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representation commutes with a certain A = 2 superconformal algebra. Through the
decomposition of the corresponding twined partition functions into characters of the
N = 4 (resp. N = 2) superconformal algebra, we arrive at mock modular forms which
coincide with the graded characters of an infinite-dimensional Z-graded module for
the corresponding group. The Mathieu groups are singled out amongst various other
possibilities by the moonshine property: requiring the corresponding weak Jacobi
forms to have certain asymptotic behaviour near cusps. Our constructions constitute
the first examples of explicitly realized modules underlying moonshine phenomena
relating mock modular forms to sporadic simple groups. Modules for other groups,
including the sporadic groups of McLaughlin and Higman-Sims, are also discussed.

1 Introduction

The investigation of moonshine connecting modular objects, sporadic groups, and 2d
conformal field theories has been revitalized in recent years by the discovery of several
new classes of examples. While monstrous moonshine [3, 15, 21, 30, 36, 37, 44] remains
the best understood and prototypical case, a new class of umbral moonshines tying
mock modular forms to automorphism groups of Niemeier lattices has recently been
uncovered [13, 14] (cf. also [6]). The best studied example, and the first to be discovered,
involves the group M»4 and was discovered through the study of the elliptic genus of K3
[35]. The twining functions have been constructed in [4, 31, 38, 39] and were proved to
be the graded characters of an infinite-dimensional Mj4-module in [43]. Steps towards a
better and deeper understanding of this mock modular moonshine can be found in [7, 8,
18, 40-42, 46, 56, 57, 59—-61], and particularly in [9], where the importance of K3 surface
geometry for all cases of umbral moonshine is elucidated. Possible connections to space-
time physics in string theory have been discussed in [5, 47-49, 63]. Evidence for a deep
connection between monstrous and umbral moonshine has appeared in [25, 55].
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In none of these cases, however, has a connection to an underlying conformal field
theory® (whose Hilbert space furnishes the underlying module) been established. The
goal of this paper is to provide first examples of mock modular moonshine for sporadic
simple groups G, where the underlying G-module can be explicitly constructed in the
state space of a simple and soluble conformal field theory.

Our starting point is the Conway module sketched in [36], studied in detail in [24], and
revisited recently in [27]. The original construction was in terms of a supersymmetric
theory of bosons on the Eg root lattice, but this has the drawback of obscuring the true
symmetries of the model. In [24], a different formulation of the same theory, as a Z,
orbifold of the theory of 24 free chiral fermions, was introduced. A priori, the theory
has a Spin(24) symmetry. However, one can also view this theory as an N/ = 1 supercon-
formal field theory. The choice of N = 1 structure breaks the Spin(24) symmetry to a
subgroup. In [24] it was shown that the subgroup preserving the natural choice of N' = 1
structure is precisely the Conway group Cog, a double cover of the sporadic group Co;.
In [24] it was shown that this action can be used to attach a normalized principal modu-
lus (i.e. normalized Hauptmodul) for a genus zero group to every element of Coy.

In this paper, we show that generalizations of the basic strategy of [24, 27] can be used
to construct a wide variety of new examples of mock modular moonshine. Instead of
choosing an N = 1 superconformal structure, we choose larger extended chiral alge-
bras A. The subgroup of Spin(24) that commutes with a given choice can be determined
by simple geometric considerations; in the cases of interest to us, it will be a subgroup
that preserves point-wise a 2-plane or a 3-plane in the 24 dimensional representation of
Coyg, or equivalently, a subgroup that acts trivially on two or three of the free fermions
in some basis. In the rest of the paper, we will use 24 to denote the unique non-trivial
24-dimensional representation of Cog, and use the term n-plane to refer to a n-dimen-
sional subspace in 24.

It is natural to ask about the role in moonshine, or geometry, of n-planes in 24 for
other values of #. One of the inspirations for our analysis here is the recent result of Gab-
erdiel-Hohenegger—Volpato [40] which indicates the importance of 4-planes in 24 for
non-linear K3 sigma models. The relationship between their results and the Cop-module
considered here is studied in [25], where connections to umbral moonshine for various
higher # are also established. We refer the reader to Sect. 9, or the recent articles [1, 10],
for a discussion of the interesting case that n = 1.

In this work we will focus on the cases where A is an N = 4 or /' = 2 superconformal
algebra, though other possibilities exist. In the first case, we demonstrate that any sub-
group of Cog that preserves a 3-plane in the 24-dimensional representation can stabilise
an A/ = 4 structure. The groups that arise are discussed in e.g. Chapter 10 of the book by
Conway and Sloane [16]. They include in particular the Mathieu groups M and M. In
the second case, where the group need only fix a 2-plane in order to preserve an N = 2
superconformal algebra, there are again many possibilities (again, see [16]), including
the larger Mathieu groups M3 and M. Note that the larger the superconformal algebra
we wish to preserve, the smaller the global symmetry group is. Corresponding to cer-
tain specific choices of the N = 0, 1, 2,4 algebras, we have the global symmetry groups
Spin(24) D Cog D Ma3 D Moy.
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We should stress again that there are other Cop subgroups that preserve A/ = 4 resp.
N = 2 superconformal algebras arising from 3-planes resp. 2-planes in 24. Some exam-
ples are: the group U4 (3) for the former case, and the McLaughlin (McL) and Hig-
man-Sims (HS) sporadic groups, and also U (2) for the latter case. However, only for
the Mathieu groups do the twined partition functions of the module display uniformly a
special property, which we regard as an essential feature of the moonshine phenomena.
Namely, all the mock modular forms obtained via twining by elements of the Mathieu
groups are encoded in Jacobi forms that are constant in the elliptic variable, in the limit
as the modular variable tends to any cusp other than the infinite one. This property also
holds for the Jacobi forms of the Mathieu moonshine mentioned above, and may be
regarded as a counter-part to the genus zero property of monstrous moonshine, as we
explain in more detail in Sect. 8.

The importance of this property is its predictive power: it allows us to write down
trace functions for the actions of Mathieu group elements with little more information
than a certain fixed multiplier system, and the levels of the functions we expect to find.
A priori these are just guesses, but the constructions we present here verify their validity.

This may be compared to the predictive power of the genus zero property of monstrous

if the stabilizer of ico in I is generated by £ 01
-1

moonshine: if ' < SLy(R) determines a genys zero quotient of the upper-half plane, and
( 3, then there is a unique I'-invariant hol-

omorphic function satisfying Tr(t) = ¢~ + O(g) as T — ioo, for g = €*"*. The miracle
of monstrous moonshine, and the content of the moonshine conjectures of Conway—
Norton [15], is that for suitable choices of ', the function 7T is the trace of an element
of the monster on some graded infinite-dimensional module (namely, the moonshine
module of [36, 37]). The optimal growth property formulated in [14] plays the analogous
predictive role in umbral moonshine, and is similar to the special property we formulate
for the Mathieu moonshine considered here.

We mention here that although the moonshine conjectures have been proven in the
monstrous case by Borcherds [3], and verified in [7, 28, 43] (see also [6]) for umbral
moonshine, conceptual explanations of the genus zero property of monstrous moon-
shine, and of the analogous properties of umbral moonshine, and the Mathieu moon-
shine studied here, remain to be determined. An approach to establishing the genus zero
property of monstrous moonshine via quantum gravity is discussed in [29].

The organization of the paper is as follows. We begin in Sect. 2 with a review of the
module discussed in [27]. In Sect. 3, we describe methods for endowing this module
with /' =4 and N = 2 structure. In Sect. 4, we discuss what this does to the mani-
fest symmetry group of the model, reducing the symmetry from Cog to a variety of
other possible groups which preserve a 3-plane (respectively 2-plane) in the 24 of
Cop. In Sects. 4 and 5, we discuss the action of these Cop-subgroups on the mod-
ules and compute the corresponding twining functions. We identify My3, Moy, McL,
HS, Us(2) and U4 (3) as some of the most interesting Cop-subgroups preserving some
extended superconformal algebra. In Sects. 6 and 7, we discuss in some detail the
decomposition of the graded partition function of our chiral conformal field theory
into characters of irreducible representations of the A/ = 4 and N = 2 superconfor-
mal algebras. In Sect. 8, we discuss the special property we require from a moon-
shine twining function, and show how this property singles out the Mathieu groups
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in our setup. We close with a discussion in Sect. 9. The appendices contain a number
of tables: character tables for the various groups we discuss, tables of coefficients of
the vector-valued mock modular forms that arise as our twining functions, and tables
describing the decompositions of our modules into irreducible representations of the

various groups.

2 The free field theory

The chiral 2d conformal field theory that will play a starring role in this paper has two
different constructions. The first is described in [37] and starts with 8 free bosons X!
compactified on the 8-dimensional torus given by the Eg root lattice, together with their
Fermi superpartners y’. One then orbifolds by the Z, symmetry

XLy — (=X, —yh). Q2.1

Note that, in more mathematical terms, a chiral 2d conformal field theory can be under-
stood to mean a super vertex operator algebra (usually assumed to be simple, and of
CFT-type in the sense of [23]), together with a (simple) canonically-twisted module.
These two spaces are referred to as the Neveu—-Schwarz (NS) and Ramond (R) sectors
of the theory, respectively. The compactification of free bosons on the torus defined by
a lattice L manifests, in the NS sector, as the usual lattice vertex algebra construction,
and their Fermi superpartners are then realized by a Clifford module, or free fermion,
super vertex algebra, where the underlying orthogonal space comes equipped with an
isometric embedding of L. In the cases under consideration, there is a unique simple
canonically-twisted module up to equivalence (cf. e.g. [24]), and hence a unique choice
of R sector.

