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1 Introduction

Scattering amplitudes in 4d planar N = 4 super Yang-Mills (SYM) theory can be formu-

lated as contour integrals in the space of k × n matrices, modulo multiplication by a GL(k)

matrix; this is the Grassmannian manifold Gr(k, n) [1]. Reformulating scattering ampli-

tudes in this new framework has led to many interesting and unexpected mathematical

structures in N = 4 SYM such as on-shell diagrams [1–3] and the amplituhedron [4–6].

Many of the results extend also to 3d N = 6 ABJM theory [7, 8] where several novel

properties have emerged [9–11].
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This paper will focus on planar N = 4 SYM theory, where the n-particle NkMHV tree

amplitude can be obtained by evaluating the following integral:

A(k)
n = AMHV

n

∮
Γ

dk×nC

GL(k)M1M2 . . .Mn
δ4k|4k(C · Z). (1.1)

The prefactor AMHV
n is the n-particle MHV amplitude, C is a k × n matrix of full rank,

and Z encodes the external data (momentum, particle type, etc.) as super-momentum

twistors. In the denominator of the measure, Mi is the ith consecutive k-minor of C,

which means that it is the determinant of the submatrix of C with ordered columns

i, i+ 1, . . . , i+ k − 1 (mod n). The contour on which the integral should be evaluated

is designated by Γ. The result is a sum over residues computed at poles of the integrand.

There are generally many families of contours which produce equivalent representations of

the amplitude due to residue theorems.

Each contour can be thought of as a product of circles wrapping around poles of the

integrand, the points where certain minors vanish. The minors are degree-k polynomials

in the variables of integration, so the pole structure is generally very difficult to describe

in the formulation (1.1). However, a technique was presented in [1] for generating charts

on the space such that any individual codimension-1 residue occurs at a simple logarithmic

singularity. Using one of those charts, the measure on a d-dimensional submanifold can be

decomposed into a product of dα/α = dlogα quantities. We call this measure ω for future

reference:

ω =
dk×nC

GL(k)M1M2 . . .Mn
→ dlogαd ∧ dlogαd−1 ∧ . . . ∧ dlogα1. (1.2)

Advantages to this formulation are that such charts are easy to generate and that every

codimension-1 residue can be reached as a dlog singularity using only a small atlas of

charts. A potential disadvantage is that directly relating two distinct charts is non-trivial;

this could lead to sign ambiguities when combining individual residues into the amplitude.

This is especially important because the residues contain non-local singularities that should

cancel in the tree amplitude sum. Previously, such divergences were shown to appear

in pairs, so they at least cancel mod 2 [1]. In section 4 of this paper, we demonstrate

that for doubly-appearing poles the cancellation is exact,1 which follows from the main

result of this paper: the master algorithm introduced in section 3. However, we observe

the presence of other non-physical singularities that appear to contribute individually in

some Grassmannian representations of tree amplitudes but not in others. We describe the

sources of such poles and explain how momentum conservation allows one to eliminate

those apparently problematic singularities.

Summary of results. The key development of this paper is a systematic algorithm that

generates the relative sign between any two BCFW charts on a submanifold, or cell, of the

Grassmannian. Each chart is defined by a sequence of transpositions (a1b1)(a2b2) . . . (adbd)

1The relative signs between NMHV residues were derived in [11], but that method does not easily

generalize to higher-k amplitudes.
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acting on a permutation labeling a 0-dimensional cell. Equivalently, each chart can be

represented by a path through the poset (partially ordered set) of Grassmannian cells.

Every transposition (aibi) corresponds to a factor of dlogαi in (1.2).

To get a sense of the result, it is illustrative to consider the simple example of two

charts defined by the sequences (ab)(cd) and (cd)(ab) with a < b < c < d < a+n. In the

poset of cells, these sequences define distinct paths from a 0-dimensional cell labeled by σ0

to a 2-dimensional cell labeled by σ, shown in (1.3) with edges labeled by the corresponding

transpositions:

(cd)

(ab) (cd)

(ab)

σ0

σ

(1.3)

If we associate the coordinate α1 with (ab) and α2 with (cd), then the dlog forms generated

by the sequences are, respectively,

ω = dlogα1 ∧ dlogα2, and ω′ = dlogα2 ∧ dlogα1. (1.4)

Clearly the two forms differ by an overall sign, so the two coordinate charts are oppositely

oriented. We can encode this property in the poset by weighting the edges with ±1 such that

the product of the edge weights around the loop in (1.3) is−1. One choice of suitable signs is

(cd)

(ab) (cd)

(ab)

σ0

σ
(cd)

(ab) (cd)

(ab)
+1

+1

-1

+1

σ0

σ

(1.5)

Then the relative orientation is given by the product of edge signs along the two paths.

We show in section 3.3 that the relative orientation between any two charts is equal

to the product of edge signs around a closed loop in the poset. All the edges can be

weighted such that the product of signs around every quadrilateral is −1, just as in the

example (1.5).2 The closed loop is obtained by concatenating each input path (blue and

green solid lines in (1.6 A)) together with a sawtooth path connecting their 0d cells (thick

red line in (1.6 A)) times −1 for each 1d cell along the connecting path. We call this method

the master algorithm.

To prove that the master algorithm correctly yields the relative orientation, we intro-

duce two preliminary algorithms in section 3.1. When the two paths meet at a common

0d cell, illustrated in (1.6 B) with blue and green solid lines, algorithm 1 splits the big

loop into smaller loops, e.g. using the dashed black lines in (1.6 B), for which the relative

2A technique developed by T. Lam and D. Speyer for assigning edge weights is presented in ap-

pendix B [12].
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orientations can be computed directly from the corresponding plabic networks.3 If the

paths end in different 0d cells, e.g. (1.6 C), algorithm 2 additionally computes the relative

sign between the source cells:

…
 

…
 

σ

σ0
… 

σ0’ 
…

 

…
 

σ

σ0
…

 
σ0 σ0’ 

…
 

σ

(A) Concatenated paths (B) Shared 0d cell (C) Different 0d cells

(1.6)

We then use algorithms 1 and 2 in section 3.2 to demonstrate that the big loop (1.6 A)

can always be split up into quadrilaterals, each of which contributes a factor of −1 to the

overall sign. Finally in section 3.3 it is shown that if the edges are appropriately decorated

with ±1, then only those that make up the loop contribute to the end result (in addition

to −1 from each 1d cell along the sawtooth path).

In section 4, we show that the edge-weighting rules can also be used to compute relative

signs between distinct residues by requiring further that all residue theorems are mutually

consistent. Consequently, residues contributing to the tree amplitude are always decorated

with signs so that all non-physical singularities that appear in pairs cancel exactly in the

sum of residues. In the context of the on-shell BCFW recursion relations described in [1],

this forces every term to have an appropriate sign whereby all non-local poles are guaran-

teed to cancel. A similar argument demonstrates the existence of a boundary operator that

manifestly squares to zero. Some individual non-physical poles appear with unit multiplic-

ity in the boundary of amplitude representations and thus do not cancel, so we identify

the origin of those poles and demonstrate that the associated residues vanish. In addition,

we present an interpretation of charts corresponding to decompositions with non-adjacent

transpositions. We review the necessary background in section 2 before presenting the

algorithms in section 3, and a few details are relegated to appendices.

During the development of this analysis, a different method for determining relative

orientations was proposed independently by J. Bourjaily and A. Postnikov using determi-

nants of certain large matrices. We computed the orientations of 500 distinct charts on

the 10d cell {5, 3, 8, 9, 6, 7, 12, 10, 14, 11} ∈ Gr(3, 10) with both methods and found perfect

agreement [14]. The algorithms presented in this paper have also been verified by check-

ing a variety of charts whose orientations are known by other methods. The cancellation

of all doubly-appearing poles in the tree amplitude has been confirmed explicitly for all

3We thank R. Karpman for many helpful ideas and discussions regarding the details of the graph trans-

formations [13].
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n = 5, . . . , 13 and k = 3, . . . , bn/2c, and the elimination of all individual non-physical poles

using the criteria defined in section 4 have been checked for the same set of parameters. All

of the algorithms described here have been implemented in Mathematica as an extension

of the positroids package included with the arXiv version of [15].

2 Background

2.1 Positroid stratification

The positroid stratification is a decomposition of the Grassmannian Gr(k, n) into subman-

ifolds called positroid cells (or just cells). Cells can be classified according to the ranks of

submatrices constructed out of cyclically consecutive columns of a representative matrix.

The top cell of Gr(k, n) is the unique cell of highest dimension, d = k(n− k). All maximal

(k × k) minors are non-vanishing in the top cell, so all chains of consecutive columns will

be full rank. For example, a representative matrix of the top cell of Gr(2, 4) is

C =

(
1 0 c13 c14

0 1 c23 c24

)
, (2.1)

where cij ∈ C are coordinates on the manifold such that none of the 2 × 2 minors vanish.

All four parameters must be fixed to specify a point in the top cell, which is consistent

with the expected dimension d = 2(4− 2) = 4.

Lower dimensional cells are reached by fixing relations among the entries so that addi-

tional linear dependencies arise among consecutive columns. From a given cell, the accessi-

ble codimension-1 submanifolds are called the boundaries of that cell. The extra linear rela-

tions imply that various minors vanish in the measure of (1.1). Thus going to the boundary

should be interpreted as taking a residue at the corresponding pole. Note that choosing a

particular representative matrix amounts to selecting a chart on the cell, so some poles may

not be accessible in certain charts. In the example above, the boundary where columns ~c2

and ~c3 are parallel is accessible by setting c13 = 0, but there is no way to reach the boundary

where columns ~c1 and ~c2 are parallel in the stated chart. The latter boundary could be ac-

cessed in a GL(2)-equivalent chart where a different set of columns were set to the identity.

A partial order can be defined on the set of positroid cells by setting C ≺ C ′ whenever

C is a codimension-1 boundary of C ′ [16]. The poset structure is interesting for a number

of reasons, several of which will be mentioned throughout the text. One such reason is that

the poset of positroid cells in Gr(k, n) is isomorphic to a poset of decorated permutations.

