY ∧G0 = 0 . (5.2)

The Kähler form JY on Y = X × S has the shape

JY = tX [FX ] + JS , (5.3)

where tX ∈ R0<, [FX ] is the fibre class (elliptic divisor) associated with πX : X → P1, and

JS a Kähler form on S in the positive cone of SS (i.e., JS ∈ SS ⊗ R, and J2
S > 0). The

primitivity condition (5.2) implies that all of the FI (I = 1, · · · , 18) are orthogonal to JS
in the inner product in SS ⊗R ∼= H1,1(S;R). For a given Kähler form JS , the G0 type flux
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in Wframe∗ ⊗ [J⊥
S ⊂ (SS ⊗ R)] always gives rise to a positive contribution — 1/2[G0] · [G0]

— to the D3-tadpole, since both Wframe and [J⊥
S ⊂ SS ⊗ R] are negative definite.55

Because of the primitivity condition of the four-form flux, the complex structure moduli

and Kähler moduli talk to each other. There are two equivalent ways to see how they “talk”.

One way is, to think of the Kähler moduli (tX , JS) as being given first, after which the

FI describing G0 are forced to be in the subspace [J⊥
S ⊂ SS ⊗ Q], as above. If the ratio

of components of JS are in Q — this situation is denoted by [JS ] ∈ QP[SS ] in this article

— then [J⊥
S ⊂ SS ⊗ Q] is of dimension [20-1=19]. If the ratio is not just in Q, but in an

extension field of Q, then the dimension of the space for G0 is smaller than 19. In the rest

of this article, we assume that JS ∈ QP[SS ]. The other way is to think of the FI as being

given first. In this case, JS is forced to be in the subspace of SS⊗R orthogonal to all of the

FI due to the D-term potential (e.g., [13, 22]). When the FI span a (18− rk7)-dimensional

subspace of SS⊗Q, the remaining moduli space of JS is of (2+rk7)-dimensions (in R).56,57

Eventually one has to think of stabilization of both complex structure moduli and Kähler

moduli, so that these two perspectives are equivalent. Common to these two is the idea

that the stabilization of the two groups of moduli can be dealt with separately, which is

true as long as there is a separation of scales between those two stabilization mechanisms,

such as in the KKLT scenario [90].

In this article, we focus on aspects of complex structure moduli stabilization in flux

compactifications, using K3 × K3 as an example. This article is not committed to a par-

ticular mechanism of Kähler moduli stabilization available on K3 × K3, except that we

implicitly assume this separation of scales. It is thus impossible to determine the full land-

scape distribution of completely discrete vacua in the product of complex structure and

Kähler moduli spaces Mcpx ×MKahler for K3 × K3, or projections of these distributions

to Mcpx, without introducing extra assumptions (on Kähler moduli stabilization). Our

statements in the rest of this article are often presented in the form of distributions of flux

vacua onMcpx for a fixed choice of Kähler moduli.

5.1.2 Integrality

Let us now switch the subject, and discuss the “integrality condition” on [G1] and [G0].

When both [G1] and [G0] are non-zero, each one of them does not have to be integral

by itself; only the total flux [Gtot] = [G1] + [G0] needs to be integral, i.e. an element of

H4(Y ;Z). Once we find that [G1] does not have to be integral — an element of TX ⊗TS —

55It is not impossible to think of a case with some FI not orthogonal to J⊥
S . Such an FI associated with

CI in Wroot corresponds to non-anti-self-dual flux on a 7-brane wrapped on a K3 surface S, and is known

to lead to a de-Sitter vacuum (if Kähler moduli is stabilized properly). If this negative contribution to the

D3-brane tadpole — virtually the presence of an anti-D3-brane — coexists with a positive ND3, we expect

D3–D7 hybrid inflation to occur [91].
56tX ∈ R0< also remains unconstrained under the primitivity condition.
57As long as we keep the flux in the form of G0 =

∑

I CI ⊗ FI , a perturbation δJ = tb[σX ] of the Kähler

form does not violate the primitivity condition. Thus, there is no mass given to this degree of freedom

either. This mode, however, corresponds to a part of the metric, g33, of the effective field theory on R3,1.

Phenomenologically, we are interested in cases where the vacuum value of tb is zero (the small elliptic fibre

volume limit of M-theory), yet the fluctuation in that direction — g33 remains massless. Thus, there is no

problem at all that the fluctuation tb does not have a mass.
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on its own, the condition (2.21) is too restrictive. Contributions to the D3-brane tadpole,

[G1] · [G1]/2 and [G0] · [G0]/2, are not necessarily integers separately either, though their

sum is always integral, when Gtot is integral. This means that the search for pairs of

attractive K3 surface in sections 2.1 and 2.2 needs to be carried out once again for cases

with G0 6= 0. How large is the impact of this generalization?

In cases where both X and S are attractive K3 surfaces, we can decompose the 22×22-
dimensional vector space H2(X,R)×H2(S,R) into

[(TX ⊗ TS)⊗ R] ⊕ [(TX ⊗ SS)⊗ R] ⊕ [(SX ⊗ TS)⊗ R] ⊕ [(SX ⊗ SS)⊗ R]. (5.4)

Such a decomposition is not necessarily possible with integer coefficients, not all of the

elements of H2(X;Z) (resp. H2(S;Z)) can be written in the form of a sum of integral

elements in TX and SX (resp. TS and SS), and not all the elements in H2(X,Z)×H2(S,Z)

can be written as a sum of integral elements in

[(TX ⊗ TS)] ⊕ [(TX ⊗ SS)] ⊕ [(SX ⊗ TS)] ⊕ [(SX ⊗ SS)]. (5.5)

The integrality of the total flux [G] = [G1]+[G0], however, implies that for all the generators

of TX⊗TS and SX⊗SS , which are all integral four-cycles, the flux quanta evaluated on these

cycles are integers. Hence [G1] and [G0] are contained within (TX ⊗ TS)∗ = (T ∗
X ⊗ T ∗

S) ⊂
(TX ⊗TS)⊗Q and (SX ⊗SS)∗ = (S∗

X ⊗S∗
S) ⊂ (SX ⊗SS)⊗Q, respectively.58 In particular,

it follows that [G1] should be within T ∗
X ⊗ T ∗

S , but may not necessarily be within TX ⊗ TS .
In fact, there is a stronger necessary condition than this; although the projection of

H2(S;Z) ⊂ T ∗
S ⊕ S∗

S to T ∗
S for an attractive K3 surface is always surjective, the projection

image of

(H2(S1;Z)⊗H2(S2;Z)) ∩ [H4,0(Y ;C)⊕H2,2(Y ;R)⊕H0,4(Y ;C)] (5.6)

to (TS1 ⊗TS2)
∗, for Y = S1×S2 with a pair of attractive K3 surfaces S1 and S2, is not. In

order to state a condition on the image of this projection, note that, for a pair of attractive

K3 surfaces S1 and S2, the transcendental lattices, Neron-Severi lattices and their dual

lattices have the following properties: as Abelian groups,

T ∗
Si
/TSi

∼= Zmi × Zni , S∗
Si
/SSi

∼= Zmi × Zni ,
∃γi : T

∗
Si
/TSi

∼= S∗
Si
/SSi (i = 1, 2)

(5.7)

for some positive integers mi, ni. It then follows that

(TS1 ⊗ TS2)
∗/(TS1 ⊗ TS2)

∼= Zm1m2 × Zm1n2 × Zn1m1 × Zn1n2 . (5.8)

One can prove59 that the image of the integral four-cycles in (5.6) has to be within the

subgroup of (TS1 ⊗ TS2)
∗ characterized by

LCD(m1,m2)Zm1m2 × · · · × LCD(n1, n2)Zn1n2 ⊂ Zm1m2 × · · · × Zn1n2 . (5.9)

58TX ⊗ TS , TX ⊗ SS , SX ⊗ TS and SX ⊗ SS form sublattices of the lattice H2(X;Z)⊗H2(S;Z).
59We are not presenting the proof here because it is just technical, and is not particularly illuminating.

After all, this is not a sufficient condition. It is not guaranteed that an appropriate G0 ∈ Wframe ⊗ [J⊥
S ⊂

SS ]⊗Q exists and G1 +G0 = Gtot becomes integral, even when G1 satisfies this criterion.
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Because of this necessary condition on [G1], one can see that [G1] still has to be an

integral element of TX ⊗ TS if all the four pairs (m1,m2), (m1, n2), (n1,m2) and (n1, n2)

are mutually coprime. In this case, all the possible forms of the [G1] component on a pair

of attractive K3 surfaces X × S = S1 × S2 remain the same as in sections 2.1 and 2.2.

When the four pairs of integers are not coprime, however, there are more chances for the

[G1] component available in the (sublattice of) the (TX ⊗ TS)∗ lattice than in the TX ⊗ TS
lattice. That makes it easier to pass the D3-tadpole constraint (2.25), even for a pair of

attractive K3 surfaces with relatively large values of a, c and d, f . Section 5.2 is devoted to

an explicit enumerative study in order to see more of the consequences of this possibility

of non-integral choice of G1.

5.1.3 〈WGVW〉 = 0

When we write the [G1] component as G1 = Re[γΩS1 ∧ ΩS2 ], as in [18] or in (2.22), it

manifestly has only a (2, 2) Hodge component, without (4, 0) or (0, 4) component. However,

we may also ask what is the statistical cost of requiring the absence of the (4, 0) + (0, 4)

components, or equivalently, a vanishingly small cosmological constant. For this purpose,

the G0 component is irrelevant and [G1] ∈ (TS1 ⊗ TS2)⊗Q, which we can write as:

[G1] = k1(p1 ⊗ p2) + k2(p1 ⊗ q2) + k3(q1 ⊗ p2) + k4(q1 ⊗ q2) , (5.10)

where k1, k2, k3, k4 ∈ Q are not necessarily integers. The (4, 0) and (0, 4) Hodge components

of [G1] are

τ̄1τ̄2k1 − τ̄1k2 − τ̄2k3 + k4
(τ̄1 − τ1)(τ̄2 − τ2)

ΩS1 ∧ ΩS2 +
τ1τ2k1 − τ1k2 − τ2k3 + k4

(τ̄1 − τ1)(τ̄2 − τ2)
ΩS1 ∧ ΩS2 . (5.11)

Thus, the absence of the (4, 0)+(0, 4) component is equivalent to the condition that either

(τ1τ2), τ1, τ2 and 1 are not linear independent over the field Q, or all of k1,2,3,4 vanish

(and G1 = 0). For an arbitrary pair of attractive K3 surfaces S1 and S2, the period

integrals take their values in Q[τ1, τ2], which is a degree D = 4 algebraic extension field

over Q. The condition for this pair S1 and S2 to admit a flux with vanishing cosmological

constant60 (while G1 6= 0), however, has turned out to be that τ2 is already contained in

Q[τ1], and Q[τ1, τ2] is a degree D = 2 extension field of Q. The condition (2.23) is for

〈W 〉 = 0, for a general non-vanishing [G1] in (TX⊗TS)⊗Q, rather than just for an integral

[G1] ∈ (TX ⊗ TS).

5.2 A landscape of vacua with a rank-16 7-brane gauge group

Just like the G0 = 0 landscape in section 4.3, which is interpreted as the ensemble of

vacua with rank-18 massless gauge fields on 7-branes, let us also consider the ensemble

of F-theory compactifications on K3×K3 with rank-16 massless gauge fields on 7-branes.

This is realized by allowing a G0 6= 0 with only two terms non-zero in the expansion (5.1).

With this study, we hope to elucidate various aspects of the landscape involving G0 6= 0. In

60A closely resembling phenomenon is found in section 4.2.3 of [17]. The extension degree changes from

D = 4 to D = 2 for W = 0 vacua.
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the context of F-theory, there is not particular importance to the specific choice of having

just two terms in (5.1), or equivalently rk7 = 16. However, this choice makes it easier to

link the present discussion to earlier results on type IIB orientifold landscapes, as discussed

in section 5.4.

Suppose that G0 6= 0 flux is introduced by using some CI=1 and CI=2 in (5.1), where

CI=1,2 are elements of the frame lattice Wframe(X[a b c]) of some attractive K3 surface

X[a b c]. Then the gauge fields along the direction of CI=1,2 become massive, and only

the gauge fields within [{CI=1,2}⊥ ⊂ Wframe] remain massless. Since it is motivated from

the perspective of physics to collect vacua with a given unbroken gauge group, it will be

interesting to consider, for a given rank-16 = rk7 lattice Wunbroken, the vacuum ensemble

associated with

{
(Wframe, {CI=1,2}) |Wframe ∈ ∐X[a b c]∈Isom(ΛK3)\Dρ=20

J2(X[a b c]), (5.12)

CI=1,2 ∈Wframe, [{C1,2}⊥ ⊂Wframe] =Wunbroken

}
.

For this reason, it also makes sense to use the notation Wnoscan instead of Wunbroken. These

two are used interchangeably in section 5.2, but they are distinguished in section 5.4.

If we are to take the rank-16 lattice to be e.g.Wunbroken = E8⊕E8 or D16;Z2 〈sp〉, then
for all the attractive K3 surfaces X, there is an embedding61 of the transcendental lattice

TX , the hyperbolic plane lattice U∗
∼= SpanZ{[FX ], σ} associated with elliptic fibration, and

Wunbroken (which is an even unimodular lattice of signature (0, 16)) into the cohomology

lattice Λ
(X)
K3 :

U∗ ⊕ (TX ⊕ TX [−1])⊕Wunbroken →֒ U∗ ⊕ (U ⊕ U)⊕Wunbroken
∼= Λ

(X)
K3 . (5.13)

The Neron-Severi lattice is SX ∼= U∗ ⊕ TX [−1] ⊕ Wunbroken, and the frame lattice is

Wframe
∼= TX [−1] ⊕ Wunbroken. Hence we choose the generators of the rank-2 lattice

TX [−1] = [W⊥
unbroken ⊂Wframe] as {CI=1,2} [16, 24].

As another example ofWunbroken, one can also think of (D4⊕D4⊕D4⊕D4); (Z2×Z2),

in which case a type IIB orientifold interpretation is given. It is known that there is an

embedding62

(U [2]⊕ U [2])⊕ (U∗ ⊕Wunbroken) →֒ Λ
(X)
K3 . (5.14)

Furthermore, it is known that for attractive K3 surfaces X[a b c] with a, b, c even, there is an

embedding TX ⊕TX [−1] →֒ U [2]⊕U [2] ([18, 61–63]). Thus, Wframe
∼= TX [−1]⊕Wunbroken,

and the generators of the rank-2 lattice TX [−1] = [W⊥
unbroken ⊂ Wframe] are chosen as

{CI=1,2}s. [16, 24] Hence all the attractive K3 surfaces with even a, b, c contribute to the

ensemble of vacua characterized by Wunbroken
∼= (D⊕4

4 ); (Z2 × Z2).

61For an embedding of TX into U ⊕ U , [T⊥
X ⊂ U ⊕ U ] is not necessarily the same as TX [−1]. For two

even rank-2 lattices T1 (positive definite) and T2 (negative definite) with an isometric discriminant group,

U ⊕ U can be constructed as an overlattice of T1 ⊕ T2 [92].
62For Kummer surfaces associated with product type Abelian surfaces (ρX = 18), X = Km(Eρ ×Eρ′) =

(Eρ ×Eρ′)/Z2, the Neron-Severi lattice is Sρ=18
X

∼= U∗ ⊕ (D⊕4
4 ); (Z2 × Z2) and the transcendental lattice is

T ρ=18
X

∼= U [2]⊕ U [2].
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Let TS be the transcendental lattice of the attractive K3 surface S. Modulo Isom(Λ
(S)
K3 ),

it is always possible to embed TS into Λ
(S)
K3 as

TS →֒ (TS ⊕ TS [−1]) →֒ (U ⊕ U)⊕ U ⊕ E8 ⊕ E8
∼= Λ

(S)
K3 . (5.15)

This is not only always possible, but also unique in that any embedding to Λ
(S)
K3
∼= II3,19

(not to II2,18) can be brought in the form above modulo Isom(Λ
(S)
K3 ) [78]. Thus, SS ∼=

TS [−1]⊕ U ⊕ E8 ⊕ E8. Therefore, the flux Gtot = G1 +G0 is introduced to the space63

[(TX ⊗ TS)∗ ⊕ (TX [−1]⊗ (TS [−1]⊕ U ⊕ E8 ⊕ E8))
∗] ∩H2(X;Z)⊗H2(S;Z) . (5.16)

Now, let us take the caseWunbroken = E8⊕E8 as an example, and work out the details.