The orbifold procedure is described in detail in the language of vertex algebra in [24].
In what follows, a field of dimension d is a vertex operator or intertwining operator
attached to a vector v in the NS or R sector, respectively, with L(0)v = dv. A current is
a field of dimension 1. A field is called primary if its corresponding vector is a highest
weight for the Virasoro (Lie) algebra. A ground state is an L(0)-eigenvector of minimal
eigenvalue.

The Eg construction just described has manifest A/ = 1 supersymmetry, in the sense
that the Neveu—-Schwarz and Ramond algebras act naturally on the NS and R sectors,
respectively. After orbifolding we obtain a ¢ = 12 theory with no primary fields of
dimension % The partition functions (i.e., graded dimensions) of this free field theory
can easily be computed. For example, the NS sector partition function is given by

1 (Es(D)bs(r,00%  04(1,00* _ 6(z,0)
7 — 16 .
Ns,E8(T) 5 < 7(0)12 + 60>(t,0)* 64 (7, 0)* ¢
=q Y2 404 2764Y% 4 2048¢ + 11202¢%% + - .-, (2.3)

where Ej; is the weight 4 Eisenstein series, being the theta series of the Eg lattice,
n(r) = g'/* Hiozl (1 — g") is the Dedekind eta function, and 6; are the Jacobi theta func-

tions recorded in “Appendix A” We have also set g = €(r) and we use the shorthand

27T ix

notation e(x) = e“™** throughout this paper.
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One recognizes representations of the Co; sporadic group appearing in the g-series
(2.3): apart from 276, which is the minimal dimension of a faithful irreducible represen-
tation (cf. [31]), one can also observe

2048 =14 276 + 1771, (2.4)
11202 =1 + 276 + 299 + 1771 + 8855, 2.5)

In fact, this theory has a Cop = 2.Co; symmetry, which we call non-manifest since the
action of Cog is not obvious from the given description. Note that we sometimes use # or
Zy, to denote Z/nZ depending on the context.

A better realization, for our purposes, was discussed in detail in [28] (cf. also [40]). The
Eg orbifold theory is equivalent to a theory of 24 free chiral fermions 41, Ay, . . ., 424, also
orbifolded by the Zj; symmetry 4, — —/Z,. This gives an alternative description of the
Conway module above. The partition function from this “free fermion” point of view is
more naturally written as

4

12
ZNS fermion (7) = % Z; % : 2.6)
This is equal to (2.2) according to non-trivial identities satisfied by theta functions. Note
that 01 (7,0) = 0.

The free fermion theory has a manifest Spin(24) symmetry, but not a manifest N' = 1
supersymmetry. However, one can construct an N = 1 supercurrent as follows. There
is a unique (up to scale) NS ground state, but there are 212 = 4096 linearly independent
Ramond sector ground states, which may be obtained by acting on a given fixed R sector
ground state with the fermion zero modes 4;(0). It will be convenient to label the result-
ing 4096 Ramond sector ground states by vectors s € F% where Fy = {—1/2,1/2).

We therefore have 4096 spin fields of dimension % which implement the flow from the
NS to the R sector. Denoting these fields as JV, one can try to find a linear combination

W=D @l 2.7

f12
sel;

which will serve as an N = 1 supercurrent (i.e., field whose modes generate actions of
the Neveu-Schwarz and Ramond super Lie algebras). As demonstrated in [28], and as
we will review in the next section, there exists a set of values ¢ such that the operator
product expansion of W and the stress tensor T close properly, defining actions of the
Neveu-Schwarz and Ramond algebras.

Any choice of W breaks the Spin(24) symmetry, since the Ramond sector ground states
split into two 2048-dimensional irreducible representation of Spin(24). It is proven in
[28] that the subgroup of Spin(24) that stabilizes a suitably chosen A/ = 1 supercurrent
is exactly the Conway group Coo. In brief, the method of [28] is to identify a certain ele-
mentary abelian subgroup of order 2!2 in Spin(24) (which should be regarded as a copy
of the extended Golay code in Spin(24)). The action of this subgroup on the Ramond
sector ground states singles out a particular choice of W, with the property that it is not
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annihilated by the zero mode of any dimension 1 field in the theory. It follows from this
(cf. Proposition 4.8 of [28]) that the subgroup of Spin(24) that stabilizes W'is a reductive
algebraic group of dimension 0, and hence finite. On the other hand, one can show (cf.
Proposition 4.7 of [28]) that this group contains Cog, by virtue of the choice of subgroup
212 We obtain that the full stabilizer of W in Spin(24) is Cog by verifying (cf. Proposition
4.9 of [28]) that Cog is a maximal subgroup, subject to being finite.

In the rest of this paper, we extend this idea as follows. Instead of choosing an N' =1
supercurrent and viewing the theory as an A =1 super conformal field theory, we
choose various other super extensions of the Virasoro algebra. We will argue that N' = 4
and A = 2 superconformal presentations of the theory are in one to one correspond-
ence with choices of subgroups of Cog which fix a 3-plane (respectively, 2-plane) in the
24 dimensional representation. This leads us naturally to theories with various inter-
esting symmetry groups, whose twining functions are easily computed in terms of the
partition function (or elliptic genus) of the free fermion conformal field theory. These
functions in turn are expressed nicely in terms of mock modular forms, and thus we
establish mock modular moonshine relations for subgroups of Coq via this family of
modules.

3 The superconformal algebras
We first discuss the largest superconformal algebra (SCA) we will consider, which gives
rise to smaller global symmetry groups. We will construct an A/ = 4 SCA in the free
fermion orbifold theory. Our strategy is to first construct the SU(2) fields, and act with
them on an N =1 supercurrent to generate the full N’ =4 SCA. We consequently
obtain actions of the A/ = 2 SCA by virtue of its embeddings in the N = 4 SCA. In this
process, we break the Cop symmetry group down to a proper subgroup as we will discuss
in Sect. 4. We refer the reader to [32, 50, 52] for background on the N' =4 and N = 2
superconformal algebras.

We start with 24 real free fermions 11, Ay, . . ., 424 . Picking out the first three fermions,
we obtain the currents J;:

Ji = —i€jlidic, i,j,k €{1,2,3}. 3.1

They form an affine SU(2) algebra with level 2 as may be seen from their operator prod-
uct expansion (OPE),

L
T 0) ~ —8 + ielyk/k(O). 3.2)

The next step is to pick an A/ = 1 supercurrent and act with J; on it. As we reviewed in
Sect. 2, an N = 1 supercurrent exists in this model and may be written as a linear com-
bination of spin fields. Moreover, it may be chosen so that its stabilizer in Spin(24) is
precisely Cop. We will present a very general version of the construction now, and then
extend it to find the V' = 4 SCA.

To write the N = 1 supercurrent explicitly, we first group the 24 real fermions into 12
complex ones and bosonize them:
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Vo =22 (hog1 + idog) = €M,

Va=2"12Ugp1 —idoe) e e, g=1,2,...,12. (3.3)

In terms of the bosonic fields H = (Hj, . . ., H13), an ' = 1 supercurrent W may be writ-
ten as

W = Z WseiSAHCs(P);

fl2
selFy

(3.4)

where each component of s = (s1, 2, . . .,s12) takes the values +1/2, and the coefficients
ws belong to C. We have introduced cocycle operators cs(p) to ensure that the fields
with integer spins (i.e., corresponding to even parity vectors) commute with all other
operators, and the fields with half integral spins (corresponding to odd parity vectors)
anticommute amongst themselves. The cocycle operators depend on the zero-mode
operators p which are characterized by the commutation relation

[P, eiloH} = ke'*H, 3.5)

where k = (ky, ..., k12) is an arbitrary 12-tuple of complex numbers.
The associativity and closure of the OPE of the “dressed” vertex operators

Vi = Mo (p) (3.6)
requires that

ck(p + K)ew (p) = e(k, K)ew4i (P), (3.7)
where the e (k, k') satisfy the 2-cocycle condition

e, KN ek + K, K") = e(X, k") ek, k' + k). (3.8)
Moreover, in order for V) to have the desired (anti)commutation relation, the condition

el k) = (—1)KK+RK2 (10 1) (3.9)

should be imposed. An explicit description of the cocycle for a general vertex operator
e™®H may be chosen as
ck(p) = e™EMP (3.10)

according to [33]. In our case, M is a 12 x 12 matrix that has the block form

R XS
M=| 14 My 0 |, My = ; (3.11)
L 1. M 11 0 0
4 T4 -11 -10
where 14 is the 4 x 4 matrix with all entries set to 1.
Generically, the OPE of W with itself is
W W©) ~aw| = + | 4 WL i 0)
z ~ww|— Jal ,
23 4z 9%z arply 48 (3.12)
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where we have defined

Ws = W_gC_g(8), (3.13)

By s 8
re87% — (rerfrrrd) e o —s)(—zsr%m) (_25%) (—2%”1) (_25(%1),
(3.14)
for @ < B < y < 8. The other components of '*#7% are defined by the requirement that

it is totally antisymmetrized. For W to be an A/ = 1 supercurrent, the last terms in (3.12)
must vanish,

wrw =0,  Va,B,y,8 €{1,2,...,12}, (3.15)

and the first two terms must have the correct normalization,

ww = 2;2 Ww_sWwsCs(—s) = 8. (3.16)
self;
From now on we presume to be chosen a solution (ws) such that Wis an N = 1 super-
current stabilized by Cog, as described in Sect. 2.
We may now act with the SU(2) currents J; on our N' = 1 supercurrent W. In order to
do this, write the SU(2) currents in (3.1) in bosonized form,

= _% (eiH1 _ e—iHl) (eineiﬂpl + e—ine—iﬂpl), (3.17)

= é(e‘H‘ + e_iHl) (e’HZei’””1 + e_iH2e_i”p1), (3.13)

J3 = i0H;. (3.19)
Here we have included the cocycles ™71, We now extract the singular terms of the
OPEs,

Ji2)W (0) ~ —ZLZWi(O): (3.20)

where W; are slightly modified combinations of spin fields,

Wi == 2swre™Hey(p), (3.21)
S
Wy =i dsisowese™Hes(p), (3.22)
S
W3 =i 2sweeHeg(p), (3.23)

s

and where Rs = (—s1, —$2,53,...,512).