Decorated permutations are similar to standard permutations of the numbers 1, . . . , n, but

differ in that k of the entries are shifted forward by n. To simplify the notation, we will use

often ‘permutation’ to mean ‘decorated permutation’ since only the latter are relevant to us.

Permutations will be written single-line notation using curly brackets; an example is given

in (2.2). When referencing specific elements of a permutation, we will use the notation

σ(i) to mean the ith element of the permutation σ, and with the understanding that

σ(i+n) = σ(i)+n. A decorated permutation encodes the ranks of cyclically consecutive

submatrices by recording, for each column ~ca, the first column ~cb with a ≤ b ≤ a+n such

– 5 –
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that ~ca ∈ span(~ca+1,~ca+2, . . . ,~cb). The first inequality is saturated when ~ca = 0, and the

second is saturated when ~ca is linearly independent of all other columns. Continuing with

the example (2.1), the top cell of Gr(2, 4) corresponds to the permutation

σtop = {3, 4, 5, 6}, (2.2)

which says that 1→ 3, 2→ 4, 3→ 5 ≡ 1, and 4→ 6 ≡ 2. In terms of the linear dependen-

cies among columns of a representative matrix, it means ~c1 ∈ span(~c2,~c3), ~c2 ∈ span(~c3,~c4),

~c3 ∈ span(~c4,~c5) ≡ span(~c4,~c1), and ~c4 ∈ span(~c5,~c6) ≡ span(~c1,~c2).

Going to the boundary of a cell involves changing the linear relations among consecutive

columns, so in permutation language, the boundary is accessed by exchanging two entries

in σ. The transposition operation that swaps the elements at positions a and b is denoted

by (ab), with a < b < a+n; we call this the boundary operation. Note that σ only has

positions 1, . . . , n, but b can be greater than n, To account for this, we use

σ′(a) = σ(b) = σ(b−n) + n and σ′(b) = σ(a)⇒ σ′(b−n) = σ(a)−n. (2.3)

In the example (2.1), taking the boundary where c13 = 0 lands in a cell with linear depen-

dencies specified by

σ′ = {4, 3, 5, 6}. (2.4)

This corresponds to exchanging the first and second elements of σtop, i.e. the transposition

(1 2).

Not all exchanges are allowed; for instance, applying the same transposition twice

would revert back to the initial cell, which is clearly not a boundary. The allowed boundary

transpositions satisfy the following criteria:

a < b ≤ σ(a) < σ(b) ≤ a+n and σ(q) 6∈ (σ(a), σ(b)) ∀q ∈ (a, b), (2.5)

where (a, b) means the set {a+ 1, b+ 2, . . . b− 1}. We will call (ab) an adjacent transposi-

tion if all q ∈ (a, b) satisfy σ(q) ≡ q mod n [1]. The reason for this distinction will become

clear in the next section. A strictly adjacent transposition is of the form (a a+1). For

notational purposes, we define (ab) to act on the right, so if σ is a boundary of σ̃, then we

write σ = σ̃ · (ab). Of course, (ab) is its own inverse, so acting on the right with (ab) again

yields the inverse boundary operation σ · (ab) = σ̃. The boundary operation reduces the

dimension by one, while the inverse boundary operation increases the dimension by one.

Although the notation is identical, it should be clear what we mean from the context. Tak-

ing additional (inverse) boundaries leads to expressions like ρ = σ · (a1b1)(a2b2) . . ., which

means first exchange σ(a1) and σ(b1), then swap the elements at positions a2 and b2, etc.4

4To avoid any confusion with accessing elements of the permutation, e.g. σ(i), we use the · after σ to

indicate that σ is a permutation, and (ab) is a transposition. The · operation is implicit between neighboring

transpositions.
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2.2 Plabic graphs

Permutations and positroid cells can be represented diagrammatically with plabic (planar-

bicolored) graphs and plabic networks.5 Plabic graphs are planar graphs embedded in

a disk, in which each vertex is colored either black or white. Any bicolored graph can

be made bipartite by adding oppositely-colored bivalent vertices on edges between two

identically-colored vertices, so we will assume all graphs have been made bipartite. Some

edges are attached to the boundary; we will call these external legs and number them in

clockwise order 1, 2, . . . , n. If a monovalent leaf is attached to the boundary, it will be

called a lollipop together with its edge. Plabic networks are plabic graphs together with

weights (t1, t2, . . . , te) assigned to the edges. The weights are related to coordinates on the

corresponding cell, as will be discussed in the next subsection.

Given a plabic graph G, one can define a trip permutation by starting from an external

leg a and traversing the graph, turning (maximally) left at each white vertex and (maxi-

mally) right at each black vertex until the path returns to the boundary at some vertex b.

When a 6= b, the permutation associated with this trip has

σG(a) =

{
b b > a

b+n b < a
. (2.6)

We will explain the case a = b momentarily.

For tree amplitudes, we will be concerned with reduced plabic graphs. A plabic graph

is reduced if it satisfies the following after deleting all lollipops [17]:

1. It has no leaves;

2. No trip is a cycle;

3. No trip uses a single edge twice;

4. No two trips share two edges e1 and e2 in the same order.

It follows that any external leg a for which σG(a) ≡ a mod n must be a lollipop [17]. Specif-

ically, we define σG(a) = a to be a black lollipop, and σG(a) = a+n to be a white lollipop.

Thus each reduced plabic graph/network corresponds to a unique decorated permu-

tation. However, the correspondence is not a bijection; rather each permutation labels a

family of reduced plabic graphs/networks. Members of each family are related by equiva-

lence moves that modify the edge weights but leave the permutation unchanged [1, 18]:

(E1) GL(1) rotation: at any vertex, one can perform a GL(1) rotation that uniformly

scales the weights on every attached edge, e.g. for a scaling factor f ,

t1
t2

t3

t4

f t1
f t2

f t3

f t4
(2.7)

5Physical interpretations of certain plabic networks, also known as ‘on-shell diagrams,’ have been ex-

plored in several recent papers, including [1, 3].
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(E2) Merge/delete: any bivalent vertex whose edges both have weight 1 can be elimi-

nated by merging its neighbors into one combined vertex and deleting the bivalent

vertex and its edges, e.g.

1 1
(2.8)

If one of its neighbors is the boundary, then the bivalent vertex should be merged

with the boundary instead. The inverse operation can also be used to ‘unmerge’ a

vertex or boundary.

(E3) Square move: a four-vertex square with one pattern of coloring is equivalent to the

four-vertex square with opposite coloring, e.g.

1

1
1

1
1

1
1

1 t4’ 
t1’ 

t2’ 

t3’ 

t4
t1

t2

t3

(2.9)

The edge weights are related (using the sign conventions of [2]):

t′1 =
t3

t1t3 + t2t4
, t′2 =

t4
t1t3 + t2t4

, t′3 =
t1

t1t3 + t2t4
, t′4 =

t2
t1t3 + t2t4

. (2.10)

From the plabic network, one can also read off a representative k × n matrix for the

corresponding positroid cell, which is called the boundary measurement matrix (or boundary

measurement map). Several related methods exist for defining boundary measurements

such as using perfect orientations [1, 2, 18] or perfect matchings [2, 17, 19]. The equivalence

moves above can be derived by requiring that the boundary measurements are unchanged

by each transformation. In the next subsection, we will show how to construct the boundary

measurements systematically for the types of plabic networks relevant to amplitudes. We

refer the reader to the above references for more details, though we caution that the

transformation rules are presented slightly differently.

These three moves are sufficient to transform any plabic network into any other in its

equivalence class. In addition, using these moves one can always fix all but d of the edge

weights to unity in any network that represents a d-dimensional cell; throughout the rest

of this paper, edges with unspecified weights will have weight 1. As we will see shortly,

certain planar networks lead to especially convenient paramaterizations of positroid cells.

The equivalence moves will allow us to compare the resulting oriented forms.

2.3 Bridge decompositions and charts

To write down a coordinate chart on a given cell, it is sufficient to construct a representative

matrix with the appropriate linear dependencies among its columns. However, in a general

– 8 –
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chart the boundary structure could be very difficult to identify. Fortunately, there is a

straightforward method to construct charts with simple dlog forms as in (1.2) [1]; we

review this technique below and how it relates to paths in the poset of cells. Some paths

through the poset do not correspond to any such charts, so we suggest an interpretation

for those paths in section 2.3.2 and explain the consequences for residues in section 4.1.

2.3.1 Standard BCFW bridge decompositions

Positroid cells of dimension zero in Gr(k, n) correspond to unique plabic graphs made

solely out of lollipops with edge weight 1. The k legs with σ(a) = a+n have white vertices

while the rest are black. The boundary measurement matrix is zero everywhere except

the submatrix composed out of the k columns corresponding to the white vertices, which

together form a k × k identity matrix. There are no degrees of freedom, so the differential

form (1.2) is trivial, ω = 1.

Since there is a unique representative plabic network for each 0d cell, we will build

higher-dimensional representatives out of the set of 0d networks. In the poset, higher-

dimensional cells can be reached from 0d cells by repeatedly applying the inverse boundary

operation defined below (2.5). Equivalently, a d-dimensional cell can be decomposed into

a sequence of adjacent transpositions acting on a 0d permutation, e.g.6

{3, 5, 4, 6} = {5, 6, 3, 4} · (24)(23)(12). (2.11)

This is called a BCFW decomposition and leads to a convenient graphical representation.

In a planar network, an adjacent transposition (aibi) amounts to simply adding a white

vertex on leg ai, a black vertex on leg bi, and an edge between them with weight αi:

ai

bi

ai

biαi
(2.12)

This is called a (BCFW) bridge. Note that if one of the legs is initially a lollipop, then

the resulting leaf should be deleted after adding the bridge [17, 18]. The example (2.11)

generates the following sequence of graphs:

4 1

23

α1

α2
α3

4 1

23

α1

4 1

23

α1

α2

4 1

23

(2.13)

6The transposition (24) is adjacent because it acts on a permutation whose third element is self-identified.
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We have added a black vertex between the first two bridges to make the graph bipartite;

it is drawn slightly smaller to distinguish it from the bridge vertices. Many simplifications

are possible using the equivalence moves (2.7)–(2.9).