In order to avoid inessential complexity, we restrict our attention to Y = X×S of the form

X[a b c] ×X[a′ b′ c′] with b = b′ = 0. Embeddings of (5.13), (5.15) are given by64

(p1, P1, q1, Q1) = (v1, V1, v
′
1, V

′
1)




1 −1
a a

1 −1
c c



, (5.17)

(p2, P2, q2, Q2) = (v2, V2, v
′
2, V

′
2)




1 −1
a′ a′

1 −1
c′ c′



, (5.18)

where {p1, q1} (resp. {p2, q2}) are generators of TX (resp. TS), and {P1, Q1} (resp.

{P2, Q2}) are generators of TX [−1] (resp. TS [−1]). The (U ⊕ U) sublattice of Λ
(X)
K3 is

generated by {v1, V1} and {v′1, V ′
1}, and that of Λ

(S)
K3 by {v2, V2} and {v′2, V ′

2}. The inter-

section forms on the Us are given by (v, v) = (V, V ) = 0 and (v, V ) = (V, v) = 1.

It is now straightforward to enumerate the flux Gtot = G1 + G0 in (5.16), using the

basis give above:

G1 =
n11GCD(a, a′) +m11

2GCD(a, a′)
(p1 ⊗ p2) +

n22GCD(c, c′) +m22

2GCD(c, c′)
(q1 ⊗ q2)

+
n12GCD(a, c′) +m12

2GCD(a, c′)
(p1 ⊗ q2) +

n21GCD(c, a′) +m21

2GCD(c, a′)
(q1 ⊗ p2), (5.19)

G0 =
n11GCD(a, a′)−m11

2GCD(a, a′)
(P1 ⊗ P2) +

n22GCD(c, c′)−m22

2GCD(c, c′)
(Q1 ⊗Q2)

+(P1 ⊗ FP ) + (Q1 ⊗ FQ)

+
n12GCD(a, c′)−m12

2GCD(a, c′)
(P1 ⊗Q2) +

n21GCD(c, a′)−m21

2GCD(c, a′)
(Q1 ⊗ P2), (5.20)

63The TX [−1] part is meant to be [W⊥
unbroken ⊂ Wframe], which is the same as TX [−1] for all the three

choices of Wunbroken mentioned in the text.
64This embedding can be used also for the case Wunbroken

∼= D16;Z2, another even unimodular lattice

of signature (0, 16). For the case Wunbroken
∼= (D⊕4

4 ); (Z2 × Z2), the embedding of TX = diag[4A, 4C] and

TX [−1] to U [2]⊕ U [2] is given by the same expression, except that a and c are replaced by A and C.
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Gtot = n11(v1 ⊗ v2 + aa′V1 ⊗ V2) +m11
a′v1 ⊗ V2 + aV1 ⊗ v2

GCD(a, a′)
+ · · ·

+(P1 ⊗ FP ) + (Q1 ⊗ FQ) . (5.21)

Here, n11,m11, · · · , n22,m22 are integers and FP , FQ ∈ U⊕E8⊕E8 ⊂ Λ
(S)
K3 . The denomina-

tors GCD(2a, 2a′), GCD(2c, 2c′) etc. in (5.19), (5.20) correspond to our earlier discussion

around (5.9). G1 and G0 are not necessarily integral separately, but Gtot is. At this mo-

ment, it is not guaranteed that the (4, 0)+(0, 4) Hodge components vanish. After imposing

the 〈W 〉 = 0 condition, one is left with the following cases

i) D := dimQQ[τ1, τ2] = 2, i.e., the condition (2.23) is satisfied when G1 6= 0 and there

are (8−D) = 6 independent integers out of {n11, · · · ,m22}, in addition to FP , FQ. In

this case there are D = 2 less scanning integers just like in sections 2.1), (2.2 and [18].

ii) D = 4, when G1 = 0, and there are (8 − D) = 4 independent integers as well as

FP , FQ (the “second branch” in section 5 of [22]).

The latter ii) cases leave 16 moduli of X and 18 of S unstabilized, and we restrict our

attention only to the cases i) ,as [18] did, in the following.

Note, however, that the Kähler form and the primitivity condition on the flux has

been ignored completely in the argument above. The Kähler form JS on S needs to be

introduced in the positive definite part of [T⊥
S ⊂ ΛK3]⊗R, and the flux G0 component has

to be orthogonal to this JS . We provide the following presentation for a fixed choice of JS
(rather than scanning over all possible JS), and in particular, we choose

JS = tS(v
′′
2 + V ′′

2 ) , (5.22)

where v′′2 and V ′′
2 are the generators of the third copy of the hyperbolic plane lattice U

in Λ
(S)
K3 in (5.15), so that the computation becomes as easy as possible. This means that

the primitivity condition does not impose a constraint on the integers {n11, · · · ,m22}, and
FP , FQ are chosen from the negative definite lattice (−2) ⊕ E8 ⊕ E8. Here, (−2) is the

lattice generated by (v′′2 − V ′′
2 ), where (v′′2 − V ′′

2 )
2 = −2.

Assuming that Wunbroken = E8 ⊕ E8 (or D16;Z2 〈sp〉), we scan all possible pairs

of attractive K3 surfaces of the form X[a 0 c] × X[a′ 0 c′] and list up all the possible

fluxes (5.19), (5.20) satisfying (i) the condition that 〈W 〉 = 0, (ii) the primitivity con-

dition with respect to the Kähler form (5.22) and (iii) the D3-tadpole condition

1

2
Gtot ·Gtot ≤

χ(X × S)
24

= 24 ; (5.23)

the remaining D3-brane charge is supplied by placing an appropriate number of D3-branes.

Scanning within the range of 0 < c ≤ a ≤ 50 and 0 < c′ ≤ a′ ≤ 50 for Y = X × S =

X[a 0 c] × X[a′ 0 c′], we found that there are 313 different choices of X × S admitting the

flux satisfying all the three conditions above. The distribution of the value of a in these

313 choices are shown in figure 3. If both G1 and G0 were required to be integral, there

would only be 28 different choices,65 and the largest possible value of a would be 6.

65There are 8 pairs of [a 0 c] and [d 0 f ] where a = d and c = f in table 2, and there are 10 pairs where

either a 6= d or c 6= f . Thus, there are 28 = 8 + 2× 10 different choices of ([a 0 c], [a′ 0 c′]).

– 48 –



J
H
E
P
0
4
(
2
0
1
4
)
0
5
0

10 20 30 40 50

10

20

30

40

50

Figure 3. Variety in the choice of pairs of attractive K3 surfaces, X × S = X[a 0 c] ×X[a′ 0 c′] is

shown in the form of histograms of a ≤ 50. This distribution is not weighted by the number of flux

choices available.
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Figure 4. Scatter plots showing correlation between various modulus parameters X (horizontal

axis) vs Y (vertical axis) for the 313 pairs of attractive K3 surfaces X × S = X[a 0 c] ×X[a′ 0 c′].

No weight proportional to the number of flux choices is included. (the blank region in the lower

right corner of (iii) is an artefact of cutting the scan at a, a′ ≤ 50).

Figure 4 shows the correlation among moduli parameters for the 313 pairs of attractive

K3 surfaces admitting a flux satisfying all the three conditions above. For the first two

scatter plots (i) and (ii) of figure 4, we can see clear correlations. When a is very large,

there is presumably not much freedom to choose a′ other than setting it to be comparable

to a itself (see (ii)), so that GCD(a, a′) is large, and the D3-tadpole contribution remains

below the bound. On the other hand, there is no clear correlation to be read out from the

plot (iii), we will have a comment on this in section 5.4.

There is a tremendous amount of combined choices of X × S = X[a 0 c] × X[a′ 0 c′]

and the fluxes on it. We found about 795 × 1015 choices satisfying all the three

conditions on the flux by naively scanning {nij ,mij , FP , FQ} (apart from identification

{nij ,mij , FP , FQ} ←→ (−1) × {nij ,mij , FP , FQ}). This large ensemble is dominated by

the flux choices on a very small group of possibilities of X[a 0 c]×X[a′ 0 c′]. There are about

777 × 1015 choices of flux for X[1 0 1] × X[1 0 1], 98% of the ensemble. Almost 99.6% of

the ensemble is accounted for when we combine all the flux choices on X[1 0 1] ×X[1 0 1],

X[2 0 1] ×X[2 0 1], X[2 0 2] ×X[1 0 1], X[1 0 1] ×X[2 0 2] and X[2 0 2] ×X[2 0 2].

It is a fluke, though, that the statistics is dominated by a small number of pairs of

attractive K3 surfaces. The large number of flux choices for X[a 0 c] ×X[a′ 0 c′] with small
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values of a, c, a′, c′ is primarily due to66 FP , FQ in (−2) ⊕ E8 ⊕ E8 ⊂ Λ
(S)
K3 . It is possible

for such pairs of K3 surfaces to find a flux (G1 +G0) on (TX ⊕TX [−1])⊗ (TS ⊕TS [−1]) so
that the contribution to the D3-tadpole is much smaller than 24. There is a lot of room

left in the tadpole condition for an extra G0-type flux in TX [−1] ⊗ ((−2) ⊕ E8 ⊕ E8). It

should be remembered that we should take a quotient of flux configurations on X × S =

X[a 0 c] × X[a′ 0 c′] (and elliptic fibration morphisms) by the subgroup of Γ that fixes the

embeddings of U∗⊕TX and TS in (5.13), (5.15) and JS in (5.22). Included in this stabilizer

subgroup is WE8 ×WE8 , the Weyl group of E8 ⊕ E8 ⊂ Λ
(S)
K3 .

The Weyl group WE8 acts on the 240 roots transitively. We have also confirmed that

the norm (−4), (−6), (−10) and (−12) points form single orbits of WE8 on their own.

There are at most two WE8 orbits in the norm (−8) points, norm (−14) points and also

in the norm (−16) points.67 Thus, it is not a particularly bad estimate (for the counting

of inequivalent flux vacuum) to assume that all the norm (−2m) points in the E8 root

lattice form a single orbit of WE8 for relatively small m such as m ≤ 12, which is the

range that matters under the tadpole condition (5.23). With this crude approximation

of the modular group Γ action on fluxes, the total number of “inequivalent” choices of

X×S = X[a 0 c]×X[a′ 0 c′] and fluxes Gtot combined is reduced to about 7×106. About 80%
of this ensemble of “inequivalent” vacua still come from fluxes on X×S = X[1 0 1]×X[1 0 1],

and the totality of the flux choices on the five X × S mentioned above (those with small

a, c, a′, c′) account for 92%. Although the precise percentage values should not be taken

too seriously because of the crude estimate of the modular group action (and artificial

choice of JS), it is trustable at the qualitative level that the vacuum statistics of K3×K3

compactifications of F-theory with a rk7 = 16 7-brane gauge group Wunbroken is dominated

by a small number of X × S = X[a b c] ×X[a′ b′ c′] which have small values of a, c, a′, c′ so

that the minimum possible value of G2
tot/2 is small. Consequently, the distribution of any

observables/moduli parameters (such as Im(ρH) =
√
ac) is determined simply by that of

X × S = X[1 0 1] ×X[1 0 1] and a few others.

Before closing this section, it is worthwhile to mention that non-zero flux Gtot =

G1 +G0 does not imply that all the 18 + 20 complex structure moduli inM(X)
K3;F ×M

(S)
K3

are stabilized. The mass matrix (quadratic part of the superpotential) can be written in

the form of

∝ 1

2

(
δΠ(1), δΠ(2)

)(−Im(τ2)
√
Q2γ CI)⊗ (FI

FI)⊗ (CI −Im(τ1)
√
Q1γ

)(
δΠ(1)

δΠ(2)

)
, (5.24)

where δΠ(X) has 18 components on Wframe and δΠ
(S) 20 components on SS . Mass terms in

the diagonal block are from (4.33), while the off-diagonal block is due to the G0 type flux.

All the moduli would have non-zero masses if G1 6= 0 and G0 were absent (and similarly,

full rank G0 type flux with rk7 = 0 and vanishing G1 would stabilize all but two complex

structure moduli). When both are present, however, the diagonal masses from G1 and

66The 240 roots of E8 are the norm (−2) points on the E8 root lattice; there are 2160 points of norm

(−4) in the E8 lattice, and the number of norm (−2m) points scale as m3 There are 490560 points of norm

(−24) in the E8 lattice [93]. These numbers were used in obtaining the flux choices of order 795× 1015.
67This is done by computing the diag(H4, H4) action on WD8 orbits, see [93] for more information.
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off-diagonal masses from G0 interfere and there may be a zero mass-eigenvalue (and an

unstabilized direction of the moduli space) in principle.

One example is to choose nij = 0, m11 = m12 = m22 = −m21 = 1 and FP =

FQ = 0 in (5.19), (5.20) for a series of infinite pairs of attractive K3 surfaces X × S =

X[k 0 k] ×X[k 0 k] (where k = 1, 2 · · · ,∞). Under this choice of the flux, a one parameter

(k) deformation of the complex structure ΩX∧ΩS = [(v1+kV1)+i(v
′
1+kV

′
1)]⊗[(v2+kV2)+

i(v′2 + kV ′
2)] remains a flat direction, and all the ρX = ρS = 20 points X[k 0 k] × X[k 0 k]

just sit in this flat direction.

Such flux vacua with an unstabilized direction have been removed from the vacuum

ensemble studied in this section. To be more precise, our numerical code examined the

4 × 4 mass matrix on P1δΠ
(1)
P1

+ Q1δΠ
(1)
Q1

and P2δΠ
(2)
P2

+ Q2δΠ
(2)
Q2

, and threw away all the

flux configurations for which there is a zero eigenvalue in this mass matrix. Certainly,

one should examine the eigenvalues of a (18 + 20) × (18 + 20) mass matrix for each flux

configuration,68 but we believe that our short-cut approach does not qualitatively distort

the distribution of observables in the landscape.

5.3 U(1) flux, heterotic-F-theory duality, and GUT 7-brane flux

The unbroken symmetry Wunbroken of interest for a sub-ensemble of vacua can be chosen at

one’s will. We can choose it to be rank-18 as in sections 2.1, 2.2 and 4.3, or to be rank-16

as in section 5.2, but other choices such as Wunbroken
∼= A4, a SU(5)GUT landscape, are just

as appropriate.

Studies such as the one in section 5.2 are dedicated to a landscape of vacua of individual

choices of Wunbroken, which we call the Wunbroken landscape. Beyond such an analysis,

however, it is natural to ask such questions as how properties of the algebraic information

Wunbroken generally characterize distributions within the Wunbroken-landscape, or how the

number of vacua in the Wunbroken-landscape depends on Wunbroken. As a preparation for

such a discussion in section 5.4, we make a few remarks in this section.

When we write down the G0 type flux in the form (5.1), we can take the generators

{CI}I=1,··· ,18 of Wframe∗ to be such that some are from WU(1), and others from Wroot. We

call the G0 flux with CI from WU(1) a U(1) flux or Mordell-Weil flux, and that with CI

from Wroot a GUT-brane flux or singular fibre flux. The GUT 7-brane flux corresponds

to the line bundles introduced on GUT 7-branes in F-theory (such as those in [94]), or

line bundles on a stack of multiple D7-branes in type IIB Calabi-Yau orientifolds. The

U(1) flux requires [20] a special choice of complex structure so that there is a non-vertical

algebraic cycle, meaning that the Mordell-Weil group is non-trivial; the unavoidable tuning

of complex structure is an expression equivalent to moduli stabilization.

