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Abstract It is often argued that all the information of a
gravitational theory is encoded in the surface term of the
action; which means one can find several physical quantities
just from the surface term without incorporating the bulk part
of the action. This has been observed in various instances;
e.g. the derivation of the Einstein’s equations, the surface
term calculated on the horizon leads to the entropy, etc. Here
I investigate the role of it in the context of the entropy func-
tion and the entropy of extremal near horizon black holes.
Considering only the Gibbons—Hawking—York (GHY) sur-
face term to define an entropy function for the extremal near
horizon black hole solution, it is observed that the extremiza-
tion of such a function leads to the exact value of the horizon
entropy. This analysis again supports the previous claim that
the gravitational action is of a “holographic” nature — the
surface term contains information of the bulk.

1 Introduction and motivation

The computations of entropy of an extremal near horizon
black hole (ENH-BH) solution, proposed by Sen, is a very
simple and useful method [1] (for a review and large amount
of references in this direction, see [2]). In this method, a
function is introduced by integrating the Lagrangian den-
sity of the theory on the horizon of the ENH-BH geometry.
Then performing the Legendre transformation of this func-
tion with respect to electric field strengths an entropy function
is defined. Finally, the entropy is given by the extremum value
of the entropy function with respect to the fields, appearing
in the theory. One of the important facts of this approach is
that the calculation of the entropy ultimately boils down to
the solutions of a set of simplified algebraic equations. One
must note that the whole analysis was based on the action of
the theory in which the gravitational part does not contain the
surface term, like the Gibbons—Hawking—York (GHY) in the
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case of the general theory of relativity (GR) — both in terms
of the definition of the initial function which is the integrated
version of the Lagrangian density and in the expression for
the horizon entropy (done by Wald’s Noether charge pre-
scription [3,4] corresponding to the gravity action without
the boundary term).

In this paper, I shall develop the entropy function formal-
ism alone from the surface term of the gravitational action in
the presence of the matter action of the theory. The compu-
tation will be confined within GR and hence the convenient
boundary term will be taken to be the GHY term. Here I will
not use any “direct” information of the Einstein—Hilbert (EH)
part. GHY comes into the picture to obtain a well-prescribed
action principle in the derivation of the Einstein equations
of motion. Of course, this choice is not unique [5], but it
becomes popular because of its simplicity and wide appli-
cability. The interest purely in the surface part is due to the
following reasons. (1) As in the local region of spacetime the
Christoffel symbols vanish, the EH action reduces to a purely
surface term. (2) Extremization of the surface term for a dif-
feomorphism, in which the diffeomorphism vector satisfies
the constant norm condition, leads to Einstein’s equations of
motion [6]. (3) Evaluation of the surface term on the horizon
yields the entropy. This is done by calculating first on a con-
stant radial coordinate surface and then taking the horizon
limit [7]. Moreover, the Noether charge corresponding to the
GHY term, calculated on the horizon (similar to the Wald
charge associated with the EH action), leads to the entropy
[8,9]. This has also been even tested successfully in the con-
text of Virasoro algebra and the Cardy formula [8,10]. (4)
In the literature, it is often argued that the entropy is asso-
ciated to the degrees of freedom around or on the relevant
null surface rather than the bulk geometry of spacetime. All
these instances indicates that either the surface term encodes
all the information as regards the bulk or the surface action
bears the dynamics of the system.
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Considering the above facts, it is important to investigate
if the entropy function formalism can be developed purely
from the surface or the boundary term of the action. In this
paper I shall show that it is possible. The steps are identi-
cal to the original work [1,2]. The organization of the paper
is as follows. In Sect. 2, the GHY term and its relation to
the horizon entropy will be introduced. The next section will
deal with the construction for the main formalism based on
a purely surface term. Here the entropy function will be con-
structed from the GHY action. The whole formalism will be
applied in Sect. 4 to find the entropy of the extremal near
horizon Reissner—Nordstrom solution. The final section will
summarize the results and then conclude.