Adding a BCFW bridge affects the trip permutation by exchanging σG(a)↔ σG(b) as

desired, and the boundary measurement matrix transforms in a simple way [1],

~cb → ~cb + αi~ca. (2.14)

One can easily check that the linear dependencies of the shifted matrix agree with the

expected permutation as long as (aibi) is an adjacent transposition. If ωi−1 is the differential

form associated with the initial cell, then after adding the bridge, the new form is

ωi = dlogαi ∧ ωi−1. (2.15)

This prescription provides a robust way to generate coordinates on any cell in Gr(k, n).

There are generally many ways to decompose a d-dimensional permutation σ into a

sequence of adjacent transpositions acting on a 0d cell. In fact, no single chart covers all

boundaries of a generic cell. However, an atlas of at most n standard BCFW charts is

sufficient to cover all boundaries [1]. Every such chart defines a unique path through the

poset from σ to some σ0. In the example (2.11), the path was

σ = {3, 5, 4, 6} (12)−−→ {5, 3, 4, 6} (23)−−→ {5, 4, 3, 6} (24)−−→ {5, 6, 3, 4} = σ0. (2.16)

Not all BCFW decompositions of σ end in the same 0d cell, however. Another BCFW

decomposition of {3, 5, 4, 6} ends in σ′0 = {5, 2, 7, 4}:

σ = {3, 5, 4, 6} (12)−−→ {5, 3, 4, 6} (46)−−→ {5, 2, 4, 7} (34)−−→ {5, 2, 7, 4} = σ′0. (2.17)

The important point is that every BCFW decomposition corresponds to a unique path of

length d that starts at σ and ends in a 0d cell. The converse is not true; some paths of

length d that start at σ and end in a 0d cell do not correspond to any BCFW decomposition.

2.3.2 Generalized decompositions

When evaluating residues, one will often encounter paths through the poset that do not

coincide with any single standard chart. These paths contain edges that represent non-

adjacent transpositions. Continuing with the earlier example, the following path ends in

the same 0d cell as (2.11), but the first transposition (13) crosses a non-self-identified leg:

σ = {3, 5, 4, 6} (13)−−→ {4, 5, 3, 6} (24)−−→ {4, 6, 3, 5} (14)−−→ {5, 6, 3, 4} = σ0. (2.18)

Nevertheless, this path is certainly a possible route when evaluating residues since every

codimension-1 boundary is accessible from some adjacent chart [1]. We could, for instance,

take the decomposition from (2.11), and take α2 → 0. It is easy to see from the boundary

measurement matrix that this yields the desired linear dependencies among columns:(
1 α3 0 0

0 1 α2 α1

)
α2→0−−−→

(
1 α3 0 0

0 1 0 α1

)
. (2.19)
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The generalization to any path through the poset is clear; each successive step involves

computing the residue at a logarithmic singularity in some chart. Thus every path corre-

sponds to some dlog form, not just the paths for which we have explicit plabic graphical

representations. We will call these generalized decompositions and their coordinates gener-

alized charts. In practice, computing residues along a particular path through the poset can

always be done using standard adjacent charts, though it may involve changing coordinates

at several steps along the way. As we will see in section 4.1, the sign of the resulting residue

depends only on the path taken, and not on the choice of reference charts along the way.

3 Relating distinct charts

Recall that a decomposition for a d-dimensional cell C corresponds to a sequence of trans-

positions applied to a permutation σ0 labeling a 0-dimensional cell C0. Each sequence

defines a particular path through the poset with endpoints at C and C0. In this sec-

tion, we will show that the relative sign between the dlog forms generated by two distinct

charts can be obtained systematically. We will first show this result for standard BCFW

charts constructed using only adjacent transpositions. Subsequently, we will discuss the

generalized situation where we do not always have a simple graphical representation; the

convention for deriving signs will be extended to cover the additional possibilities while

maintaining consistency with the standard setup. The extended conventions will also lead

to a simpler method for comparing charts.

3.1 Standard BCFW charts

There are two cases that we need to address depending on whether the decompositions end

in identical 0d cells or distinct ones. We will cover the identical case first and then deal

with the other situation.

3.1.1 Charts with identical 0d cells

We assume first that the 0d cell labeled by σ0 is the same for both paths. The d-dimensional

cell labeled by σ is connected to σ0 by two sequences of transpositions

σ = σ0 · (a1b1)(a2b2) . . . (adbd) = σ0 · (a′1b′1)(a′2b
′
2) . . . (a′db

′
d). (3.1)

Graphically, the concatenation of the two paths creates a closed loop of length 2d in the

poset, shown here schematically with one path denoted by a blue solid line and the other
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by a green dashed line:

…
 

…
 

σ

σ0

(3.2)

The relative orientation of the two dlog forms corresponding to the sequences can be

obtained by a simple algorithm. Before presenting that result, we will need the following

lemma:

Lemma 1. The top cell can be reached from any cell, C, of dimension d by a sequence of

k(n− k)− d strictly adjacent transpositions.

Proof. Let σ be the permutation labeling C ∈ Gr(k, n). When σ contains two neighboring

elements satisfying σ(i) > σ(i+ 1) (with σ(n+ 1) = σ(1)+n), this is called an inversion.

Such an inversion can be removed by applying the (strictly adjacent) transposition (i i+ 1).

Since all entries in σtop are ordered, one can reach the top cell by iteratively eliminating

all inversions.

For example, the top cell of Gr(2, 6) can be reached from the 5-dimensional cell

{2, 3, 4, 6, 7, 11} by the sequence of transpositions (6 7)(1 2)(2 3):

{2, 3, 4, 6, 7, 11} (6 7)−−−→ {5, 3, 4, 6, 7, 8} (1 2)−−−→ {3, 5, 4, 6, 7, 8} (2 3)−−−→ {3, 4, 5, 6, 7, 8}. (3.3)

Using this procedure, any BCFW sequence can be extended to reach the top cell using

only strictly adjacent transpositions. We thank R. Karpman for pointing this out.

Since (i, i+ 1) does not cross any legs, the resulting sequence will be a valid BCFW

sequence. Therefore, we may assume without loss of generality that the cell on which we

seek to compare orientations is the top cell because two sequences which lead to a cell of

lower dimension can be trivially extended to top cell sequences by appending the same

transpositions to both paths. This will not affect the relative sign of the forms since both

will have identical pieces appended to them.

We turn now to the sign-comparison algorithm. The idea is to compare each BCFW

chart to specially chosen reference charts whose relative orientation is easy to compute.

They are chosen so that at each iteration, the loop in the poset (initially of length 2d)

is shortened. Then the final relative orientation is the product over all the intermediate

orientations.
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Algorithm 1

Input: two BCFW sequences of length d = k(n− k): w = (a1b1)(a2b2) . . . (adbd) and

w′ = (a′1b
′
1)(a′2b

′
2) . . . (a′db

′
d)

Output: ±1

Procedure:

1) Let j be the smallest index such that (ajbj) 6= (a′jb
′
j). The transpositions with

i > j yield a closed loop of length ` ≤ 2d. If there is no such position, then the

paths are identical, so return +1.

2) Let σ label the j-dimensional cell reached by the sequence of transpositions

(a1b1)(a2b2) . . . (ajbj) and σ′ label that reached by (a′1b
′
1)(a′2b2)′ . . . (a′jb

′
j). Using

the following rules, construct reference charts to which the initial charts should

be compared. Comparing the two reference charts produces a known sign; the

relevant parts are displayed with each step, and their relative signs are derived

in appendix A. There are several cases to consider (with a < b < c < d < a+n):

i) (ajbj) = (ab), (a′
jb

′
j) = (cd)

The j-dimensional cells σ and σ′ have a shared (j + 1)-dimensional neighbor

σ̃ = σ · (cd) = σ′ · (ab). Let u be the sequence generated by Lemma 1 for

the cell labeled by σ̃. Then the reference sequences and relative sign are:

• ref. sequence 1: w̃ = (a1b1)(a2b2) . . . (aj−1bj−1)(ab)(cd)u

• ref. sequence 2: w̃′ = (a′1b
′
1)(a′2b

′
2) . . . (a′j−1b

′
j−1)(cd)(ab)u

• The relative sign between reference charts is −1.

(cd) (ab)

(cd)(ab)
ii) (ajbj) = (ab), (a′

jb
′
j) = (ac)

In this case σ and σ′ have a shared (j + 1)-dimensional neighbor

σ̃ = σ · (bc) = σ′ · (ab). Let u be the sequence generated by Lemma 1 for

the cell labeled by σ̃. Then the reference sequences and relative sign are:

• ref. sequence 1: w̃ = (a1b1)(a2b2) . . . (aj−1bj−1)(ab)(bc)u

• ref. sequence 2: w̃′ = (a′1b
′
1)(a′2b

′
2) . . . (a′j−1b

′
j−1)(ac)(ab)u

• The relative sign between reference charts is −1.

(bc) (ab)

(ac)(ab)
iii) (ajbj) = (ac), (a′

jb
′
j) = (bc)

Again σ and σ′ have a shared (j + 1)-dimensional neighbor

σ̃ = σ · (bc) = σ′ · (ab). Let u be the sequence generated by Lemma 1

for the cell labeled by σ̃. Then the reference sequences and relative sign are:

• ref. sequence 1: w̃ = (a1b1)(a2b2) . . . (aj−1bj−1)(ac)(bc)u

• ref. sequence 2: w̃′ = (a′1b
′
1)(a′2b

′
2) . . . (a′j−1b

′
j−1)(bc)(ab)u

• The relative sign between reference charts is −1.

