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We have been developing a system for detecting seafloor crustal movement by combining kinematic GPS
and acoustic ranging techniques. A linear inversion method is adopted to determine the position of seafloor
stations from coordinates of a moving survey vessel and measured travel times of acoustic waves in seawater.
The positioning accuracy is substantially improved by estimating the temporal variation of the acoustic velocity
structure. We apply our method to the ranging data acquired at the seafloor reference point, MYGI, located off
Miyagi Prefecture, in northeast Japan, where a huge earthquake is expected to occur in the near future. A time
series of horizontal coordinates of MYGI obtained from seven campaign observations for the period 2002–2005
exhibits a linear trend with a scattering rms of about 2 cm. A linear fit to the time series gives an intraplate
crustal velocity of more than several centimeters per year towards the WNW, which implies strong interplate
coupling around this region. The precision of each campaign solution was examined at MYGI and other seafloor
reference points along the Nankai Trough through comparison of independent one-day subset solutions within
the campaign. The resultant repeatability looks to be well-correlated with the temporal and spatial stability of the
acoustic velocity structure in the seawater depending on the region as well as the season.
Key words: GPS/Acoustic, seafloor geodetic observation, linear inversion, Off Miyagi, intraplate deformation.

1. Introduction
Japan is located in a tectonically active region where mul-

tiple tectonic plates interact with each other. This causes
frequent big earthquakes in and around the country. Among
others, a substantial number of huge events have occurred
along the undersea plate boundary region, especially on
the Pacific side, such as the Tonankai (M7.9 in 1944) and
Nankai (M8.0 in 1946) earthquakes. Many researches have
been devoted to investigate the interplate coupling on the
rupture area for the purpose of elucidating the physical
mechanism of such earthquakes. In particular, the back-
slip distribution on the rupture area of huge earthquakes has
been estimated, based on such geodetic data as intraplate
crustal velocities measured by the contemporary dense GPS
network maintained by the Geographical Survey Institute of
Japan (Sagiya, 1999; Suwa et al., 2004). In these studies,
however, the lack of data in the marine region limits the
resolution and reliability of the back-slip estimation on the
undersea plate boundary.

The Hydrographic and Oceanographic Department of
Japan (JHOD) has been developing a system for precise
seafloor geodetic observation with the GPS/Acoustic com-
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bination technique, using a survey vessel in close collabo-
ration with the Institute of Industrial Science, University of
Tokyo (Asada and Yabuki, 2001; Mochizuki et al., 2003,
2005; Fujita, 2003). The primary purpose of our observa-
tions is to detect and monitor the crustal deformation caused
by the subduction of the oceanic plate near the plate bound-
ary where huge earthquakes repeatedly occur. The JHOD
has so far deployed more than fifteen seafloor reference
points on the landward slope of the major trenches around
Japan, such as the Japan Trench and Nankai Trough, and
has begun to obtain successful results (Fujita et al., 2004a).

The idea of the GPS/Acoustic combination technique
to measure seafloor crustal movement dates back to the
early work done by scientists at the Scripps Institution of
Oceanography (Spiess, 1985), examining various methods
for undersea positioning with acoustic waves for geodetic
purposes. Since then, they, among others, have been mak-
ing continuous efforts to improve the GPS/Acoustic obser-
vation technique (Spiess and Hildebrand, 1995; Spiess et
al., 1998; Chadwell et al., 1998, 2002; Chadwell, 2003),
using primarily the seafloor reference site on the Juan de
Fuca plate off the Canadian coast. Most recently, Gagnon
et al. (2005) have discussed intraplate deformation in the
South American plate, determined from 100–120 hours of
continuous measurements made in 2001 and 2003, with a
positioning precision of better than 10 mm.

In Japan, several groups have been trying to develop
the GPS/Acoustic system and discussing positioning accu-
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Fig. 1. Schematic picture of the GPS/Acoustic seafloor geodetic observa-
tion system.

racy through error estimations. Obana et al. (2000) pre-
sented preliminary results from experiments at Sagami Bay,
which show an accuracy of measurement on the order of 10
cm. Yamada et al. (2002) estimated measurement errors
in acoustic positioning through numerical simulations. Os-
ada et al. (2003) reported results of an experiment carried
out off Hawaii Island focusing on the temporal variation of
acoustic velocity. Recently, they reported to have detected
crustal movement at their reference points: co-seismic dis-
placement at Kumano Basin, in south Japan, caused by the
earthquakes SE off Kii Peninsula (M6.9, M7.4) which oc-
curred in 2004 (Tadokoro et al., 2005) and secular move-
ment off Miyagi Prefecture, in northeast Japan (Funakoshi
et al., 2005). A theoretical work on the methodology of data
analysis was done by Xu et al. (2005), which presented a
mathematical formulation to avoid effects of errors included
in the acoustic velocity structure, using single and double-
difference calculation.

The primary purpose of this paper is to describe the
methodology of data analysis that we are currently adopt-
ing, in particular, the linear inversion method to determine
the position of seafloor stations from the kinematic GPS
and acoustic ranging results. Then we present our results of
analysis with this method obtained from the observed data
at the seafloor reference point situated off Miyagi Prefec-
ture, in northeast Japan, where huge earthquakes have re-
peated with a relatively regular interval of 30 to 40 years.
We also discuss the precision of our technique in relation
with observation conditions, such as the stability of the un-
dersea acoustic velocity structure.

2. Measurement System and Campaign Observa-
tion

A schematic picture of the seafloor geodetic observation
system that we have developed is shown in Fig. 1. This
system consists of a seafloor unit with four (sometimes
three) acoustic mirror-type transponders, and an on-board
unit with a GPS antenna and an undersea transducer in-
stalled on the rigid observation pole of about 8 m in length,
to which it is also attached a dynamic motion sensor. Four
transponders on the seafloor are placed to form a square,

with a length of the diagonal approximately equal to the
water depth in the area.