2 GHY surface term and relation to entropy

The usual EH action contains both first order and second
order derivatives of the metric g,;. As a result, the arbitrary
variation of the action leads to a boundary term which is
composed of variations of the metric as well as the derivative
of the metric. Therefore, to obtain the equation of motion by
the least action principle one has to impose both the Dirichlet
and the Neumann boundary conditions; i.e. we have to fix the
metric and the derivative of the metric simultaneously at the
boundary. Such a prescription is not well posed in physics.
To avoid this discrepancy, people add a surface term which
helps to get rid of this kind of issue. Of course, there is no
unique choice of the boundary term [5]. Most of the cases,
people choose the GHY surface term, given originally by
Gibbons, Hawking, and York. This is defined on the timelike
or spacelike surfaces and hence it is foliation dependent.!
The inclusion of it leads to the fact that we have to fix only
the induced metric, defined on the foliated surface, at the
boundary to find the Einstein equations of motion [7]. In this
section, introducing the GHY term, I shall briefly discuss the
relations between it and the horizon entropy of a black hole.
The GHY surface term is given by

‘/|/’l(l d xeKpy, (1)

Acay = ———

where 9 is the three dimensional boundary surface of the
four dimensional curved manifold M. It can be timelike or
spacelike, depending on the value of €. A ;) is the determinant
of the induced metric on 9V and K;) is the second funda-
mental, which is expressed in terms of the unit normal N (“l.)
to the boundary as

K(i) =-V, N(l) 2)

I An attempt has been made recently in [11] to define a boundary term
on an arbitrary null surface.
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Here “i” in the subscript denotes the kind of surface (space-
like or timelike) we are choosing and € = +1 for a timelike
surface, while € = —1 for a spacelike surface. Using Gauss’
theorem (1) can be expressed as

AgHy = — /M d*xv/=gLcny

_ _# d*xy/ =gV, (K(i)N(“i)>, 3)
where N Nu(i) = € has been used. For the present context
“i” denotes a t = constant surface, which is spacelike, and
r = constant, & = constant, ¢ = constant surfaces, which
are timelike.

Now it is well known that if one calculates the surface term
(1) onar = constant surface and then takes the horizon limit,
it leads to the black hole entropy. To illuminate this fact, let
me give a brief discussion of this. Consider, for simplicity, a
static spherically symmetric non-extremal black hole of the
form

d 2 2
ds? = — f(r)dr® + — + r?dQ?, )

L(r)

whose horizon is given by f(rg) = 0 = I(ry). For the
r = constant surface, integration in (1) will be on ¢, 6, and
¢. Here the determinant of the induced metric is Ay =
—r* £ (r) sin® @ and the trace of the second fundamental turns
out to be K¢y = —(f'v1)/(2f) — (2/r)~/1, which is inde-
pendent of the coordinates of the surface. Also note that the
periodicity of the Euclidean time is given by (27)/« where
the surface gravity k = / f/(ru)l’(rg)/2. Using the above
information and taking € = +1 (as the r = constant surface
is timelike) we obtain the following value of the GHY term
in the near horizon limit:

Acuyln = ——[ (r)f] Ay = 2—3 (5)

The integration range of time is taken to be the periodicity of
the Euclidean time and A g is the horizon area. This shows
that the GHY surface term is related to the horizon entropy.
The connection between the GHY term and entropy of hori-
zon is not new. It has been observed earlier that the contri-
bution to the partition function, which leads to the entropy
of a black hole, in the Euclidean approach, in the case of
Schwarzschild metric comes solely from the surface term as
R vanishes [12]. Such a connection has also been discussed
in [4]. On the other hand, Aggy| can also be interpreted
as the surface Hamiltonian by using the Hamilton—Jacobi
result Hgyy = —(3Agmy|#/0t) [13]. This turns out to be
Hgyy = TSpy where T = «k/2m is the Hawking tempera-
ture and Spy = Ay /4G is the black hole entropy.

Also it has been shown that the Noether charge corre-
sponding to the GHY term, calculated on the horizon for
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the timelike Killing vector, leads to the entropy when multi-
plied by the periodicity of the Euclidean time [8,9]. The anti-
symmetric potential for any diffeomorphism x4 — x¢ 4 &¢
is given by

J1E) = —— Ko (E“NG, —E"N) . (6)
Now, a calculation of the charge on the horizon for the metric
(4) leads to

/ VadSa I = 5 "AH @)

where x¢ = (1,0,0,0) is the timelike Killing vector and
o is the determinant of the induced metric on the horizon.
Multiplying it by the periodicity of the Euclidean time one
obtains the entropy Spy = 27 /k)Qn = Ap/4G.

The discussion, presented in this section, tells that the
GHY surface term plays a major role in the study of the ther-
modynamics of gravity. In fact, many physical entities and
several pieces of information of the theory can be extracted
from this without any information of the bulk term. This has
been already mentioned in the introductory part. In the next
section I shall discuss the role of the surface term in the con-
text of the entropy function and the entropy of a ENH-BH.