(bc) (ab)

(bc)(ac)
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iv) (ajbj) = (ab), (a′
jb

′
j) = (bc)

Using only adjacent transpositions, σ and σ′ do not have a common (j + 1)-

dimensional neighbor. However, certain neighbors of σ and σ′ do have a

common neighbor of dimension (j + 2). Specifically, let σ̃ = σ · (bc) and

σ̃′ = σ′ · (ab). Then σ̃ and σ̃′ have a common (j + 2)-dimensional neighbor

ρ = σ̃ · (ab) = σ̃′ · (bc). Let u be the sequence generated by Lemma 1 for

the cell labeled by ρ. Then the reference sequences and relative sign are:

• ref. sequence 1: w̃ = (a1b1)(a2b2) . . . (aj−1bj−1)(ab)(bc)(ab)u

• ref. sequence 2: w̃′ = (a′1b
′
1)(a′2b

′
2) . . . (a′j−1b

′
j−1)(bc)(ab)(bc)u

• The relative sign between reference charts is +1.

(ab) (bc)

(ab)(bc)

(bc)(ab)
v) (ajbj) = (ac), (a′

jb
′
j) = (bd)

Similar to the previous case, σ and σ′ do not have a common (j + 1)-

dimensional neighbor using only adjacent transpositions. Nonetheless,

with σ̃ = σ · (bc) and σ̃′ = σ′ · (bc), then σ̃ and σ̃′ have a common (j + 2)-

dimensional neighbor ρ = σ̃ · (cd) = σ̃′ · (ab). Let u be the sequence

generated by Lemma 1 for the cell labeled by ρ. Then the reference

sequences and relative sign are:

• ref. sequence 1: w̃ = (a1b1)(a2b2) . . . (aj−1bj−1)(ac)(bc)(cd)u

• ref. sequence 2: w̃′ = (a′1b
′
1)(a′2b

′
2) . . . (a′j−1b

′
j−1)(bd)(bc)(ab)u

• The relative sign between reference charts is −1.

(cd) (ab)

(bc)(bc)

(bd)(ac)vi) (ajbj) = (bc), (a′
jb

′
j) = (ad)

In this case, we must look further to find a shared cell above σ and σ′

using only adjacent transpositions. They have a shared (j + 3)-dimensional

great-grandparent ρ̃ = σ · (ab)(cd)(bc) = σ′ · (bc)(ab)(cd). Let u be the

sequence generated by Lemma 1 for the cell labeled by ρ̃. Then the

reference sequences and relative sign are:

• ref. sequence 1: w̃ = (a1b1)(a2b2) . . . (aj−1bj−1)(bc)(ab)(cd)(bc)u

• ref. sequence 2: w̃′ = (a′1b
′
1)(a′2b

′
2) . . . (a′j−1b

′
j−1)(ad)(bc)(ab)(cd)u

• The relative sign between reference charts is −1.

(bc) (cd)

(ab)(cd)

(ad)(bc)

(bc)(ab)
3) Repeat this algorithm to compare w to w̃ and w′ to w̃′.

4) Return the product of the relative sign from step (2) times

the result of each comparison in step (3).

The relative orientation of any two BCFW charts with identical endpoints can be

compared with this algorithm. In the second part of the proof below, we show that the
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signs and reference charts presented in step (2i) are correct; this should also serve as an

illustrative example of the algorithm in action.

Proof. We need to show that the algorithm will terminate in a finite number of iterations,

and that the sign generated at each step is correct.

• We will first show that the algorithm will terminate after a finite number of iterations.

The reference sequences constructed in step (2) are chosen so that when the algorithm

is called again in step (3) to compare w to w̃, the new inputs satisfy (aibi) = (a′ib
′
i)

for all i ≤ j. The same is true for the comparison of w′ and w̃′. Step (1) searches

for the first point at which the input sequences differ, so by construction, the next

position will be at least j + 1, which is larger than in the previous iteration. Since j

is bounded by d, the algorithm will eventually terminate.

• Next we will explain the results presented in step (2i). Since a < b < c < d < a+n,

the two transpositions can be applied in either order without violating the adjacent

requirement of BCFW sequences. Therefore σ and σ′ have a common neighbor σ̃,

and both (a1b1)(a2b2) . . . (aj−1bj−1)(ab)(cd)u and (a′1b
′
1)(a′2b

′
2) . . . (a′j−1b

′
j−1)(cd)(ab)u

are valid BCFW sequences for the top cell. Moreover, since (a′ib
′
i) = (aibi) for all

i < j, their corresponding forms differ only in positions j and j + 1:

ω = dlogαd ∧ dlogαd−1 . . . ∧ dlogαj+2 ∧ dlogαj+1 ∧ dlogαj ∧ dlogαj−1 . . . ∧ dlogα1,

ω′ = dlogαd ∧ dlogαd−1 . . . ∧ dlogαj+2 ∧ dlogβj+1 ∧ dlogβj ∧ dlogαj−1 . . . ∧ dlogα1,

(3.4)

where αj and αj+1 are the weights associated with (ab) and (cd) in the first se-

quence, while βj and βj+1 are associated with (cd) and (ab) in the second sequence.

To determine the relationship between the two forms, we will use the plabic graph

representations of the transpositions as BCFW bridges. Focusing on the j and j + 1

parts of the graph, we find the following:

a

b

d

c

αj

αj+1

a

b

d

c

βj+1

βj
(3.5)
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The left and right diagrams can only be equivalent if βj = αj+1 and βj+1 = αj , which

implies

ω′ = dlogαd ∧ . . . ∧ dlogαj+2 ∧ dlogαj ∧ dlogαj+1 ∧ dlogαj−1 . . . ∧ dlogα1 = −ω.
(3.6)

Thus the relative sign between the reference charts is −1.

The remaining cases are described in appendix A.

Thus we now have an algorithm that correctly computes the relative signs for BCFW

forms generated from identical 0d cells.

3.1.2 Charts with distinct 0d cells

The next step will be to extend the result to decompositions that terminate in distinct 0d

cells. Let us start with the simplest case: finding the relative sign between two charts on

a 1d cell labeled by σ1. Since it is 1-dimensional, all but two entries in σ are self-identified

mod n. The two non-trivial positions can be labeled a and b such that a < b < a+n.

The 1d cell has exactly two boundaries, which can be accessed respectively by (ab) or

(b a+n), so the two BCFW sequences whose charts we will compare are (ab) and (b a+n):

σ1

σ0 σ0’ 

(ab) (b a+n) (3.7)

It is straightforward to find the relative orientations of the corresponding forms,

ω1 = dlogα and ω′1 = dlogβ, (3.8)

using basic plabic graph manipulations. As we see in the following diagrams, several GL(1)

rotations (2.7) combined with a merge and unmerge with the boundary (2.8) are sufficient

to discover that β = 1/α,

a

bα

a

b
1/α

a

b1/α (3.9)

Therefore, the forms are oppositely oriented, i.e. ω′1 = −ω1.
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More generally, we could consider charts on d-dimensional cells whose corresponding

BCFW sequences are identical everywhere except for the first transposition:

σ0 σ0’ 

(ab) (b a+n)

…
 

σ

u
(3.10)

The associated forms are

ωd = dlogαd ∧ dlogαd−1 ∧ . . . ∧ dlogα1,

ω′d = dlogαd ∧ dlogαd−1 ∧ . . . ∧ dlogβ1.
(3.11)

For example, we could find a Lemma 1 sequence, u, for the 1d cell above and compare the

two charts defined by σ0 · (ab)u and σ′0 · (b a+n)u. Since BCFW sequences such as u use

only adjacent transpositions, no bridge will ever be attached to legs a and b further from

the boundary than the first bridge (ab), resp., (b a+n). Therefore, one can apply very

similar logic as in the 1d case7 to find that β1 = 1/α1, so ω′d = −ωd.
We can easily extend this to any two charts whose 0d endpoints share a common 1d

neighbor, σ1, by applying algorithm 1. Each sequence can be related to a reference sequence

with the same 0d cell, but which goes through σ1 and then follows some arbitrarily chosen

path, say u, to the top cell. If the same path is chosen to compare to both charts, then the

relative orientation of the reference charts is −1.

Finally, this can be extended to any two charts terminating in arbitrarily separated

0d cells by iterating the previous step together with algorithm 1. We combine this into

algorithm 2.

Algorithm 2

Input: two BCFW sequences of length d = k(n− k): w = (a1b1)(a2b2) . . . (adbd) and

w′ = (a′1b
′
1)(a′2b

′
2) . . . (a′db

′
d); and their 0d endpoints: σ0 and σ′0.

Output: ±1

Procedure:

1) If σ0 = σ′0, compute the relative sign of the two forms using algorithm 1. Return

the result.

7The only difference being that the merge/unmerge moves may be with other vertices instead of the

boundary.
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2) Else, let a be the smallest index such that σ0(a) < σ′0(a), and let b be the smallest

index such that σ0(b) > σ′0(b). We assume that a < b; if not, then the roles of

σ0 and σ′0 should be exchanged. Let σ̃ = σ0 · (ab), whose boundaries are σ0 and

σ̃0 = σ̃ · (b a+n), and define u to be the Lemma 1 sequence from σ̃ to the top

cell. Construct two reference sequences: w̃ = (ab)u and w̃′ = (b a+n)u.

3) Repeat this algorithm to compare (w, σ0) to (w̃, σ0), and (w′, σ′0) to (w̃′, σ̃0).

4) Return the product of the results from step (3) times −1 due to the relative sign

between w̃ and w̃′.

Proof. Assuming that the cells and edges in step (2) exist, the sign at each iteration is

valid because it uses algorithm 1 to compare charts with identical 0d cells, and it returns

−1 for each pair of sequences that differ only in the first position. It remains to show that

step (2) is correct. Since all entries in the permutations labeling 0d cells are self-identified

mod n, the definitions of a and b imply that:

σ0(a) = a, σ0(b) = b+n, σ′0(a) = a+n, and σ′0(b) = b. (3.12)

There exists another 0d cell σ̃0, which is identical to σ0 except

σ̃0(a) = σ0(a)+n = a+n = σ′0(a) and σ̃0(b) = σ0(b)−n = b = σ′0(b). (3.13)

The new cell σ̃0 has two important properties:

• The first is that σ0 and σ̃0 have a common 1d neighbor, σ̃ = σ0 · (ab) = σ̃0 · (b a+n).