5.3.1 U(1) flux/Mordell-Weil flux

Let us first ask what the U(1) flux looks like in the light of the duality between F-theory

and heterotic string theory. As discussed in the literature (such as [32–34]), there must be

68In the case of rk7 = 16, this problem is reduced to that of a (2 + 20)× (2 + 20) matrix, since the mass

matrix of the moduli δΠ(1) in Wunbroken does not interfere with the rest.
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a component of four-form U(1) flux in F-theory whose origin in heterotic string is a flux on

the spectral surface. Suppose that πZ : Z = T 2 × S −→ S is the elliptically fibred Calabi-

Yau threefold for the dual heterotic string compactification, and (C,N ) the spectral data

describing the vector bundle on Z. The spectral surface C is a subspace of Z = Jac(T 2)×S
characterized by the zero points of the elliptic functions

av0 + av2x+ av3y + · · · = 0, ah0 + ah2x+ · · · = 0 (5.25)

on T 2, and N = OC(γ) is a line bundle on C specified by a divisor γ on C. For any

complex structure of Z, S and C [30], one can always find a divisor

γFMW ∝ (nσ − π∗C(nKS + η)) , (5.26)

where πC = πZ |C , η is a divisor on S, KS the canonical divisor of S, and we assume

SU(n) ⊂ Evis
8 is the structure group of the vector bundle. None of the U(1) fluxes we

talk about here, however, should correspond to this Friedman-Morgan-Witten flux in the

heterotic “dual”. If this flux were to be dual to the U(1) flux in F-theory, we would run into

a contradiction immediately: an arbitrary complex structure is allowed on the heterotic

side, while it has to be tuned in F-theory. In fact, the generic Friedman-Morgan-Witten

flux (5.26) always vanishes, γ = 0, when the dual F-theory is a K3×K3 compactification.

For finely tuned complex structure of the heterotic string compactification data,

(Z, S,C), however, there is more variety in the choice of γ on the spectral surface [30].

Suppose that the base K3 surface S is not the general complex analytic one, but has Pi-

card number ρS ≥ 2. This means that we might be able to find a set of {FA} ⊂ [J⊥
S ⊂ SS ]

generating a rank-k sublattice of SS . We only consider vector bundles with the structure

group contained in Gv
str ×Gh

str = SU(Nv)× SU(Nh). It then appears that we can think of

a vector bundle for compactification,

V = ⊕Nv+Nh
i=1 OS(Di)⊗OT 2(pi − e), Di =

∑

A

nA(i)FA , (5.27)

where the {pi} and e are the zeros and the pole, respectively, of the elliptic functions (5.25).

The spectral surface is of the form C = ∪iCpi with Cpi ≃ S’s corresponding to pi ∈ Jac(T 2),

and γ|Cpi
= Di. This vector bundle is poly-stable with respect to the Kähler form JZ =

JT 2 + JS . The unbroken symmetry should be Ev
9−Nv

× Eh
9−Nh

within E8 × E8. Moduli

parameters include ρH and τH of T 2, and (Nv−1)+(Nh−1) parameters of the flat bundles

in (5.25), and hence,in addition to those from the base S, there are Nv +Nh of them.

Dual to this heterotic string compactification should be F-theory on Y = X×S where

the elliptically fibred K3 surface X has the following Neron-Severi and transcendental

lattices:69

Λ
(X)
K3 ⊃ SX ⊕ TX = [U∗ ⊕ E9−Nv ⊕ E9−Nh

]⊕ [U ⊕ U ⊕ANv−1 ⊕ANh−1] . (5.28)

K3 surfaces X of this form have Picard number ρX = (20−Nv −Nh), so that the moduli

space has dimension (Nv + Nh), which agrees with the counting above. If we are to find

69A detailed description of the transcendental lattice is found in [85] for the case of Nv = 3.
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a four-form flux in F-theory dual to γ, that dual flux must be associated with non-U∗

cycles that are orthogonal to the unbroken symmetry part E9−Nv ⊕ E9−Nh
. This means

that the flux is not in an algebraic cycle, and such a configuration is not stable. The

complex structure moduli dynamically tune themselves (due to the GVW potential) so that

the associated cycle becomes algebraic. In order to introduce k independent U(1) fluxes

in (5.1), the number of unstabilized directions in the moduli space should be reduced by

k, and the moduli space becomes (Nv +Nh − k)-dimensional [20].70

This reduction of the moduli space should also be understandable in the heterotic

string description. Certainly V in (5.27) is a holomorphic vector bundle and satisfies the

condition
∫
J ∧ J ∧ F = 0 as well as the Bianchi identity of the B-field,

0 = tr
so(6)

[(
R

2π

)2
]
− T−1

R trR

[(
F

2π

)2
]
+ 4δ

(4)
M5 = 4

(
−c2(TZ)− ch2(V ) + δ

(4)
M5

)
, (5.29)

where δ
(4)
M5 is the delta-function valued four-form associated with individual M5-branes

wrapped on holomorphic curves in Z = T 2 × S, and ch2(V ) is the second Chern character

of the rank (Nv+Nh) vector bundle V (with the structure group SU(Nv)×SU(Nh)). There

is a condition that is stronger than (5.29), however:

0 = H := dB+
α′

4

(
tr

[
ωdω +

2

3
ωωω

]
− T−1

R trR

[
AdA− i2

3
AAA

])
+(source)M5 , (5.30)

if we are to stick to the framework of heterotic string compactification on a Kähler manifold

and constant dilation configuration (Chap.16, [95]). This constraint may also be understood

as a combination of the F-term condition of

WHet ∝
∫

Z
ΩZ ∧H + (2π)2α′

∫

Γ(M5)
ΩZ (5.31)

with respect to the complex structure moduli of Z and 〈WHet〉 = 0 for vanishing cosmologi-

cal constant.71 Γ(M5) is a real 3-chain in Z = T 2×K3 whose boundary contains the curves

on which M5-branes are wrapped [96]. The exterior derivative of this condition (5.30) re-

produces (5.29).

The B-field Bianchi identity, (5.29), can be satisfied by wrapping an appropriate num-

ber (NM5) of heterotic NS5-branes (M5-branes in heterotic M-theory) on the fibre T 2. As

is well-known in the literature,

c2(TZ) = (24 ptK3)⊗ 1T 2 , ch2(V ) =
1

2

Nv+Nh∑

i=1

(Di)
2 , (5.32)

and the only non-trivial part, which is a four-form on S and scalar on T 2, of the condi-

tion (5.29) gives rise to
1

2
(G

(4)
H )2 +NM5 = 24 . (5.33)

70On top of this, G1 type flux is introduced to fix the remaining moduli. But in the context of heterotic-

F-theory duality, we take the G1 component out of the picture (or assume that it is absent).
71Flux of Friedman-Morgan-Witten type γ (5.26) does not vanish in the case of a general Calabi-Yau

threefold Z with elliptic fibration (although it vanishes in the present case). This type of flux, however,

does not restrict complex structure moduli because it induces a vanishing Chern-Simons term.
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Here, G
(4)
H takes values in the lattice72 (ANv−1 ⊕ANh−1)⊗ [J⊥

S ⊂ SS ], and is given by

G
(4)
H =

Nv−1∑

I=1

CI ⊗DI +

Nh−1∑

I=1

CI ⊗DI , DI = −(Di=1 + · · ·+Di=I) . (5.34)

The condition (5.30) in the two-form component on S and one-form on T 2, however,

contains information that is not captured by the Bianchi identity (5.29). In the presence of

U(1) flux OS(Di) on S and a flat bundle OT 2(pi − e) (i.e., Wilson line) on T 2, there is no

contribution to the Chern character, but the Chern-Simons form can be non-zero. Keeping

in mind that M5-branes wrapped on T 2 as well as gravitational Chern-Simons form only

contribute to (5.30) in the component purely three-form on S, we see that

(
dB − α′

4
T−1
R trR [AdA]

)∣∣∣∣
2-form on S, 1-form on T 2

= 0 , (5.35)

where the A3 term in the Chern-Simons form has also been dropped for the Cartan flux

configuration. Since the Polyakov action remains invariant by changing the B-field back-

ground by (2π)2α′ times an integral two-form on the target space, it is possible that the

B-field background configuration expanded by using the same set of FA as in (5.27)

B =
∑

A

bAFA(2π)
2α′ (5.36)

may have scalars bA varying topologically on T 2, so that dbA = α̌n8A + β̌n9A for some

integers n8A and n9A and a basis {α̌, β̌} of H1(T 2;Z). When k independent FA’s in [J⊥
S ⊂

SS ] are involved, we find the k independent conditions on the Wilson lines A = AICI ,

AI = (2π)(α̌a8I + β̌a9I):

[
dbA +

AI

2π
(CI , CJ)n

(J)
A

]
⊗ FA = 0, 2n8A − a8IqIA = 0, 2n9A − a9IqIA = 0, (5.37)

where n
(J)
A := −(nA(i=1) + · · ·+nA(i=J)) and q

I
A := −(CIJ)n

(J)
A . Hence k combinations of the

Wilson lines AI are required to be torsion points of Jac(T 2) (equivalent to the origin of

Jac(T 2) when multiplied by some non-zero integer).73 This is equivalent to k conditions

imposed on the spectral surface data (av0,2,3,··· and a
h
0,2,···) and f0 and g0 (equivalently τH).

Let us now translate this interplay among the Cartan flux, B-field topological con-

figuration and the reduction (stabilization) of the moduli space in the language of Narain

moduli. The Narain moduli covers not just the region with parametrically large [vol(T 2)/ℓ2s]

(where supergravity approximation is good), but also the stringy region. When there is

a Cartan flux and corresponding topological dB configuration, our observation above —

72Note that we define the A–D–E lattice to have negative definite symmetric pairing in this article, and

that Di’s are also negative definite, because of the signature (1, ρS − 1) of SS .
73It is no longer surprising that av

3y = 0 and ah
3y = 0 are the spectral surface equation read out from (4.48).

These equations mean that the Nv = 3-fold spectral cover (also Nh = 3) consists of three irreducible pieces

sitting at the three 2-torsion points of Jac(T 2).

– 54 –



J
H
E
P
0
4
(
2
0
1
4
)
0
5
0

some combinations of AI ’s are forced to be torsions of Jac(T 2) — is translated into the

existence of k vectors7475

nA := (2n8A, 0, 2n
9
A, 0, q

I
A)

T ∈ II2,18 , (5.38)

satisfying76

〈ZR, nA〉 = 0, ZR ∝
(
−τH , −ρ̃H , 1, −τH ρ̃H − (a)2/2, aI

)
; (5.39)

see appendix A for background material on Narain moduli in heterotic string theory. This

mechanism is precisely the same, mathematically, as how algebraic cycles emerge for special

choice of complex structure on the other side of the duality.

It must be be obvious that one should define a lattice element

G̃
(4)
H :=

∑

A

nA ⊗ FA ∈ [U ⊕ U ⊕ANv−1 ⊕ANh−1]⊗ [J⊥
S ⊂ SS ] (5.40)

in heterotic string language in order to formulate the Cartan flux and topological dB

configuration combined. Within the framework that we have assumed in this section so

far,77 where Z = T 2 × S is Kähler, 〈φ〉Het = const and 〈H〉 = 0 on the heterotic side, the

duality map of the flux is given by

G̃
(4)
H = G0 = Gtot . (5.41)

Within this class of Cartan flux, the norm of G̃
(4)
H remains the same as that of G

(4)
H , because

with w8 = w9 = 0, only nA8 and nA9 are allowed to be non-zero. Therefore, the Bianchi

identity (5.33) becomes dual to the D3-tadpole condition (5.23).

The duality dictionary above is a generalization and refinement of the preceding dis-

cussion in [30, 32–34, 97, 98], in that we can deal with a more general class of fluxes on the

heterotic spectral surface (by allowing non-trivial 〈dB〉), keep track also of flux quanta in

the U ⊕ U components in the form of G̃
(4)
H = Gtot or nA, maintain a clear distinction be-

tween algebraic and transcendental cycles on the F-theory side and are able to understand

how the dimension of moduli space is reduced.

The conventional dictionary using the stable degeneration limit of K3 surfaces is un-

derstood in the following way from the present perspective. Within the framework we have

74It is worth drawing attention to the fact that such vectors cannot always be brought into the [ANv−1 ⊕
ANh−1] part of [U ⊕ U ⊕ANv−1 ⊕ANh−1]. The flux vectors that can be brought purely into E8 ⊕E8 may

be associated with the flux on a trivial spectral surface in heterotic language, and are dual to the singular

fibre flux (GUT brane flux) in F-theory.
75We wonder if we have made an error causing the factor of 2?
76This condition in heterotic string theory means that there is a class of states (vertex operators) with

(kR, kL) ∈ R2,18 satisfying (α′/4)(kR)2 = 0 and (α′/4)(kL)2 = −(nA)
2/2 = −(qA)

2/2. As we are con-

sidering U(1)/Mordell-Weil fluxes here, rather than a GUT 7-brane/singular fibre flux, nA should belong

to Wframe\Wroot, meaning that −(nA)
2 ≥ 4. Thus, none of vertex operators for physical states with this

(kR, kL) appear in the massless spectrum.
77Obviously this is not the most general form of Gtot, in particular when G1 = 0. For a fully general

choice of Gtot on the F-theory side, it is considered that we have to turn on 〈H〉 6= 0, a non-constant dilaton

configuration and non-Kähler metric on the Heterotic string side [23].
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considered so far, the moduli space of ZR (∝ ΩX) still maintains a free choice of at least τH
and ρ̃H , even after maximally possible Cartan fluxes (rank = Nv +Nh− 2) are introduced

in the SU(Nv)×SU(Nh) structure group (no G1 component yet, in particular). Thus, from

this moduli space we can extract a family of K3 surfaces parametrized by ρ̃H . This family

π : X −→ D is defined on a disc D ⊂ C with t = 1/ρ̃H as the coordinate, just like the

discussion in footnote 46 for the family defined by (4.35). Mathematically, this family may

be augmented by providing the degeneration limit corresponding to t = 1/ρ̃H = 0 ∈ D,

which is called the central fibre. Each fibre (K3 surface) π−1(ρ̃H) for some 1/ρ̃H ∈ D con-

tains an algebraic cycle (curve) corresponding to nA in (5.38), (5.39), and those algebraic

cycles (curves) for various ρ̃H are collectively regarded as an algebraic family of curves,

or equivalently as a divisor in X . The intersection of this divisor with the central fibre,

π−1(0) = dP9 ∪ dP9, determines an algebraic cycle in dP9 ∪ dP9. In this way, the stable

degeneration limit of nA is obtained.

Appendix B describes the behaviour of a semistable degeneration of a K3 surface and

its algebraic cycles using a concrete example given by (4.48). We will see there how the

semistable degeneration limit of an algebraic cycle can have an image in only one of the

two dP9’s (only in visible/hidden sector dP9).

Just like in the heterotic string picture of F-terms (5.31) leading to the stabilization

of Wilson line moduli 〈A〉I , we can also understand78 the stabilization of the D7-brane

positions in the dual type IIB theory on the orientifold K3× T 2/Z2. The type IIB version

of the superpotential (5.31) is

WIIB ∝
∫

M
ΩM ∧G(3) +

∫

S
iX∗ΩM ∧ F =

∫

M
ΩM ∧G(3) +

∫

S
ΩM ;ijk tr

[
XiFlm

]
, (5.42)

where Xi is the fluctuation of D7-brane in the transverse direction. Let us assume that we

give a vev Di to the gauge field strength for the i-th D7-brane. Its contribution can also

be described by rewriting the last term above as W =
∫
Γ(D7)ΩM . Here, Γ(D7) is a 3-chain

whose boundary consists of a two-cycle Poincaré dual (in S) to Di and a reference two-

cycle D0. We can expand Di = nAi FA. Furthermore, we can introduce a three-form flux

G(3) = F (3)−φH(3). Here φ is the type IIB axiodilaton and F (3) and H(3) are the type IIB

R-R and NS-NS fluxes, respectively. We also expand G(3) = F (3)−φH(3) = (mA
F−τmA

H)FA

for a basis of two-cycles FA of the K3 surface S and some mA
F ,m

A
H ∈ H1(T 2;Z). Using

that ΩM = ΩS ∧ dz, we can evaluate the superpotential to be

WIIB ∝
∑

A

∫

S
ΩS ∧ FA

∑

i

(
mA

F − φmA
H +

∫ Xi

0
niA dz

)
. (5.43)

The orientifold involution demands that we supply an image D7-brane at X̂i = −Xi for

any D7-brane at Xi. The U(1) gauge field surviving the orientifold involution is Âi−Ai, so

that the image brane also carries a flux D̂i = −Di and the two signs cancel in (5.43). The

orientifold involution also sends G(3) 7→ −G(3), so that the only modes that survive are

78A closely related discussion is found in section7.3 of [22], see also [21, 23]. The presentation here,

however, is for 〈H〉 = 0 and Kähler metric in the heterotic description.

