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1 Introduction

Three dimensional supersymmetric field theories are interesting as they have been analyzed

as examples of the AdS4/CFT3 correspondence in M-theory. The OSp(8|4) symmetry of

the eleven dimensional supergravity on AdS4×S7 is realized asN = 8 supersymmetry of the

boundary superconformal field theory. This boundary superconformal field theory describes

a system of multiple M2-branes. Furthermore, this boundary theory is constrained not to

have any on-shell degrees of freedom coming from the gauge fields. All these properties are

satisfied by BLG theory [28, 30–32, 34]. The BLG theory only describes two M2-branes.

However, it has been possible to construct a generalization of the BLG theory called the

ABJM theory [32–35]. The ABJM theory is thought to describe multiple M2-branes, and

it reduces to the BLG theory for two M2-branes. Even though the ABJM theory has only

N = 6 supersymmetry, it is expected that its supersymmetry might get enhanced to full

N = 8 supersymmetry [36]. Just as the higher derivative correction to the D2-brane action

can be written in form of Dirac-Born-Infeld action, it is possible to write higher derivative

corrections to the ABJM theory. This can be done by writing the matter part of the

ABJM theory in form of a gauge covariantized Nambu-Goto action. It may be noted that

higher derivative corrections to this non-linear extension of the ABJM model have also

been studied [37]. It has been shown that the Mukhi-Papageorgakis higgs mechanism can

be used to determine higher derivative corrections to the BLG effective action [23]. This

formalism is an on-shell formalism.

It may be noted that apart from the application to the physics of M2-branes and

D2-branes, the addition of higher derivative corrections is interesting in its own right. Re-

cently a generic three dimensional supersymmetric gauge theory coupled to matter fields

has been constructed [38]. Under various limits this generic action reduces to the super-

symmetric Maxwell theory, supersymmetric Maxwell-Chern-Simons, and supersymmetric
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Chern-Simons theories with matter fields. A generic three dimensional higher derivative

superfield theory for self interacting scalar superfields has also been constructed [39]. In this

analysis the self interacting higher derivative actions for real and complex scalar superfields

have been studied.

Furthermore, supersymmetric theories with higher derivative terms play an important

role in various cosmological models [1]. In the Dirac-Born-Infeld inflation, a scalar field

describes the position of a brane plays the role of the inflaton field and causes an accelerated

expansion of the universe [2, 3]. The higher derivatives in the action cause new dynamics to

arise and lead to equilateral-type non-gaussianity in the primordial density fluctuations [4].

Furthermore, higher derivatives play an important role even in ekpyrotic universes [5, 6].

In these universes big bang is produced by the collision of branes moving in the bulk.

In this model, a phase transition from a contracting phase to an expanding phase occurs

for the ekpyrotic universes. This phase transition requires the violation of null energy

condition. This conditions can be violated if the sum of the pressure and the effective

energy density is negative. However, this leads to the existence of ghosts. It is possible

to overcome this problem by adding higher derivative terms [7, 8]. This occurs because of

ghost condensation [9, 10].

It is known that certain higher derivative (HD) terms in effective actions of gauge the-

ories with extended supersymmetries are not renormalized. The Seiberg-Dine terms with

N = 2 supersymmetry [11, 12], and Wess-Zumino terms in the four dimensional super-

Yang-Mills theory with N = 4 supersymmetry [13, 14], are examples of such terms. Fur-

thermore, the HD terms generated from the D3-brane action have been used for analysing

non-renormalization properties and anomalous dimensions of the four dimensional super-

Yang-Mills theory with N = 4 supersymmetry. We hope to obtain similar results for the

M2-branes, and this is one of the main motivations for this paper. It may be noted that

the HD corrections for four dimensional field theories with N = 1 supersymmetry have al-

ready been studied [15–18]. Such terms have also been studied using the four dimensional

harmonic superspace [24–27]. As M2-branes are described by a three dimensional super-

conformal field theory, we will analyse HD corrections to three dimensional supersymmetric

field theories. So, in this work, we analyze HD terms generated in derivative expansion of

three dimensional supersymmetric field theories in N = 1 superspace formalism.