Since all other entries in σ0 and σ̃0 are self-identified mod n, both (ab) and (b a+n)

are adjacent. Thus the cells and reference sequences of step (2) are uniquely defined

and satisfy the standard adjacency requirements.

• The second is that σ̃0 differs from σ′0 at fewer sites than σ0 differs. If there are

m ≥ 1 locations where σ0(i)− σ′0(i) 6= 0, then there are only m− 2 locations where

σ̃0(i)− σ′0(i) 6= 0. Since all entries in 0d cells are self-identified mod n, and k entries

are greater than n, then m must be even and no larger than 2k. Hence, algorithm 2

will complete after at most k iterations.

Therefore algorithms 1 and 2 are together sufficient to find the relative orientation of any

two standard BCFW charts.

3.2 Generalized decompositions

The plabic graph representation explained in section 2.3.1 is convenient for the study of

standard BCFW charts. They are a subset of the generalized decompositions, so the rules

for defining reference charts and relative signs in algorithms 1 and 2 will still apply. Since
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cases (i)-(vi) in step (2) of algorithm 1 cover all possible comparisons, the techniques

introduced in the previous section are in fact sufficient to find the relative orientation of

any two charts.

However, there is an advantage to studying the generalized charts more closely. Cases

(iv)-(vi) in algorithm 1 were distinctly different than the other three cases because the

reference charts required two or three steps to meet at a common cell as opposed to only

one step in the earlier cases. Comparing the reference paths of the first three cases shows

that they define quadrilaterals, while cases (iv) and (v) define hexagons, and (vi) defines

an octagon. The relevant sections of the poset are depicted in (3.14) with the solid lines

indicating the paths used in algorithm 1, and the dashed lines showing the additional edges

that were not used (the finely dotted lines indicate edges that do not always exist). We

include the quadrilaterals from cases (i)-(iii) for completeness:

(cd) (ab)

(cd)(ab)

(bc) (ab)

(ac)(ab)

(bc) (ab)

(bc)(ac)

(ab) (bc)

(ab)(bc)

(bc)(ab)

(ac)

(ac)

(cd) (ab)

(bc)(bc)

(bd)(ac)

(ab) (cd)

(bc)

(ac)(bd)

(bc)

(bc) (cd)

(ab)(cd)

(ad)(bc)

(ad)

(bd)

(bc)(ab)

(3.14)

The extra transpositions permitted in generalized charts allow the hexagons and octagons

to be refined into quadrilaterals. Some of the internal quadrilaterals are equivalent to those

from cases (i)-(iii), but there are also new ones. The relative orientation of two charts which

differ only by one of the new quadrilaterals needs to be determined. To fix the signs, we

require that the refined polygons produce the same signs as above when split into charts

that differ by the interior quadrilaterals.

The hexagon from case (iv) can be split into a pair of quadrilaterals two ways. Either

way, the top quadrilateral appears in one of the first three cases, which implies that the

relative orientation around the lower quadrilateral must be −1 in order to agree with the

overall sign of +1 derived in appendix A.

In case (v), the edges shown with dashed lines always exist, so the hexagon can be

split into three quadrilaterals. The one on the lower left is equivalent to case (iii), the lower

right is equivalent to case (ii), and the top quadrilateral is identical to case (i). Hence the

product of the three individual signs is (−1)3 = −1, in agreement with the result found in
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appendix A. In some situations, the hexagon can also be split up using the finely dotted

lines. Then the top two hexagons are equivalent to cases (ii) and (iii), which implies that

the relative orientation around the lower quadrilateral must also be −1.

Finally, the octagon from case (vi) can be also be split into three quadrilaterals. The

top one matches case (iii), and the middle is equivalent to case (ii), so the relative orien-

tation around the lower one must be −1 to agree with appendix A. This is unsurprising

considering that the two transpositions are completely disjoint, so applying them in oppo-

site order would suggest that the forms differ by a minus signs, similar to example (1.5) in

the introduction.

This exhausts all possible quadrilaterals that could appear in the poset. Hence the

relative orientation between any two charts that differ by a quadrilateral is −1. A significant

consequence of this result is the existence of a boundary operator which manifestly squares

to zero, as we discuss further in section 4.

3.3 The master algorithm

Before proceeding to discuss various applications, we present a more efficient method to

compute the relative orientation of any two charts. In each iteration of algorithm 1, every

edge in the reference charts enters into two comparisons (once to the corresponding initial

chart, and once to the other reference chart), while the edges in the initial charts enter

only one comparison (to the associated reference chart). Therefore, if we assign ±1 to each

edge such that the product of signs around any quadrilateral is −1, then the signs on the

reference chart edges will appear twice and hence square to 1, while the product of signs on

the initial chart edges will combine to produce the same overall sign as found by algorithm 1.

One method for producing a consistent set of edge signs is presented in appendix B [12].

When changing 0d cells with algorithm 2, one should think of taking a closed loop

that traverses down and back each branch in (3.10), thus encountering each edge twice.

Consequently, every edge sign appears twice, thus squaring to 1, so the only sign from this

step will be −1 due to the relative sign between the reference charts. However, one can

easily check that applying algorithm 1 will introduce one additional copy of each branch,

so those edges should be included in the overall loop. The result of chaining several of

these together is a sawtooth path between the two 0d cells (the bold red line in (3.15))

that contributes signs from each edge along the way and a minus sign for each 1d cell along

the path. Schematically, the combined loop will look like the following:

…
 

…
 

σ

σ0
… 

σ0’ 

(3.15)

– 20 –



J
H
E
P
0
8
(
2
0
1
5
)
1
2
0

This method for computing signs is summarized in the master algorithm:

Master Algorithm

Input: two BCFW sequences of length d = k(n− k): w = (a1b1)(a2b2) . . . (adbd) and

w′ = (a′1b
′
1)(a′2b

′
2) . . . (a′db

′
d)

Output: ±1

Procedure:

1) If both BCFW paths terminate in the same 0-dimensional cell, then the relative

orientation is given by the product of edge signs along the paths. Equivalently, it

is the product of signs around the closed loop of length 2d obtained by traversing

down one path and back up the other.

2) If they terminate in different 0d cells, then the relative orientation also depends

on the signs along a path connecting the two 0d cells. One can obtain such a

path by a sawtooth pattern between 0d and 1d cells. The sign of this path is

given by the product of edge signs along the path, times (−1)m/2, where m is the

number of locations i satisfying σ0(i)− σ′0(i) 6= 0 (m/2 is the number of 1d cells

in the sawtooth path). Thus the relative orientation is given by the product of

signs along each BCFW path, times the connecting path sign. Equivalently, it is

the product of signs around the closed loop obtained by concatenating the three

paths (3.15), times the signs for the 1d cells.

So far, all the charts have been assumed to have minimal length, i.e. k(n− k) for charts

on the top cell. In other words, each transposition in the sequence increases the dimension

by 1. However, the master algorithm indicates that any path through the poset can be

compared to any other path, even if they zig-zag up and down.

We have verified this algorithm by implementing it in Mathematica and applying it to a

variety of charts whose orientations are known by other methods. This includes pairs of ran-

domly generated NMHV charts of the type studied in [11], as well as higher k charts whose

matrix representatives have identical GL(k) gauge fixings; the latter can be compared by

directly equating the entries. In addition, the orientations of 500 distinct charts on the 10d

cell {5, 3, 8, 9, 6, 7, 12, 10, 14, 11} ∈ Gr(3, 10) were computed using an independent method

due to J. Bourjaily and A. Postnikov [14]. The results agreed perfectly with our algorithm.

4 Applications

In the remainder of this paper, we will discuss several areas in which the relative orientations

are important. The end results are not surprising; they were anticipated and used in several

previous works. The new contribution of this section will be to put these ideas on firm

combinatorial footing, so for example, spurious poles in the tree contour will cancel exactly

instead of mod 2 as in [1].
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4.1 Comparing residue orientations

We have shown that any two charts can be compared by taking the product of edge signs

around a closed loop in the poset of cells. This applies to any charts, even those corre-

sponding to generalized decompositions with non-adjacent transpositions. As explained in

section 2.3.2, one can follow any path through the poset by taking residues out of order in

standard BCFW charts and changing coordinates as needed. Due to the master algorithm,

the final sign on the residue depends only on the path, not on the intermediate choices of

charts. We will demonstrate this with a convincing example.

There is a standard chart on {4, 3, 6, 5} obtained by the path P1:

{4, 3, 6, 5} (23)−−→ {4, 6, 3, 5} (14)−−→ {5, 6, 3, 4}. (4.1)

Both transpositions are adjacent. The corresponding matrix representative and form are

C =

(
1 0 0 α1

0 1 α2 0

)
ω = dlogα2 ∧ dlogα1. (4.2)

Taking either coordinate to vanish lands in a codimension-1 boundary, so we are allowed

to take them to zero in either order. There is also a non-adjacent path P2 that ends in the

same 0d cell:

{4, 3, 6, 5} (14)−−→ {5, 3, 6, 4} (23)−−→ {5, 6, 3, 4}. (4.3)

We will now evaluate the 0d residue along both paths using the coordinate chart (4.2),

ignoring the delta functions in (1.1). The convention for evaluating residues is to take a

contour around αi = 0 only when αi is the first variable in the form. Along P1 we first take

α2 → 0 and then α1 → 0, which is the order they appear in the form; hence the residue is

+1. We can follow P2 by taking α1 → 0 first, so we pick up a factor of −1 from reversing

the order of the wedge product. Thus the residue along P2 is −1. The relative sign is −1,

exactly as our algorithm predicts because the paths differ by a quadrilateral.