Page 8 of 89
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We claim that all three W; defined above are valid A" = 1 supercurrents. This is
because we may obtain, for instance, W3 from W by rotating the 1-2 plane by 7, and
the conditions (3.15) and (3.16), for being an A = 1 supercurrent, are invariant under
SO(24) rotations. We may obtain W5 and W3 similarly. This shows that each of the W/ is
an A/ = 1 supercurrent.

Furthermore, we can check using the identity (3.15) that the OPEs of the W; are given

by
8 2 . 2 1
Wi(2) W;(0) ~ 8; L,) + ZT(O)] + i€k szkw) + /0|, (3.24)
2 d
W (2) W;(0) ~ —2z(22 + Z)f,-<0>, (3.25)
Ji(2)W;(0) ~ é(&,w + e Wi). (3.26)

This shows that W, W}, and J;, together with the stress tensor T, defined as

1 1
T=-2 gzaaia =— Z OHa0H,, (3.27)

form an A =4 SCA with central charge ¢ = 12. We may recombine the four ' =1

supercurrents W, W; into the more conventional A/ = 4 supercurrents
wiE=27"Y2(w £+ iws), Wi = 2712wy +iWs), (3.28)

which transform according to the representation 2 4+ 2 of SU(2). In terms of these super-
currents we obtain the standard (small) A" = 4 SCA with central charge ¢ = 12, charac-
terized by the following set of OPEs:

6 2 1
T@TO) ~ 5+ 5T0) +-dT(0), (3.29)
=+ 3 =+ 1 +
TR W (0) ~ 55 Wz (0) + —aW; (0), (3.30)
1 1
T(@)Ji(0) ~ —Ji(0) + —9/i(0), (3.31)
. _ 8 2 ) 1
W, (@)W, (0) ~ 8| — +=T(0)| —20,,|5/i(0) + -0Ji(0) |, (3.32)
zZ z z zZ
W)W, (0) ~ W, ()W, (0) ~ 0, (3.33)
1 .
Jiz) W (0) ~ —ﬂa;,,W,j (0), (3.34)

— 1 ik yyy—
Ji@ Wy (0) ~ o, W, (0), (3.35)
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L
Ji@0) ~ —8 + iezykfk(0>. (3.36)

Here o/ are the Pauli matrices.

Now we can generalize our formula for the partition function (2.6) to include a grading
by the U(1) charge under the Cartan generator of the SU(2). The U(1) charge operator
Jo is, by definition, twice the zero-mode of the /3 current. From this and the definition
J3 = —iA A9 = YY1, we see that under Jy the complex fermion 1 has charge 2 while the
other 11 complex fermions are neutral. Therefore, the U(1)-graded NS sector partition
function becomes

1 4
Zns(1,2) =5 )

i=2

0;(t,22) 6;(z,0)11
()12 : (3.37)

In the above discussion, we have chosen the first three fermions out of a total of 24
to generate a set of SU(2) currents. Together with an A/ = 1 supercurrent they gen-
erate a full ' =4 SCA. It is clear that we are free to choose any three fermions for
this purpose. In fact, we could choose an arbitrary three-dimensional subspace of the
24-dimensional vector space spanned by the fermions, and obtain an A/ = 4 SCA. For
a given A/ = 1 supercurrent, not all choices of 3-plane are equivalent, as we will see in
Sect. 4.

Observe that we could instead have chosen to single out only two real fermions, and
construct a U(1) current algebra instead of an SU (2) current algebra. Completely analo-
gous manipulations then show that each such choice provides an N = 2 superconformal
algebra. As a result we can equip the Cog theory with A/ = 2 structure in such a way that
the global symmetry group is broken to subgroups G of Cog which stabilize 2-planes in
24.

To summarize the results of this section, we have shown how to construct an N’ =1
supercurrent for the chiral conformal field theory described, in the previous section,
as an orbifold of 24 free fermions. We have also shown how choices of 2- and 3-planes
in the space spanned by the generating fermions give rise to actions of the A/ = 2 and
N = 4 superconformal algebras (respectively) on the theory. As reviewed in Sect. 2, a
suitable choice of A/ = 1 structure reduces the global symmetry of the theory to Coo. In
the next section we will discuss the finite simple groups that appear when we impose the
richer, N' = 2 and A/ = 4 superconformal structures.

4 Global symmetries

Enhancing the N = 1 structure of the theory to N/ = 4 breaks the Cog symmetry. We
now show that for a specific choice of 3-plane in 24, resulting in a specific copy of
the A/ =4 SCA, the stabilising subgroup of Coy is the sporadic group Myy. Similarly,
for a specific choice of 2-plane, resulting in a specific copy of the /' = 2 SCA, the sta-
bilising subgroup of Cog is the sporadic group Ms3. This amounts to a proof that the
model described in Sect. 2 results in an infinite-dimensional My (resp. My3)-module
underlying the mock modular forms described in Sect. 6 (resp. Sect. 7) arising from its
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interpretation as an V' = 4 (resp. ' = 2) module. More generally, we establish the mod-
ules for 3- (2-)plane-fixing subgroups of the largest Mathieu group Moq4 by fixing a spe-
cific copy of NV = 4 (N = 2) SCA.

Recall that the theory regarded as an N = 0 theory (i.e., with no extension of the
Virasoro action) has a Spin(24) symmetry resulting from the SO(24) rotations on the
24-dimensional space, and a suitable choice of A/ = 1 supercurrent breaks the Spin(24)
group down to its subgroup Cop. The group Cog is the automorphism group of the Leech
lattice Ajeecy and various interesting subgroups of Cog can be identified as stabilizers of
suitably chosen lattice vectors in Ajge. To study the automorphism group of the mod-
ule when fixing more structure—more supersymmetries in this case—it will therefore be
useful to describe the enhanced supersymmetries in terms of Leech lattice vectors.

In Chapter 10 of [16] it is shown that if we choose an appropriate tetrahedron in the
Leech lattice, whose edges have lengths squared 16 x (2,2,2,2,3,3) in the normali-
sation described below, the subgroup of Cog that leaves all vertices of the tetrahedron
invariant is M»y. To be more precise, let e, for y € {1,2,...,24}, be an orthonormal
basis of R24, and choose a copy G of the extended binary Golay code in P({1,...,24}).
Then we may realize A, as the lattice generated by the vectors 2 ZV cc ey for
C € G together with —4e; + 2}2,4:1 e,. (One can show that all 24 vectors of the form
—4de, + 272/4:1 e, are in Apee.;.) Define the tetrahedron T, gy to be that whose four verti-
cesare O = 0, X, = 4de, + 232/4:1 e, Xg =4deg + 212/4:1 e, and Pyp = 4ey + 4ep, for any
a,B €{l,2,...,24} with o # B. For every such T(4,g), the subgroup fixing every vertex
is a copy of My, a sporadic simple group of order 27 - 32 - 5.7 .11 = 443,520 and the
subgroup of My fixing e, and eg.

From the above discussion, it is clear that given {«, 8}, a copy of M», stabilises the real
span of ey, eg and 212/4:1 e,. Given a suitable choice of the /' = 1 superconformal alge-
bra, this copy of R? in 24 then determines, up to rotations, the three fermions, denoted
/12,3 from which the SU(2) current algebra was built in Sect. 3. By definition then, a
copy of My; leaves the A/ = 4 superconformal algebra invariant.

A natural question is: what is the symmetry group G that fixes a given choice of N' = 2
superconformal structure? Given the above description of the My action, we can choose
the R? C R3 generated by e, and 212,4:1 e, and use the two free fermions lying in the R?
to construct the A/ = 2 sub-algebra of the A/ = 4 SCA. Specifically, the L(1) action is
rotation of the R? From the above discussion, it is not hard to see that there is a copy
of My3 fixing e, and 212,4:1 e, and hence stabilising the ' = 2 structure. Recall that Mo3
is a sporadic simple group of order 27 - 32 .57 - 11 - 23 = 10, 200, 960. In terms of the
Leech lattice, it corresponds to the fact that the stabiliser of the triangle in A, whose
edges have lengths squared 16 x (6, 3, 2), with vertices chosen to be O, X, and 2 2)2,4:1 e,
, is a copy of M>3 inside the copy of Cog stabilising A eecp-

This furnishes a proof that the theory described in Sect. 2 leads to modules for My
and Mj3 which explicitly realize the mock modular forms to be defined in Sects. 6 and 7.