– 56 –



J
H
E
P
0
4
(
2
0
1
4
)
0
5
0

those expanded into odd three-forms. All three-forms used for the expansion of G(3) are

odd, so that this is already taken care of. We can hence capture the effect of orientifolding

by only considering 16 branes at Xi with fluxes Di on their worldvolume and putting a

factor of two in front of the last term in (5.43). The conditions for supersymmetry coming

from the superpotential are then written as

∑

i

(
mA

F − φmA
H + 2

∫ Xi

0
niA dz

)
= 0 . (5.44)

Just as for the Wilson lines, the positions of the branes should add up to a torsion point of

T 2, so that the above can be cancelled by an appropriate choice of F3. Note that φ→ i∞
in the weak coupling limit, so that (assuming niA is finite) we cannot use H3 for the same

purpose. This is as expected, as the three-form dB, which took part in the same mechanism

on the heterotic side, is turned into F3 = dC2 under the duality map.

The need to put (some of) the D7-branes at special loci on T 2/Z2 in order to have

supersymmetric world-volume flux and the connection to the existence of algebraic cycles

in the F-theory K3 has also been discussed in [20].

A lesson to be learnt from this is that instead of considering G3 alone, the combination

of G(3) and the contribution from D7-branes we see above should be of type (2, 1) [24]. This

is just like the corresponding condition in heterotic string theory, where the vanishing of H

including both dB and the Chern-Simons terms is required. Even for three-form fluxes H(3)

and F (3) that cannot be made purely type (2, 1) and primitive for any choice of 〈φ〉 and
complex structure of M , there may be supersymmetric configurations for an appropriate

choice of D7/O7-brane configuration. Turning this argument around, one can also see that

once a G(3) configuration is found so that the supersymmetric conditions are satisfied for

a D7/O7-brane configuration, then all the supersymmetric configurations consist of a sum

of this special combination of flux plus any primitive pure (2, 1) form.

5.3.2 GUT 7-brane flux/singular fibre flux

Let us also make a brief remark on the GUT 7-brane flux (singular fibre flux), before

moving on to the next section. Suppose that a flux (5.1) is introduced for CI (i.e., the

corresponding FI does not vanish) in an irreducible component R ofWroot. Although there

is a gauge theory on 7-brane (≃ S × R3,1) with the gauge group R, the flux turns on a

non-trivial line bundle on the 7-brane and the symmetry of R is broken down to [C⊥
I ⊂ R]

in the effective theory below the Kaluza-Klein scale.

The field contents in the effective theory can be described in terms of irreducible

representations of the unbroken symmetry group [C⊥
I ⊂ R]. Let α be a root of R that does

not belong to [C⊥
I ⊂ R], and Dα =

∑
I(α,CI)FI a divisor on S. Since we have assumed

from the outset that FI ∈ [J⊥
S ⊂ SS ], we have that H0(S;OS(D±α)) = 0, as long as the

Kähler form JS is in AmpS (defined as an open set). If H0(S;OS(Dα)) or H
0(S;OS(D−α))

were non-trivial, then either Dα or D−α is a divisor class represented by an effective curve,

which should have a positive intersection number with any other divisor (including JS)

in the ample cone AmpS . If, however, we allow some (−2)-curves to have zero volume

under JS (i.e., JS ∈ AmpS\AmpS), some effective divisors may have zero volume and
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H0(S;OS(D±α)) 6= φ is not ruled out mathematically. This is also true when we cannot

rely entirely on the local field theory approximation. Just like in toroidal orbifold examples

where symmetry may sometimes be restored even in the presence of symmetry-breaking

orbifold twists, stringy effects at zero-volume cycles may bring about consequences beyond

the local field theory/supergravity approximation. Keeping in mind that

h0(S;OS(Dα)) + h0(S;OS(D−α)) = h0(S;OS(Dα)) + h2(S;OS(Dα)),

≥ χ(S;OS(Dα)) = 2 +
(Dα)

2

2
(5.45)

on a K3 surface S, there is always such a zero-volume (−2) curve for a flux such that

(Dα)
2 = −2. For fluxes where (Dα)

2 ≤ −4, however, there is no such immediate conse-

quence.

As long as we stay within the field theory approximation (which means that JS ∈
AmpS , or at least h0(S;OS(Dα)) = 0), the number of chiral multiplets in the irreducible

component containing the root ±α is given by

h1(S;OS(D±α)) = −χ(S;OS(D±α)) = −
(Dα)

2

2
− 2. (5.46)

Note that there is no net chirality because of (Dα,KS) = 0.

5.4 Vacuum distribution based on continuous approximation

There have been attempts, most notably in [2, 17, 28, 29], of going beyond a case-by-case

analysis of flux configuration counting. We initiate an effort of generalizing their approach

by implementing various concepts that we have already developed in this section, so that

we can ask statistical questions that are of interest in the context of particle physics, not

just in cosmology. To do so, we use what we call the restricted complex structure moduli

space, which is the space of complex structure deformations leaving a chosen set of divisors

algebraic. For a K3 surface (or K3 × K3), we denote this by M∗(JS ,Wnoscan). It is the

moduli space of complex structures for which the (fixed) Kähler form JS stays purely of

type (1, 1) and the divisors spanning Wnoscan remain algebraic. This means that we only

consider complex structures such that Ω ·Wnoscan = 0.79 For more general fourfolds (where

H2,0 = 0) the first condition, JY being of type (1, 1), is automatically satisfied, so that we

simply use the notationM∗(Wnoscan) here.

I. An approach of [28, 29] is to replace the sum over all the flux configurations taking

their value in a lattice by continuous integration. In a theory where there are flux quanta

N specified by K integers, the vacuum index density dµI is defined on M∗(JS ,Wnoscan)

(of complex dimension m) by

dµI = d2mz
∑

N

Θ(L∗ − L)δ2m(DaW,DbW ) det

(
DcDdW ∂cDdW

∂̄c̄DdW DcDdW

)

2m×2m

(5.47)

≈ d2mz

∫

N
dKN Θ(L∗ − L)δ2m(DaW,DbW ) det

(
DcDdW ∂cDdW

∂̄c̄DdW DcDdW

)

2m×2m

.(5.48)

79K3 surfaces with this kind of constraint are called lattice polarized in the mathematics literature.
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Here, the za are complex local coordinates on M∗. The definition of this index density

dµI is independent of the choice of local coordinates onM∗ and becomes an (m,m)-form

onM∗/Γ∗, where Γ∗ is the modular group. The vacuum index density can be used to set

a lower bound in the number of vacua (without the condition 〈WGVW〉 = 0).

In type IIB compactification on a Calabi-Yau threefold M3 with an orientifold projec-

tion yielding n irreducible O7-planes, for example, M∗(D
⊕n
4 ) is the same as the moduli

space of complex structures of M3 together with the axi-dilaton. We only consider con-

figuration of 7-branes such that they appear in the combination of SO(8) 7-brane gauge

groups, i.e. we out four D7-branes on each O7-plane. Then the restricted moduli spaceM∗

has complex dimension m = (h2,1−,prim.(M3) + 1) and there are K = 4(h2,1−,prim.(M3) + 1) in-

tegers for type IIB three-form quanta satisfying the primitiveness condition G(3)∧JM = 0.

The delta functions (F-term conditions) reduce the flux space to be integrated from real

K dimensions to K − 2m dimensions. The remaining integral in the flux space (at each

point in the moduli spaceM∗/Γ∗) is over primitive and (2,1) or (0,3)-type (i.e., imaginary

self-dual) three-form fluxes G(3) in type IIB Calabi-Yau orientifold. It is bounded in region,

because the contribution of such flux to the D3-tadpole

1

2
G

(4)
tot ·G

(4)
tot −→

i

2

G(3) ∧G(3)

Im(φ)
= H(3) ∧ F (3) (5.49)

is positive definite and is bounded from above by L∗, the total O3 plane charge inM3. The

vacuum index density thus becomes a finite-valued distribution (m,m)-form on the moduli

spaceM∗/Γ∗.

By following the argument of [28, 29], it is not hard to realize that the integral over

the finite (K−2m)-dimensional region within the flux space dKN yield a factor L
(K−2m)/2
∗

for z ∈ M∗. The Jacobian between the moduli space coordinates za and the remaining

real 2m coordinates of the continuous flux space dKN gives rise to another factor (L∗)
2m/2.

Hence the vacuum index density of the landscape is given by

dµI =
1

(K/2)!
(2πL∗)

K/2 × ρind., (5.50)

where ρind. is an (m,m)-form onM∗/Γ∗. Note that K and m are distinguished intention-

ally; although the relation K = 4m holds in type IIB Calabi-Yau orientifolds, it does not

necessarily hold when one pays attention to a restricted subset of the full complex structure

moduli space of M3 (e.g., K = 3 and m = 1/2 model for M3 = T 6 in [17]), or in appli-

cations to F-theory. The (m,m)-form ρind. in (5.50) does not depend on L∗ primarily.80

For this reason, the factor (L∗)
K/2/(K/2)! roughly determines the overall number of flux

vacua in the landscape onM∗/Γ∗ and the distribution within the moduli spaceM∗/Γ∗ is

controlled by ρind..

80It frequently happens, though, that the integral of ρind. over M∗/Γ∗ is not finite, and/or the continuous

approximation of the flux quanta (from (5.47) to (5.48)) in some regions of M∗/Γ∗ becomes bad, and/or

some regions of M∗/Γ∗ correspond to decompactification “limits” in dual theories. Because the cut-off for

the region in M∗/Γ∗ for the continuous approximation depends on the value of L∗, the integral of ρind.
with cut-off may depend on L∗. See [17] for such an example.
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Figure 5. Vacuum distribution in the rigid Calabi-Yau model of [17, 28, 29] shown in the fun-

damental domain of the axi-dilaton moduli space. Depending on the value of L∗, D3-tadpole, the

distribution of vacua in the moduli space can be either almost continuous or genuinely discrete.

Whether the continuous approximation is good or bad crucially depends on the value

of L∗. To take an example, let us consider the rigid Calabi-Yau threefold model studied

in [17, 28, 29], where h2,1(M3) = 0 and the moduli space M is that of the axi-dilaton

of type IIB string theory. The distribution of flux vacua is presented in figure 5 without

making the continuous approximation for three different values of L∗. For the one with

L∗ = 150, which is also found in [29], the continuous approximation looks reasonably good.

For cases with small value of L∗, however, the continuous approximation is not very good,

as in figure 5 with L∗ = 20.

When the continuous approximation is not good, it is more appropriate to i) specify

the set of points in M∗/Γ∗ that admit integral fluxes, and ii) describe how many choices

of such integral flux configurations are available at such points [17]. Suppose the dilaton

vev 〈φ〉 takes its value in an algebraic extension field F over Q with D := dimQF = 2, and

the complex structure moduli of M3 are such that [ΩM3 ] ∈ FP[H3(M3)] and [DiΩM3 ] ∈
FP[H3(M3)] for i = 1, · · · , h2,1(M3). Then the number of flux quanta at our disposal

(while preserving the F-term conditions) is

κ = 4(h2,1(M)−,prim. + 1)− (D = 2)× (h2,1(M)−,prim. + 1), (5.51)

which is reduced to

κ′ = 4(h2,1(M)−,prim. + 1)− (D = 2)× (h2,1(M)−,prim. + 1)− (D = 2) (5.52)

when 〈WGVW〉 = 0 is required. Consequently, the number of flux configuration scales

for a given complex structure (〈φ〉 , 〈za〉) as (L∗)
κ/2 or (L∗)

κ′/2, respectively [17]. The

overall number of flux vacua, estimated to be (L∗)
2(h2,1(M)−,prim.+1), should be reproduced

partially from (L∗)
κ/2 times the number of such D = 2 vacua in the fundamental domain
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of the moduli space, and the rest must come from similar contributions from vacua with

different value of the extension degree D.
The rk7 = 16 landscapes of F-theory on K3 × K3 in section 5.2 fits very well with

this discrete picture in two different ways. First, L∗ in the type IIB language comes from

χ(Y4)/24 in F-theory, which remains small for Y4 = K3×K3. This is visible most clearly in

figure 1, or in the relatively short list of vacuum points (there are 66) in the moduli space

in table 2 or merely 170 pairs found in the analysis of section 5.2. These results definitely

look closer to the L∗ = 20 picture in figure 5 than the one with L∗ = 150.

The second reason is that the number of scanning flux quanta κ available at each

isolated point in M∗(JS ,Wnoscan) remains the same for all the Wnoscan-landscapes for F-

theory on K3 × K3 with rk7 = rank(Wnoscan) = 16. This is obvious in the case of the

Wnoscan = (D⊕4
4 ); (Z2 × Z2)-landscape, because this is the type IIB orientifold compactifi-

cation on M3 = T 2 ×K3 with all the O7-planes accompanied by four D7-branes on top of

them. But, even for other choices with rank(Wnoscan) = 16, the number of scanning flux

quanta κ, and hence the estimate of the number of D = 2 vacua should remain much the

same, even if Wnoscan contains E6,7,8 type gauge group. The number of flux quanta freely

scanned over for a given Kähler form (5.3) and a rank-16 Wnoscan was

κ = 8 + 2× 17, κ′ = 6 + 2× 17 (5.53)

in the study in section 5.2, which agrees with the type IIB orientifold value (5.51), (5.52)

for h2,1(T 2 ×K3)−,prim. = 1 + 19.

The action of the modular group Γ∗ is implemented in the continuous approximation

of [28, 29] by simply restricting the complex m-dimensional restricted moduli space M∗

to its fundamental region. If L∗ is small and one is in a situation of maintaining the

discrete approach, one can still restrict the spaceM∗ to its fundamental region under the

action of the modular group Γ∗. Furthermore, one has to take a quotient of integral flux

configurations admitted for a given point [z] ∈ M∗/Γ∗ by the residual modular group

Γ∗(z), the stabilizer subgroup of a representative point z ∈ M∗ [17]. In the example of

type IIB on a rigid Calabi-Yau threefold [17, 28, 29], the first few axi-dilaton vevs for small

flux contribution to the D3-tadpole sit at a special point in the axi-dilaton moduli space,

〈φ〉 = i, where the stabilizer subgroup of the moduli space Γ∗ = SL(2;Z) is non-trivial. Flux

configurations for 〈φ〉 = i have to be modded out by the non-trivial residual modular group.

Exactly the same phenomenon takes place in the case of compactification of F-theory

on K3 × K3. For any point (ωX , ωS) in the moduli space D(X) × D(S), the stabilizer

subgroup of Γ in (4.26) contains

([
W (2)(SX)⋊Aut(X)

]
×
[
W (2)(SS)⋊Aut(S)

])
. (5.54)

M∗(JS ,Wnoscan), however, further specifies an embedding of [JS ] ∈ SS⊗R/R≥0 and (U∗⊕
Wnoscan) ⊂ SX . Thus, only the subgroup of (5.54) preserving this embedding remains

as the residual modular group Γ∗ acting on the flux configuration. None of the reflection

subgroupW (2)(SS) will be left in the residual modular group as long as JS is in the interior

of the cone AmpS . In our numerical study in section 5.2 JS is sitting on a boundary of
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AmpS , so that the WE8 ×WE8 Weyl group in W (2)(SS) is in the residual modular group

Γ∗. Similarly, most of W (2)(SX) is also gone from the residual modular group because

of the embedding of U∗ ⊕Wnoscan. At a point ωX ∈ D(X) where an extra non-Abelian

factor of Wroot emerges outside of Wnoscan, however, its Weyl group is still a part of Γ∗.

The automorphisms in Aut(X) ∩ Γ∗ at least preserve the elliptic fibration morphism and

the zero-section, so this is a small subgroup of Aut(X). We should also remark that our

vacuum counting in section 4.2 exploited all possible Aut(S) to take a quotient of the set

of G1-type fluxes. Since the argument there does not refer to the choice of JS , one either

has to count varieties in JS or use only the subgroup of Aut(S) preserving JS ∈ AmpS
when taking a quotient of the flux configurations.