In this work, we first consider the derivative expansion of an interacting supersymmet-

ric scalar field theory. This analysis will be performed using N = 1 superspace formalism.

It has been argued that the addition of HD terms in superspace formalism can cause prob-

lems in the original theory [19–22]. This is because a generic higher derivative action would

contain terms like
∫

superspace
(∂Φ)2 ∼

∫

spacetime
(∂F )2, (where F is the auxiliary field). This

will produce kinetic terms for such auxiliary field. Thus, the HD terms will add new

unwanted degrees of freedom to the original theory. Furthermore, in certain cases, these

kinetic terms for the auxiliary field have the wrong sign, and this breaks the unitarity of the

original theory. The vacuum of the theory can become unstable because of the HD terms.

However, in this paper, we are able to explicitly demonstrate that the HD terms in the

derivative expansion of a supersymmetric field theory, will only contain non-propagating

auxiliary field. So, the action for this effective field theory can be always written in terms

of physical fields. Therefore, the field content of the theory does not change upon adding
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HD terms. This is an important result as there has been a confusion regarding this point

in earlier works [19–22].

Thus, using the superspace formalism, we obtain various four, five and six dimensional

HD terms for an interacting scalar field theory. We show that pure fermionic and mixed

topological terms with five and six mass dimensions exist in the effective action of this

theory. Finally, we apply these results to obtain HD contributions to the effective field

theory action for two M2-branes. We obtain several HD terms for two M2-branes, and we

also compare them with an earlier study that has been done using the component fields.

The remaining paper is organized as follows. In section 2, we use derivative expansion

of the effective action of a real superfield in three dimensions to show that supersymmetric

HD terms will not produce a kinetic energy term for the auxiliary field. In section 3, we

apply this formalism to calculate the HD terms for a non-interacting supersymmetric scalar

field theory. In section 4, we use derivative expansion to generate HD terms with mass

dimensions four, five and six for an interacting supersymmetric theory. In section 5, we

are going to review the construction of the BLG theory in N = 1 superspace formalism.

In section 6, we are going to analyse the effective field theory action for two M2-branes.

We will generate all six dimensional topological HD terms for two M2-branes. In the last

section, we will summarize our results and discuss few extensions of this work.

2 Auxiliary fields

In this section, we use derivative expansion of the effective action of a real superfield in

three dimensions to show that supersymmetric HD terms will not produce a kinetic energy

term for the auxiliary field. So, the theory, even after the HD terms have been added

to it, can still be expressed in terms of physical fields. We will apply these results to a

non-interacting real scalar superfield theory.

Now before we present our argument for the supersymmetric theories, let us analyze

the leading order HD terms for a non-supersymmetric theory. These terms will correct the

kinetic energy term in the low energy effective action of the theory. A natural framework to

study a set of HD terms in a particular theory is the derivative expansion of the low energy

effective action, which reproduces the theory in the infrared limit. We will now perform such

an expansion for a free massless scalar field (φ) theory in three dimensions. It is important

to list the mass dimension of various fields, since in effective field theories, we consider the

action up to a particular dimension, which are suppressed by some microscopic length scale

l. Now from the kinetic terms of various fields, one can obtain the mass dimension for each

field and derivative, [φ] = 1/2, [∂] = 1, [m] = 1. It is important to state here that even if

we are only interested in studying six dimensional terms, we have to include four and five

dimensional terms for the consistency of the low energy effective action expansion.