The system measures ranges from the on-board trans-
ducer to the seafloor acoustic transponders through round-
trip acoustic travel times in-between, while simultaneously
determining coordinates of the on-board transducer, trans-
ferred from those of the GPS antenna, with the attitude of
the observation pole measured with the dynamic motion
sensor taken into account.

The seafloor transponder functions as a signal retransmit-
ter that receives a ranging signal from the on-board trans-
ducer and then transmits the signal back. The ranging sig-
nal is a 10 kHz acoustic wave, coded with a 9th order max-
imum length sequence (M-sequence) with 511 (= 29 − 1)
bits. One bit of the code consists of four cycles of the car-
rier wave, thus the length of the whole signal amounts to
204 ms. The acoustic ranging signals transmitted out and
received back by the transducer are both recorded in dig-
ital form at a sampling frequency of 200 kHz. Kinematic
GPS data are mostly sampled at 2 Hz. The acoustic wave
velocity profile in the seawater, necessary for transforming
travel time into range, is obtained from CTD/XCTD and
XBT measurements. See also Asada and Yabuki (2001),
Mochizuki et al. (2003, 2005) for more details on this sys-
tem.

The onsite measurements with this system are made
aboard a survey vessel, on a campaign basis. In each cam-
paign, we usually perform ranging measurements for more
than 3–4 days, for 6–7 hours a day, at present.

Due to the noise produced by the vessel, acoustic rang-
ing measurement can only be carried out when the vessel
is drifting with the motor clutch disengaged. Consequently,
the geographical distribution of the measurement points de-
pends on the natural wind and water flow, and cannot be
controlled. We are trying to make it as balanced as pos-
sible by moving the vessel during intervals between drift
observations. Typical patterns of geographical distribution
of measurement points are shown in Fig. 2.

3. Overview of Data Analysis
The data analysis consists of three procedures: (1) acous-

tic wave analysis to obtain the round-trip travel time be-
tween the transducer on board and the seafloor transponder
from recorded waveforms, (2) kinematic GPS analysis, and
(3) a combination of results from (1) and (2) to get the pre-
cise seafloor station position.

For the analysis (1), round-trip travel times of measured
acoustic waves are determined by cross-correlation between
the original ranging signal and the return signal (Asada and
Yabuki, 2001; Toyama, 2003). In this method, the onset of
the return signal can be identified as a maximum peak in the
correlogram, taking advantage of the characteristics of the
M-sequence code.

For the analysis (2), positions of the on-board GPS an-
tenna are determined using a kinematic GPS software called
IT (for Interferometric Translocation) which was developed
for the precise determination of the trajectory of a rover over
very long baselines (Colombo and Evans, 1998; Colombo
et al., 2000, 2001). In our practice, we estimate errors in-
cluded in the kinematic result for the vessel by comparing a
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Fig. 2. Typical geographical distributions of acoustic measurement points (wavy lines) in a day around the four seafloor stations (solid squares)
characterized by (a) balanced distribution at MYGI on July 15, 2003, (b) irregular flow of current at MYGI on July 14, 2003, (c) poor coverage at
MYGI on April 25, 2004, and (d) constant strong flow (due to the Kuroshio current) at SIOW on August 26, 2003.

1-minute average of the GPS-determined sea surface height,
with the mean sea surface level, which usually gives a pre-
cision of several centimeters; the mean sea surface level for
comparison is calculated with a precise local geoid model
(Fukuda, 1990), plus a local ocean tide model (Matsumoto
et al., 2000), and corrected for the solid earth tide. An ex-
ample of the comparison between the GPS-measured height
and the mean sea surface level is shown in Fig. 3. This error
estimation also helps avoid adopting degraded results from
bad quality data.

The final analysis (3) is performed by a linear inversion
method based on least squares estimation. During this pro-
cess, we estimate the position of the four transponders on
the seafloor individually, but finally take their average as
the virtual position of the reference point to be monitored.
The detailed methodology of the inversion will be described
in the next section.

4. Method of determining seafloor station position
based on the linear inversion formulation

4.1 Overview
In this section, we describe our method of combining re-

sults from kinematic GPS and acoustic ranging analyses for
determining the position of seafloor stations. Input data are:
coordinates of the GPS antenna, round-trip travel time of
the acoustic signal, attitude parameters of the vessel (head,
roll and pitch), and the acoustic velocity structure in the
seawater.

The procedure is as follows: First, using the kinemati-
cally estimated coordinates of the GPS antenna at the top
end of the observation pole, and the attitude of this pole
measured with the motion-sensor, we calculate the position
of the submerged acoustic transducer at the other end. And
from the successive positions of the transducer and the cor-
responding round-trip travel times of the acoustic waves,

Fig. 3. Example of comparison between the GPS-determined sea sur-
face height and the calculated mean sea surface level for the purpose of
estimating errors included in the kinematic result. The time series rep-
resents the difference between 1-minute average of the GPS-determined
height, on May 3, 2004 at MYGI, and the mean sea surface level, cal-
culated with a precise local geoid model (Fukuda, 1990), plus a local
ocean tide model (Matsumoto et al., 2000), and corrected for the solid
earth tide.

we estimate the position of the four seafloor mirror sta-
tions based on geometrical principles, taking into account
the acoustic velocity structure.

In order to estimate the seafloor station positions accu-
rately, it is necessary to have a sufficiently accurate acoustic
velocity structure. During our usual operations, we carry
out CTD observations (of seawater conductivity, tempera-
ture, and depth) with recoverable probes, before and after
the ranging measurements of the day, and perform, hourly,
similar (XBT and XCTD) measurements, with expendable
probes, in between. However, the performances of these
instruments are not sufficient. Besides, different empirical
equations can be adopted to calculate the acoustic velocity
from the observables, that lead to different velocity struc-
tures. Moreover, because the velocity varies with time and
space, it is practically impossible to make enough observa-



268 M. FUJITA et al.: GPS/ACOUSTIC SEAFLOOR GEODETIC OBSERVATION

init value

multiple stations multiple time windows

converge END

acoustic vel coeff.position

Fig. 4. Simplified algorithm of parameter estimations applied to get the
seafloor station position using the round-trip travel time of acoustic
waves.

tions to cover all these variations in detail. Thus, for po-
sitioning at the centimeter level, it is insufficient to apply
a simple, fixed acoustic velocity field obtained from those
observations.