We should mention that by stabilizing different choices of geometric structure, other
than the tetrahedron and triangle just discussed, leading to My and Ma3, respectively,
we can determine other global symmetry groups G. Indeed, our method constructs a
G-module with V' =4 (N = 2) superconformal symmetry for any subgroup G < Cog
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which fixes a 3-plane (2-plane) in 24. Since, as we will see in Sect. 6 (Sect. 7), such mod-
ules furnish assignments of mock modular forms to the elements of their global symme-
try groups, it is an interesting question to classify the global symmetry groups G < Cog
that can arise. We conclude this section with a discussion of some of these possibilities.
Certainly a full classification is beyond the scope of this work, so we restrict our atten-
tion (mostly) to sporadic simple examples.

Indeed, the Conway group Coy is a rich source of sporadic simple groups, for no less
than 12 of the 26 sporadic simple groups are involved in Cog (cf. [17]), in the sense that
they may be obtained by taking quotients of subgroups of Cog. Of these 12, all but 3 are
actually realised as subgroups, and 6 of these 9 sporadic simple groups appear as sub-
groups of Cog fixing (at least) a 2-plane in 24. These six 2-plane fixing groups are the
smaller Mathieu groups, Ma3, Maa, Mi2 and M1, the Higman-Sims group HS, and the
McLaughlin group McL. Some 2-planes they fix are described explicitly in Chapter 10 of
[16].

N = 4 modules

From the character tables (cf. [17]) of the six sporadic 2-plane fixing subgroups of Cog
it is clear that M»; and M are the only examples that fix a 3-plane. Even though M;; is
not a subgroup of My, it turns out that the mock modular forms attached to My by our
N = 4 construction (and the analysis of Sect. 6) are a proper subset of those attached to
My, since the conjugacy classes of Cog appearing in a 3-plane-fixing subgroup My, are
a proper subset of those appearing in a subgroup My;. For this reason we focus on Ma
when discussing mock modular forms attached to sporadic simple groups via the ' = 4
construction in this work.

If we expand our attention to simple, not necessarily sporadic subgroups of Cog, then
there is one example which is larger than My, (which has order 443,520). Namely, the
group Uy (3), with order 3,265,920, can arise as the stabilizer of a suitably chosen 3-plane
in the 24 of Cog [16]. The U4(3) characters are presented in Appendix Table 20, the
coefficients in the associated (twined) vector valued mock modular forms in Appendix
Tables 3 and 4, and the decomposition of the module into irreducible representations of
the group in Appendix Tables 26 and 27.

As we shall see in Sect. 8, the Jacobi forms attached to My, (and therefore also those
attached to M) by the A/ = 4 construction are distinguished in that they satisfy a nat-
ural analogue of the genus zero condition of monstrous moonshine. By contrast, this
property does not hold for all the Jacobi forms arising from Uy (3). This is the main rea-
son for our focus on My, in the context of N' = 4 supersymmetry (Appendix Tables 1, 2,
5,6, 15).

N = 2 modules

We have focused on the example of Mys, with order 10,200,960, in this section. Since
Myjy and M are subgroups of M3 we do not consider them further in the context of
N = 2 structures. Of the remaining sporadic simple 2-plane-fixing subgroups of Cog,
the largest is the McLaughlin group McL, which is actually considerably larger than
M3, having order 898,128,000. Its characters are presented in Appendix Table 21, the
coefficients of the (twined) mock modular forms in Appendix Tables 7 and 8, and the
decomposition of the module into irreducible representations of the group in Appendix
Tables 33, 34, 35, 36, 37, 38.
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The next largest example, also larger than My3, is the Higman-Sims group HS, with
order 44,352,000. Its characters are presented in Appendix Table 22, the coefficients of
the (twined) mock modular forms in Appendix Tables 9 and 10, and the decomposition
of the module into irreducible representations of the group in Appendix Tables 39, 40,
41, 42, 43, 44.

If we expand our attention to simple groups fixing a 2-plane in 24 then there is one
example larger than McL. Namely, the group Us(2), of order 9,196,830,720, fixes any tri-
angle in 24 whose three sides are vectors of minimal length in the Leech lattice. The
characters of Us(2) are given in Appendix Tables 17, 18, 19, the coefficients of the
(twined) mock modular forms in Appendix Tables 11, 12, 13, 14, and the decomposition
of the module into irreducible representations of the group in Appendix Tables 45, 46,
47,48, 49, 50, 51, 52, 53, 54.

In direct analogy with the case of N = 4 structure, it will develop in Sect. 8 that the
Jacobi forms attached to M;9 and Mos satisfy a natural analogue of the genus zero condi-
tion of monstrous moonshine, and, contrastingly, this property fails in general for the
modular forms arising from the other, non-Mathieu, 2-plane-fixing simple groups men-
tioned above. For these reasons, and since M3 is relatively small, we focus on M»3 in our
discussion of A' = 2 supersymmetry.

5 Twining the module

In the last sections, we have described how to equip the orbifolded free fermion the-
ory with A/ = 4 and NV = 2 superconformal structures. In this section we will use the
Ramond sector of our theory to attach two variable formal power series—the g-twined
graded R sector partition function, cf. (5.10)—to each element g € Coy that preserves at
least a 2-plane in 24.

Let us denote the Ramond sector by V, and let us choose a U(1) charge operator Jy.
This will be twice the Cartan generator of the SU(2) in the N/ = 4 case, or the single
U(1) generator in the case of ' = 2 SCA. Then it is natural to define the Ramond-sector
U(1)-graded partition function, or elliptic genus,

Z(t,2) = Try(=Dfghome?hyb (5.1)
1 1 . i+1 11
=320 > (=10(x,22)6! (7,0) (5.2)
=2

_ 1E(0)8i(z,2) 824: (Gi(r,2)>4

T2 n2(n) 6,(z,0) (5.3)

i=2

where we have introduced a chemical potential for the Jy charges and set y = e(z)
for z € C. Also, we define (—1)f as an operator on V by requiring that it act as Id on
the untwisted free fermion contribution to V, and as —Id on the twisted fermion
contribution.

As is expected for 2d conformal field theories with A > 2 supersymmetry, the
elliptic genus (5.1) transforms as a Jacobi form of weight 0, index m = ¢ and level 1.
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Explicitly, and since ¢ = 12 in our case, this means that Z|5(4, u) = Z for all 4, u € Z,
and Z|pay = Z for all y € SLy(Z), where the elliptic and modular slash operators are
defined by

(@lm(l ) (T,2) = e(m(P*T + 2/2)p(t, 2 + it + ),

2

5.4
Blimy) (0,2 = el-mE)er + ) Fo (eth, 220, ©

respectively, for 4, u € Z and y = (Z 2) € SLy(Z). (A Jacobi form of level N is only
required to satisfy ¢|x .,y = ¢ for y in the congruence subgroup I'g(N) (cf. (6.24)).)

As we have seen in Sect. 2, the two different ways of writing this function, (5.2) and
(5.3), are intuitively connected more closely with the free fermion and Eg root lattice
descriptions of the theory, respectively. Of course, the U/(1)-graded NS sector partition
function (3.37) is related to the above, graded Ramond sector partition function by a
spectral flow transformation

Zns(t,2) = ¢ 2y 2 Z (1,2 — L), (5.5)

There is a natural way in which one can twine the above function under certain sub-
groups of Cop. From the previous discussions, we see that the representation 24 plays
a central role in the way various subgroups of Cog act on the model. Let’s denote by £, «
and Lo o for k =1,...12, the 12 complex conjugate pairs of eigenvalues of g € Cog when
acting on 24. This information is conveniently encoded in the so-called Frame shape of

g given by

Hg=Han", 1<Li<Ly<lL3y---, and m, € Z,m, #0,
n

satisfying ), L,m, = 24, through the fact that the 12 pairs {£,, fg,k} are precisely the
24 roots solving the equation

[[e" - 1™ =o.

As discussed in Sects. 3 and 4, in order to preserve at least A = 2 superconformal
symmetry and hence be able to twine the graded R-sector partition function (5.1), the
subgroup G must leave at least a 2-dimensional subspace in 24 pointwise invariant. In
the graded partition function this corresponds to leaving the factor 6;(t,2z) in (5.2)
invariant. As a result, for every conjugacy class [g] of such a group G we can choose
Ly = Eg,l = 1. It is easy to see that when acting on the untwisted free fermions of the
theory, contributing the terms involving 6; with i = 3,4 in (5.2), the group element g sim-
ply replaces 61 (t,0) with

12

116 o) (5.6)

k=2

where e(pg ) = €g -
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When trying to do the same for the contribution from the twisted fermions, contribut-
ing the term involving 6 in (5.2), however, we see that the above simple consideration
suffers from an ambiguity. This can be seen from the fact that 62(z, p) = —62(7, p + 1),
and hence the answer cannot be determined simply by looking at the g-eigenvalues on
24. This of course is a reflection of the fact that the global symmetry group, with no
superconformal structure imposed, is Spin(24), which is a 2-fold cover of SO(24). As a
result, to specify the twining of the twisted fermion contribution, we also need to know
the action of G on the faithful 2!2-dimensional representation of Spin(24) spanned by
Ramond sector ground states in the free fermion theory (cf. Sect. 2), henceforth denoted
4096, which decomposes as 4096 = 1 + 276 + 1771 + 24 + 2024 in terms of the irre-
ducible representations of Coy.

Note that, according to the orbifold construction, just “half” of the Ramond sec-
tor ground states in the free fermion theory will contribute to the Ramond sector V of
the orbifold theory under consideration. In terms of the Cog action, the two “halves”
are 24 + 2024, where Coy acts faithfully, and 1 4+ 276 + 1771, where the action factors
through Co; = Cog/2. In practice, both choices give rise to equivalent theories (i.e., iso-
morphic super vertex operator algebras, cf. [24, 27]), but they are inequivalent as Cog
-modules. For us, the ground states represented by 24 + 2024 lie in the R sector, V, and
the 1in 1 + 276 + 1771 represents the Cog-invariant N = 1 supercurrent in the NS sec-
tor of our orbifold theory.