3 Extremal near horizon black hole and entropy
function from GHY term

To start with, let me introduce a brief discussion of the
ENH-BH. Consider a theory where a four dimensional grav-
ity theory is coupled to U(1) gauge fields A,(Zj ) and neutral
scalar fields {¢}. So the total Lagrangian for our theory is
L = L+ L, where the former part is the gravity part, while
the latter part is the matter part. In this case L, is given by

1 iy
Ly = —ZF;ZJ,)F ()ab 4 agrangian for the scalar fields ,

®)

with F ;Z) = VaAl(,j ) V;,Afzj ). One special solution of this
kind of theory is the Reissner—Nordstrom (RN) black hole
metric.

The extremal near horizon black hole solution, in general,
takes the form AdS, x S2. It is invariant under SO (2, 1) x
SO (3) transformations. In four spacetime dimensions, one
writes

d 2
ds? = v, ( — 22+ Lz) 4 v2(d6? + sin® 0dp?):
r
¢s = Uy,

06 = 4 —~sin0, O]

where vy, vy, {us}, {e;}, and {p;} are constants. For the U (1)
case, ¢j and p; are electric field and magnetic charge, respec-
tively. A detailed analysis to obtain the ENH-BH for the RN
solution is presented in [2].

Now define a function F(ii, v, ¢, p) by integrating the
total Lagrangian density on the transverse (angular) coor-
dinates for the extremal near horizon geometry (9). It has
been mentioned in the introduction that one can obtain the
Einstein equations of motion from the total action, which
is composed of the GHY surface term and the matter part.
Therefore, (9) can be considered as a solution of the the-
ory which is given by the total action £L = Lggy + Ln
1/(87G)V, (K(l-)N(”l.)
ter action, given by (8). Keeping this in mind we define the
function as

with Lggyy = ) and L,, is the mat-

F(i.5, ) = / 40d9/=F(Lcny + Lo). (10)

Use of the gauge field equations and the Bianchi identities for
the full black hole solution lead to the following important
results [1,2]:

oF

— =g, 11
de; qj (11)

where the constant ¢; is identified as the electric charge and
pj is the magnetic charge of the black hole. Also since the
Einstein equations of motion can be obtained by extremizing
the GHY plus the matter action, it is obvious that the scalar
and the metric field equations for the extremum near horizon
geometry correspond to the extremization of F with respect
to i and v, respectively; i.e.

o 2 (12)
3Lts 31)‘/'

In order to find a relation between F and the entropy of
the black hole, we define F; (i, U, €, p) by rescaling K ) by
A;i.e. replacing K () by AK () with A being a constant. Then
by differentiation on both sides with respect to A and finally
putting A = 1, we obtain

OF, (i, v, €, p) 1
or ~ 871G
/d9d¢./—gva (K(,)N(“,)). (13)

Since for the metric (9), the only non-vanishing component
of N fr) is radial component, the above reduces to

oF (i, v, e, p) 1

o = o [ 46doi, (K(,)N(r)J_ )

(14)
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Now for this metric one finds Ny, = r//vr and K() =

—1//v1. Substitution leads to

dF, (u,v,¢, p) K
oA 87TG NOTE

/fd9d¢ - —ﬁ (15)

Here o is the determinant of the induced metric on ¢ and
r constant surface and the integration is performed on the
horizon. Hence we can express the black hole entropy as

v —8tt8rr

Apg dF, (i, v, ¢, p)
Sppy=— = 21— . 16
BH=546 =77 ax a=1 (16)
Next consider the following function by taking the Leg-
endre transformation of F(ii, v, €, p):

E(i, v,q,p) —Zn[ejqj — F(u,v,e, p)] (17)

In terms of E, the equations of motion (12) and (11) are given
by

oE oE JE
—0; =0 — =0, (18)
BI/LS avj 3€j

respectively. In the following, using (16) and (18), I shall
relate £ with the black hole entropy. To do this, note that
the Lagrangian £;, which is achieved by replacing K by
AK () in the total Lagrangian (see Eq. (10)), is invariant under
the scaling A — sA, vy — sv; and e; — se; where s
is an arbitrary constant. Therefore, since /—g ~ v, the
function F(u, v, e, p) is scaled as sF, (i, v, e, p). Hence
F, is a function of A, vq, and e; with degree one. So using
Euler’s theorem, we can write
. 0F (i, v, ¢, p) 0F, (i, v, €, p)
e,p)=2»x V1
oA 0]
+ej8FA(u,v,e, p)‘ (19)
Bej

F (i, v

Thentaking A = 1 and using (11) and the equations of motion
(12), one obtains

OF. (i, v,¢, p)

=F(@i,v,e, p)—
a7 ( p)

€jqj- (20)
Hence use of (16) and (17) yields
Sew =27 |ejq; = F(ii, 0.6, p)| = EG@.5.4.p). QD)

This implies that the entropy of the extremal near horizon
black hole is given by the value of E(ii, v,q, p) at the
extremum with the extremization being done by the set of
Eq. (18).