Now consider a derivative expansion of a low-energy effective action of a real superfield

Φ in a generic N = 1 supersymmetric theory1

St =

∫

d2θd3xL(Φ, DΦ, . . .). (2.1)

1Here we use the notation of ref. [40].
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Since the length scale l controls the derivative expansion, the leading order term has three

mass dimensions. After integrating over the fermionic coordinates we get

St = S0 + l S1 + l2 S2 +O(l3) (2.2)

where Sn = Sn(φ, ψ, F ); n = 0, 1, 2, . . . are functions of the component fields and have

n+ 3 mass dimensions. Therefore, S0 must be at most quadratic in the auxiliary field F ,

since Φ = φ+ θψ − θ2F , i.e., [F ] = 3/2. This means the general form of S0 is given by

S0 =

∫

d3x

[

α

2
F 2 + g(φ, ψ)F + k(φ, ψ)

]

. (2.3)

Now let us obtain the field equation of F , it reads

S′

t = S′

0 + l S′

1 + l2 S′

2 +O(l3) = 0 (2.4)

where S′ = δS
δF

. Since the microscopic scale l controls the derivation expansion of the

effective action and suppresses HD terms, it is natural to expand the fields in terms of l.

Also all field fluctuations larger than 1/l has been integrated out, therefore, the only field

fluctuations, we have to consider should be less than 1/l. It is natural to expand F in

terms of l

F = F0 + lF1 + l2F2 +O(l3). (2.5)

Using equation (2.5) and expand S′

1 and S′

2 in terms of l, we get the following equations

αF0 + g(φ, ψ) = 0,

αF1 + S′

1(φ, ψ, F0) = 0,

αF2 + S′

2(φ, ψ, F0) + S′′

1 (φ, ψ, F0)F1 = 0. (2.6)

These equations show that all the fields Fn’s, can be all expressed as functions of the

physical fields φ and ψ. Therefore, F has no kinetic term, and the action can be written

entirely in terms of φ and ψ. This result holds independent of the form of the HD terms

in Sn. In fact, one can extend this argument to the four dimensional chiral and vector

supersymmetric field theories in N = 1 superspace [29].

3 Application

Now we will apply the above argument to the supersymmetric action of a free massless real

superfield Φ with higher derivative terms. Consider a real superfield Φ(x, θ) = φ+ θaψα −

θ2F [40], whose action is given by

S0 = −

∫

d3xd2θ

[

1

2
(DαΦ)2

]

. (3.1)

In component form, the above action can be written as

S0 =

∫

d3x
1

2
[F 2 + i ψα ∂α

β ψβ + φ�φ]. (3.2)
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Using field equation of the auxiliary field F = 0, which follows from this action, we can

write the action of the component fields as,

S0 =

∫

d3x
1

2
[i ψα ∂α

β ψβ + φ�φ]. (3.3)

Now considering the above action with four and five dimensions HD terms, we obtain the

following total action,

St =

∫

d3x d2θ
[

ΦD2Φ+ α l (D2Φ)2 + β l2D2Φ�Φ
]

+O(l3), (3.4)

where α and β are some couplings. Expanding the above action in component one obtains

St =

∫

d3x
1

2
[F 2 + φ�φ+ iψα∂α

βψβ ] + α l [ψβ
�ψβ + 2F �φ]

+β l2 [φ�2φ− i ψα∂
α
β �ψβ + F�F ] +O(l3). (3.5)

It may be noted that the auxiliary field has a kinetic term. Such terms occur in most su-

persymmetric field theories, if HD terms are considered. The field equation of the auxiliary

field is given by

F + 2α l�φ+ β l2�F = 0. (3.6)

It is natural to expand F in terms of l

F = F0 + lF1 + l2F2 +O(l3). (3.7)

Using field equation, one gets,

F0 = 0,

F1 = −2α�φ,

F2 = −β�F0 = 0. (3.8)

Now the total action reads

St =

∫

d3x
1

2
[φ�φ+ iψα∂α

βψβ] + α l ψβ
�ψβ

+l2 [(β − 2α2)φ�2φ− i β ψα∂
α
β �ψβ ] +O(l3). (3.9)

It is not surprising that supersymmetry requires the existence of additional four dimen-

sion terms, and such terms did not exist in the non-supersymmetric version of the action.