In landscapes where L∗ is small, there is a pronounced void structure in the vacuum

distribution onM∗/Γ∗, and a significant fraction of vacua are accumulated at the special

points at the centre of the voids [17, 29]. Sample statistics in section 4.3 and, in particular,

section 5.2 must have been strongly influenced by this effect. Especially when it comes

to the fraction of symmetric vacua in the statistics (such as the fraction of CP preserving

vacua in section 4.3), the small value of L∗ from χ(Y4)/24 = 24 must have a strong impact.

Keeping this in mind, one should not view the high fraction of CP symmetric vacua as a

generic prediction of F-theory.

II. From the perspective of F-theory, there is no reason to focus our attention only to

Wnoscan-landscapes with rk7 = rank(Wnoscan) = 16. It is thus natural to discuss flux

vacuum distribution on the restricted moduli space M∗(JS ,Wnoscan). In the rest of this

section, we treat χ(Y4)/24 (or L∗) as if it were a free parameter. By doing so, we can

get a feeling for how the vacuum distribution depends on such parameters as rk7 — the

rank of fixed 7-brane gauge groups — in F-theory compactification on general elliptic

Calabi-Yau fourfolds (not necessarily K3×K3). With this in mind, we use the continuous

approximation to the space of flux quanta [17, 28, 29].

For K3 × K3, the restricted moduli space M∗(JS ,Wnoscan) is of complex dimension

m = (18 − rk7) + 19. The vacuum index density (5.48) of [28, 29] in this set-up becomes

an (m,m)-form onM∗. Summation over the flux configuration is replaced by an integral,

dKN , and the delta functions (F-term condition) remove the integral over the (3, 1)+(1, 3)

Hodge components of the flux. Since we restrict the flux to be orthogonal to Wnoscan, there

are only complexm = (20−2−rk7)+(20−1) dimensions of such (3, 1) components to begin

with, and hence all the integrals of the (3, 1)+ (1, 3) components are removed from
∫
dKN

in (5.48). There are still remaining integrals over real K − 2m = 2 × 2 + (18 − rk7) × 19

dimensions of the space of flux configuration; contribution to the D3-brane tadpole is

positive definite in this space. This argument will lead to the vacuum index distribution

that is an (m,m)-form ρind. on M∗(JS ,Wnoscan)/Γ∗ multiplied by a factor (L∗)
K/2 with

K = [(20 − rk7) × 21]. By requiring that 〈WGVW〉 = 0, K is replaced by K ′ = K − 2.

Therefore, the number of vacua in the ensemble of a given Wnoscan and JS roughly scales

as (L∗)
−(21/2)×rk7 as a function of rk7.

In order to study the ratio of the number of SO(10) vacua to SU(5) vacua in F-

theory on K3 × K3 flux vacua, one should also address Kähler moduli stabilization, and
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the vacuum counting on the choice of JS need to be used as the weight multiplied on

top of the distribution on M∗(JS ,Wnoscan)/Γ∗. It will be arguable whether the K3 × K3

compactification of F-theory is phenomenologically interesting enough to motivate such a

laborious study. Unless the weight factor from Kähler moduli stabilization contains very

strong rk7-dependence, it seems very difficult to overturn the statistical ratio of (L∗)
−10.5

of SO(10) vacua to SU(5) vacua simply coming from the flux statistics for fixed JS .

In such cases as Wnoscan = A4 or D5 in Y = X × S = K3 × K3 compactification

of F-theory, there exists a primitive embedding φ : U ⊕ Wnoscan →֒ Λ
(X)
K3
∼= H2(X;Z).

Furthermore, such an embedding is unique modulo Isom+(Λ
(X)
K3 ) due to Theorem 1.14.4

of [99] and Theorem 2.8 of [78] (which is also quoted as Thm. ǫ in [26]). Thus, the restricted

moduli spaceM∗ can be constructed out of a single piece81 of the restricted period domain

P

[{
ΩX ∈ (Λ

(X)
K3 )∗ ⊗ C

∣∣∣ ΩX ∧ ΩX = 0, 〈ΩX , φ(U ⊕Wnoscan)〉 = 0, ΩX ∧ ΩX > 0
}]

.

(5.55)

If an attractive K3 surface X = X[a b c] admits an elliptic fibration whose Wframe con-

tains a Wnoscan as above, its ΩX (equivalently a primitive embedding of its TX into

[φ(U ⊕Wnoscan)
⊥ ⊂ Λ

(X)
K3 ]) should be found in this single piece of restricted period domain.

Such an embedding of TX , however, is no longer unique under the subgroup of Isom+(ΛK3)

preserving the embedding φ : (U ⊕Wnoscan) →֒ Λ
(X)
K3 . In sections 4.1 and 4.2.3, we dis-

cussed multiplicities of elliptic fibration on a given attractive K3 surface X and a given

isometry class of frame lattice. This multiplicity appears as a part of the non-uniqueness

of the embedding of TX into [φ(U ⊕Wnoscan)
⊥ ⊂ Λ

(X)
K3 ] modulo the remaining subgroup of

Isom+(ΛK3).

III. Having seen how the vacuum statistics depend on the rank of gauge groups, the

next question of interest will be how it depends on the number of generations of matter

fields. Since it is impossible to generate a non-zero net chirality on non-Abelian 7-branes

in the K3×K3 set-up, we content ourselves with studying the dependence on the number

of vector-like pairs on a non-Abelian 7-brane. As we have seen in section 5.3, the singular

fibre fluxes generate some vector-like pairs of matter fields, while reducing the symmetry

group on the non-Abelian 7-brane associated with the singular fibre. Thus, we set the

problem as follows. For some choice of JS and Wnoscan ⊂Wframe as before, let us specify

Gfix =
∑

A

(CA ⊗ FA), CA ∈Wnoscan ∩Wroot, FA ∈ [J⊥
S ⊂ SS ]. (5.56)

An ensemble of flux vacua is generated, by allowing the four-form flux G(4) to be Gscan+Gfix

for any Gscan orthogonal to JS and Wnoscan. The vacuum index density distribution

of such a landscape is obtained as an (m,m) form over the restricted moduli space

M∗(JS ,Wnoscan)/Γ∗. Landscapes with different Gfix share the same restricted moduli space

as long as Wnoscan and JS remain the same. When we take Wnoscan to be E7, E6 or D5, for

81In principle, it is possible that primitive embeddings of (U ⊕Wnoscan) into Λ
(X)
K3 are not unique modulo

Isom+(Λ
(X)
K3 ), depending on what Wnoscan is. In such cases, the restricted moduli space M∗/Γ∗ consists of

multiple connected components.
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example, and Gfix = (CA⊗FA) so that the unbroken symmetry becomes E6, D5 or A4, the

singular fibre flux Gfix determines the number of vector-like pairs in the 27+ 27, 16+ 16

and 10 + 10 representations, respectively, through (5.46). By comparing the numbers of

vacua of the ensembles of (JS ,Wnoscan;Gfix) with the common (JS ,Wnoscan) and different

Gfix, we can determine the statistical cost of leaving vector-like pairs of matter fields in

certain classes of representations in the effective theory.82

The result is simple. Our estimate of the number of vacua in such an ensemble is

given by

(L∗,eff.)
K′/2; L∗,eff. =

χ(X × S)
24

− 1

2
(Gfix)

2, (5.57)

replacing L∗ = χ(Y )/24 by the remaining D3-tadpole L∗,eff. to be cancelled by the flux

other than Gfix. The more the number of vector-like pairs, the less the effective value L∗,eff..

If L∗ = χ(Y )/24 were fairly large (and K ′/2 is not particularly large), then requiring one

or two vector-like pairs of the matter field does not reduce the number of vacua too much,

relatively. If L∗ is not particularly large, then the number of vacua with a few more vector-

like pairs of matter fields becomes much smaller. Clearly, this effect is further enhanced

when K ′/2 is large.

IV. Finally, let us study the (m,m)-form distribution ρind. over M∗/Γ∗ in the context

of F-theory compactification, not just the overall number of flux vacua. We begin with a

review of what is known about ρind in [2, 28, 29].

The most robust result on ρind states that, for F-theory compactification without much

restriction on the space of scanning four-form fluxes G
(4)
scan, ρind is written in the form of

the Euler class e(∇) onM∗ (which means that it is a differential 2m-form) associated with

a connection ∇ on a real vector bundle with rank 2m [2]. The formula [28, 29]

ρind = det

(
− R

2πi
+

ω

2π
1

)

m×m

= e(TM∗ ⊗ L−1) = cn(TM∗ ⊗ L−1), (5.58)

is a special case of the more robust result ρind = e(∇) [2]. Here, ω is the Kähler form and

R the curvature (1, 1) form of the holomorphic vector bundle TM∗, L is the line bundle

whose first Chern class is −ω/(2π) and c = det(−kR/(2πi) + 1) =
∑

k ckt
k defines the

Chern classes. It takes an extra effort to find for which real vector bundle ρind = e(∇) for
general cases.

It is known that the formula (5.58) can be used at least for two categories of landscapes.

A : type IIB on a Calabi-Yau orientifold M3 with full scanning of three-form fluxes

G
(3)
scan and with all the D7-branes appearing as an SO(8) configuration [29], i.e. four

D7-branes on each O7-plane.

B : F-theory compactification on a Calabi-Yau fourfold Y4 with the four-form flux

scanning in a sufficiently large space.

82The net chirality would be proportional to the first power of the four-form flux, while the number of

vector-like pairs scales as a square of the flux. This difference should be kept in mind. Note also that

the number of vector-like pairs of matter fields may also depend on the representation, even for a given

non-Abelian gauge group. Thus, it is dangerous to extract too many lessons out of this result.
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An example of category B is given by [2]:

G(4)
scan ∈

[
H4,0(Y ;C) + h.c.

]
⊕
[
H3,1(Y ;C)prim. + h.c.

]
⊕
[(
H2,2(Y ;R)V

)⊥ ⊂ H2,2(Y ;R)
]
.

(5.59)

Here, H(2,2)(Y ;R)V is the subspace of H2,2(Y ;R) spanned by the intersection of any pair

of divisors of Y (this naive definition is made more precise shortly).

Let us explain what we mean by a “sufficiently large space” when we introduced

category B. Let V ⊂ H4(Y ;R) be the subspace in which the four-form is scanned to

generate a landscape, and let {ψI=1,2,···} be a basis of V . The assumption made (implicitly)

in [2] is that the vector space V is large enough that one can make a replacement

(∫

Y
ψI ∧ ϕ

)
(A−1)IJ

(∫

Y
ψJ ∧ χ

)
=⇒

∫

Y
ϕ ∧ χ, AIJ :=

∫

Y
ψI ∧ ψJ (5.60)

for arbitrary differential forms ψ and χ that belong to the vector space83

G(4)
scan ∈

[
H4,0(Yz;C) +H0,4(Yz;C)

]
⊕
[
H3,1(Yz;C)∗ +H1,3(Yz;C)∗

]
⊕H2,2(Yz;R)H∗ .

(5.61)

The quantities [H3,1(Yz;C)∗ and H2,2(Yz;R)H∗ are defined in the next paragraph

and (5.63).

It is a natural generalization of the category B landscapes above to require extra

divisors corresponding to extra 7-brane gauge groups, i.e. introduce a Wnoscan as done

earlier in this section. The moduli space M∗(JY ,Wnoscan) is then reduced in dimensions

from the full space of complex structure moduli of Y compatible with a Kähler form

JY . The H3,1 + H1,3 components of the flux is then not only required to be primitive,

G
(4)
scan∧JY = 0, but the same condition is required with regard to the divisors inWnoscan. Let

[H3,1(Yz;C)∗+H
1,3(Yz;C)∗] denote the resulting smaller subspace. The (H2,2

V )⊥ component

of the flux space is also reduced, because H2,2(Yz;R)V is larger in dimensions. This new

H2,2(Yz;R)V is denoted by H2,2(Yz;R)V ∗. We then have an ensemble of vacua with the

four-form flux scanning over the vector space

G(4)
scan ∈

[
H4,0(Y ;C) + h.c.

]
⊕
[
H3,1(Y ;C)∗ + h.c.

]
⊕
[(
H2,2(Y ;R)V ∗

)⊥ ⊂ H2,2(Y ;R)
]
;

(5.62)

Let us refer to these landscapes as category B’.

In order to state the relation between the category A landscapes and category B’

landscapes, we need to prepare the following language. Consider a family of Calabi-Yau

fourfolds π : Y −→ M∗, where Yz := π−1(z) is the Calabi-Yau fourfold corresponding to

z ∈ M∗. We have in mind a restricted moduli space M∗ for a specific choice of Kähler

form JY and some set of divisors Wnoscan corresponding to the 7-brane gauge groups.

The H2,2(Yz;R) vector space over R for each z ∈ M∗ is decomposed as follows. First,

H2,2(Yz;R)V ∗ is defined84 as the subspace spanned by intersection of Yz with any pair of

83See equations (6.16) and (6.17) and compare with (6.33) and (6.34) in [2].
84This (more precise) definition of H2,2(Yz;R)V is not the same as the naive “definition” right after (5.59),

when z ∈ M∗ is in a special locus of M∗ so that there are more divisors in Yz than in generic points of

M∗. Contributions from such extra divisors are not included in H2,2(Yz;R)V in the precise definition.

– 65 –



J
H
E
P
0
4
(
2
0
1
4
)
0
5
0

divisors of Y. Secondly, another subspace H2,2(Yz;R)H∗ ⊂ H2,2(Yz;R) is defined as

SpanC

{
(DaDbΩY ), (DcDdΩY )

}
|a,b,c,d∈1,··· ,m ∩H2,2(Yz;R) , m = dimM∗ . (5.63)

It is known that [2]

i) the vector space of (2,2) Hodge components is divided into H2,2
ℓ=0 ⊕H

2,2
ℓ=1 ⊕H

2,2
ℓ=2

ii) the intersection form is positive definite on H2,2
ℓ=0 ⊕ H2,2

ℓ=2 and negative definite on

H2,2
ℓ=1

iii) H2,2
ℓ=1 ⊕H

2,2
ℓ=2 is contained in H2,2(Yz;R)V ∗

The differential forms in the first component, H2,2
ℓ=0 are the primitive (2, 2) forms. Thus, the

intersection form is positive definite on the orthogonal complement [(H2,2(Yz;R)V ∗)
⊥ ⊂

H2,2(Yz;R)], and there is a well-defined orthogonal decomposition of the H2,2(Yz;R) vector

space:

H2,2(Yz;R) = H2,2(Yz;R)H∗ ⊕H2,2(Yz;R)RM ⊕H2,2(Yz;R)V ∗. (5.64)

Note that the remnant subspace H2,2(Yz;R)RM is not empty in general [100]. In particular,

as explained in detail in appendix C, this happens already in the case of Y = K3 × K3.

As discussed in appendix C, the landscape of category A (roughly speaking, type IIB

orientifolds with three-form scanning (C.11)) corresponds to scanning the four-form in

the H2,2(Y ;R)H∗ subspace in addition to the first two components of (5.59), i.e., the

space (C.5). This is a smaller subspace than (5.62), in principle, in the sense that

H2,2(Y ;R)RM can be non-empty. This indicates that the scanning space of the flux can

be sufficiently large, for the condition (5.60) to hold (and the formula (5.58) also holds

consequently), even when the scanning space is smaller than (5.62).

As discussed in appendix C, the four-form scanning we have introduced in this section

also corresponds to the vector space (C.5). It is thus reasonable to think of one more

category of landscapes in F-theory which contains both the category A landscapes and the

ones on Y = K3×K3 with arbitrary rk7 we have considered. Let us call category A’ any

landscapes generated by scanning four-form flux in the vector space (C.5) for an elliptic

fibred Calabi-Yau fourfold85 πY : Y → B3. This is to be contrasted with those in category

B’ where the four-form flux is scanned in (5.62).

It must now be obvious that the formula (5.58) holds, not just for the landscapes

in category B’, but also for the landscapes in category A’. Since the condition (5.60) re-

quires that ψI(A
−1)IJψJ be an insertion of a complete system only for ϕ, χ in (C.5), it is

equivalent to say that the entire vector space (C.5) is contained in the space of four-form

scanning (or not). Appendix C also provides an alternative (more down to earth) deriva-

tion of the formula (5.58) following the line of argument in one of the original articles [29]),

rather than the refined version of [2], with an assumption (C.15) and a little more con-

crete consequence (C.29). We understand that the argument here is enough to justify the

formula (5.58) for landscapes in category A’.