The above discussion serves to remind us that there is, really, a vanishing term

0= 1Lel(r 22)011 (7, 0) 57

2 iz AT (5.7)
in (5.2), which, for certain g € Cop, will make a non-vanishing contribution to the
g-twined version of (5.1). It vanishes when g = e is the identity because the Ramond sec-
tor ground states in the free fermion theory come in pairs with opposite eigenvalues for
(—1)f. Moreover, exchanging the pair corresponds to complex conjugation ¥, <> V¥,
for a =1,...,12, of the complex fermions. Recall that one of the complex fermions,
denoted v; in (3.19), was used to construct the U(1) charge operator Jo, and we are inter-
ested in the graded partition function where we introduce a chemical potential z for this
operator. Because exchanging 11 <> ¥ also induces a flip of /(1) charges, captured by
z <> —z, the contribution of the first complex fermion does not vanish, corresponding to
the fact that the identity

01(t,2) = 01(7,z +2) = —01(7, —2) (5.8)

only forces 61 (7, z) to vanish at z € Z. Consequently, the g-twining of (5.7) makes a non-
zero contribution to the g-twining of (5.2) if and only if py ¢ Z for allk =2,...,12. In
other words, it is non-zero only when the cyclic group generated by g fixes nothing but a
2-plane.

By inspection we find that, among the groups we consider, such group elements
must be in the conjugacy classes 23AB C M3, 6AB,12AB, 12DE, 18AB C Us(2),
15AB, 30AB C McL, or 20AB CHS. The pairs of these conjugacy classes corresponding
to the letters A and B (or D and E) are mutually inverse, and so their respective traces,
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on any representation, are related by complex conjugation. In terms of our construction,
choosing one over the other is the same as choosing what one labels /1 and 1, and the
same as choosing an orientation on the 2-plane fixed by the group element in 24. As a
result, from (5.8) we see that the 6; term in the partition functions twined by these con-
jugate A (D) and B (E) classes come with an opposite sign.

Let us work with the principal branch of the logarithm, and choose p,« € [0,1/2] in
(5.6). Then, by direct computation—we must compute directly, for the choice of labels

for mutually inverse conjugacy classes is not natural—we find that the signs in (5.10) are

23A C M3,

204 C HS,

154 U304 C McL, (5.9)
124 U 12D U 6B U 18B C Ug(2),

leg1 = 1for gin

and €51 = —1 for the inverse classes, 23B C Ma3, 208 C HS,&c.

Putting these different contributions together, we conclude that for every [g] C G
where G is a subgroup of Cog preserving (at least) a 2-plane in 24, the corresponding
g-twined U(1)-graded R sector partition function reads

Zy(t,2) = T ryg(—1)fghoe/24y0 (5.10)
1 1 4 ) 12
= 3 mm 2D e 01, 22) [ ] 0u(r. g, (5.11)
mr i=1 k=2
where

212 T[;2, cos(mpg )

—_Trase¢ o (_1 1} when Hli2=1 cos(pg ) # 0
€g2 = (5.12)
¢ 0 when H,l(zzl cos(mpgx) =0

€g3 = €ga = 1, (513)

and where the €, 1 are as determined in the preceding paragraph.

In this section we have introduced the g-twined U(1)-graded Ramond sector partition
function, or g-twined elliptic genus of our theory, Z, for any g € Cog fixing a 2-plane in
24. We have also derived an explicit formula (5.10) for Z,, in terms of the Frame shapes
I, and values T r4096g. This Frame shape and trace value data is collected, for g € G,
for various G C Coy, in “Appendix B” In Sects. 6 and 7 we will see how the above twin-
ing leads to the mock modular forms playing the role of the McKay—Thompson series in
these new examples of mock modular moonshine.

6 The N = 4 decompositions

From the discussion in Sect. 3 it is clear that the orbifold theory discussed in Sect. 2
can be equipped with A/ = 4 superconformal structure. In this section we will study the
decomposition of the Ramond sector V into irreducible representations of the A = 4
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SCA and see how the decomposition leads to mock modular forms relevant for the M,
moonshine which we will discuss in Sect. 8.

Recall (cf. [32]) that the A/ = 4 superconformal algebra contains subalgebras isomor-
phic to the affine SU(2) and Virasoro Lie algebras. In a unitary representation the former
of these acts with level m — 1, for some integer m > 1, and the latter with central charge
c=6(m—1)

The unitary irreducible highest weight representations vgﬁ are labeled by the
eigenvalues of Lo and %]03 acting on the highest weight state, which we denote by %
and j, respectively. Cf. [33, 34]. The superconformal algebra has two types of high-

est weight Ramond sector representations: the massless (or BPS) representations with

h= 5= m—_ and j € {0, 5seers W‘T_l}, and the massive (or non-BPS) representations
with iz > mT and j € {2, ey ”’T_l}. Their graded characters, defined as
chyihy (7,2) = tr, v 4(( 1)/6 y/6 g0~ 6/24) 6.1)

are given by
chN 74 (1,2) = (W11(7,2) ™ oy (T,2) 6.2)
and
vt (1,2) = (W11(7,2) ! 5 (O (1,2) — Oy 21, 2) (6.3)

in the massless and massive cases, respectively, [34]. In the above formulas, the function
M (T, 2) is defined by setting

1+2) i amke 0VTO ™Y+ 9g") I 4 (9gF) Y
q -y -
keZ 1—-yq

Mm;j(T,2) = (=1) »(6.4)

and W ; is a meromorphic Jacobi form (cf. Sect. 8 of [19] for more on meromorphic
Jacobi forms) of weight 1 and index 1 given by

91(1 22) n(t)3 y—|— 1

V1(t,2) = @ (f,z))Z — - (_)’ y—z)q 4+, (6.5)
Finally, we have used the theta functions
— k2 /4m k
Onr(m2)= > ek)q 66)

k=r (mod 2m)
defined for all 2m € Z-¢and r — m € 7Z, and satisfying
Om,r(T,2) = Ompom(T,2) = e(m) Oy —r (1, —2).

Note that the vector-valued theta function 6, = (6,,,,), r — m € Z/2mZ, is a vector-val-
ued Jacobi form of weight 1/2 and index m satisfying
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T
Om(T,2) =/ 2m\/Ze(—’fzz) SpOm(—1, %)

=T9.0u(t +1,2)
=0pn(t,z+ 1) = e(m(t + 2z + 1)0,u(1, 2z + 7), (6.7)

where the Sy and 7y matrices are 2m x 2m matrices with entries

(SO)r = e( )e( r+r ) (,T@)r,r’ = e(_%) 5r,r’- (6.8)

We will take m € Z for the rest of this section. When we consider ' = 2 decomposi-
tions in the next section, we will use the theta function with half-integral indices.

From the above discussion, it is clear that the graded partition function of a module
for the ¢ = 6(m — 1) N' = 4 SCA admits the following decomposition

gN=tm= N - )cth wa, (0,2).
n>0,0<r<m-—1 (6.9)
r#0 when n>0

Furthermore, from the identity

.
_ o= n+1)2
s = (=1 "+ Ditmo + (11> g Omr—nt1 = Om—r—nt1))
n=1
we arrive at
ZN=m = (W10, 2) | cotmo(T )+ Y F (@) Oy(7,2) |, (6.10)
re’l/2mZ
where
iad 2 r2
EM@ =Y c(n-fn)d" 5, 1=r=m-1, 6.11)
n=0
m—1 )
o= ¢ +1e (), (6.12)
r=0

4m

o(n =) = CZE::(;))H::OI._M (k) e (6.13)

4m

The rest of the components of F") = (E™), r e 7./2mZ, are defined by setting

F"™(t) = —F"(x) = F"") (). (6.14)

Page 18 of 89
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Recall that p.0(7,2) = —fo(m)(r,z) +f0(m)(r, —z), a specialisation of the Appell-Lerch

sum

mk? , 2mk

£ (¢, 2) = Z 1 L (6.15)

—1—yq*e(—u)

studied in [64], has the following relation to the modular group SL(Z): let the (non-

holomorphic) completion of (t,,:0(7,z) be

1

. _ 1
Hm0(T,T,2) = py0(T,2) — e(—g) E

XY (T, z) (r’+r)—1/25m,(—f/)dr’. (6.16)
reZ/2mZ

Then f1,,.0 transforms like a Jacobi form of weight 1 and index m for SLy(Z) x Z?. Here
Sm = (Sm,r) is the vector-valued cusp form for SLy(Z) whose components are given by
the unary theta functions

2 1 9
Smr(T) = Z e(%) k qk /A = %aizem,r(f; 2)|z=0.
k=r (mod 2m)

For later use, note that the theta series S, (t) is defined for all 2m € Z and
r—mée€ Z/2mZ.

The way in which the functions Z and fi,.0 transform under the Jacobi group shows
that the non-holomorphic function ZreZ/ZmZ (7,') O, (1, z) transforms as a Jacobi
form of weight 1 and index # under SLy(Z) x 72, where

100

Vam -

In other words, F" = (Fr(m) ), r € 7./]2mZ, is a vector-valued mock modular form with a

E™ (1) = F(’”)(r)—kcoe(—f) (@ + 1) 28, (=7 d.

vector-valued shadow ¢g S;,;, whose r-th component is given by Sy, ,(t), with the multi-
plier for SLy(Z) given by the inverse of the multiplier system of S, (cf. (6.8)).