This is because the field content of the supersymmetric theory contains the fermionic field

ψ. However, the interesting result here is that four dimension terms include an interesting

fermionic topological term, i ǫµνσ∂µψβ∂νψ
γ (γσ)

β
γ . Even though, it is a total derivative for

four mass-dimension terms, it can be argued that it is possible to have a five dimensional

topological term in an interacting theory. Furthermore, in the coming section, we show

the possibility of having a pure fermionic topological term with six mass dimensions of the

form, ψ2 ǫµνσ∂µψβ∂νψ
γ (γσ)

β
γ .
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4 Interacting theory

Now we will analyze higher derivative terms for the interacting supersymmetric φ6 theory,

which is renormalizable in three dimensions. The supersymmetric action for this theory

can be written as

S0 =

∫

d3xd2θ

[

−
1

2
(DαΦ)2 +

λ

4!
Φ4

]

. (4.1)

In component form, the above action can be written as

S0 =

∫

d3x
1

2
[F 2 + i ψα ∂α

β ψβ + φ�φ] +
λ

2
φ2ψ2 +

λ

3!
Fφ3. (4.2)

Using the field equation for the auxiliary field, F = −λφ3/3!, we obtain

S0 =

∫

d3x
1

2
[i ψα ∂α

β ψβ + φ�φ] +
λ

2
φ2ψ2 −

λ2

2(3!)2
φ6. (4.3)

Now we will write the low energy effective theory with all possible HD terms consistent with

the symmetries up to dimension five. The list of independent four and five dimensional

terms is given by

S1 = l

∫

d3xd2θ [ c1(D
2Φ)2 + c2Φ

2(DαΦ)
2 + c4Φ

6],

S2 = l2
∫

d3xd2θ [ c5D
2Φ�Φ+ c6Φ

2(D2Φ)2 + c7ΦD
2Φ(DαΦ)

2

+c8 (DαΦ)
4 + c9Φ

4(DαΦ)
2 + c10Φ

8]. (4.4)

Now we can write all the four dimensional terms in component fields as
∫

d2θ (D2Φ)2 = ψα�ψα + 2F �φ,
∫

d2θΦ2(DαΦ)
2 = φ2 [F 2 + i ψα ∂α

β ψβ + φ�φ] + ψ4 + 2ψ2φF,
∫

d2θΦ6 = 30ψ2φ4 + 6Fφ5. (4.5)

We can also write all the five dimensional terms in component fields as
∫

d2θ (D2Φ)�Φ = φ�2φ− i ψα∂
α
β �ψβ + F�F,

∫

d2θ (D2Φ)2Φ2 = φ2 [ψβ
�ψβ + i ǫµνσ∂µψβ∂νψ

γ (γσ)
β
γ + 2F �φ] + 2φF 3

+2ψ2 F 2 + i8φψα∂
α
βψ

βF,
∫

d2θ (D2Φ)Φ(DαΦ)
2 = F 2ψ2 − iψ2 ψα∂β

αψβ + φ�φψ2 + iφF ψα∂β
αψβ − φψγ∂µψγ∂

µφ

+iǫµνσφψβ(γσ)
α
β∂µψα∂νφ,

∫

d2θ (DαΦ)
4 = ψ2[∂µφ∂

µφ+ 2F 2],
∫

d2θΦ4(DαΦ)
2 = 12ψ4φ2 + 4ψ2φ3F + 8ψ2φ3F + φ4[F 2 + i ψα ∂α

β ψβ + φ�φ],
∫

d2θΦ8 = 56ψ2φ6 + 8φ7F. (4.6)
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The term ψβ(γσ)
β
γψγ ǫµνσ∂µφ∂νφ mixes the scalars and fermions in five dimensional

terms. Usually such topological terms are are non-renormalizable. This makes them an

important tool to study the non-perturbative nature of the theory. Although, this term

vanishes identically for a single scalar superfield Φ, we will show in the next section that

with more than one superfield (i.e., ΦI is in some representation of certain group G) these

terms become non-vanishing.