85A more appropriate way to phrase this is a family of elliptically fibred Calabi-Yau fourfolds π : Y −→
M∗ for which a generic fibre is not necessarily in the form of K3×K3 or a K3-fibration.
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There is an immediate consequence of this observation. Any landscape (an ensemble

of vacua) in category B’ is decomposed into multiple landscapes (ensembles of vacua) in

category A’ labelled by G
(4)
fix in H2,2(Y ;R)RM. Since all of these landscapes in category A’

share the same restricted moduli spaceM∗, and since the formula (5.58) determines ρind
only in terms of geometry ofM∗, the vacuum index distribution dµI for these landscapes

in category A’ are the same apart form the G
(4)
fix -dependent overall normalization (5.57).

Let us use (5.58) to derive an explicit result on the distribution of moduli parameters.

Consider a landscape of F-theory compactification on Y = X×S = K3×K3 with some rank-

16 Wnoscan and G
(4)
fix . Then the restricted moduli space is of the formM∗ =Mρ1 ×Mρ2 ×

MK3(S; JS). This is because the lattice [(U∗ ⊕Wnoscan)
⊥ ⊂ H2(X;Z)] is always signature

(2, 2), and the intersection form can be made U⊕U for some R-coefficient basis of the vector

space obtained by tensoring R with the signature (2, 2) lattice above. The Kähler forms of

the moduli spacesMρ1 andMρ2 are K
(ρ1) = − ln[(ρ1−ρ̄1)/i] and K(ρ2) = − ln[(ρ2−ρ̄2)/i],

respectively. The modulus ρ1 is interpreted as the axi-dilaton of type IIB orientifold in the

case of Wnoscan = D⊕4
4 ; (Z2 × Z2). By closely following the computation of section 3.1.2

in [29], we obtain

ρind =

(
−R

(ρ1)

2πi
+
ω(S)

2π
+
ω(ρ1)

2π
+
ω(ρ2)

2π

)
∧
(
−R

(ρ2)

2πi
+
ω(S)

2π
+
ω(ρ1)

2π
+
ω(ρ2)

2π

)
∧

det

(
−R

(S)

2πi
+

(
ω(S)

2π
+
ω(ρ1)

2π
+
ω(ρ2)

2π

)
1

)
, (5.65)

= 2
ω(ρ1)

2π
∧ ω

(ρ2)

2π
∧



c

(S)
m−2 +

(
ω(S)

2π

)2

∧ c(S)m−4



 , (5.66)

where ω(ρ1), ω(ρ2) and ω(S) are the Kähler forms on the moduli spaces Mρ1 , Mρ2 and

MK3(S; JS), respectively, and R
(S), R(ρ2) and R(ρ1) the curvature (1, 1)-forms of the tan-

gent bundles of those moduli spaces.86 c
(S)
r ’s are the r-th Chern class of the holomorphic

rank-(m− 2) vector bundle TMK3(S; JS)⊗ (L(S))−1, where L(S) is the line bundle whose

first Chern class is −ω(S)/2π. Thus, in these set-ups the vacuum index density distribution

ρind. is factorized for the three pieces of the moduli space. If one is interested only in the

distribution of any one among ρ1, ρ2 and moduli of the K3 surface S, but not altogether,

then the distribution ρind can be integrated over the irrelevant coordinates first. For the

moduli ρ1 and ρ2, in particular,

ρind.(ρ1) ∝ d[Reρ1]d[Imρ1]
1

(Im(ρ1))2
, ρind.(ρ2) ∝ d[Reρ2]d[Imρ2]

1

(Im(ρ2))2
.

(5.67)

Applying this result to the Wnoscan = E8 ⊕ E8-landscape, in particular, the prediction in

the continuous approximation (5.67) for ρ2 can also be read as that of [vol(T 2)/ℓ2s]Het. Our

numerical results (not relying on continuous approximation) in section 5.2 agree with this

prediction based on the continuous approximation qualitatively in that large Im(ρ̃H) =

86They satisfy R(ρi) = 2iω(ρi).
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[vol(T 2)/ℓ2s]Het is statistically disfavoured. Note that this happens although we should

not expect the continuous approximation to be very good because χ(Y )/24 = 24 is not

particularly large.

The result (5.67) also indicates that there is no correlation between the distribution

of ρ1, ρ2 and the moduli of K3 surface S, if we ignore the difference between the vacuum

distribution and the vacuum index distribution. Figure 4 (iii) in section 5.2 may be regarded

as a manifestation of the absence of any correlation between ρ1 and ρ2.

It is an interesting question how ρind depends on Im(ρ̃H) for different values of rk7.

ρind is not expected to have a factorized form as (5.67), but it will be in the form of

ρind = c
(X)
18−rk7

c
(S)
19 + ω(X)ω(S)c

(X)
17−rk7

c
(S)
18 + (ω(X)ω(S))2c

(X)
16−rk7

c
(S)
17 + · · · , (5.68)

where c
(X)
r ’s are the r-th Chern class of the rank-(18 − rk7) holomorphic vector bundle

TMK3(X;U∗ ⊕Wnoscan)⊗L−1
(X). It must still be possible to extract the leading power-law

behaviour in Im(ρ̃H) in the large Im(ρ̃H) region of the moduli space, using the parametriza-

tion (A.6). We leave this as an open problem in this article.
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A A note on heterotic string Narain moduli

Although Narain compactificaiton of heterotic string theory is a well-known subject, we

leave a brief note here for summary of conventions used in the main text of this article.

A compactification of heterotic string theory on T 2 is specified by embedding an even

self-dual lattice II2,18 in a space

R2,18 =

{√
α′

2
(kR8 , k

R
9 , k

L
8 , k

L
9 , ki=11,··· ,26)

T

}
(A.1)

where the metric on R2,18 is diag(12×2,118×18). Let {eK8, ew̄8, eK9, ew̄9, eI=11,··· ,26} be a

set of generators of II2,18 (as well as its image in R2,18) where U = SpanZ{eK8, ew̄8},
U = SpanZ{eK9, ew̄9}, and E8 ⊕ E8 is generated by the rest, {eI=11,··· ,26}. Thus, the data
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of this compactification is written in the form of a (2 + 18)× (2 + 2 + 16) matrix,

Z = [eK8, ew̄8, eK9, ew̄9, eI=11, · · · , eI=26] , ZT ·
(
12×2

−118×18

)
·Z =




U

U

CE8

CE8



,

(A.2)

where the U in (A.2) denotes the matrix

[
1

1

]
and CE8 the negative of the Cartan matrix

of E8, which is also the (negative definite) intersection form of the E8 root lattice. General

elements of II2,18 are written in the form of n8eK8+(−w8)ew̄8+n9eK9+(−w9)ew̄9+
∑

I q
IeI ,

which is also denoted by (n8,−w8, n9, (−w9), qI)T in the component description. The

generators eK8,K9 correspond to states with elementary Kaluza-Klein excitation in T 2, and

ew̄8,w̄9 to states winding T 2 once.

The first two rows of the matrix Z are denoted by ZR
m with m = 8, 9. Introducing

ZR := ZR
8 + iZR

9 , it follows from relation (A.2) that

ZR ·




U−1

U−1

(CE8)
−1

(CE8)
−1



·
(
ZR
)T

= 0 . (A.3)

Because ZR can be regarded as an element of Hom(II2,18,C),

ZR : (n8,−w8, n9,−w9, qI)T

7−→
√
α′

2
(kR8 + ikR9 ) component of

(
eK8n

8 + ew̄8(−w8) + · · ·+
∑

I

eIq
I

)
,

we see that the relation above can also be written as (ZR,ZR) = 0 using the symmetric

pairing of the dual lattice II∗2,18 naturally extended bilinearly to II∗2,18 ⊗C. With the same

notation, it also follows that (
ZR,ZR

)
= +2. (A.4)

The moduli space of this Narain compactification is parametrized by 18 complex num-

bers. With a parametrization that is understood intuitively in the supergravity approxi-

mation of heterotic E8 × E8 string theory, kRm=8,9 in ZR are written as follows [101]:

kRm =
nm
Rm
−Rmw

m

α′
−
∑

I

qIAI,m+
1

2

∑

I,J

AI,mC
IJ

(
∑

n

wnRnAJ,n

)
; (no summation in m)

(A.5)

AI,m’s (m = 8, 9 and I = 11, · · · , 26) are the Wilson lines on T 2 for the simple roots

of E8 × E8, and Rm=8,9 the radii of the two directions of T 2. Together with two more

R-valued parameters that we have omitted here (〈B〉 = 0, and T 2 is rectangular, just

for better readability), there are 2 × 18 parameters in total. CIJ is the inverse of the
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matrix CE8×E8 . Therefore, ZR is parametrized by 18 complex numbers. In the component

description of [U ⊕ U ⊕ E8 ⊕ E8]
∗ ⊗ C, it is given by

ZR =
i√

2Im(τH)Im(ρ̃H) + Im(aP )CPQIm(aQ)
(−τH , −ρ̃H , 1, −τH ρ̃H−aKCKLaL/2, aI),

(A.6)

where (under the condition that 〈B〉 = 0 and T 2 is rectangular)

τH = i
R9

R8
, ρH = i

R8R9

α′
, aI = iR9(AI,8 + iAI,9) =

√
α′τHρH(AI,8 + iAI,9), (A.7)

and

ρ̃H = ρH −
aIC

IJ(a− ā)J
4i Im(τH)

. (A.8)

B Heterotic Cartan flux and semistable degeneration

B.1 Set-up

In this appendix, the discussion on heterotic-F-theory duality of Cartan/Mordell-Weil

flux of section 5.3 is made explicit by using the two-parameter family of K3 sur-

faces (4.48), (4.49) for F-theory (and its heterotic dual) as an example.

If we are to require a pair of IV∗ singular fibres, this specifies a family of ρX = 12+2 =

14 K3 surfaces, whose moduli space has dimension 6. Let

T ρ=14
X = U ⊕ U ⊕A2 ⊕A2, W ρ=14

frame = E6 ⊕ E6. (B.1)

The two parameter family of K3 surfaces, X = Km(Eρ1 ×Eρ2), has four more independent

algebraic cycles, ρX = 18, and the transcendental lattice is only of rank 4, T ρ=18
X =

U [2] ⊕ U [2]. Such a special family of K3 surfaces can be identified by an embedding

T ρ=18
X −→ T ρ=14

X :

(C32, C14, C12, C43) 7−→ (v, V, v′, V ′, αv
1, α

v
2, α

h
1 , α

h
2)




1 1

2

1 1

2

1

1

−1
1




, (B.2)

where C32,14,12,43 are generators of T ρ=18
X = U [2] ⊕ U [2], {v, V, v′, V ′} those of U ⊕ U ⊂

T ρ=14
X , and {αv

1,2} and {αh
1,2} those of the structure group A2 = SU(3) in the visible and

hidden sectors, respectively.

In this two parameter family of K3 surfaces (Kummer surfaces), the four extra inde-

pendent algebraic cycles are the generators of the orthogonal complement of the image of
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T ρ=18
X within T ρ=14

X . This lattice is also regarded as the orthogonal complement of the

E6 ⊕E6 lattice within the frame lattice W ρ=18 for ρ = 18. Hence this is also the essential

lattice L(X) =WU(1) of this elliptic fibration. L(X) =WU(1) is generated by

(P,Q, P ′, Q′) = (v, V, v′, V ′, αv
1, α

v
2, α

h
1 , α

h
2)




2 −1

−1 2

1 1

1 1

1 −1
1 −1




. (B.3)

The period integral is therefore in the form of

ZR ∝ ΩX =
(
−τH ,−ρ̃H ; 1,−τH ρ̃H +

τ2H + 1

2
; τH +

1

2
,−
(τH

2
+ 1
)
, 06;−

(
τH −

1

2

)
,
τH
2
− 1, 06

)

(B.4)

in the component description of [U ⊕ U ⊕ E8 ⊕ E8]
∗ ⊗ C. In the component description

using (T ρ=18
X )∗ ⊗ C (and irrelevant (WU(1) ⊕ E6 ⊕ E6)

∗ ⊗ C), this becomes

(−τH ,−(2ρ̃H − τH), 1,−τH(2ρ̃H − τH)) . (B.5)

Thus, in the parametrization of ΩX in terms of τH and ρ̃H , the K3 surface X = Km(Eρ1 ×
Eρ2) varies as

ρ1 = τH , ρ2 = 2ρ̃H − τH . (B.6)

Obviously the parametrization (B.4) follows the convention of Narain moduli for heterotic

string compactification, and the correspondence (B.6) should be read as the duality map

between the coordinates of the heterotic and F-theory moduli spaces.

In the heterotic string language, the component description of ZR in (B.4) is a manifest

consequence of the condition (5.39), with the flux data nA’s in (5.38) given by the k = 4

column vectors in (B.3). The Wilson lines are constrained to be torsion points in Jac(T 2)

of the heterotic compactification:

diag

(
τH
2
,−τH + 1

2
,
1

2

)
⊂ su(3)vis., diag

(
−τH

2
,
τH − 1

2
,
1

2

)
⊂ su(3)hid.. (B.7)

Wilson lines in the dimension-3 representations of the structure group SU(3)vis.×SU(3)hid.

take values in 2-torsion points in this case, which is also the direct consequence of the

spectral surface equations av3y = 0 for the visible sector and ah3y = 0 for the hidden sector.
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B.2 Mordell-Weil group and narrow Mordell-Weil group

In the two parameter family of K3 surfaces X = Km(Eρ1 × Eρ2) with an elliptic fibration

of type 2IV∗ + 8I1, the essential lattice is

L(X) =WU(1)
∼= A2[2]⊕A2[2] ∼= SpanZ{P, P ′} ⊕ SpanZ{Q,Q′}. (B.8)

E6 ⊕E6 forms the root lattice Wroot of the frame lattice Wframe for generic ρ1 and ρ2, and

the frame lattice is obtained by adding, to Wroot ⊕WU(1), such glue vectors as

2P + P ′

3
+ ωv

27 + ωh
27,

P + 2P ′

3
+ ωv

27
+ ωh

27
(B.9)

2Q+Q′

3
+ ωv

27 + ωh
27
,

Q+ 2Q′

3
+ ωv

27
+ ωh

27, (B.10)

where ωv,h
27

[resp. ω,h

27
] are the weights of the 27 [resp. 27] representation of the vis-

ible/hidden sector E6 symmetry. The quotient space Wframe/Wroot
∼= MW (X) ∼= Z⊕4

is generated by those four elements and the height pairing of the Mordell-Weil lattice is

A∗
2[−2]⊕A∗

2[−2] in this basis (as is well-known in the literature).

Reference [86] provides explicitly expressions of four generators of MW (X) ∼= Z⊕4 for

the 2IV∗ + 8I1-type elliptic fibration on X = Km(Eρ1 × Eρ2). The Weierstrass model of

X given by (4.48) has four independent non-zero sections, two of which — denoted by P̄4

and P̄8 — are given by

(X4, Y4) = (−4λ1λ2z2,−4z2(λ1(λ1 − 1)z2 + λ2(λ2 − 1))), (B.11)

(X8, Y8) = (−4z2, 4z2(λ1(λ1 − 1)z2 + λ2(λ2 − 1))) . (B.12)

Readers interested in the expressions for the two other sections P̄7 or P̄5 are referred to [86].

We follow [65] and denote rational points of the elliptic curve, as well as the corresponding

divisors and elements of the Neron-Severi lattice or the Mordell-Weil group, by P and the

corresponding curves by P̄ .

Modulo U∗ = SpanZ{[F ], [σ+F ]} and Wroot, these four sections generate the Mordell-

Weil group MW (X), P4 and P8 for one A∗
2[−2], and P7 and P5 for the other A∗

2[−2]. All

four of those sections, however, meet the E6 singularities at z = 0, (X,Y ) = (0, 0) and at

z = ∞, (X/z4, Y/z6) = (0, 0). Hence they are not contained within the narrow Mordell-

Weil group, MW (X)0, which is consistent with the fact that the generators (B.10) contain

weights of non-singlet representations of Evis
6 and Ehid.

6 .