Now we are ready to apply the above discussion to the U/(1)-graded Ramond sector
partition function of the theory, discussed in Sect. 5. Recall that in this case we have
¢ =12,s0m = 3in (6.2) and (6.3). The N = 4 decomposition of (5.1) gives

Z(t,2) —2lch +ch3 11 (560ch 71 +8470ch3 5 1 +70576ch3 7 1 +-)

+ (210ch3 31 +4444ch3 b +4256Och3 T ---) (6.17)

= (W11(,2) 7 | 28 us0(t, )+ Y e (1)03,(7,2) (6.18)
reZ/6Z
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where ... stand for terms with expansion W llq"‘yﬂ with o« — 2/12 > 3. More Fou-
rier coefficients of the functions 4,() are recorded in “Appendix C’, where & = h, for
[¢] = 1A. Note that all the graded multiplicities c}.(n — %) appear to be non-negative. Of
course, this is guaranteed by the fact that V is a module for the N' = 4 SCA as shown in
Sect. 3. In particular, the Fourier coefficients of /,(t) appear to be all non-negative apart

/12 n .

from that of the polar term —2g~
From the above discussion we see that # = (4,), for r € Z/6Z, is a weight 1/2 vector-
valued mock modular form for SLy(Z) with 6 components (but just 2 linearly independ-
ent components, since iy = h3 = 0, h_1 = —hy, and h_y = —hy), with shadow given by
24 S3, and multiplier system inverse to that of Ss.
This is to be contrasted with the elliptic genus of a generic non-chiral super conformal
field theory. For example, the sigma model of a K3 surface has ¢ = 6, and the elliptic

genus is given by

EG(7,z; K3) = TrHRR(_l)FL+FRy]0 Lofc/zz;é—liofzm

—20ch§f1§ 2¢h)’ i+ (90 ch' =4 1 +462 chy.

)

‘i + 1540ch ;
72

,31
)

A\\O

(6.19)

= (\P1,1(I,Z))*1{24 12;0(7,2) + (02,1(1,2) — 02, -1(7,2))

(6.20)
x (=247"/% +90q"/" + 462q'5/% + 15404%/% 1. )},

where - .. stand for terms with expansion W 11q y’s with @ — #2/8 > 3. In this case, the
coefficient multiplying the massless character ch2 1 1 is negative, arising from the Witten
index of the right-moving massless multiplets pa1red with the representation vé\f =4 of the
left-moving N = 4 SCA. o

In Sect. 3 we have shown that the theory under consideration, as a module for the
N =4 SCA, admits a faithful action via automorphisms by a group G, as long as G is a
subgroup of Coyp fixing at least a 3-plane. For any such g € G, the g-twined graded parti-
tion function Z, (7, z) is given by (5.10), and from the fact that the action of g commutes
with the N = 4 SCA, we expect Z, (7, ) to admit a decomposition

Zy(t,2) = (W1,1(7,2)) 1 | (Trag) p13,0(7, 2) + Z hgr(1)03,(1,2) |. (6.21)
reZ/6Z

Moreover, the coefficients of

o0
2 .2
her(@) =arg "4y (Tryeg) " /1 (6.22)
n=1

must be characters of the G-module

=D DV (6.23)

r=12 n=1
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arising from the orbifold theory discussed in Sect. 2.

Indeed, the multiplicities of the N = 4 multiplets in the decomposition (6.17) are sug-
gestive of the following group theoretic interpretation®: the 21 & = 1/2, j = 0 massless
representations transform as the 21-dimensional irreducible representation of Mj,, and
similarly, the 560 # = 3/2, j = 1/2 massive representations transform as xi0 + x11 (see
“Appendix B”), or “280 + 280", under M), etc.

We have explicitly computed the first 30 or so coefficients of each g-series /g, (7) for
all conjugacy classes [g] of G, for G = M»3 and G = U4 (3). These can be found in the
tables in “Appendix C” Subsequently, we compute the first 30 or so G-modules Vfi, in
terms of their decompositions into irreducible representations. They can be found in the
tables in “Appendix D”.

Finally we would like to discuss the mock modular property of the functions
hg = (hg,r). Recall that the Hecke congruence subgroups of SL3(Z) are defined as

To(N) = {(‘C’ Z) € SLy(Z) | ¢=0 mod N}. (6.24)

We expect Z, to be a weak Jacobi form of weight zero and index 2 (possibly with multi-
plier) for the group I'g(0g) X 72, where 0g is the order of the group element g € G. This
can be verified explicitly from the expression (5.10). Repeating the similar arguments as
above, we conclude that each vector-valued function /4, is a vector-valued mock modular
form of weight 1/2 with shadow (Tr24g)S3 for the congruence subgroup I'g(og). Note
that (Traag) # 0 for all g € My, which are the cases of our main interest. For these
cases the multiplier of /1, is again given by the inverse of the multiplier system of S3, now
restricted to ['g (o).

In this section we have analyzed the decomposition of the Ramond sector of our orbi-
fold theory into irreducible modules for the A" = 4 SCA, and we have demonstrated
that the generating functions of irreducible N’ = 4 SCA module multiplicities furnish
a vector-valued mock modular form. We have also demonstrated that these multiplici-
ties are dimensions of modules for subgroups G < Cog that point-wise fix a 3-plane in
24, and we have analyzed the modularity of the resulting, g-twined multiplicity generat-
ing functions, for g € G. We have verified that each such g-twining results in a vector-
valued mock modular form with a specified shadow function. In the next section we will
present directly analogous considerations for A/ = 2 superconformal structures arising
from 2-planes in 24.

7 The N = 2decompositions

As discussed in Sect. 4, the theory presented in Sect. 2 can be regarded as a module for
an A =2 SCA as well as for an N =4 SCA. Moreover, for every subgroup G < Cog
fixing a 2-plane there is an A = 2 SCA commuting with the action of G on the theory.
As a result, and as we will now demonstrate, the decomposition of the partition func-
tion (5.10) twined by elements of G into A/ = 2 characters leads to sets of vector-valued
mock modular forms, now of weight 1 / 2 and index 3 / 2, which are the graded charac-
ters of an infinite-dimensional G-module inherited from the Cog-module structure on V'
(cf. Sect. 5).
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To see what these (vector-valued) mock modular forms ilg = (izg ;) are, let us start
by recalling the characters of the irreducible representations of the N =2 SCA.
For the SCA with central charge ¢ = 3(2¢ + 1) = 3¢, the unitary irreducible high-
est weight representations v{z\;fthz are labeled by the two quantum numbers % and Q
which are the eigenvalues of Ly and Jo, respectively, when acting on the highest weight
state [22, 51]. Just as in the N/ = 4 case, there are two types of Ramond sector high-
est weight representations: the massless (or BPS) representations with & = 57 = % and
Qe {—% +1, —% +2,..., % -1, %}, and the massive (or non-BPS) representations with
h > %andQe {—%+1,—%+2,...,% —2,% —1,%},Q7é0. From now on we will con-
centrate on the case when ¢ is half-integral, and hence ¢ and c are even.

The graded characters, defined as

— 3 73 —
chi3(7.2) = trvm (1B ghomer2t), (7.1)
are given by

D) = e W, 1 (1,2) g T 0(r,2),

(7.2)
Jj =sgn(Q) (1Q] —1/2),
for the massive representations, and
- _ 1
0@ a) = e( FGL) W, (@)% 0@z + ), .

1 (1+2Q)t
-2 + 40 ’

for the massless representations (with Q # %). The character chfz\;[ 07%4,Q(t,z) for Q = %
is given in (7.5). In the above formula, we have used the Appell-Lerch sum (6.15) and
defined

. (@) 1

_ _ 12 . —1/2 O(d?).
e yl/z_y_mﬂi(y ¥ %)+ 0@q")

W

1,—

NI

Note that the above characters transform according to the rule
=2 =2
chﬁfc/%Q(t,z) = ché\fC/M’,Q(r, —z)

under charge conjugation.

From the relation between the massless and massive characters

Q-1

N=2 N=2 - k N=2 N=2
Chl;c/24,Q + Che;c/24,—Q =q" Z (=D (Ch(i,n+c/24,Q—k + Ch(i,n+c/24,k—Q)
k=0
+2(-1)? Che 6/240, n>0,]Q| <¢ (7.4)
]
N=2  _ _—n| g N=2 k[ pN=2 N=2
Chl /24,5 ¢ =4 hé n+c/24,5 ¢t Z( D ( hZ +c/24,5 Lk hZ n+c/24, k)
k=1

+ (=D 2ch¥ 73, (1.5)
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as well as the charge conjugation symmetry of the theory, we expect the U(1)-graded
Ramond sector partition function of a theory that is invariant under charge conjugation
to admit a decomposition

ZN=2t C/chZ co(r z)—i—ZC[ ) hé\[cinu (t,2) < error—
n>0
LD D (R | e WRTLE R S (t,2)
/ e Gogtnjts tgan—(j+3)"
n>0e{1,3,...6-1}
(7.6)
_ - =
=e(5)W, DM Gian@ma+ Y EYmr2) (1.7)
j—tez/207,

when the N/ = 2 SCA has even central charge, ¢ = 3(2¢ + 1). In the last equation, we

have defined
Oze(l)yl/2 (K)(r,u—}—z), u:l—l-i,
4 u 2 4
and
Z(0) =(0) (@) 2\ -t
FOm) = F9) = FYy o) = ZO G(n—f)a =, (7.8)
n>
1 2
G=C+2 Y 0Hg(-%) (7.9)
jel3:3,-)
i+k)2
2 Z ( 1)k P (I+€ n=0
oo~ &) - { T )

B C’(n—é) n>0.