Now the list of six dimension terms in supersymmetric φ6 theory is given by

S3 = l3
∫

d3xd2θ [c11(D
2Φ)3Φ+ c12(D

2Φ)2Φ4 + c13(D
2Φ)Φ7

+c14(DαΦ)
2D2ΦΦ3 + c15(DαΦ)

2 (D2Φ)2

+c16D
2Φ(�Φ)Φ2 + c17 (�Φ)2 + c18 (�Φ)Φ5 + c19Φ

10]. (4.7)

We can write all the six dimensional terms in component fields as
∫

d2θ (D2Φ)3Φ = 3F 2 [iψα∂β
αψα + F 2 + φ�φ]− 6φF ∂µψ

α∂µψα

+i6φF ǫµνσ∂µψ
α(γσ)αβ∂νψ

β ,
∫

d2θ (D2Φ)2Φ4 = 2F 3Φ3 + 3ψ2φ2F 2 + i8ψα∂
α
βψ

βφ3F + 2φ4F�φ

−
1

2
φ4∂µψ

β∂µψβ −
i

2
φ4ǫµνσ(γσ)

β
α∂µψβ∂νψ

α + 4iFφ3ψα∂β
αψβ,

∫

d2θ (D2Φ)Φ7 = φ7
�φ− 7iφ6ψα∂β

αψβ + 7F 2φ6 + 42ψ2Fφ5,
∫

d2θ (DαΦ)
2(D2Φ)Φ3 = φ3

�φψ2 −
i

4
φ3ǫµνσ(γσ)

β
α∂µψβ∂νψ

α

+
1

4
φ3ψβ∂µψ

β∂µφ+
i

4
φ3Fψα∂β

αψβ + 3iφ2ψ2ψα∂β
αψβ

−2F 3φ3 + Fφ3 ∂µφ∂
µφ+

3

2
F 2ψ2φ2 + 6Fψ4φ,

∫

d2θ (DαΦ)
2(D2Φ)2 = Fψ2

�φ−
i

2
ψ2[∂µψα∂

µψα + iǫµνσ(γσ)
β
α∂µψβ∂νψ

α]

−
3

2
F 2ψα∂β

αψβ +
3

2
F [∂µψα∂

µφψα + iǫµνσ(γσ)
β
α∂µψβ∂νφψ

α],
∫

d2θ (D2Φ)�ΦΦ2 = (�φ)2φ2 + 2iψα∂
α
βψ

βφ�φ+ F�Fφ2 + 2φFψβ
�ψβ

+F�Fφ2 + 2F 2φ�φ− 2Fψ2
�φ,

∫

d2θ (�Φ)2 = 2�F�φ+�ψα�ψα,
∫

d2θ (Φ)10 =
45

2
φ8ψ2 + 10Fφ9,

∫

d2θ (�Φ)Φ5 = 2φ5
�F + 5φ4ψα�ψα + 5Fφ4

�φ+ 20φ3ψ2
�φ. (4.8)

Notice the existence of non-vanishing purely fermionic topological terms as well as mixed

topological terms. With more than one superfield, these terms should play an important

role in the effective action of M2-branes.
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As we have mentioned before, having a single superfield forces certain topological terms

to vanish as a result of anti-symmetrization of the spacetime derivatives. Let us list few

examples of those terms keeping in mind that some of them (dimension 6 terms) will appear

in the following section. Thus, we can write the five dimensions term as

∫

d2θ (DβΦ)(D
βDρΦ)(D

ρΦ)Φ

⊃ ǫµνσ∂µφ∂νφψβ(γσ)
α
βψα + ǫµνσφ∂µφ∂νφ∂σφ, (4.9)

and the six dimensional term as
∫

d2θΦ3(DβΦ)(D
βDρΦ)(D

ρΦ)

⊃ ǫµνσφ2∂µφ∂νφψβ(γσ)
α
βψα + ǫµνσφ3 ∂µφ∂νφ∂σφ. (4.10)

5 Action for M2-branes

In this section, we are going to review the construction of the action for two M2-branes. The

BLG theory describes the physics of two M2-branes. So, here we review the construction of

the BLG theory in N = 1 superspace formalism [41]. The gauge fields in the BLG theory

are valued in a Lie 3-algebra rather than a conventional Lie algebra. A Lie 3-algebra is a

vector space endowed with a trilinear product,

[T a, T b, T c] = fabc
d T d. (5.1)

The structure constants of this Lie 3-algebra are totally antisymmetric in a, b, c. They also

satisfy the Jacobi identity [42],

f [abc
g f

d]eg
h = 0. (5.2)