In terms of edge signs, there is a Z2 symmetry at every vertex that allows us to flip

the signs on all the attached edges without changing the overall sign of any closed loop.

Since the product of signs around a quadrilateral is −1, we can use the symmetry to fix

the edge signs so they exactly agree with the above computation at each step:

+1

{5, 6, 3, 4}

{4, 6, 3, 5} {5, 3, 6, 4}

{4, 3, 6, 5}

+1 +1

-1

(4.4)

The generalization to more complicated charts is straightforward.
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4.2 Boundary operator

Define the signed boundary operator ∂ acting on a cell C to be the sum of all boundaries

of C weighted by the ±1 weight on the edge connecting each boundary to C,

∂C =
∑
i

w
(
C,C ′i

)
C ′i, (4.5)

where the sum is over all cells C ′i in the boundary of C and w(C,C ′i) = ±1 is the weight

on the edge between C and C ′i. Equivalently, we could take the sum over all cells of the

appropriate dimension and define w(C,C ′i) = 0 whenever there is no edge between them.8

Applying the boundary operator again therefore yields a sum of codimension-2 boundaries

of C, each one weighted by the product of the sign on the edge connecting it to its parent

times the sign on its parent from the first application of ∂:

∂2C =
∑
i

∑
j(i)

w
(
C,C ′i

)
w
(
C ′i, C

′′
j(i)

)
C ′′j(i), (4.6)

where i runs over boundaries C ′i of C and j(i) runs over boundaries C ′′j(i) of C ′i. In order for

this result to vanish, every codimension-2 cell must appear twice and with opposite signs.

We will first show that each cell appears twice,9 and then it will be clear from our setup

that that signs are opposite. Let σ be the permutation labeling C. Each edge represents

a transposition acting on σ, so codimension-2 cells will arise from pairs of transpositions

(ab)(cd). If a, b, c, d are all distinct, then the transpositions can be applied in either order

and thus each cell appears twice. If only three are distinct, then there are a few cases to

consider:

(ac)(ab) ≡ (ab)(bc) σ(a) < σ(c) < σ(b)

(ac)(bc) ≡ (bc)(ab) σ(b) < σ(a) < σ(c)

(bc)(ac) ≡ (ab)(bc) and (ab)(ac) ≡ (bc)(ab) σ(a) < σ(b) < σ(c).

(4.7)

Thus there are two unique routes from C to every codimension-2 cell in ∂2C. Each pair

of routes defines a quadrilateral in the poset, which we have seen implies a relative minus

sign between the residues. Hence the boundary operator manifestly squares to zero.

4.3 Locality of tree contours

The n-particle NkMHV tree amplitude can be computed as a linear combination of residues

of (1.1) with coefficients ±1. Each residue appearing in the amplitude corresponds to a

4k-dimensional cell, whose the remaining degrees of freedom are fixed by the 4k bosonic

delta functions in (1.1). A tree contour is defined as any choice of contour on the top

cell that produces a valid representation of the tree amplitude; there are many equivalent

representations due to residue theorems. Tree-level BCFW recursion relations [20–22]

written in terms of on-shell diagrams [1] provide one technique to find an appropriate set

8This is not a unique definition since the edge weights can be flipped without affecting signs around closed

loops, but any consistent set of signs such as those defined in appendix B will be sufficient for our purposes.
9See also section 6.3 of [1] for a similar proof that they appear twice.
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of cells, but the on-shell diagram formulation does not generate the relative signs between

them. This will be resolved shortly.

The tree amplitude diverges for certain configurations of the external momenta; these

are called local poles — physically, they are interpreted as factorization channels in which

an internal propagator goes on-shell such that the diagram splits into two on-shell subam-

plitudes L and R, e.g. all cyclic permutations of (4.8):

…
1

j

…

n

j+1

L R (4.8)

In the Grassmannian residue representation, such poles correspond to (4k − 1)-dimensional

cells, i.e. boundaries of the 4k-dimensional cells. The amplitude is not manifestly local in

this formulation, meaning that some boundary cells translate to non-local poles, which

are momentum configurations with non-physical divergences. A key feature of the tree

contour is that all of the local poles appear precisely once in the residue representation

of the amplitude, while non-local poles appear twice [1]. It was conjectured that the two

appearances of each non-local pole should come with opposite signs so they cancel in the

sum, similar to the vanishing of ∂2. We are now equipped to prove that claim.

The boundary operator (4.5) can be used to define signed residue theorems. Even

though the sign of each term in (4.5) is not fixed, the relative sign between any two cells in

the boundary, say C ′1 and C ′2, will always agree whenever they both appear in the boundary

of a cell. It is easy to see that this is true if C ′1 and C ′2 share a common boundary since

they form a quadrilateral in the poset. The edges connecting C ′1 and C ′2 to their shared

boundary are the same no matter which C is used in the initial boundary operation, so

the relative sign between the edges connecting C to C ′1 and C ′2 must not depend on that

choice either. There is one situation in which they may not share a boundary, but in that

case there will always be a third cell C ′3 which has common boundaries with both of them;

cf. case (v) in section 3.2. Now following the intuition of [1], we find residue theorems by

requiring that the boundary of every (4k + 1)-dimensional cell vanishes:

∂C(4k+1) =
∑
i

w
(
C(4k+1), C

(4k)
i

)
C

(4k)
i = 0. (4.9)

We define the tree contour to encircle each enclosed singularity of the measure exactly

once, so any residue appearing in the amplitude will have a coefficient ±1. The residue

theorems (4.9) can change which poles are included in the contour, but they will never cause

residues to appear more than once. This implies that the relative sign between any two

cells in the amplitude must match the relative sign of those cells in the residue theorems.

Therefore, by the same logic that showed ∂2 = 0, it follows that any (4k − 1)-dimensional
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cell appearing twice in the boundary of the tree amplitude will show up with opposite

signs. Hence every doubly-appearing pole cancels in the sum.

Note that we have presented these results in terms of the momentum twistor represen-

tation in which the amplitude is a linear combination of 4k-dimensional cells. The method

works analogously in the twistor version where the amplitude is described by (2n − 4)-

dimensional cells. We have checked numerically that this choice of signs correctly cancels

all paired poles for BCFW representations of the tree amplitude with n = 5, . . . , 13 and

k = 3, . . . , bn/2c.

4.4 Other non-physical poles

After canceling all pairs of poles as described above, all remaining terms in the boundary

sum will have unit multiplicity as expected for local poles. However, some of the surviving

boundaries may yet correspond to non-physical divergences. For example, one representa-

tion of the 7-particle N2MHV amplitude (accessible by treeContour[7, 4] in the positroids

package [15]) has 52 terms in the boundary. Eight of them appear twice and hence cancel in

the sum leaving 36 unit multiplicity poles. One of those poles is labeled by the permutation

{4, 5, 6, 8, 9, 10, 14} and can be represented graphically by the following diagram:

1

2
3

4

5
6

7

(4.10)

This diagram does not indicate any internal propagators going on-shell, so it does not

represent a physical singularity of the form (4.8).

Since the boundary of the amplitude is ultimately expected to contain all (and only)

physical poles, it is therefore not surprising that some Grassmannian representations of the

amplitude do not contain a pole of this form. However, we must then explain how such

a diagram can apparently contribute to the boundary of any representations. In fact, we

will see that momentum conservation forces this diagram to vanish.

To illustrate the result, let us group legs 6 and 7 together in (4.10) so that it looks

schematically like (4.8):

6

7

…

5

1

L R (4.11)
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We have added two bivalent vertices on leg 6 and grouped those vertices with leg 7 in the

subamplitude L. The other subamplitude R contains all other vertices from (4.10). No

extra internal propagators have gone on-shell since leg 6 was already an on-shell external

propagator and adding the two bivalent vertices does not affect the momentum flowing

through them. Recall that momentum conservation requires both L and R to be on-shell

subamplitudes in (4.8), but in (4.11) the left-hand subamplitude,

L (4.12)

does not have support for generic “external” momenta and therefore vanishes. Conse-

quently, the whole diagram (4.10) is identically zero and can be neglected in the boundary

sum whenever it appears.

The example (4.11) is a special case of a much more general phenomenon wherein an

apparently valid boundary term with unit multiplicity actually vanishes after taking into

account momentum conservation on the left and right subamplitudes independently. Any

boundary labeled by a permutation with a self-identified element will have a lollipop in its

diagram and thus vanish by the same logic as above. In addition, for Grassmannian ampli-

tude representations with large enough k and n there will be many lollipop-free boundary

diagrams that factorize in the form (4.8) yet still fail to satisfy momentum conservation

on the left or right. Those diagrams evaluate to zero due to the momentum delta func-

tions and can be dropped from the sum. Given an arbitrary diagram of the form (4.8),

it is straightforward to check whether the left and right subamplitudes have kinematical

support by computing their respective intersection numbers as defined in section 10 of [1].

If either intersection number is zero, then the whole diagram vanishes and can be dropped

from the boundary sum.10

After removing from the boundary of the amplitude any cells with an unsupported sub-

amplitude, the remaining terms will all correspond to physical, local poles of the form (4.8)

with non-vanishing residues. Note that there exist multiple equivalent representations of

amplitudes, so the subamplitudes that appear in the boundaries of different representations

of the full amplitude may not be manifestly identical. Residue theorems ensure that as

long as the boundary cells can be grouped into subamplitudes as in (4.8), then every am-

plitude representation will have the same number of supported boundaries in every channel

of (4.8). We have checked for multiple Grassmannian BCFW representations of n-particle

10This is the simplest method to check the kinematical support for subamplitudes with at least four

particles. A 3-particle subamplitude is either equivalent to a single black or white 3-vertex, in which case

it is non-vanishing due to special 3-particle kinematics, or it is zero as in (4.12).
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NkMHV amplitudes with n = 5, . . . , 13 and k = 3, . . . , bn/2c that the above method for re-

moving unsupported poles produces boundaries with matching numbers of terms in every

factorization channel.