Similar to the case of massless N = 4 characters, through its relation to the Appell-Lerch
sum, ji¢.0 admits a completion which transforms as a weight one, half-integral index Jac-
obi form under the Jacobi group. More precisely, define /ﬂ;\o by replacing ji,,:0 with fig.0
and the integer m with the half-integral £ in (6.16). Then ,li(?) transforms like a Jacobi form
of weight 1 and index € under the group SLy(Z) x Z2. Following the same computation as
in the previous section, we hence conclude that F(©) = (I?l-(e)), where j —1/2 € Z/24Z, is
a vector-valued mock modular form with a vector-valued shadow Co Sy = Co(Sj(7)).

Now we are ready to apply the above discussion to the U(1)-graded R sector partition
function of the orbifold theory of Sect. 2. The N' = 2 decomposition gives

Z(rz)_23ch310 ch312 (770(ch331—|—ch 1)
+13915(ch351+ch 1)+...)

+ (231ch3 32+5796ch3 52 ) (7.11)
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(%)\y— (24;1%;0 + (—q*ﬁ 77045 + 1391542 +c...) (9 +9%,7%)

(S5

1
2

4 (g% +2314% + 57964 % +--)0 ) (1.12)

3
2

[SI[9%

where - .. denote the terms with expansion \If 1q “yb with o — g2/6 > 2. Again, we
observe that all the multiplicities of the representatlons with characters ch3 T Q appear
to be non-negative, consistent with our construction of Vas an N' = 2 SCA module

In general, from the previous sections we have seen that the graded partition func-
tion twined by any element g of a subgroup G of Cog should admit a decomposition into
N = 2 characters. We write

Zg(r,z)ze(%)‘l’il (Tr24g)llg;0(r,z)+ E ljlg,j(T)e%,j . (7.13)
)
jel{l/2,-1/2,3/2}

Moreover, from the discussion in Sect. 2 we have seen that
hg12(T) = hg—1/2(~7%), (7.14)

and the coefficients of these functions

o0
~ 2 _2
hej () = ajq7 0+ Y (Trye ) ¢"7 /" (7.15)

n=1

are given by characters of a G-module

= o PV (7.16)

j=—1/2,1/2,3/2 n=1

which descends from the orbifold theory in Sect. 2. In particular, for any #, the G-mod-
ule \791 /o is the dual of ‘716/;2,n‘ From the above discussion, we conclude that izg = (ilg )
is a vector-valued mock modular form for I'g(0,) with shadow (Tr24g)S3/2. Recall that
(Troag) # O for all g € My which are the cases of our main interest. For these case the
multiplier of izg is given by the inverse of the multiplier system of S35, restricted to 'g (o).
To summarize, we have analyzed the decomposition of the Ramond sector of our orbi-
fold theory into irreducible modules for the ' =2 SCA in this section, and we have
demonstrated that the generating functions of irreducible /' =2 SCA module multi-
plicities also furnish a vector-valued mock modular form. We have demonstrated that
these multiplicities are dimensions of modules for subgroups G < Cog that point-wise
fix a 2-plane in 24, and we have observed that the resulting, g-twined multiplicity gen-
erating functions, for g € G, are vector-valued mock modular forms with a certain extra
symmetry, relating the components labelled by £1/2 by complex conjugation.

8 Mathieu moonshine
In the previous sections we have seen that the orbifold theory described in Sect. 2 leads
to infinite-dimensional G-modules underlying a set of vector-valued mock modular
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forms from its ' = 4 (N = 2) structures for any subgroup G of Cog fixing at least a
3-plane (2-plane) in 24. In this section we will discuss a natural property of the vector-
valued mock modular forms that distinguishes subgroups of Ma4 from other 3-plane
(2-plane) fixing subgroups. These considerations lead to mock modular Mathieu moon-
shine involving distinguished vector-valued mock modular forms of weight 1 / 2.

Recall the celebrated genus zero condition of monstrous moonshine, which states
that the monstrous McKay—Thompson series are Hauptmoduls with only a polar term
g~ ! at the cusp represented by ioc, and no poles at any other cusps. To be more pre-
cise, denote by To(7) = > - q”trvnt g the graded character of the moonshine module
Vi= @@71 vy of Frenkel-Lepowsky—Meurman [37]. Then T, (7) is a function invari-
ant under the action of a particular I'y < SLy(R) (specified in [15]), such that

(i) qT4(r) =0(1)ast — ioo, and

(ii) Tg(y7r) = 0()ast — ioowhenever y € SLy(Z)and yoo ¢ I'goo. ®.1)

Similarly, in Mathieu moonshine [35], it follows from the results of [7] that if g € My4
and Z; denotes the g-twined K3 elliptic genus then

(i) Zg(r,2) =cg+y —|—y_1 as T — ioo, and 8o
(i) Zglo1y(t,2) = cg, as T — ioo whenever y € SLy(Z) and yoo & I'y00, (8.2)

(cf. (5.4)) for some cg,cg,, € C. In other words, the 7 — ioo limit of Zg|o,1) is a z-inde-
pendent constant whenever y is not in the invariance group I',. (Note that I'y is always a
subgroup of SLy(Z) for g € Msa).

A natural question is therefore: among the subgroups of Coy fixing 2- or 3-planes for
which we have constructed a module in this work, for which of these do the associated
modular objects satisfy a condition analogous to the preceding cases of moonshine
described above? We will see presently that the Mathieu groups Mas, Maa, M1 and M
are distinguished in our setting, in that the graded characters of their respective modules
yield weight zero weak Jacobi forms satisfying the conditions

() Ze(t,2) =cg+y* +y *ast — ioco, and 3
(i) Zglo2y(t,2) =cg,y as T — ioo whenever y € SLy(Z) and yoo & I'g00, (8.3)

for some cg, ¢z, € C. On the other hand, all the other groups mentioned in Sect. 4 con-
tain elements g for which the condition (ii) in (8.3) is not satisfied. Thus the conditions
(8.3) single out the Mathieu groups as the sporadic simple subgroups of Cog with this
moonshine property. The constructions we have presented in this paper provide con-
crete realizations of the underlying mock modular Mathieu moonshine modules.

Note that the conditions (8.3) impose restrictions on the degrees of the poles (if any)
of the mock modular forms /4, ilg (cf. Sects. 6, 7) at all cusps. In fact, for the case that
G is a copy of My or My; preserving N' = 4 supersymmetry, the corresponding mock
modular forms /4, only have poles at the infinite cusp. This property also holds for the
mock modular forms attached to My4 via N = 4 decomposition of the twined K3 ellip-
tic genera of Mathieu moonshine, satisfying (8.2), as was demonstrated in [7]. In more
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physical terms, (8.2) and (8.3) can be interpreted as the condition that the elliptic genus
of any cyclic orbifold of the theory receives no contributions from /(1)-charged ground
states in twisted sectors.

To investigate the behaviour of Z, at cusps other than ioc, we first note that for any
positve integer N,

12 o 4
10 P )
Zgloa(yy 1)@ 2) = e<N§ j;) > en(=D"Oin(,2),

=1 i=1
where
12 2872
0;(t,2z) PN
Oin(T,2) = 55— [ [ e| =51 | 6ir, ok + Noxr), 8.4)
(@ 2
and ¢; y = €; when 2|N, and
€N = —€1
€N = —€3 = -1 (85)
€3N = —€2
€4N = —€=—1

otherwise. The above expressions can be derived from the transformation laws of Jacobi
theta functions under SLy (7).
Near the infinite cusp, T — ioo, the different contributions have the following leading

behaviour:
12
O1n(T,2) =e (5 +> (G —PNpi] - ‘;k) N1y — y ™ [1+ 0(g")]
k=1
12
s e(Z Pk INpi) ~ pf) 1O 4y 11+ 0(g1%0))
k=1
12
O3 (7,2) = e(— prl3 +Npu) R (14 g2 4 y7)
k=1
1 ) ) L3 +Npi) .
< 11 <1 + e(—pk)qtimpkHTNpk) II (1 + e(pk)qi“\“’“”)
k=2 n=1

x [1+ 0(g"%)]
12

Oun(r,2) = e <— > Gl + Nka> T2 (1— 202 + 7))

k=1
12 1 1 L%+Nka )
< |11 (1 - e(—pk)qlf*”pk“f*“’k) I1 <1 - e(pkmf*N’”*”)
k=2 n=1
x [1+0(q"°)] (8.6)
with
12
fua(y) = =14 (N —1/2)% + INpeJ (1 + [N p] — 2N pg) 87

k=1
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12
fua(Mg) = =14 Y N*pf — |5+ Nok) @Npe — L5 + Npe]) (8.8)
k=1

where | x| denotes the largest integer that is not greater than x.
1 O)

Comparing with the second condition in (8.3), we see that it is satisfied for y = ( N 1

if and only if the I satisfies

fN,l(Hg) > O: (89)
together with
2(Ig) |1
Sna(Ilg) > —1, ﬁ”?g + 5 + [Nok]l —Npg| =0 (8.10)

for the case 63,]\[64,]\[6(% 211(2:1 L%Npkj) = 1,and
Sn2(Ig) =0 (8.11)

for the case 63,]\[64,]\[6(% 211(2:1 L%Npkj) =1

Now we are left to check explicitly the condition (ii) in (8.3) for the various 2- and 3-plane
preserving subgroups discussed in Sect. 4. First, recall that, for # a positive integer, each cusp
of I'g(n) is represented by a rational number of the form u / v where u and v are coprime
positive integers, v a divisor of 1, and u / v is equivalent #'/v" if and only if v = v/, and
u=1u mod (v,n/v). (note that the infinite cusp is also represented by 1 / n.) Via direct
computation using the data of the eigenvalues of g € Cog acting on 24, we note that among
all the groups we have considered in Sect. 4, the groups U (3), Us(2) and McL all contain a
conjugacy classe with Frame shape [T, = 3/13, and HS has a conjugacy class with Frame
shape [T, = 5°/11. One can explicitly check that f1(I1y) = O for these classes and hence
the corresponding twining Zglo,g(l 1)(1:,z) has a non-vanishing coefficient for g%y! as
T — ioo. (Note that the cusp at 7 = 1is not equivalent to the cusp at ioc in these cases.) This
excludes the groups U4 (3), Us(2), McL and HS as candidates for moonshine satisfying (8.3).