The metric of this Lie 3-algebra can be defined by taking the trace over the Lie 3-algebra

indices,

hab = Tr(T aT b). (5.3)

It is also possible to define a symmetrised trace of four Lie 3-algebra generators as

Str(T aT bT cT d) = mh(abhcd), (5.4)

where m is a constant. For the Lorentz Lie 3-algebra, it is possible to consider a set of

generators corresponding to a compact subgroup of the full symmetry group. Hence, we

can choose the generators of a SU(2) Lie algebra, and write [23]

Tr(T aT b) =
1

2
δab,

STr(T aT bT cT d) =
1

4
δ(ab δcd). (5.5)

The gauge fields are valued in the Lie 3-algebra, Γα
abT

aT b = Γα. The BLG theory

has been written using N = 1 superspace formalism. This is done by writing defining

– 8 –
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ΦI
a = φI

a + θαψI
αa − θ2F I

a, with I = 1, 2, . . . 8, where a is the three-algebra index with a

structure constant fabcd. So, we can write the action for the BLG theory as [41]

S0 = −

∫

d3x d2θ

[

1

4

(

DαΦI
d + fabc

d Γ
α
abΦ

I
c

)2
+

1

8
fabcd (DαΓβ

ab)(DβΓα cd)

+
1

6
f cda

gf
efgb (DαΓβ

ab)Γα cdΓβ ef +
1

24
fabcdCIJKLΦI

aΦ
J
bΦ

K
c ΦL

d

]

.(5.6)

The component field definitions are as

ΦI
a| = φI

a, DαΦ
I
a| = ψI

α a,

D2ΦI
a|− = F I

a , Γαab| = χαab,

1

2
DαΓαab| = Bab, Γαab| = 2λαab − i ∂ β

α χβ ab,

DαΓ
β
ab| = i (γµ)

β
α Aµ

ab − δ β
αBab, D2Γα

ab| = 2λα
ab + i ∂α

βχ
β
ab,

DαΓβ ab| = i (γµ)
α
β A

µ
ab + δαβBab,

1

2
DβDαΓβ ab| = λαab. (5.7)

An octonion algebra {1, ei}, with i = 1, . . . , 7, such that eiej = cijk ek − δij , has been

used to defined CIJKL. This is done by taking a totally antisymmetric tensor cijk. The

seven dimensional dual of this is cijkl =
1
6 ǫijklmno c

mno. Now it is possible to construct an

SO(7) invariant tensor CIJKL I,J,K,L=1,...,8 which is self dual in eight dimensions, Cijk8 =

cijk, Cijkl = cijkl. This octonionic structure constants can be used to construct SO(8)

gamma matrices [41]. So, we can use write (Γi)AȦ = ci
AȦ

+ δ8ȦδAi − δ8AδȦi, where

i = 1, . . . , 7 and A, Ȧ = 1, . . . , 8. We also have (Γ8)AȦ = δAȦc
i
8Ȧ

= ciA8 = 0. Here we have

defined Γ̂I
ȦA

=
(

ΓT
)I

ȦA
, and ΓI Γ̂J +ΓJ Γ̂I = 2δIJ . Now the clifford algebra can be written

as

γIγJ + γJγI = 2δIJ , (5.8)

where

γI =

(

0 ΓI
AȦ

Γ̂I
ȦA

0

)

. (5.9)

Now we can also write

ΓIJ
AB =

1

2

(

ΓI
AȦ

Γ̂J
ȦB

− ΓJ
AȦ

Γ̂I
ȦB

)

= CIJ
AB + δIAδ

J
B − δIBδ

J
A . (5.10)

6 Topological terms for M2-branes

In this section, we will analyse the effective action for two M2-branes. We will use the above

analysis to argue for the existence of new topological HD terms in the effective action of

M2-branes. The effective M2-brane action can be expanded in terms of Planck length lp
as follows