On the other hand, the observed travel-time data include
not only information on the range, but also that on the ve-
locity structure along the path. Taking advantage of this
fact, we estimate corrections to the parameters of the a pri-
ori velocity structure. This idea is similar to the estimation
of atmospheric delay made as part of the precise GPS data
analysis.

For the estimation of the parameters, we apply a the-
ory of Bayesian least squares inversion (Jackson, 1979;
Matsu’ura, 1984). Figure 4 exhibits a simplified algorithm
of our analysis. First, iterations are made to determine the
positions of the multiple stations individually using a cer-
tain acoustic velocity structure. Then, using the resultant
residuals for the position iterations, an estimation of coeffi-
cients for temporal variation of the acoustic velocity struc-
ture is made for a given time window. The width of the
time window applied for the estimation of the velocity co-
efficients can be chosen from that of a single observation
line, to a maximum of one day. We iterate this process until
the position parameters converge.
4.2 Formulations

In the following, we describe mathematical formulations
used for the estimation of each parameter, i.e., coordinates
of an individual seafloor station and/or acoustic velocity
coefficients for a certain time window.

First, we introduce general representations of an obser-
vation equation and its solution which are common to both
parameters. Assuming a linearized relationship between the
n-vector of observations y0 and the m-vector of model pa-
rameters x , with an (n × m) matrix of partial derivatives A
and an n-vector of Gaussian observation errors e, then:

y0 = Ax + e (1)

When initial estimates of the model parameters and their
errors’ variance-covariance matrix can be given as a priori
information, the model parameter solution x̂ can be calcu-
lated with the following equation (Jackson, 1979):

x̂ = (AT E−1 A + D−1)−1(AT E−1 y0 + D−1x0) (2)

or an equivalent form:

x̂ = x0 + D AT (E + AD AT )−1(y0 − Ax0) (3)

where x0 is a vector whose entries are the initial val-
ues of the model parameters, D is the a priori variance-
covariance matrix for the model parameters, E is the

variance-covariance matrix for the observation error e, and
AT means the transpose of A.

The relationship between observation data and model pa-
rameters is usually non-linear. However, it can be reason-
ably assumed that the relationship is linear for small pertur-
bations around the true value of x . In Eqs. (1) and (2) or
(3), we set x0 = 0, and y0 and x are considered to be small
corrections to the initial values. The final solution can be
obtained iteratively. By introducing the a priori variance-
covariance matrix D, we can constrain the model parame-
ters, depending on the reliability of the initial value. The
simplest application is to have fixed and free parameters.

Next, we describe concrete representations of the obser-
vation data and model parameters used for the inversion. As
shown in Fig. 4, there are separate observation equations for
the position estimation and the velocity estimation.

For the station position estimation, the observation pa-
rameters y0 are given by:

y0 = (
�t1(N ) �t2(N ) . . . �tn(N )

)T
(4)

for station ‘N ’. Parameters on the right hand side are resid-
uals of travel times between observed and calculated from
initial positions, arranged as a time series.

The model parameters x are corrections to the initial
coordinates of each of the four seafloor mirror stations,
expressed as:

x = (�xN �yN �zN )T (5)

For the acoustic velocity estimation, the vector of observa-
tions y0 can be expressed for the time window [tk(N ), tl(W )],
and for the four seafloor mirror stations ‘N ’, ‘S’, ‘E’, ‘W ’
as follows,

y0 = (
�tk(N ) �tk(S) �tk(E) �tk(W ) . . . �tl(W )

)T
(6)

As model parameters, we adopted the coefficients of a 2nd
degree polynomial, or quadratic curve, representing the
temporal variation of the averaged velocity. The reason for
selecting a quadratic as base function is that, in the past, we
have succeeded in making reasonable corrections with this
function, in an optimum way, by selecting proper lengths
for the time windows, which will be described in detail in
the next section. The averaged acoustic velocity as a func-
tion of time, V (t), is:

V (t) = V (t0) + a0 + a1(t − t0) + a2(t − t0)
2 (7)

where t0 represents the reference time, V (t0) is an initial av-
eraged velocity at time t0, and the vector of velocity model
parameters, x , which are corrections to the quadratic coef-
ficients, is defined as follows:

x = (�a0 �a1 �a2)
T (8)

For obtaining a geometric path of an acoustic wave, the
velocity structure is horizontally layered at 200 m, 400 m,
800 m and 1600 m in depth, where each layer is given a
linear variation of velocity with depth, and a ray tracing
method is applied. A velocity of every layer varies with
time using an identical quadratic curve for a given time win-
dow, so that the averaged velocity also varies following the
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Table 1. List of numbers of data for each campaign observation at MYGI used in this study.
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Fig. 5. Locations of the seafloor reference points (red squares) used in
this study shown on the topographic map around Japan. Also shown are
the position reference of the time series exhibited in Fig. 7, Shimosato,
(a yellow square labeled as “simo”), and intermediate land reference
stations used for our kinematic GPS analyses (white circles), which are
located 50–200 km away from the seafloor reference points.

same curve. In other words, the shape of the vertical pro-
file is assumed to be invariable with time. In reality, this
assumption does not hold; for shallower waters it is more
variable than for deeper ones. However, numerical exam-
inations show that the positioning result depends little on
small fluctuations of the shape of the vertical profile (Sato
and Fujita, 2004), so we can safely make this assumption at
present. The reason we chose the above number and depths
of layering is because it can approximate the observed ver-
tical profile reasonably enough to secure a precision at the
centimeter level.