@ Springer

So the calculation of entropy for an extremal near hori-
zon black hole reduces to a set of algebraic equations which
are given by the relations, presented in (18). The steps are
as follows. First calculate F(ii, v, €, p) using (10) to obtain
E(u, v, q, p). Then extremize it, basically leading to (18),
which in turn yields a set of algebraic equations. Use them
back into the expression for E, which yields the value of E
at the extremum. This gives the entropy of the black hole. In
the following I shall use this setup to find this for the metric

).

4 Entropy from the entropy function

To calculate F' we need to evaluate Lsyy and L,,. Here
consider that (9) is the solution of the theory where the mat-
ter part is given by the action for the gauge fields only; i.e. it
represents an extremal near horizon RN black hole. First con-
centrate on the GHY part. To proceed write it in the following
form:

V8Lony = = u(VEK NG
= g [ (VEKONG) + 0 (VEK NG
+0u(V=8K@NG) )+t (V2K @ NG @2

Now, note that the non-vanishing component of the unit nor-
mal N(‘;) for the metric (9) is the temporal part. A simi-
lar thing happens for the other terms; i.e. only the radial
component of N, fr) is non-zero and so on. Hence the partial
derivative in the first term of the above will be with respect
to time. Since the metric is static, this leads to zero. In an
identical way, the last term also vanishes. Only the second
and the third terms will contribute to the gravity part. Use

of«/ = vjvpsind, Nr) = r/Jvi, K¢y = —1//v1,
(9) = 1/\/_, and K@) = —cos6/(,/v2 sin0) yields
v—gLcuy = - G(—vz sinf + v sin@). (23)

On the other hand, the matter part leads to

2 1

J_ﬁm_vlvzs1n9[2v2 T (4‘;)2]. (24)
1 2

Substituting them in (10) and integrating on the angular vari-
ables we obtain

I, 1 vy v p 2
F(u,v,e, p) = —(v1 — v7) +27r[— — —(—) ]
V] 4

(25)
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Therefore, by (21), E turns out to be

. e o o 1
E(,v,q,p) =27 [qe—%(vl—w)—Zn

2 2
{ﬂ_ﬂ(i) ” 26)
V] vy \4m
Then (18) leads to the following set of equations:
L n 2 ey p?
2G v

)

8mvy

1 2 2 2
e _np . (27)

U1

Solutions of these are

2 2
+
e=—; v1=v2=Gu.

28
4 4 (28)

Substitution of the above values in (26) leads to the value
of E at extremum, which by (21) is the entropy of the black
hole:

1
SpH = Elextremum = Z(qz + Pz)- (29)

This shows that an entropy function for the ENH-BH solu-
tions can be constructed from only the GHY term, which
leads to the correct value of the horizon entropy.

5 Summary and conclusions

In stead of looking at the full action, it has been demon-
strated that the whole entropy function formalism can be
developed just by considering the GHY surface term. The
steps, adopted here, are identical to the original work of Sen
[1,2]. The only difference occurred here in the action for
the theory. I never borrowed any information of the main
action, like the EH action, in the sense that everything has
been constructed based on the pure surface term. Another
interesting feature to be noted is that in defining the function
F (see Eq. (10)), the Lagrangian density for GHY is taken to
be a covariant derivative over all coordinates. Usually GHY
is defined on any timelike or spacelike surface; whereas in
Eq. (10) the second fundamental and the normals are defined
for the manifold whose boundary consists of one spacelike
and three timelike surfaces. The correct result emerges when
one considers all the contributions [see the analysis around
Eq. (23)]. A similar feature has been observed earlier [14] in

interpreting the gravitational action as the inverse tempera-
ture times the free energy.

Earlier instances in several cases showed that the surface
term may reflect the most of the information of the bulk. So
it would be interesting to investigate if there is any role of
the surface term in the context of the entropy function for-
malism. Here I precisely addressed this question and found
that it is indeed possible. This again strengthens the idea
that in gravitational theory these terms play a major part in
the dynamics of the gravity in the sense that one can find
the equations of motion by extremizing the entropy. Finally,
the formalism is general enough to investigate for a general
Lanczos—Lovelock theory. The study of this is in progress
(B.R. Majhi, in preparation).
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