The same principles must be valid for each of the subamplitudes as well, namely they

must be local on-shell amplitudes. Therefore, given an arbitrary list of 4k-dimensional

cells,11 one can determine whether that list represents a physical amplitude by recursively

checking that the number of supported boundaries of each subamplitude matches the num-

ber of boundaries of a known local BCFW bridge representation of the same amplitude.

However, this is not a very efficient solution in practice. We expect there should be a more

straightforward method to test whether a given set of cells forms an amplitude directly at

the level of those cells and their boundaries. We leave this as an open question for the

reader to explore.
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A Details for algorithm 1

In this appendix, we derive the reference sequences and compute the relative signs for step

(2) of algorithm 1. Many of the transformations presented here were computed indepen-

dently by R. Karpman who found agreement with these results [13].

i) (ab) vs. (cd)

This case was discussed in the main text so we do not repeat the argument here.

ii) (ab) vs. (ac)

These transpositions share a leg, so they do not commute as simply as in the previous

case. Nonetheless, in this case we can use the fact that both (ab) and (ac) are allowed

transpositions on the initial permutation to find a common parent cell. Specifically,

since (ab) was the last transposition before σ, we know a < b ≤ σ(a) < σ(b) ≤ a+n

and there is no q ∈ (a, b) such that σ(q) ∈ (σ(a), σ(b)). Similarly from (ac) we know

a < c ≤ σ′(a) < σ′(c) ≤ a+n and there is no q ∈ (a, c) such that σ′(q) ∈ (σ′(a), σ′(c)).

Moreover, since σ and σ′ come from the same initial permutation, we also know that

σ(a) = σ′(b), σ(b) = σ′(c), σ(c) = σ′(a), and σ(q) = σ′(q) for all other legs.

11Or (2n− 4)-dimensional cells in momentum space.
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To show that (bc) can be applied to σ, we need to show that σ(c) < σ(b) and that

there is no q ∈ (b, c) such that σ(q) ∈ (σ(c), σ(b)). The condition that σ(c) < σ(b) is

satisfied since it is equivalent to σ′(a) < σ′(c), and since no legs are touched between

b and c, the condition on q ∈ (a, c) implies that no q ∈ (b, c) has σ(q) ∈ (σ(c), σ(b)).

Thus (bc) is an allowed transposition on σ, so the path w̃ exists.

We also need to show that (ab) can be applied to σ′, so we must show

σ′(b) < σ′(a) and that there is no q ∈ (a, b) such that σ′(q) ∈ (σ′(b), σ′(a)).

Since b ∈ (a, c), we must have either σ′(b) < σ′(a) < σ′(c) or σ′(a) < σ′(c) < σ′(b).

Since σ(a) < σ(b)⇒ σ′(b) < σ′(c), only the former condition is allowed, hence

σ′(b) < σ′(a). Furthermore, there is no q ∈ (a, b) such that σ′(q) ∈ (σ′(b), σ′(c)), and

(σ′(b), σ′(a)) is a subset of that range. Hence (ab) is allowed on σ′, and w̃′ exists.

Note that the above analysis was valid for any charts, not just adjacent ones. How-

ever, to compute the relative sign, we will focus on the restricted set of charts for

which all q ∈ (a, c) satisfy σ′(q) ≡ q mod n, namely the standard BCFW charts. The

corresponding plabic graphs can be manipulated to a common layout using the equiv-

alence moves (2.7) and (2.8):

αj+1

αj
αjαj+1

αj

a b c a b c

(A.1)

βj+1

βj
βj

βj+1

a b c a b c

(A.2)

We find that they are equivalent only with the identifications

βj = αjαj+1, βj+1 = αj . (A.3)

Plugging this into the dlog forms and using that

dlogαj ∧ dlog (αjαj+1) = dlogαj ∧
(

dlogαj + dlogαj+1

)
= −dlogαj+1 ∧ dlogαj ,

(A.4)

we find that the two forms are oppositely oriented.
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iii) (ac) vs. (bc)

This situation is analogous to case (ii), so we can skip directly to comparing the

graphs. Restricting again to the standard BCFW situation where σ(q) ≡ q mod n

for all q ∈ (a, c), we can perform a sequence of merge/delete and GL(1) rotations on

the corresponding plabic graphs:

αj+1

αj

a b c a b c
αj+1

αj

(A.5)

βj+1

βj

βj

βjβj+1

a b c a b c

(A.6)

We therefore identify

βj = αj+1, βj+1 = αj/αj+1. (A.7)

Then using that dlog (αj/αj+1) = dlogαj − dlogαj+1, we find that the two forms are

oppositely oriented.

iv) (ab) vs (bc)

Using only adjacent transpositions, σ and σ′ do not have a common parent cell.

However, we can show that ρ = σ · (bc)(ab) = σ′ · (ab)(bc) is a shared grandparent.

From the initial (ab), we know a < b ≤ σ(a) < σ(b) ≤ a+n, while from the initial

(bc), we have b < c ≤ σ′(b) < σ′(c) ≤ b+n. From their shared origin cell, we also

have σ(a) = σ′(c), σ(b) = σ′(a), and σ(c) = σ′(b). We will focus on adjacent charts

wherein σ(q) = σ′(q) ≡ q mod n for all q ∈ (a, b) ∪ (b, c). The general case is covered

in section 3.2.

Since σ′(b) < σ′(c) is equivalent to σ(c) < σ(a), and σ(a) < σ(b), we can apply (bc)

to reach σ̃ = σ · (bc). Now σ̃(b) < σ̃(a) < σ̃(c), so (ab) is a valid transposition, which

arrives at ρ. Hence the reference chart w̃ exists.

On the other side, σ(a) < σ(b) is equivalent to σ′(c) < σ′(a), and σ′(b) < σ′(c), so

(ab) can be applied to σ′, yielding σ̃′ = σ′ · (ab). Since σ̃′(a) < σ̃′(c) < σ̃′(b), we can

apply (bc), which also arrives at ρ. Thus w̃′ is also a valid reference chart.
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Finally, we can compare the plabic graphs to find their relative orientation:

αj+1

αj

a b c

αj+2
1/αj+1

1/αj+1

a b c

αj+2

αj

(A.8)

βj+1
βj

a b c

βj+2

βj

a b c

1/βj+1

1/ βj+1

βj+2

(A.9)

After performing a square move (2.9) on (A.9), we find

βj =
αj+1αj+2

αj + αj+2
, βj+1 = αj + αj+2, βj+2 =

αjαj+1

αj + αj+2
. (A.10)

Chugging through a bit of algebra, the result is a positive relative orientation.

v) (ac) vs. (bd)

There is no way to find a common parent using only adjacent transpositions. How-

ever, there is a common grandparent ρ = σ · (bc)(cd) = σ′ · (bc)(ab). Since σ and

σ′ come from a shared origin, we have the following: a < c ≤ σ(a) < σ(c) ≤ a+n

and b < d ≤ σ′(b) < σ′(d) ≤ b+n; and σ(a) = σ′(c), σ(b) = σ′(d), σ(c) = σ′(a), and

σ(d) = σ′(b). We focus on adjacent charts, so σ(q) = σ′(q) ≡ q mod n for all

q ∈ (a, d)\{b, c}. In addition, σ(b) = σ′(d) = b+n and σ′(c) = σ(a) = c.

Since σ(b) = b+n > a+n ≥ σ(c), the transposition (bc) is allowed, which leads

to σ̃ = σ · (bc). Then σ̃(a) < σ̃(b) < σ̃(c) = b+n and σ̃(d) = σ(d) = σ′(b) < b+n.

Therefore (cd) is also allowed, and we arrive at ρ. Therefore w̃ is a valid reference

chart.

For σ′, we use that σ′(c) = c < d ≤ σ′(b), so (bc) is allowed. Thus with σ̃′ = σ′ · (bc),
we have that c = σ̃′(b) < σ̃′(c) < ts′(d) and σ̃′(a) = σ′(a) = σ(c) > c. Hence we can

apply (ab), which yields ρ, so w̃′ is a good reference chart.
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To compute the relative sign, we study the corresponding plabic graphs:

αj+1

αj

a b c

αj+2

d a b c d

αj+2αj
αj+1

 1
αj+1

 

(A.11)

βj+1

βj

βj+2

βj+2

a b c d

βj
βj+1

 
1
βj+1

 

a b c d

(A.12)

They are equivalent under the identifications

βj = αj+1αj+2, βj+1 = αj+1, βj+2 = αj/αj+1. (A.13)

Plugging this into ω′, one finds that the two forms are oppositely oriented.

vi) (bc) vs. (ad)

From the point of view of a graph embedded in a disk, these bridges can be added

in either order:

a b

c

d
(A.14)

However, the adjacency requirement forbids applying (ad) after (bc). Thus we must

look further to find a meeting point, ρ̃, for their reference charts. We will focus on

adjacent charts, leaving the general case for section 3.2.

Since b, c ∈ (a, d), we know σ(b), σ(c) ≡ c, b mod n, so it follows that σ(b) = c and

σ(c) = b+n. Then since σ(a) = σ′(d) ≥ d > c = σ(b), we can next apply (ab).
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Similarly, σ(d) = σ′(a) ≤ a+ n < b+ n = σ(c), we could also apply (cd); this is

unaffected by applying (ab), so we apply it next to arrive at ρ = σ · (ab)(cd).

Finally, (bc) is allowed because ρ(b) = σ(a) = σ′(d) > σ′(a) = σ(d) = ρ(c) and

c < d ≤ σ′(a) < σ′(d) ≤ a+n < b+n. Hence w̃ is a valid reference chart.

From σ′, we are certainly allowed to apply (bc) after (ad), thus arriving at σ̃ = σ · (bc).
We can add (ab) and then (cd) by essentially the same argument as above. Therefore

both w̃ and w̃′ are valid reference charts.