5. Application to the Observed Data at the Off-
Miyagi Reference Point

We applied the method of analysis described in the pre-
vious section to the data obtained at the seafloor reference
point off Miyagi Prefecture (labeled as MYGI), in north-
east Japan. The location of this point is shown in Fig. 5.
MYGI is situated about 100 km landward from the axis of
the Japan Trench, where huge earthquakes have repeated at
relatively regular intervals of 30 to 40 years. It is on the
eastern edge of the possible rupture area of the next large
interplate earthquake. A set of four acoustic transponders
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Fig. 6. Representative plots of estimated average acoustic velocity, on
April 24, 2004 at MYGI. SV0 (red) represents an initial value given
by the 2nd polynomial fitting to the observed velocities from the CTD,
XCTD and XBT, SV1 (blue) is the curve after the daily session esti-
mation as a first step and SV2 (green) is the one estimated for every
observation line as a second step. Note that the first step corrects sig-
nificantly the bias-type errors included in the initial value given by the
observations, and the next step deals with irregular short-time variations
that cannot be approximated with the 2nd degree polynomial for several
hours.

have been installed on the seafloor, at a depth of about 1700
m. The transponders are placed to form a square whose
corners are directed to the north, south, east and west. At
this particular point, we have been carrying out intensive
campaign observations with our system since 2002. Data
numbers for the campaigns at MYGI used in this paper are
listed in Table 1.
5.1 Analysis strategy and parameter settings

5.1.1 Time windows for the acoustic velocity estima-
tions The inversion is done on two consecutive steps, with
different time windows for the acoustic velocity estima-
tions. In the first step, the temporal variation of the speed
of sound during daily sessions, usually lasting several hours
each, is estimated as a 2nd degree polynomial. In the sec-
ond step, using the solution from the first step as the initial
value, the 2nd degree polynomial estimation is performed
again for every observation line, where each, usually, has
been observed for 20–60 minutes.

An example of estimated curves based on this two-step
strategy is exhibited in Fig. 6. As shown in this figure, the
first step corrects significantly the bias-type errors included
in the initial value given by the observations, and the next
step deals with irregular short-time variations that cannot be
approximated with the 2nd degree polynomial for several
hours. It should be emphasized that the second step estima-
tion only, without the first step, cannot deal adequately with
bias-type errors, if they are significant.

Fujita et al. (2004b) have shown that the application of
this strategy confirms the uniqueness of the final solution
of the station position, even if the initial acoustic velocity
values used include errors outside the normal performance
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Fig. 7. Time series in the horizontal components obtained at the seafloor reference point MYGI from seven campaign epochs during the period
2002–2005. The left and right panels correspond to the EW and NS components, respectively. The error bar is evaluated according to Eq. (9) in
the text, with the coordinates obtained for May 2002 as reference. The root mean square of the scattering around the fitted line is also shown. The
position reference is Shimosato, in central Japan.

of the observation instruments.
The initial values for the acoustic velocity structure are

based on the CTD, XCTD and XBT measurements. The
acoustic velocity is calculated from the observed tempera-
ture and conductivity using the empirical equation by Del
Grosso (1974). When using XBT data, where only the
temperature is measured, the conductivity used is evaluated
with a linear fit in time based on the CTD and/or XCTD
observations performed on the same day.

5.1.2 Height constraint Our method of analysis can
determine in principle the three components of the position
of a seafloor station, i.e. two horizontal components and
height. Ishikawa and Fujita (2005) proposed that, in order
to obtain a horizontal time series as accurately as possible,
it is usually very effective to fix the heights of all the epochs
to some reasonable value. It summarized the reason as
follows.

In an ideal situation, the estimated parameters, which are
the three components of position, and the acoustic velocity
coefficients, are numerically independent. In some cases,
however, the height and undersea acoustic velocity couple
with each other to a significant degree because of the geo-
metrical distribution of the ranging data. This would some-
times cause significant errors in the acoustic velocity esti-
mation, which also affects the horizontal position estima-
tion. By constraining the height to some reasonable value,
the accuracy in the acoustic velocity estimation would im-
prove, and then the horizontal position accuracy will also
improve. It should be noted, however, that this strategy can
be applied only when data from many campaign epochs are
available, because the reasonable value for the fixed station
height has to be found before the final estimation.

In the case of MYGI, it can be reasonably assumed that
no significant vertical movement is expected during the
campaign period used in this study. In the preliminary 3-
component analysis, although the determined heights, in
two epochs out of seven, deviate by tens of centimeters
from the rest, probably because of the errors included in
the acoustic velocity estimation, those determined for the
remaining five epochs are within ten centimeters repeata-
bility. Ishikawa and Fujita (2005) demonstrated by numer-
ical examinations that a change in fixed height of ±10 cm
affects the estimated horizontal coordinates of the virtual
point averaged over four seafloor stations no more than one

centimeter. So, we judge that it is reasonable enough to use
one of those heights as a fixed value; the value of the epoch
May 2002 was chosen in the present analysis.

5.1.3 Weight of the observed data depending on hor-
izontal distance Errors included in the acoustic velocity
are to be corrected by the present method as accurately as
possible. However, due to limitations in the approximation
by the quadratic time function, and also to the effects of
spatial inhomogeneity, significant errors may still remain
in some cases even after the correction. The effect of er-
rors included in the acoustic velocity is more significant in
the longer paths, especially on the horizontal coordinates.
Therefore, a reasonable way of decreasing weight for longer
paths should help avoid the degradation of the positioning
result.

From this viewpoint, we weight the data with a cos2 θ

law, where θ is the incident angle of the acoustic ray to
the seafloor station. This is applied only in the position
estimation; in the acoustic velocity estimation, distant data
also play a crucial role and all the data should be weighted
equally.
5.2 Results

As seen in Table 1, each campaign consists of multiple
observation days, and most have more than four. We evalu-
ate a position solution for the campaign epoch using all the
multiple-day data acquired. Table 2 lists round-trip travel
time residuals for each station and for each campaign anal-
ysis. The residuals shown are 70–80 microseconds in aver-
age, which corresponds to 5–6 cm in one-way range.