Just like the generators of the essential lattice L(X) ∼= WU(1), {P, P ′, Q,Q′}, are

obtained as Z-linear combinations of the generators in (B.10), the corresponding sections for

the generators of the narrow Mordell-Weil latticeMW (X)0 should also be obtained through

the group-law sum of the sections P̄4,8 and P̄7,5. Sections corresponding to (2P4 − P8) ∈
MW (X) and (2P8 − P4) ∈MW (X) are given — by using the ordinary group law sum on
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elliptic curves — by

X2P4−P8 =
4{λ22(λ2 − 1)2 + z2(λ22(λ

2
1 − 1)− λ21) + z4λ21(λ1 − 1)2}

(λ1 + λ2 − λ1λ2)2
, (B.13)

Y2P4−P8 =

4

{
2λ32(λ2 − 1)3 +z2(λ52(λ1 − 1)2(λ1 + 1) +O(λ42))

+2z6λ31(λ1 − 1)3 +z4(λ32(λ1 − 1)3λ1(λ1 + 1) +O(λ22))

}

(λ1 + λ2 − λ1λ2)3
, (B.14)

X2P8−P4 =
4{λ22(λ2 − 1)2 − z2λ1λ2(λ22 + λ21 − 1) + z4λ21(λ1 − 1)2}

(1− λ1 − λ2)2
, (B.15)

Y2P8−P4 =

4

{
2λ32(λ2 − 1)3 −z2(λ52(2λ1 − 1) +O(λ42))

+2z6λ31(λ1 − 1)3 −z4(λ32λ1(λ1 − 1)(2λ1 − 1) +O(λ22))

}

(1− λ1 − λ2)3
. (B.16)

They belong to the narrow Mordell-Weil group MW (X)0. Indeed,

(X2P4−P8 , Y2P4−P8)|z=0 =

((
2λ2(λ2 − 1)

λ1 + λ2 − λ1λ2

)2

,

(
2λ2(λ2 − 1)

λ1 + λ2 − λ1λ2

)3
)
6= (0, 0),

(B.17)
(
X2P4−P8

z4
,
Y2P4−P8

z6

)∣∣∣∣
z=∞

=

((
2λ1(λ1 − 1)

(λ1 + λ2 − λ1λ2)2
)2

,

(
2λ1(λ1 − 1)

(λ1 + λ2 − λ1λ2)2
)3
)
6= (0, 0),

(B.18)

and a similar calculation proves that the section (2P8 − P4) also stays away from the

two E6 singularities at z = 0 and z = ∞. The height pairing is A2[−2] on the basis of

{2P4 − P8, 2P8 − P4}, the opposite of A2[2] ⊂ L(X) =WU(1), as expected.

Similarly, we can construct section contained in the narrow Mordell-Weil group from

the sections P̄7 and P̄5. We have computed the sections corresponding to (2P7 − P5) and

−(P7 + P5) in MW (X) and confirmed that they indeed belong in MW (X)0. The height

pairing on the basis {2P7−P5,−(P7+P5)} is A2[−2]. Since we use the explicit expressions
of these sections later, we leave them here as a record:

X2P7−P5 =
4{λ22(λ2 − 1)2 − z2λ1(λ22(λ21 − 1) + 1) + z4λ21(λ1 − 1)2}

(λ2 − λ1λ2 − 1)2
, (B.19)

Y2P7−P5 =

4

{
2λ32(λ2 − 1)3 −z2(λ52λ21(λ1 − 2) +O(λ42))

+2z6λ31(λ1 − 1)3 +z4(λ32λ
3
1(λ1 − 1)(λ1 − 2) +O(λ22))

}

(λ2 − λ1λ2 − 1)3
, (B.20)

X−(P7+P5) =
4{λ22(λ2 − 1)2 − z2(λ32λ1 +O(λ22)) + z4λ21(λ1 − 1)2}

(λ1 − λ2)2
, (B.21)

Y−(P7+P5) =

4

{
2λ32(λ2 − 1)3 +z2(λ52(2λ1 − 1) +O(λ42))

−2z6λ31(λ1 − 1)3 −z4(λ32(2λ1 − 1)λ1(1− λ1) +O(λ22))

}

(λ1 − λ2)3
. (B.22)

None of the four sections corresponding to (2P4 − P8), (2P8 − P4), (2P7 − P5) and

−(P7+P5) inMW (X)0 meet the zero section, σ, of the Weierstrass model given by (4.48).
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Therefore, (2P4 − P8)− σ and (2P8 − P4)− σ generate A2[2] ⊂WU(1), and (2P7 − P5)− σ
and −(P7 + P5) − σ generate the other A2[2] ⊂ WU(1). Dual to the rank-k = 4 Cartan

flux in the heterotic string SU(Nv = 3) × SU(Nh = 3) bundle compactification should be

four-form fluxes involving the Poincaré dual of these algebraic cycles in X.

B.3 Semistable degeneration

In the large Im(ρ̃H) region of moduli space, where the supergravity description is a good

approximation of heterotic string theory, it is more intuitive to choose {P + Q,P ′ + Q′}
and {P − Q,P ′ − Q′} as the basis of the rank-k = 4 lattice of Cartan flux quanta. The

first two generate the A2[4] sublattice for the visible sector SU(Nv = 3) structure group

and the last two another A2[4] sublattice for the hidden sector SU(Nh = 3). In F-theory

language, the Poincaré dual of the algebraic cycles {P +Q,P ′ +Q′} and {P −Q,P ′−Q′}
should thus be interpreted as those for the visible and hidden sectors, respectively.

Let us take one step further and identify the equivalent of the visible and hidden

sector basis {P ± Q,P ′ ± Q′} not just in terms of the heterotic string, or in algebraic

(lattice) language for F-theory, but also in terms of the geometry of the K3 surface of

F-theory. We have identified four independent algebraic cycles in WU(1), which are also

in one-to-one correspondence with elements in MW (X)0. {(2P4 − P8), (2P8 − P4), (2P7 −
P5),−(P7 + P5)} ⊂ MW (X)0 are generators of WU(1)

∼= A2[2] ⊕ A2[2] and are equivalent

to {P, P ′, Q,Q′}. We claim that the visible and hidden sector basis is given by

(visible sect.) (2P4 − P8)−−(2P7 − P5), (2P8 − P4)− (P7 + P5), (B.23)

(hidden sect.) (2P4 − P8)− (2P7 − P5), (2P8 − P4)−−(P7 + P5). (B.24)

This idea comes from the following observations in geometry.

As we have already made clear, the coordinate rescaling in footnote 54 and the coor-

dinate redefinition in footnote 46 allow us to see (4.49) as a family of elliptic K3 surface

showing semistable degeneration. In one of the affine patches, the set of equations

{
η̃2 =

(
ξ + 4

λ2

)(
ξ + 4

(
1 + λ1

λ2

))
(ξ + 4λ1) + 23 ((1− 1/λ2)u+ λ1(λ1 − 1)v) η̃,

uv = 1/λ2
(B.25)

defines a family of K3 surfaces elliptically fibred over a curve {uv = t|(u, v) ∈ C2}
parametrized by t := 1/λ2 ∈ D ⊂ C. In the large λ2 limit, t = 0, the base curve splits

into two irreducible pieces, and the K3 surface also splits into two rational elliptic surfaces

(a.k.a dP9) glued together at one common fibre elliptic curve.

η̃2 = ξ (ξ + 4) (ξ + 4λ1) + 23u η̃ , v = 0 , (B.26)

η̃2 = ξ (ξ + 4) (ξ + 4λ1) + 23λ1(λ1 − 1)v η̃ , u = 0 , (B.27)

are the visible and hidden sector dP9’s, respectively. The E6 singularities are at u = ∞
in the visible sector dP9 and at v = ∞ in the hidden sector dP9. The common fibre at

u = v = 0 is given by

η̃2 = ξ(ξ + 4)(ξ + 4λ1) . (B.28)
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The two dP9’s (rational elliptic surfaces) should be “type No.27” in the classification

in [102].

The sections (2P4 − P8), (2P8 − P4), (2P7 − P5) and −(P7 + P5), as well as the sections

corresponding to their inverse elements in MW (X)0, such as (P7 + P5), define divisors in

the threefold given by (B.25). Intersection of those divisors with the t = 1/λ2 = 0 divisor

— dP9∪dP9 — defines their semistable degeneration limits mathematically (whatever this

means in physics). Working this out explicitly, we found that the limit of both sections

(2P4 − P8) and (2P7 − P5) are precisely the same in the visible sector dP9,

ξ =

(
2

1− λ1

)2

u2, η̃ =

(
2

1− λ1

)3{
u3 +

1

2
(λ1 − 1)2(λ1 + 1)u

}
. (B.29)

This common limit in the visible sector passes through one of the 2-torsion point (ξ, η̃) =

(0, 0) in the common elliptic fibre. The semistable degeneration limit of the two sections,

however, remain different in the hidden sector dP9. In the fibre in v =∞, for example,
(
ξ

v2
,
η̃

v3

)
→
(
(−2λ1)2, (−2λ1)3

)
v.s. →

(
(2λ1)

2, (2λ1)
3
)

(B.30)

for (2P4 − P8) and (2P7 − P5), respectively. They are inverse elements under the group law

of the elliptic curve. This is why the algebraic cycle (2P4 − P8)− (2P7 − P5) is considered

to be purely in the hidden sector dP9. It must also be easy to see that the algebraic cycle

(2P4 − P8) − −(2P7 − P5) is purely in the visible sector dP9. A similar story holds also

for the pair of sections (2P8 − P4) and −(P7 + P5). We do not present details here, except

noting that those sections pass through another 2-torsion point in the common elliptic

fibre: (ξ, η̃) = (−4λ1, 0).
Back in the regime of finite |λ2|, the two sections (2P4 − P8) and (2P7 − P5) both

cover the entire base P1, from the visible sector 7-brane at z = 0 to the hidden sector

7-brane at z = ∞. These two sections are distinct, but they remain very close in the

small z region (near the visible sector), with the difference scaling as 1/λ2 ∼ e2πiρ̃H . It is

thus reasonable to understand this as a stringy effect. When we ignore differences of order

O(1/λ2) to restore the supergravity approximation, the geometric picture described above

(using dP9 ∪ dP9) is a reasonably good approximation for large |λ2| and fits perfectly with

our intuitive understanding of Cartan fluxes in the visible as well as hidden sector structure

group. This is how we were led to the claim (B.23), (B.24), and it is this interesting

behaviour of sections under the semistable degeneration of K3 surfaces that reconciles the

notion of having Cartan flux purely in the visible/hidden sector with considering sections

of the elliptic K3 surface.

Before closing this section, let us try to place the observations based on the example

characterized by (B.1) and (B.2) (or equivalently by (B.1) and (B.3)). It is more natural

from the perspective of heterotic string theory to take (B.3) as input data for compacti-

fication because they are flux data of the gauge fields and B-field. In F-theory language,

the essential lattice L(X) = WU(1) of an elliptic fibration is specified by (B.3), while the

embedding (B.2) determines the transcendental lattice of a ρ = 18 (two parameter) fam-

ily of K3 surfaces. When we replace (B.2), (B.3) by some other choice, this means we
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take different flux quanta for the rank-k = 4 Cartan flux in the SU(3) × SU(3) bundle

compactification of heterotic string theory, or to use a ρ = 18 family of K3 surfaces dif-

ferent from X = Km(Eρ1 × Eρ2). There is nothing wrong in doing so. For all different

choices of (B.2), (B.3), one can construct a two parameter family of K3 surfaces with four

independent sections in the narrow Mordell-Weil group.

Since we are not interested in literally taking Im(ρH) = [vol(T 2)/ℓ2s]Het to infinity for

practical applications, we do not need to study the semistable degeneration limit of K3

surfaces, but rather want to consider Im(ρH) very large, but finite.

Given the fact that literature referring to the heterotic-F-theory duality dictionary on

the flux has often relied on the stable degeneration limit, however, it is not uninteresting

to ask whether the dP9 ∪ dP9 picture loses some information. When compactification data

is given in terms of a one parameter family of dP9 ∪ dP9 both in the “type No.27” of [102],

along with G
(4)
H in (5.34), one has to make sure that the sections pass through some torsion

points in the common elliptic fibre. Using these torsion points and the Cartan flux quanta

G
(4)
H , the B-field flux quanta on T 2 must be reproduced at least to some extent. Thus, apart

from how far one should go back from the semistable degeneration limit (e.g., the value of

λ2), a great deal of information may be recovered from the description using (dP9 ∪ dP9,

G
(4)
H ) by paying attention to such subtleties. We remain inconclusive about this question,

however.

C Ashok-Denef-Douglas formula for F-theory

In this section, we begin with a review of the derivation of the vacuum index density

distribution (5.58) in [28, 29] for type IIB Calabi-Yau orientifolds, and then generalize

its derivation for more general landscapes based on F-theory compactifications, where the

four-form fluxes are scanned within the subspace H2,2(Yz;R)H . We largely follow the

presentation in [29], which maintains more intuitive control over what is being done than

the sophisticated and polished-up style of [2]. Along the way, we will see that the three-

form scanning in type IIB orientifolds and the four-form scanning considered in section 5.4

correspond to scanning only in H2,2(Yz;R)H rather than the entire orthogonal complement

[(H2,2(Yz;R)V )
⊥ ⊂ H2,2(Yz;R)] = H2,2(Yz)H ⊕H2,2(Yz)RM .

The vacuum index density for F-theory flux vacua is defined by [28, 29]87

dµI = d2mz
∑

N

Θ(L∗ − L)δ2m(DaW,DaW )det

(
DaDbW ∂aDdW

∂̄c̄DbW DcDdW

)

2m×2m

, (C.1)

where a, b, c, d ∈ {1, · · · ,m} label m local complex coordinates of some restricted moduli

space M∗ (see section 5.4 for various M∗ of interest). In dealing with such integrals, we

87It is worth noting that the diagonal blocks DaDbW and DcDdW are the same as the fermion mass

matrix of the low energy effective field theory below the Kaluza-Klein scale or below the moduli mass scale

M3
KK/M2

Str. Fluctuations in the directions tangential to M∗ are just as heavy as those in the directions

normal to the restricted moduli space generically. The determinant of the 2m x 2m matrix just makes

sure that each topological flux N contributes to
∫

dµI by 1 (TW thanks T. Eguchi and Y. Tachikawa for

discussion).
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have adopted the conventions of [101], where
∫
d2zδ2(z, z̄) = 1. The tadpole L and the

superpotential are given by

W ∝
∫

Y
G(4)

scan ∧ ΩY , L =
1

2

∫

Y
G(4)

scan ∧G(4)
scan . (C.2)

This dµI is a distribution function over the spaceM∗ and captures all the flux vacua for

which the D3-tadpole from the flux configuration L is not more than L∗. The sum over

flux quanta
∑

N is replaced by its continuous approximation
∫
dKN . This expression can

be rewritten as [28]

dµI =
(α0L∗)

K/2

(K/2)!
ρind(α0), (C.3)

ρind(α0) := d2mz

∫
dKNe−α0Lδ2m(DaW,DaW )det

(
DaDbW ∂aDdW

∂̄c̄DbW DcDdW

)
; (C.4)

since ρind(α0) scales as (α0)
−K/2, the vacuum index density dµI does not depend on the

choice of α0. By setting α0 = L−1
∗ , one can see where (and how) the L∗ dependence arises

in the expression of ρind(L
−1
∗ ). In contrast, by setting α0 = 2π, the L∗-dependence of the

overall number of vacua in this landscape is seen clearly. We take α0 = 2π throughout

this article (as in [28, 29]), and ρind(α0 = 2π) is simply denoted by ρind. The distribution

ρind can be rewritten in a more useful form in some cases, and that is the subject of the

following.

The formulation in [29] accommodates scanning four-form fluxes in

G(4)
scan ∈

[
H4,0(Yz;C) +H0,4(Yz;C)

]
⊕
[
H3,1(Yz;C)∗ +H1,3(Yz;C)∗

]
⊕H2,2(Yz;R)H∗,

(C.5)

where H3,1(Yz;C)∗ has been introduced in p. 65, and H2,2(Yz;R)H∗ was defined in (5.63).