SBLG = S0 + l3pS3 + . . . (6.1)
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Therefore, the first correction to the leading contribution is of dimension six. This is why

we have expanded our effective action in the general φ6 theory up to such order. The action

of the theory without the gauge field, i.e., the Higgs branch, is given by

S0 = −

∫

dx3d2θ Tr

(

(DαΦ)
2 +

1

12
[ΦI ,ΦJ ,ΦK ]ΦLCIJKL

)

. (6.2)

Since the leading correction is of order O(l3p), the field equation for the auxiliary field is

given by

F I
a =

−1

6
fabcdCI

JKLΦ
J
bΦ

K
c ΦL

d +O(l3p). (6.3)

The non-vanishing six dimensional topological terms can be classified as bosonic,

fermionic and mixed terms. Here we list all such terms. We find the following bosonic terms,

Lb1 =

∫

d2θ STr
(

CIJKLC
I
J ′K′L′ ΦJ ′K′L′

DβΦ
JDβDγΦ

KDγΦL
)

⊃ STr
(

CIJKLC
I
J ′K′L′ φJ ′K′L′

ǫµνσ∂µφ
J∂σφ

K∂νφ
L
)

=
1

4
CIJKLC

I
J ′K′L′ φJ ′K′L′

a′b′c′ fa′b′c′

d ǫ
µνσ × ∂µφ

J
a∂σφ

K
b ∂νφ

L
c δ(abδcd) (6.4)

Another term that produces the same topological term is given by

Lb1′ =

∫

d2θ STr
(

CIJKLD2ΦIDβΦ
JDβDγΦ

KDγΦL
)

⊃ STr
(

CIJKLF
I ǫµνσ∂µφ

J∂σφ
K∂νφ

L
)

. (6.5)

The relation between this term and the previous one is clear upon using eq. (6.3). This

term has also been obtained in earlier works on M2-branes [23]. We also find three different

fermionic terms

Lf1 =

∫

d2θ Tr
(

CIJKLDαΦI [DαΦ
J , D2ΦK , D2ΦL]

)

⊃ CIJKLfabcd ǫµνσ ψI
a · ψ

J
b ∂µψ

K
c · γν · ∂σψ

L
d

Lf2 =

∫

d2θ STr
(

DαΦIDαΦ
JD2ΦID2ΦJ

)

⊃ δ(abδcd) ǫµνσ ψI
a · ψ

J
b ∂µψ

I
c · γν · ∂σψ

J
d

Lf3 =

∫

d2θ STr
(

DαΦIDαΦ
ID2ΦJD2ΦJ

)

⊃ δ(abδcd) ǫµνσ ψI
a · ψ

I
b ∂µψ

J
c · γν · ∂σψ

J
d , (6.6)

where ψ · ξ = 1
2ψ

αξα and ψ · γµ · ξ = ψα(γ
µ)αβξβ . This last term can be expressed in the
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notation of [23] as Tr
(

Ψ̄ΨǫµνσDµΨ̄γνDσΨ
)

. Finally, we find the following mixed terms,

Lm1 =

∫

d2θ Tr
(

DγDαΦ
J [ΦI , DβΦ

J , DβDγDαΦI ]
)

⊃ fabcd ǫµνσ φI
aφ

J
b ∂µψ

I
c · γν · ∂σψ

J
d

Lm2 =

∫

d2θ STr
(

CIJKLDγDαΦ
I ΦJ DβΦ

K DβDγDαΦL
)

⊃ CIJKL δ(abδcd) ǫµνσ φI
aφ

J
b ∂µψ

K
c · γν · ∂σψ

L
d

Lm3 =

∫

d2θ Tr
(

CIJK
LCI′J ′K′

LΦI′J ′K′

[ΦI , DαΦJ , D2DαΦ
K ]
)

⊃ CIJK
LCI′J ′K′

L φI′J ′K′

a′b′c′ fa′b′c′dfabc
d ǫ

µνσ

×φI
a ∂µψ

J
c · γν · ∂σψ

K
d (6.7)

The same topological term can be produced by

Lm3′ =

∫

d2θ Tr
(

CIJK
LD

2ΦL [ΦI , DαΦJ , D2DαΦ
K ]
)