Figure 7 shows time series of estimated horizontal co-
ordinates of the seafloor stations, from seven campaign
epochs at MYGI. The solid circle represents the average of
the coordinates of the four mirror stations on the seafloor,
relative to the reference campaign epoch, May 2002.

The error bar demonstrates a change of configuration of
four stations compared to that of the reference solution. The
one-sided value of the error bar, σ , is evaluated from the
following equation:

σ =
√√√√ n∑

j=1

{(
xi j − x0 j

) − (x̄i − x̄0)
}2

/n

(
x̄i =

n∑
j=1

xi j/n

)

(9)
where x0 j and xi j denote coordinates of the j th transponder
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Table 2. Residuals of round-trip travel time for each campaign analysis
at MYGI. N , E , S and W denote north, east, south and west stations,
respectively.

101791028704/2005

7279667608/2004

6867756904/2004

7481748107/2003

9191939705/2003

10911010912910/2002

117801047705/2002

WSEN

Travel time residuals (microsec)
Epoch

for the reference and the i th campaign, respectively, and n is
the number of seafloor transponders; in the case of MYGI,
n = 4. It should be noted that the error bar defined here
depends on the selection of the reference campaign, so it is
not an objective amount in a rigorous sense. However, by
carefully choosing a proper reference, it should be a better
index for judging the quality of the solution than any other
value at present; for instance, a formal error in the least
squares inversion does not carry information on the sound
velocity errors, whereas the one defined here does, though
it is only relative.

The position reference is the Shimosato site, in
Wakayama Prefecture, in central Japan, which is one of
the ITRF stations equipped also for Satellite Laser Rang-
ing (SLR) observations (Altamimi et al., 2002). We first
determine the coordinates of the GPS land reference sta-
tions, used for the subsequent differential kinematic GPS
positioning of the ship, relative to the precise coordinates of
Shimosato through a static analysis. Then, we find the po-
sition of the vessel relative to these stations and, therefore,
to Shimosato. So, in the end, the locations of the seafloor
stations are tied to those of Shimosato via the kinemati-
cally determined position of the vessel relative to it, and the
acoustically determined position of the underwater stations
relative to the vessel.

It must be noted that Shimosato underwent coseismic dis-
placement, amounting to 1.9 cm with an azimuth of 234◦,
due to the earthquakes off SE Kii Peninsula (M6.9, M7.4)
which occurred in September 2004, revealed by the continu-
ous GPS measurement. The plot of the last epoch in Fig. 7,
April 2005, represents the value after the correction with
this displacement. Besides, it should also be noted that Shi-
mosato is located on the eastern edge of the Eurasian plate,
known to undergo there intraplate deformation at a rate of
about 3 cm/year WNW due to the pressure of the Philippine
Sea plate subduction.

The time series shown in Fig. 7 exhibits a linear trend
in time with the repeatability of several centimeters. A lin-
ear fit to the time series gives a rate of 4.6 ± 0.7 cm/year
westward and 2.6 ± 0.9 cm/year northward. The root mean
squares around the fitted line are 1.9 cm in the EW com-
ponent, and 2.2 cm in the NS component. We add the in-
traplate velocity of Shimosato (3.2 cm/year, 291◦; Sengoku,
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Fig. 8. Crustal velocity vector at MYGI relative to the Eurasian plate
evaluated from the time series shown in Fig. 7 after correcting for the
intraplate velocity at Shimosato (3.2 cm/year, 291◦; Sengoku, 1998).
The ellipse attached to the arrow represents the one-sigma estimation
error in the linear fitting to the time series. The velocity of the Pacific
plate relative to the Eurasian plate around this region calculated from the
plate motion model, NUVEL-1A (DeMets et al., 1994), is also shown
with an open arrow.

1998) to the above rate, and obtain 8.5 cm/year, with an az-
imuth of 295◦, relative to the stable part of the Eurasian con-
tinent, which is exhibited with an arrow in Fig. 8. It should
be mentioned here that, as shown in Fig. 5, the northeast-
ern part of Japan including MYGI is supposed to be in the
North American plate, not in the Eurasian plate, but the rel-
ative velocity between both plates is small, so we discuss
the crustal velocity vector of MYGI to the Eurasian plate
(in Section 6.2).

6. Discussion
6.1 Repeatability of one-day subset solutions

In our campaigns, we usually perform ranging measure-
ments for 3, 4, or more days, and evaluate one position solu-
tion for the campaign epoch using all the multiple-day data
sets so acquired.

To examine the reliability of the campaign solution, we
compare independent solutions obtained from the ranging
data of each single day. Although one-day worth of data is
usually not enough to achieve final precision in many cases,
the repeatability of one-day subset solutions is a good index
of the precision of the solution for the whole campaign. The
subset examination also helps to find bad data or conditions
for analysis, to exclude them from the final positioning.

Figure 9 compares the one-day solutions in the horizontal
components for four different campaigns at MYGI which
have six or more days worth of data. A white square repre-
sents the averaged coordinates of four seafloor stations. The
leftmost solid plot indicates the campaign solution with all
the data, which is shown for comparison. The error bar is
evaluated according to Eq. (9); the reference in this case is
the leftmost campaign solution.

Repeatability of the subset results is at the several cen-
timeters to 10 centimeters level, when excluding outliers;
sometimes a one-day result deviates far from the overall av-
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Fig. 9. Comparison of one-day solutions in the horizontal components from four different campaigns at MYGI, each with six or more days’ worth of
data. The upper and lower panels correspond to the EW and NS components, respectively. A white square represents the average of the coordinates
of four seafloor stations. The leftmost plot with a solid square labeled as “ALL” in each panel shows the campaign solution with all the data. The
error bar is evaluated with the Eq. (8) in the text, with the leftmost value as a reference. The root mean square of the scattering around the average of
one-day solutions is shown in each panel; the value in parenthesis has been evaluated without an outlier.

erage, but this is mainly because the number of data is small
or the geographical distribution is very poor for that day,
e.g. as shown in Fig. 2(c).