The first two components of G
(4)
scan is parametrized as follows, by 1 +m complex numbers

{NX , N
a
Y }|a=1,··· ,m (m = dimCM∗):

∆G(4)
scan =

[
NXΩY + N̄XΩY

]
+
[
Na

Y (DaΩY ) + N̄ b̄
Y (D̄b̄ΩY )

]
, (C.6)

using ΩY and {(DaΩY )}a=1,··· ,m as the basis of H4,0(Yz;C) and H
3,1(Yz;C)∗, respectively.

Here,

DaΩY = ∂aΩY +KaΩY , DaDbΩY = (∂a +Ka)DbΩY − Γc
baDcΩY (C.7)

K = − ln

[∫

Y
ΩY ∧ ΩY

]
, Ka := ∂aK. (C.8)

The last component, H2,2(Yz;R)H∗, is parametrized by

∆Gscan =
K̃∑

I=1

ÑIΩ
(2,2)
I , AIJ :=

∫

Y
Ω
(2,2)
I ∧ Ω

(2,2)
J , (C.9)
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by using a basis {Ω(2,2)
I }|

I=1,··· ,K̃
of the vector space H2,2(Yz;R)H∗ over R; the generators

(DaDbΩY ) and (DcDdΩY ) of H
2,2(Yz;R)H∗ are not necessarily linearly independent. Thus,

the continuous approximation
∫
dKN of the flux configuration

∑
N is given by

∫
dNXdN̄Xe

−K

∫ m∏

a=1

[dNa
Y dN̄

ā
Y ]e

−mKdet(Kcd̄)m×m

∫
dK̃Ñ

√
AIJ . (C.10)

We expect very little confusion to arise from the fact that we use AIJ as the intersection

form on the vector space H2,2(Yz;R)H∗ here, while it is the intersection form on H4(Yz;R)

in (5.60).

In the case of a landscape based on a type IIB orientifold using a Calabi-Yau threefold

M3 with 7-branes in the SO(8) configuration and scanning three-form fluxes F
(3)
scan and

H
(3)
scan, the four-form is given by

G(4)
scan =

1

φ− φ̄
[
G(3)

scan ∧ ΩT 2 −G(3)
scan ∧ ΩT 2

]
, G(3)

scan := F (3)
scan − φH(3)

scan, (C.11)

we can take [29]

Nφi
Z (DφDiΩY ) + h.c.

(
i = 1, · · · ,m− 1 = h2,1−,prim.(M3)

)
(C.12)

with Nφi
Z ∈ C as a non-redundant parametrization of H2,2(Yz;R)H∗. This is due to a

relation

(DjDkΩM ) ∧ ΩT 2 = −FljkFφK
īlK φ̄φeK(DiDφ(ΩM ∧ ΩT 2)) (C.13)

that follows from88

DφΩT 2 = iFφe
K(T2)

ΩT 2 , DaDbΩM = iFdabK
c̄deK

(M)
DcΩM . (C.14)

Let us now consider a more general cases of F-theory compactifications where the

moduli space M∗ is not necessarily in the form of Mcpx(M3) ×Mφ, or 7-branes are not

necessarily in an SO(8) configuration. We consider a class of landscapes where the restricted

moduli spaceM∗ of a Calabi-Yau fourfold Y is specified by divisors JY and Wnoscan such

that there is a relation [103]89 among differential forms90

(DaDbΩY ) = FabcdB̃
cd,ēf̄eK(DeDfΩY ), (DaDbΩY ) = F āb̄c̄d̄B̃

cd,c̄d̄eK(DcDdΩY )

(C.15)

for some ∃B̃cd,ēf̄ over the moduli spaceM∗ (a, b, c, d, e, f ∈ {1, · · · ,m}).
88For T 2, Fφ :=

∫

T2 ΩT2 ∧ (DφΩT2). For a Calabi-Yau threefold M , Fijk :=
∫

M
ΩM ∧ (DiDjDkΩM ).

For T 2, there is the relation Kφφ̄ = |Fφ|2e2K
(T2)

. When we choose the normalization ΩT2 = dx+ φdy, we

have that F = 1.
89D̄ḡ(DaDbΩY ) has only (3, 1) Hodge components [103], although Dg(DeDfΩY ) may also have (2, 2)

components in addition. In this sense, FabcdB̃
cd,ēf̄ plays the role of S(2) in eq. (2.20) of [103]. B̃cd,ēf̄eK in

this article corresponds to Bcd,ēf̄ in [103].
90For a Calabi-Yau fourfold Y , Fabcd :=

∫

Y
ΩY ∧ (DaDbDcDdΩY ). Similarly, for a K3 surface X,

Fαβ :=
∫

X
ΩX ∧ (DαDβΩX).
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Obviously this is a generalization of (C.13). It is not hard also to see that Y = X×S =

K3×K3 also has this property. Using the relation

DαΩX = F (X)
αβ K γ̄βeK

(X)
DγΩX (C.16)

for a K3 surface X and the fact that Fαβκλ = F (X)
αβ F

(S)
κλ , one can see that B̃βλ,γ̄µ̄ =

K γ̄β
(X)K

µ̄λ
(S) do the job. We will comment on B̃αβ,κ̄λ̄ later.

Under the condition that B̃cd,c̄d̄ exists, one can choose (DaDbΩY )’s or (DcDdΩY )’s

as a (still possibly redundant) set of C-coefficient generators of H2,2(Yz;R)H∗. Thus, the

H2,2(Yz;R) component (C.9) may be written as

∆G(4)
scan = Nab

Z (DaDbΩY ) = N̄ c̄d̄
Z (DcDdΩY ) (C.17)

for some complex valued Nab
Z or their complex conjugates N̄ āb̄

Z . The following reality

condition must be satisfied by the (in-principle) complex valued Nab
Z , so that the two

expressions agree:

N̄ c̄d̄
Z = Nab

Z FabcdB̃
cd,c̄d̄eK , N cd

Z = N̄ āb̄
Z F āb̄c̄d̄B̃

cd,c̄d̄eK . (C.18)

In the following, we closely follow the presentation in [29], and see that the for-

mula (5.58) holds also in this case. The integration measure (C.10) is used as it is. The

D3-tadpole contribution from the flux is written as91

L = e−K

(
|NX |2 −Kab̄N

a
Y N̄

b̄
Y +

1

2
e2KB̃ef,ēf̄FabefF āb̄ēf̄N

ab
Z N̄

c̄d̄
Z

)
; (C.20)

the last term is of type (2, 2) and hence is positive definite. The F-term conditions (delta-

functions)

δ2m(DaW,DbW ) = δ2m(NY , N̄Y )
(
e−mK det(Kab̄)

)−2
(C.21)

eliminate the flux space integral over the (3, 1)+(1, 3) components from the measure (C.10),

and all the remaining directions in the flux space have positive definite contributions to

the D3-tadpole [29].

The parametrization of the (2, 2) flux component in terms of the Nab
Z satisfying (C.18)

may be redundant in general (Y = K3×K3 is an example; see the discussion later). Thus,

a set of independent flux space coordinates ÑI ∈ R (I = 1, · · · , K̃) is introduced and we

parametrize

Nab
Z =

∑

I

Zab
I ÑI , N̄ āb̄

Z =
∑

I

Z̄ āb̄
I ÑI (C.22)

without redundancy. The integration measure (C.10) is still used, but now there is an

alternative expression for AIJ :

AIJ = Zab
I

∫

Y
(DaDbΩY ) ∧ (DaDbΩY )Z̄

āb̄
J = Zab

I e
KB̃cd,c̄d̄FabcdF āb̄c̄d̄Z̄

āb̄
J ,

= Z̄ c̄d̄
I F āb̄c̄d̄Z̄

āb̄
J = Zab

I FabcdZ
cd
J . (C.23)

The last term in the D3-tadpole contribution is also written as ∆L = ÑIÑJAIJ/2.

91The following relation is used [103, 104]:
∫

(DaDbΩY ) ∧ (DcDdΩY ) = −e−K [Rac̄bd̄ −Kac̄Kbd̄ −Kad̄Kbc̄] = eKB̃ef,ēf̄FabefF c̄d̄ēf̄ . (C.19)
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In this case, we case, we can write the determinant in (C.1) as follows:

(−1)mdet

(
DaDbW ∂aDdW

∂̄c̄(DbW ) DcDdW

)
=

∫
dmθdmθ̄dmψdmψ̄ (C.24)

exp
[

θaψbFabdfZ
ef
I ÑI + θ̄c̄ψ̄d̄F c̄d̄āb̄Z̄

āb̄
J ÑI

+θaψ̄d̄NXe
−KKad̄ + θ̄c̄ψbN̄Xe

−KKbc̄

]
.

Carrying out Gaussian integrals over the complex NX and real ÑI coordinates, we obtain

the following formula:

ρind = (−1)m d2mz

(2π)m
emK [det(Kab̄)]

−1

∫
dmθdmθ̄dmψdmψ̄ (C.25)

exp

[
e−K(θaψ̄d̄Kad̄)(θ̄

c̄ψbKbc̄)

+
(
θaψbFabcdZ

cd
I + Z̄ āb̄

I F āb̄c̄d̄θ̄
c̄ψ̄d̄
) (A−1)IJ

2

(
θpψqFpqrsZ

rs
J + Z̄ p̄q̄

J F p̄q̄r̄s̄θ̄
r̄ψ̄s̄
) ]
.

In fact, his expression can be further simplified to (5.58). To see this, note that possibly

redundant set of generators {(DaDbΩY )} or {(DcDdΩY )} can be written as

(DaDbΩY ) = e I
abΩ

(2,2)
I , (DcDdΩY ) = ē I

c̄d̄Ω
(2,2)
I , (C.26)

using a basis {Ω(2,2)
I }I=1,··· ,K̃ of the vector space H2,2(Yz;R)H∗ over R. The complex valued

coefficients e I
ab and ē

I
c̄d̄

should satisfy

Z ab
I e J

ab = δ J
I , Z̄ āb̄

I ē
J
āb̄ = δ J

I . (C.27)

From this, we obtain Fabcd = e I
abZ

ef
I Fefcd.

Using this relation, the θ2ψ2 term in the exponent of (C.25) can be rewritten as

1

2
(θaψbe I

ab)(AIK)(A−1)KL(ALJ)(θ
pψqe J

pq) =
1

2
(θaψbe I

ab)(AIJ)(θ
pψqe J

pq) =
1

2
θaψbFabpqθ

pψq.

This vanishes because of the totally symmetric nature of Fabpq and Grassmann nature of

the θaθp. The θθ̄ψψ̄ terms in the exponent, on the other hand, become

(θaψbe I
ab)(AIK)(A−1)KL(ALJ)(θ̄

p̄ψ̄q̄ ē J
p̄q̄) = (θaψbe I

ab)AIJ(θ̄
p̄ψ̄q̄ ē J

p̄q̄)

= θaψbFabef B̃
ef,ēf̄eKF c̄d̄ēf̄ θ̄

c̄ψ̄d̄.

Using all these relations above, one arrives at the expression

ρind.

= (−1) 3m2
−m
2 [det(Kab̄)]

−1

∫
dmθdmθ̄ exp

[
θaθ̄b̄

(
Kad̄Kcb̄ − e2KFacef B̃

ef,ēf̄F b̄d̄ēf̄

)dzc ∧ dz̄d̄
2πi

]

= det

(
−R

b
a

2πi
+

ω

2π
δba

)
, (C.28)
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Here

−Rb̄acd̄ = Rab̄cd̄ = Kad̄Kcd̄ +Kab̄Kcd̄ − e2KFacef B̃
ef,ēf̄F b̄d̄ēf̄ , (C.29)

Rb
a = Rb

acd̄ dz
c ∧ dzd̄ , Rb

acd̄ = K b̄bRb̄acd̄ . (C.30)

Rb
a is the curvature (1, 1) form of the holomorphic tangent bundle TM∗ and ω = iKcd̄ dz

c∧
dzd̄ the Kähler form on M∗. The determinant in (C.28) is computed with respect to the

a, b indices, so that the result is a 2m-form on moduli space.

Finally, let us work out detailed descriptions of the vector space H2,2(Y ;R)H∗ as well

as the decomposition (5.64) in the case of Y = X × S. There are K = (20 − rk7) × 21

scanning (real-valued) flux quanta of G
(4)
scan introduced in the discussion of 5.4. Among

them, two correspond to the (4, 0)+ (0, 4) components NX(ΩX ⊗ΩS)+h.c, and 2m to the

(3, 1) + (1, 3) component

Nα
Y [(DαΩX)⊗ ΩS ] +Nκ

Y [ΩX ⊗ (DκΩS)] + h.c. (C.31)

in (C.6), where α = 1, · · · , (18− rk7) and κ = 1, · · · , 19. The remaining 2+(18− rk7)×19

real-valued flux quanta correspond to the coefficients of these differential forms:

ΩX ⊗ ΩS , ΩX ⊗ ΩS , (DαΩX)⊗ (DκΩS). (C.32)

Noting that there is a relation (DαDβΩX) = Fαβe
K(X)

ΩX for a K3 surface X, one finds

that i) all of (DαDβΩX)⊗ΩS for α, β = 1, · · · , (18−rk7) are the same as differential forms

on Y = X × S up to normalization, at each given point in the moduli spaceM∗, ii) all of

the 2×(18−rk7)×19 differential forms above belong to H2,2(Y ;R)H∗, and are furthermore

linearly independent; iii) this is even a basis of H2,2(Y ;R)H∗, because all the differential

forms in the form of DaDb(ΩX⊗ΩS) have already been exploited, given the relation (C.16).

All of these observations combined indicate that the vector space of scanning four-form flux

considered in section 5.4 corresponds precisely to the space (C.5).

In the case of Y = X × S = K3 × K3, another vector subspace H2,2(Y ;R)V ∗ ⊂
H2,2(Y ;R) is generated, on the other hand, by

H4(X;R)⊗ 1S , 1X ⊗H4(S;R), (U∗ ⊕Wnoscan)⊗ JS ⊗ R. (C.33)

Thus, the remaining component, consisting of cycles which are neither “horizontal” or

“vertical”, is given by

H2,2(Yz;R)RM
∼= (U∗⊕Wnoscan)⊗

[
J⊥
S ⊂H1,1(S;R)

]
⊕
[
(U∗⊕Wnoscan)

⊥⊂H1,1(X;R)
]
⊗[JS ].
(C.34)

This is not empty, and in fact, the first component is where the singular fibre flux (GUT

7-brane flux) G
(4)
fix in section 5.3-II and 5.4-III is introduced.

For K3 × K3 = X × S, the Riemann curvature tensor should become block-diagonal,

which is verified as in

Rαβ̄κλ̄ = K
(X)

αβ̄
K

(S)

κλ̄
−F (X)

αγ F (S)
κµ K δ̄γ

(X)K
ν̄µ
(S) e

2(K(X)+K(S)) F (X)

β̄δ̄ F
(S)

λ̄ν̄

= K
(X)

αβ̄
K

(S)

κλ̄
−K(X)

αβ̄
K

(S)

κλ̄
= 0.

(C.35)
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Diagonal blocks are given by

Rαβ̄γδ̄ = K
(X)

αβ̄
K

(X)

γδ̄
+K

(X)

αδ̄
K

(X)

γβ̄
− e2K(X)F (X)

αγ F
(X)

β̄δ̄ , (C.36)

where we used

B̃αβ,ᾱβ̄ =
Kᾱα

(X)K
β̄β
(X)

dimCMcpx(X;U∗ ⊕Wnoscan)
, B̃αβ,κ̄λ̄ = B̃κλ,ᾱβ̄ = 0. (C.37)
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[40] J. Marsano, N. Saulina and S. Schäfer-Nameki, Global Gluing and G-flux,

JHEP 08 (2013) 001 [arXiv:1211.1097] [INSPIRE].

[41] T.W. Grimm and T. Weigand, On Abelian Gauge Symmetries and Proton Decay in Global

F-theory GUTs, Phys. Rev. D 82 (2010) 086009 [arXiv:1006.0226] [INSPIRE].

[42] C. Mayrhofer, E. Palti and T. Weigand, U(1) symmetries in F-theory GUTs with multiple

sections, JHEP 03 (2013) 098 [arXiv:1211.6742] [INSPIRE].

[43] S. Krause, C. Mayrhofer and T. Weigand, G4 flux, chiral matter and singularity resolution

in F-theory compactifications, Nucl. Phys. B 858 (2012) 1 [arXiv:1109.3454] [INSPIRE].
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