We compare the plabic graphs to find the relative sign. One can either use the

equivalence moves (2.7)–(2.9) or repeatedly apply the transformation rules from cases

(ii)-(iv) to find

αj+2

αj

a b c d

αj+1

a b c d

αj+3

αjαj+2Δ

αjαj+1αj+2αj+3Δ

Δ

αjαj+1 

(A.15)

βj+3
βj+1βj+2

βj

1/βj+1

a b c da d

βj+2

βj

βj+3

βj+1

cb

(A.16)

where we have defined ∆ = 1
/

(αj + αj+3). The graphs are equivalent after the

following identifications:

βj =
αjαj+1αj+2αj+3

αj + αj+3
, βj+1 = αj + αj+3, βj+2 =

αjαj+1

αj + αj+3
, βj+3 =

αjαj+2

αj + αj+3
.

(A.17)

Rearranging the corresponding forms demonstrates that the relative orientation of

the reference charts is −1.

B Assigning edge weights

In this appendix we provide one technique for assigning weights ±1 to every edge in the

poset such that the product of signs around every quadrilateral is −1. The method was

developed by T. Lam and D. Speyer [12].
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B.1 Reduced words

Each decorated permutation can equivalently be represented by one or more reduced words :

minimal-length sequences of letters which obey certain equivalence relations. In this case,

the letters si are generators of the affine permutation group S̃n. They are defined with the

following properties and relations:

si :=

{
σ(i)→ σ(i+ 1)

σ(i+ 1)→ σ(i)
1 ≤ i ≤ n, si+n ≡ si,

s2
i ≡ 1, sisi+1si ≡ si+1sisi+1, sisj ≡ sjsi , |i− j| > 1.

(B.1)

We will refer to the relations in the second line as, respectively, the reduction move, the

braid move, and the swap move. As we showed in Lemma 1, any d-dimensional cell C in

Gr(k, n) can be reached from the top cell by a sequence of k(n− k)− d transpositions si,

and that sequence defines a reduced word labeling C. There are generally many distinct

reduced words for a given cell, but they are equivalent due to the relations in (B.1).

Any two cells C and C ′ of dimensions d and d+ 1, which share an edge in the poset,

i.e. are related by a single boundary operation, are straightforwardly connected in the

language of reduced words. Given a reduced word f of length δ = k(n− k)− d on the

lower-dimensional cell C, there is a unique reduced word f ′ on C ′ of length δ′ = δ − 1

obtained by deleting a single letter from f [23]. Specifically, for f = si1si2 . . . sij . . . siδ ,

there is a unique sij such that f ′ = si1si2 . . . ŝij . . . siδ , where the hat denotes deletion.

It is easy to construct a (generally non-reduced) word t such that f ′ ≡ tf ; one can

check that t = si1si2 . . . sij−1sijsij−1 . . . si2si1 accomplishes the desired effect by repeated

reduction moves. Given that the two cells are also related by a transposition of the

form (ab), it is not surprising that repeated application of the relations (B.1) shows that

t ≡ sasa+1 . . . sb−2sb−1sb−2 . . . sa+1sa, which is a reduced word representation of (ab).

B.2 Decorating edges

Choose a representative reduced word for every cell in the poset; we will refer to this as

the standard word on that cell. This is similar to choosing a particular Lemma 1 sequence

for each cell. From a cell C labeled by the standard word f , every cell C ′ that has C as

a boundary can be reached by deleting some sij from f . This yields a word f ′ on C ′ as

explained above. If f ′ is identical to the standard word on C ′, then weight the corresponding

edge with (−1)j . It is easy to check that deleting two letters sij1 and sij2 in opposite orders

will produce the desired factor of −1 around a quadrilateral. For one order, we would find

(−1)ij1+ij2 , while for the other order we would find (−1)ij1+ij2−1, so they differ by −1.

However, it is not always possible to delete both transpositions in either order. One

may have to delete different transpositions to reach the same cell by two different routes.

Moreover, the final reduced word in each case may be different. Thus, we need to find

the sign difference between two reduced words. Any two reduced words can be mutated

into each other using just the braid and swap moves defined in (B.1). By decorating these

rules with ±1, we can find the desired difference between the words. In fact, we already

determined those signs in appendix A because the generators act as adjacent transpositions.
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The braid move is simply a special case of (iv), so it should be decorated with a +1, and the

swap move is a special case of (i), so it should be decorated with a −1. Hence, the relative

sign between two words is the number of swaps required to transform one into the other.

The number of swaps can be determined directly from the inversion list of each word.

A reduced word creates a unique ordering on the set of inversions in the permutation

labeling the cell (not all orderings are possible). The number of swap moves needed to

transform one word into another is the number of pairs of inversions (i, j) and (k, l), with

all i, j, k, l distinct, in different order in the two inversion lists.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian,

arXiv:1212.5605 [INSPIRE].

[2] S. Franco, D. Galloni and A. Mariotti, The geometry of on-shell diagrams, JHEP 08 (2014)

038 [arXiv:1310.3820] [INSPIRE].

[3] Y. Bai and S. He, The amplituhedron from momentum twistor diagrams, JHEP 02 (2015)

065 [arXiv:1408.2459] [INSPIRE].

[4] N. Arkani-Hamed and J. Trnka, The amplituhedron, JHEP 10 (2014) 030

[arXiv:1312.2007] [INSPIRE].

[5] N. Arkani-Hamed and J. Trnka, Into the amplituhedron, JHEP 12 (2014) 182

[arXiv:1312.7878] [INSPIRE].

[6] S. Franco, D. Galloni, A. Mariotti and J. Trnka, Anatomy of the amplituhedron, JHEP 03

(2015) 128 [arXiv:1408.3410] [INSPIRE].

[7] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].

[8] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 superconformal Chern-Simons

theories and M2-branes on orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].

[9] Y.-T. Huang and C. Wen, ABJM amplitudes and the positive orthogonal Grassmannian,

JHEP 02 (2014) 104 [arXiv:1309.3252] [INSPIRE].

[10] Y.-T. Huang, C. Wen and D. Xie, The positive orthogonal Grassmannian and loop

amplitudes of ABJM, J. Phys. A 47 (2014) 474008 [arXiv:1402.1479] [INSPIRE].

[11] H. Elvang et al., Grassmannians for scattering amplitudes in 4d N = 4 SYM and 3d ABJM,

JHEP 12 (2014) 181 [arXiv:1410.0621] [INSPIRE].

[12] T. Lam and D. Speyer, private communication.

[13] R. Karpman, private communication.

[14] J. Bourjaily, private communication.

– 34 –

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1212.5605
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5605
http://dx.doi.org/10.1007/JHEP08(2014)038
http://dx.doi.org/10.1007/JHEP08(2014)038
http://arxiv.org/abs/1310.3820
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.3820
http://dx.doi.org/10.1007/JHEP02(2015)065
http://dx.doi.org/10.1007/JHEP02(2015)065
http://arxiv.org/abs/1408.2459
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2459
http://dx.doi.org/10.1007/JHEP10(2014)030
http://arxiv.org/abs/1312.2007
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2007
http://dx.doi.org/10.1007/JHEP12(2014)182
http://arxiv.org/abs/1312.7878
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.7878
http://dx.doi.org/10.1007/JHEP03(2015)128
http://dx.doi.org/10.1007/JHEP03(2015)128
http://arxiv.org/abs/1408.3410
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.3410
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://arxiv.org/abs/0806.1218
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1218
http://dx.doi.org/10.1088/1126-6708/2008/09/002
http://arxiv.org/abs/0806.4977
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.4977
http://dx.doi.org/10.1007/JHEP02(2014)104
http://arxiv.org/abs/1309.3252
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.3252
http://dx.doi.org/10.1088/1751-8113/47/47/474008
http://arxiv.org/abs/1402.1479
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.1479
http://dx.doi.org/10.1007/JHEP12(2014)181
http://arxiv.org/abs/1410.0621
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.0621


J
H
E
P
0
8
(
2
0
1
5
)
1
2
0

[15] J.L. Bourjaily, Positroids, plabic graphs and scattering amplitudes in mathematica,

arXiv:1212.6974 [INSPIRE].

[16] A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry,

arXiv:1111.3660.

[17] T. Lam, Notes on the totally nonnegative Grassmannian, unpublished notes, (2013).

[18] A. Postnikov, Total positivity, Grassmannians and networks, math/0609764 [INSPIRE].

[19] R. Karpman, Bridge graphs and Deodhar parametrizations for positroid varieties,

arXiv:1411.2997.

[20] R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons,

Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

[21] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in

Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

[22] A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the

N = 4 super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097]

[INSPIRE].

[23] A. Björner and F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics

231, Springer, Germany (2005) [ISBN:9783540442387].

– 35 –

http://arxiv.org/abs/1212.6974
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.6974
http://arxiv.org/abs/1111.3660
http://arxiv.org/abs/math/0609764
http://inspirehep.net/search?p=find+EPRINT+math/0609764
http://arxiv.org/abs/1411.2997
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.030
http://arxiv.org/abs/hep-th/0412308
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412308
http://dx.doi.org/10.1103/PhysRevLett.94.181602
http://arxiv.org/abs/hep-th/0501052
http://inspirehep.net/search?p=find+EPRINT+hep-th/0501052
http://dx.doi.org/10.1103/PhysRevD.78.125005
http://arxiv.org/abs/0807.4097
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4097
http://dx.doi.org/10.1007/3-540-27596-7
http://dx.doi.org/10.1007/3-540-27596-7

	Introduction
	Background
	Positroid stratification
	Plabic graphs
	Bridge decompositions and charts
	Standard BCFW bridge decompositions
	Generalized decompositions


	Relating distinct charts
	Standard BCFW charts
	Charts with identical 0d cells
	Charts with distinct 0d cells

	Generalized decompositions
	The master algorithm

	Applications
	Comparing residue orientations
	Boundary operator
	Locality of tree contours
	Other non-physical poles

	Details for algorithm 1
	Assigning edge weights
	Reduced words
	Decorating edges