Other than MYGI, we also have examples of one-day
subset results for four reference points along the Nankai
Trough, TOKE, TOKW, SIOE and SIOW. Locations of
these sites are shown in Fig. 5.

Figure 10 shows results from one representative cam-
paign epoch for each site. The applied strategy of analysis
is mostly the same as that for MYGI; the only difference
is that the height constraint has not been applied for these
sites, because we have not yet secured enough campaign
epochs for determining the proper heights to be adopted.

Nevertheless, the repeatabilities shown in the figures com-
pare favorably, as a whole, to that of MYGI. One reason
for that would be that the epochs shown are in the summer
season, when the weather conditions, and the corresponding
sea surface conditions, are comparatively good; in the same
sense, we found also for MYGI that the summer epochs give
better repeatability than those in the spring.

Another reason for the difference may be that the under-
sea conditions around MYGI are, in general, very compli-
cated compared with those along the Nankai Trough; the
area around MYGI is known as the “Perturbed Area”, sit-
uated in the extensions of both the Kuroshio and Oyashio
currents (Kawai, 1972).
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Fig. 10. Same as Fig. 9, but for the four reference points along the Nankai Trough: (a) SIOW in Aug–Sept 2003, (b) SIOE in July 2004, (c) TOKW in
Aug 2004 and (d) TOKE in Jul–Aug 2004.

Figure 11 compares the vertical profiles of the seawa-
ter temperature, which affects the acoustic velocity more
than any other observables, between (a) at MYGI during
campaigns in May 2004 and (b) at SIOE in July 2004. As
clearly seen, vertical variations in the profiles at MYGI have
conspicuous fluctuations on small spatial scales, whereas
those at SIOE are very smooth. In addition, there is more
disagreement between profiles for different times of day at
MYGI, compared to those at SIOE. The variability of the
vertical profiles shown in these figures may be a substantial
reason why the subset repeatability is worse for MYGI than
for that of the other sites shown.

If the height constraint strategy is not applied for MYGI,
subset results give worse repeatability than those shown in
Fig. 9, especially for the spring season. In other words, the
height constraint strategy improves the precision to a sig-

nificant degree when the undersea conditions are compara-
tively unstable.

A closer look at the subset repeatability for the sites
along the Nankai Trough tells us that the EW component
is better than the NS component except for TOKW. This
is especially true for SIOE and SIOW. The reason for this
might be that these measurements were carried out basically
in the Kuroshio region, when the water flow in the EW
direction was very strong. Figure 2(d) is an example of the
geographical distribution of the measurement points in this
case. Two possible reasons should be pointed out, which
may explain the superiority in the EW direction; one is that
the geographical distribution of the ranging data is denser,
and another is that the undersea velocity structure may be
spatially more homogeneous in the direction parallel to the
water flow than in the direction perpendicular to it (Yada
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Fig. 11. Vertical profiles of temperature obtained from CTD, XCTD and XBT measurements; (a) at MYGI on May 7, 2004, with nine different epochs
of the day superimposed, and (b) at SIOE on July 6, 2004, with eleven epochs.

et al., 2004). The latter would play a major role, because
the sparseness of the data distribution does not necessarily
degrade the results substantially in many other cases.
6.2 Crustal velocity on the seafloor off Miyagi Prefec-

ture
In northeastern Japan, it is known from GPS static obser-

vations at a number of stations, mainly from the GEONET
network developed by the Geographical Survey Institute of
Japan (Hatanaka et al., 2003), that the crust undergoes in-
traplate deformations in the WNW direction with velocities
of a few centimeters per year. The amount of velocity rela-
tive to the Eurasian Plate is about 3–4 cm/year on the Pacific
coast of the southern Sanriku region, and decreases inward
(Miura et al., 2004).

As seen in the previous section, we have obtained the
seafloor movement of MYGI in the WNW direction from
the results at seven campaign epochs. The basic trend is
consistent with the above movement on land, when we as-
sume that the velocity distribution is extended eastward to
the sea area.

The estimated value, 8.5 cm/year, obtained from the
seven epochs, is close to the possible maximum, consider-
ing the velocity of the Pacific plate relative to the Eurasian
plate along the Japan Trench is 9–10 cm/year, according
to contemporary plate motion models (e.g. NUVEL-1A;
DeMets et al., 1994).

Although the estimation error from the linear fit shown in
Fig. 7 is about 1 cm/year, the number of campaign epochs
is still not enough to get the statistically stable result. Thus,
we need to improve the accuracy of our velocity determi-
nation by accumulating further good data from further sur-
veys. However, even if we would allow that errors in the ob-
tained velocity may be a few centimeters per year, it should
be concluded, at present, that the seafloor at MYGI moves
about twice as fast as those on the coastal area, and also
in the WNW direction. This indicates that the interplate
coupling within this area is very strong, which is consistent
with the results of previous studies (e.g. Suwa et al., 2004).

7. Summary
We have been developing a system to determine the

precise position of acoustic transponders installed on the

seafloor by combining kinematic GPS and acoustic ranging
techniques. In this paper, we summarized the methodol-
ogy of data analysis, in particular, a linear inversion scheme
adopted to determine the seafloor station position from co-
ordinates of the moving survey vessel and measured travel
times of acoustic waves in seawater. The method includes
the estimation of acoustic velocity parameters to correct er-
rors in their values derived from the CTD/XCTD and XBT
measurements, and doing this improves the positioning ac-
curacy substantially.

We applied our method to the ranging data acquired at
the seafloor reference point located off Miyagi Prefecture,
in northeast Japan, where a huge earthquake is expected
to occur in the near future. The resulting time series of
station positions exhibits a linear trend in the horizontal
components indicating an intraplate crustal velocity of more
than several centimeters per year towards the WNW. This
implies a strong interplate coupling in this region.