⊃ CIJK
L FL

d fabc
d ǫ

µνσ φI
a ∂µψ

J
c · γν · ∂σψ

K
d (6.8)

The last mixed term can be written as

Lm4 =

∫

d2θ STr
(

CI′J ′K′
I ΦI′J ′K′

ΦJ DαΦI D2DαΦ
J
)

⊃ CI′J ′K′
I φI′J ′K′

a′b′c′ fa′b′c′

dδ
(abδcd) ǫµνσ

×φJ
a ∂µψ

I
b · γν · ∂σψ

J
c (6.9)

Another term that produces the same topological term, after using eq. (6.3), takes the form

Lm4′ =

∫

d2θ STr
(

D2ΦIΦJ DαΦI D2DαΦ
J
)

⊃ δ(abδcd) F I
d ǫµνσ φJ

a ∂µψ
I
b · γν · ∂σψ

J
c . (6.10)

It is worth mentioning here that these six dimensional HD terms of the M2-branes

effective action have been calculated in earlier studies [23]. This was done by using a novel

Higgs mechanism, and this reduced the M2-brane action to a matter-Yang-Mills theory

describing the low energy effective action of multiple D2-branes. The HD terms obtained

in this work are written in terms of component fields, and the lowest order field equations in

derivative expansion was used. This made several of these HD terms to vanish. In contrast

to this, the HD terms in this work have been constructed using superspace formalism, and

they have been written in terms of N = 1 superfields. This explains why all these terms

were not obtained in earlier studies [23]. In fact, in the earlier component formalism only

the pure bosonic topological term was obtained. Apart from this pure bosonic terms, all the

HD terms produced here using the superspace formalism, vanished upon using lowest order

field equations in derivative expansion. The reason is that these terms contain fermions and

can be written in terms of one or more factors of i∂αβψ
β, which are set to zero by the lowest

order field equation in derivative expansion. This explains why these terms were absent
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in earlier studies [23]. The importance of these HD terms come from the fact that they

modify the interaction Lagrangian, therefore, they affect loop calculations of scattering

amplitudes in the low energy effective theory [43, 44]. In addition, if we consider path

integral quantization for such an effective theory we have to sum over all such HD terms

in our Lagrangian, otherwise we will not have the correct interaction Lagrangian [45, 46].

7 Conclusion

In this paper, we have analyzed the higher derivative terms for three dimensional super-

symmetric theories with N = 1 supersymmetry. We first analyzed the higher derivative

terms for a general scalar superfield theory and demonstrated that the auxiliary field will

not acquire a kinetic term for all possible actions of the theory. Therefore, the theory is

completely describable in terms of its original field content. We calculated all four, five and

six dimensional terms for such a theory demonstrating the existence of various interesting

topological terms. We obtained pure bosonic, pure fermionic and terms which mix bosonic

and fermionic fields. We also analyse the effective action for the BLG theory in N = 1

superspace formalism. We show the existence of several mixed and pure fermionic terms

which vanish upon using the lowest order field equations in derivative expansion. These

terms were absent in the list of six dimensional terms generated in earlier studies [23].

It may be noted that even though these terms vanish upon using the lowest order field

equations in derivative expansion, it is important to consider them, as they can affect loop

calculations of scattering amplitudes in the low energy effective theory.

It will be interesting to generalize the results of this paper, for theories with higher

amount of supersymmetry. Furthermore, it will be interesting to perform a similar analysis

for matter fields coupled to gauge fields. The results thus obtained can be used for analyzing

HD corrections to the M2-branes effective actions using the ABJM theory. It is possible

to extend this work done on global supersymmetry with higher derivative terms to local

supergravity theories. In fact, the supergravity extension of scalar field theories with

higher derivative terms has been studied [47]. This analysis was done using supergravity in

N = 1 superspace formalism. The elimination of auxiliary fields modifies both the kinetic

and potential terms in this theory. In this case, it has been demonstrated that potential

energy can be generated even if there was no original superpotential term in the action.

It will be interesting to extend the results of this paper to local supergravity theories in

three dimensions.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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