The precision of the results was examined by comparing
coordinates independently determined from one-day sub-
sets of data from multi-day campaigns. Results from the
Off-Miyagi reference point, as well as other four sites along
the Nankai Trough, in south Japan, show the repeatability
of several centimeters in many cases. Besides, the resul-
tant repeatability looks to be well correlated with the tem-
poral and spatial stability in the acoustic velocity structure
in seawater, and depending on the region, as well as on the
season.

Over several years, we have substantially improved the
accuracy of our technique, which enables us to detect
the crustal movement of several centimeters from multiple
campaign observations. At present, however, there are still
some factors that, both technically and practically, and at
different levels, hinder us from getting better results; ma-
jor issues are (1) tackling the spatial inhomogeneity of the
acoustic velocity structure, (2) controlling better the geo-
graphical coverage of measurement points, and (3) secur-
ing enough measurement time in each campaign. Further
efforts are necessary to solve these issues.

Acknowledgments. We thank the Geographical Survey Institute
of Japan for providing us with the GEONET GPS data at 1 sec



M. FUJITA et al.: GPS/ACOUSTIC SEAFLOOR GEODETIC OBSERVATION 275

sampling for our kinematic GPS analysis. We are indebted to
Dr. Zengo Yoshida of Institute of Industrial Science, University
of Tokyo, for his sincere support to this project. A lot of staff
members of the Hydrographic and Oceanographic Department, in-
cluding the crew of S/Vs, Meiyo and Kaiyo, have been supporting
us for observations and data analyses. Comments from the re-
viewers, Drs. Hiromi Fujimoto and Katie Gagnon, have improved
the manuscipt substantially. Some figures were produced with the
GMT software (Wessel and Smith, 1991).

References
Altamimi, Z., P. Sillard, and C. Boucher, ITRF2000: A new release of the

International Terrestrial Reference Frame for earth science applications,
J. Geophys. Res., 107(B10), 2214, doi:10.1029/2001JB000561, 2002.

Asada, A. and T. Yabuki, Centimeter-level positioning on the seafloor,
Proc. of the Japan Academy, 77, Ser. B, 7–12, 2001.

Chadwell, C. D., Shipboard towers for Global Positioning System anten-
nas, Ocean Engineering, 30, 1467–1487, 2003.

Chadwell, C. D., F. N. Spiess, J. A. Hildebrand, L. E. Young, G. H. Purcell,
and H. Dragert, Deep-sea geodesy: Monitoring the ocean floor, GPS
World, 9, 44–55, 1998.

Chadwell, C. D., F. N. Spiess, J. A. Hildebrand, and H. Dragert, Seafloor
geodetic evidence of episodic spreading 25 km east of the Juan de Fuca
Ridge, EOS. Trans. AGU, 83, Fall Meet. Suppl., Abst., T22A-1130,
2002.

Colombo, O. L. and A. G. Evans, Precise, decimeter-level differential GPS
over great distances at Sea and on Land, Proceedings ION GPS-98,
Nashville, Tennessee, 1998.

Colombo, O. L., A. G. Evans, M. I. Vigo-Aguiar, J. M. Ferrandiz, and J.
J. Benjamin, Long-baseline (>1000 km), sub-decimeter kinematic po-
sitioning of buoys at sea, with potential application to deep sea studies,
Proc. of ION GPS2000, Salt Lake City, U.S.A., 2000.

Colombo, O. L., A. G. Evans, M. Ando, K. Tadokoro, K. Sato, and T.
Yamada, Speeding up the estimation of floated ambiguities for sub-
decimeter kinematic positioning at sea, Proceedings ION GPS-2001,
Salt Lake City, Utah, 2001.

Del Grosso, V. A., New equation for the speed of sound in natural water
(with comparison to other equations), J. Acoust. Soc. Am., 56(4), 1084–
1091, 1974.

DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Effect of recent
revisions to the geomagnetic reversal time scale on estimates of current
plate motions, Geophys. Res. Lett., 21, 2191–2194, 1994.

Fujita, M., Seafloor geodetic observation—GPS/acoustic combination
technique, HydroInternational, 7, 41–43, 2003.

Fujita, M., T. Ishikawa, M. Sato, M. Mochizuki, M. Katayama, S. Toyama,
T. Yabuki, A. Asada, and O. L. Colombo, Seafloor geodetic observation
along the major trenches around Japan—Focusing on results at off-
Miyagi area, EOS Trans. AGU, 85(47), Fall Meet. Suppl., Abstract
G41A-06, 2004a.

Fujita, M., M. Sato, and T. Yabuki, Development of seafloor positioning
software using inverse method, Techn. Rep. Hydrogr. Oceanogr., 22, 50–
56, 2004b (in Japanese).

Fukuda, Y., Precise determination of local gravity field both the satellite
altimeter data and the surface gravity data, Bull. Ocean Res. Inst., Univ.
Tokyo, 133 pp, 1990.

Funakoshi, M., H. Fujimoto, A. Sweeney, A. Kuwano, R. Hino, S. Miura,
and Y. Osada, GPS/Acoustic submarine positioning using a small buoy
in the subduction zone off northeastern Japan, Abstr. Joint Meet. Earth
Planet. Sci., J062–001, 2005.

Gagnon, K., C. D. Chadwell, E. Norabuena, Measuring the onset of lock-
ing in the Peru-Chile trench with GPS and acoustic measurements, Na-
ture, 434, 205–208, 2005.

Hatanaka, Y., T. Iizuka, M. Sawada, A. Yamagiwa, Y. Kikuta, J. M. John-
son, and C. Rocken, Improvement of the Analysis Strategy of GEONET,
Bull. Geogr. Surv. Inst., 49, 11–37, 2003.

Ishikawa, T. and M. Fujita, Inverse method and precision improvement for
seafloor positioning, Rep. Hydrogr. Oceanogr. Res., 41, 27–34, 2005 (in
Japanese with an English abstract).

Jackson, D. D., The use of a priori data to resolve nonuniqueness in linear
inversion, Geophys. J. Roy. Astr. Soc., 57, 137–157, 1979.

Kawai, H, Hydrography of the Kuroshio Extension, in Kuroshio—Its Phys-
ical Aspects, edited by H. Stommel and K. Yoshida, University of Tokyo
Press, 517 pp., 1972.

Matsumoto, K., T. Takanezawa, and M. Ooe, Ocean tide models devel-
oped by assimilating TOPEX/POSEIDON altimeter data into hydrody-
namical model: a global model and a regional model around Japan, J.
Oceanogr., 56, 567–581, 2000.

Matsu’ura, M., Bayesian estimation of hypocenter with origin time elimi-
nated, J. Phys. Earth, 32, 469–483, 1984.

Miura, S., T. Sato, A. Hasegawa, Y. Suwa, K. Tachibana, and S. Yui, Strain
concentration zone along the volcanic front derived by GPS observa-
tions in NE Japan arc, Earth Planets Space, 56, 1347–1355, 2004.

Mochizuki, M., M. Sato, M. Katayama, T. Yabuki, Z. Yoshida, and A.
Asada, Construction of seafloor geodetic observation network around
Japan, Recent Advances in Marine Science and Technology, 2002, 591–
600, 2003.

Mochizuki, M., M. Fujita, M. Sato, Z. Yoshida, M. Katayama, T. Yabuki,
and A. Asada, Repeated trials of seafloor geodetic observation around
Japan, Recent advances in marine science and technology, 2004, 11–18,
2005.

Obana, K., H., Katao, and M. Ando, Seafloor positioning system with
GPS-acoustic link for crustal dynamics observation—a preliminary re-
sult from experiments in the sea, Earth Planets Space, 52, 415–423,
2000.

Osada, Y., H. Fujimoto, S. Miura, A. Sweeney, T. Kanazawa, S. Nakao, S.
Sakai, J. A. Hildebrand, and C. D. Chadwell, Estimation and correction
for the effect of sound velocity variation on GPS/Acoustic seafloor
positioning: An experiment off Hawaii Island, Earth Planets Space, 55,
e17–e20, 2003.

Sagiya, T., Interplate coupling in the Tokai District, Central Japan, deduced
from continuous GPS data, Geophys. Res. Lett., 26, 2315–2318, 1999.

Sato, M. and M. Fujita, Effects of sound velocity profiles in the seafloor
geodetic observation, Techn. Rep. Hydrogr. Oceanogr., 22, 42–49, 2004
(in Japanese).

Sengoku, A., A plate motion study using Ajisai SLR data, Earth Planets
Space, 50, 611–627, 1998.

Spiess, F. N., Suboceanic geodetic measurements, IEEE Trans. Geosci.
Remote Sens., 23, 502–510, 1985.

Spiess, F. N. and J. A. Hildebrand, Employing geodesy to study temporal
variability at a mid-ocean ridge, EOS Trans. AGU, 76, 451, 455, 1995.

Spiess, F. N., C. D. Chadwell, J. A. Hildebrand, L. E. Young, G. H. Pur-
cell, Jr., and H. Dragert, Precise GPS/Acoustic positioning of seafloor
reference points for tectonic studies, Phys. Earth. Planet. Inter., 108,
101–112, 1998.

Suwa, Y., S. Miura, A. Hasegawa, T. Sato, and K. Tachibana, Spatio-
temporal change of interplate coupling in the Northeastern Japan sub-
duction zone, J. Seismol. Soc. Jpn., 56, 471–484, 2004 (in Japanese with
an English abstract).

Tadokoro, K., R. Ikuta, M. Ando, T. Okuda, S. Sugimoto, K. Takatani,
and K. Yada, Repeated observation of sea-floor deformation at Kumano
Basin, Japan (2), Abstr. Joint Meet. Earth Planet. Sci., J062-007, 2005.

Toyama, S., Analysis for acoustic data in sea bottom geodetic observation,
Techn. Rep. Hydrogr. Oceanogr., 21, 67–72, 2003 (in Japanese).

Wessel, P. and W. H. F. Smith, Free software helps map and display data,
EOS Trans. AGU, 72, 441, 445–446, 1991.

Yada, K., R. Ikuta, M. Ando, T. Okuda, K. Tadokoro, M. Kuno, S.
Sugimoto, and K. Takatani, Spatial variations in acoustic velocity at
Kuroshio region for the accurate ocean-bottom positioning, EOS Trans.
AGU, 85(47), Fall Meet. Suppl., Abstract G21A-0147, 2004.

Yamada, T., M. Ando, K. Tadokoro, K. Sato, T. Okuda, and K. Oike, Error
evaluation in acoustic positioning of a single transponder for seafloor
crustal deformation measurements, Earth Planets Space, 54, 871–881,
2002.

Xu, P., M. Ando, and K. Tadokoro, Precise, three-dimensional seafloor
geodetic deformation measurements using difference techniques, Earth
Planets Space, 57, 795–808, 2005.

M. Fujita (e-mail: masayuki-fujita@kaiho.mlit.go.jp), T. Ishikawa, M.
Mochizuki, M. Sato, S. Toyama, M. Katayama, K. Kawai, Y. Matsumoto,
T. Yabuki, A. Asada, and O. L. Colombo


	1. Introduction
	2. Measurement System and Campaign Observation
	3. Overview of Data Analysis
	4. Method of determining seafloor station position based on the linear inversion formulation
	4.1 Overview
	4.2 Formulations

	5. Application to the Observed Data at the OffMiyagi Reference Point
	5.1 Analysis strategy and parameter settings 5.1.1 Time windows for the acoustic velocity estimations
	5.1.2 Height constraint
	5.1.3 Weight of the observed data depending on horizontal distance
	5.2 Results

	6. Discussion
	6.1 Repeatability of one-day subset solutions
	6.2 Crustal velocity on the seafloor off Miyagi Prefecture

	7. Summary
	References