For the subgroups of M»4, a simple analysis of the cusp representatives of I'y = I'(0,)
shows that it is sufficient to verify (8.3) for y = ( N 1) for all N|n and N < n. For these
cases, we explicitly verify that (8.9)—(8.11) are satisfied and hence the moonshine condi-
tion (8.3) is met.

We therefore conclude that we have established mock modular moonshine for all but
the largest of the sporadic simple Mathieu groups, together with explicit constructions
of the corresponding modules. Moreoever, the corresponding twined graded characters
are mock modular forms arising from Jacobi forms satisfying the distinguishing condi-
tions (8.3), which we may recognise as furnishing a natural analogue of the powerful
principal modulus property (a.k.a. genus zero property) of monstrous moonshine.

The reader will note that many of the numbers which occur as dimensions of irreduc-
ible representations of M3 also occur as dimensions of irreducible representations for
M. Indeed, looking at the Tables in “Appendix C’ one is tempted to guess that there
is an alternative construction, or hidden symmetry in our model, which yields an Moy
-module with the same graded dimensions. In fact, the procedure we have explained for
computing twinings can be carried out for any element of My4, regarded as a subgroup
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of Coyg, for any such element fixes a 2-space in 24. However, there is no 2-space that is
fixed by every element of a given copy of My, and explicit computations reveal that any
Mjs-module structure on the module we have constructed would have to involve virtual
representations. This indicates that there is no direct extension to Mj4 of the Mathieu
moonshine modules we have considered here, despite the prominent role M»4 plays in
incorporating the different groups of moonshine in the current setting. Nevertheless,
there is a certain modification of our method for which My4 is now known to play a lead-
ing role. We refer the reader to the next, and final section for a description of this.

9 Discussion

In this paper we have demonstrated that, starting with the free field Cop module of [24],
one can construct explicit examples of modules for various subgroups G C Cog which
underlie certain mock modular forms. In particular, subgroups which preserve a 3-plane
(respectively 2-plane) in the 24 give rise to /' = 4 (N = 2) modules with G symmetry.
This gives completely explicit examples of mock modular moonshine for the smaller
Mathieu groups, where the modules are known, and where the twining functions are
distinguished in a manner directly similar to Mathieu moonshine. Other examples,
including modules for the sporadic groups McL and HS, are also described.

There are several future directions. We considered here the N'=2 and N =4
extended chiral algebras, and the subgroups of Cog that they preserve. Other extended
chiral algebras may also yield interesting results. For instance, supersymmetric sigma
models with target a Spin(7) manifold give rise to an extended chiral algebra [58], whose
representations were studied in [45]. It is an extension of the N = 1 superconformal
algebra where instead of adding a U(1) current (which extends the theory to an N/ = 2
superconformal theory), one chooses an additional Ising factor. Conjectural characters
for the unitary, irreducible representations of this algebra were worked out in [2], where
it was shown that there is a suggestive relation between the decomposition of the ellip-
tic genus of a Spin(7) manifold into these characters and irreducible representations of
finite groups. This connection was made precise in [12], where it was shown that the
same ¢ = 12 theory can be viewed as an SCFT with extended A = 1 symmetry, and thus
yields theories with global symmetry groups Mss, Cop, and Cos. The partition function
twined by these symmetries, when decomposed into characters of the Spin(7) algebra,
gives rise to two-component vector-valued mock modular forms encoding infinite-
dimensional modules for the corresponding sporadic groups.

The motivation that led, eventually, to the present study was actually to find connec-
tions between geometrical target manifolds associated to ¢ = 12 conformal field theo-
ries, and sporadic groups. The elliptic genera of Calabi-Yau fourfolds were computed
in [54], for instance; their structure is reminiscent of some of the modules we have
seen here, and we intend to further explore and describe some of these connections in
a future publication. Likewise, hyperkahler fourfolds, as well as the Spin(7) manifolds
mentioned above, provide a wide class of geometries where an analogue of the connec-
tions between M4 and K3 may be sought.

Last but not least, there are suggestive connections between the trace functions in
moonshine modules, and certain special properties of the underlying conformal field
theory. Both the CFT appearing in monstrous moonshine and the Cop module that
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played a starring role in this paper appear to play special roles also in AdS3 quantum
gravity, where they are candidates for CFT duals to pure (super)gravity [62]. The genus
zero property of the twining functions in monstrous moonshine can be reformulated as
a condition that these class functions should be expressed as Rademacher sums based
on a fixed polar part [7, 29]; this latter description then applies uniformly to monstrous
moonshine and Mathieu moonshine.

In this paper we demonstrate that a similar criterion also applies to our mock modu-
lar Mathieu moonshines. In particular, we have shown that the Jacobi forms relevant for
Mathieu moonshine display a specific asymptotic behaviour near non-infinite cusps, which,
in physical terms, can be interpreted as a condition on orbifolds of the theory. Pursuing a
deeper understanding of this property constitutes an enticing direction for the future.

10 Endnote

3See however the recent work [26] which constructs the super vertex operator algebra
underlying the X = Eg’ case of umbral moonshine.

PThe observation that the decomposition into N = 4 characters of (a multiple of) the
function Z(t,z) returns positive integers that are suggestive of representations of the
Mathieu group M, was first communicated privately by Jeff Harvey to J.D. in 2010.
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Appendix A: Jacobi theta functions
We define the Jacobi theta functions 0;(t, z) as follows for g = e(r) and y = e(2):

b1(t,2) = —ig"*y'? [ - gHA —ygH A =y 'g" ™), ©.1)

n=1

o0
0y(1,2) = q*/3y1/2 H(l —g"A+yg"HA+y g,
n=1

9.2)
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03(t,2) = g(l —q"HA+yq" A +y g, ©9.3)
bu(r,2) = [[A—gHA—yq" A -y q" ). 9.4)
n=1

They transform in the following way under the group SLy(Z) x Z2.

01(t,2) = ia " (1,2)01 <—1 i) =e(—=1/8)01(r + 1,2)
- (-1)”%(%(&21 + 2,1z))91(r,z + AT+ ),
0y (,2) = oz_l(r,z)94(—1, j) — e(—1/8) ba(z + 1,2)
_ (—1)“6(%(227: + 2Az))92(r,z T+,
B - 9.5)
03(t,2) = a (1,2)03 7 =04(t +1,2)
_ e(%(/lzr n uz))eg(r,z T+,
1 1z
04(7,2) = (7,2)02 07 = O3(t +1,2)
- (-1)%(%(% + 2/12))04(r,z T+ ).

2
Here a(7,2) = v/—ite(5;),and 4, u € Z.
The weight four Eisenstein series E4 can be written in terms of the Jacobi theta func-

tions as

Ey(r) = %(em,ms +05(5,0° +04(1,00%) 9.6)

Appendix B: Character tables
B1: Frame shapes and spinor representations
See Tables 1, 2, 3, 4, 5, 6.

Table 1 Frame shapes and spinor characters for M,

[g] 1A 2A 3A  4A 4B 5A  6A 7JA 7B 8A 1A 11B
Iy 124 1828 1636 140444 140444 1454 12223362 1373 1373 122487 12112 12112
Traooeg 2048 0 64 0 0 0 0 8 8 0 4 4

Table 2 Frame shapes and spinor characters for U4 (3)

[g1 1A 2A 3A 3BCD 4AB 5A 6A 6BC 7AB  8A 9ABCD 12A

Mg 124 188 32 1636 40249 145t 1336t 12223362 1373 122487 9 1223122
13 24 32 42
Ry 2048 0 -8 64 0 0 720 8 0 4 0
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Table 3 Frame shapes and spinor characters for M3

[g] 1A 2A 3A  4A 5A  6A 7AB 8A 11AB 14AB  15AB  23AB
I, 124 1828 1636 142244 1454 1232332 1373 122482 12112 12714 13515 123
Trageeg 2,048 0 64 0 0 0 8 0 4 0 4 2

Table 4 Frame shapes and spinor characters for McL

[g] 1A 2A 3A 3B 4A 5A 5B 6A 6B 7AB
Iy 124 1828 3 1636 142244 50 1454 1°36° 12223362 1373
13 1 24
Traoesg 2,048 0 -8 64 0 —4 0 72 0 8
[g] 8A 9AB 10A 11AB  12A 14AB  15AB  30AB
M, 122482 139 Psi02 12112 1223022 12714 12192 23530
32 72 42 35 6.10
Traoeeg O 4 20 4 0 0 2 2

Table 5 Frame shapes and spinor characters for HS

[g] 1A 2A 2B 3A 4A 4BC 5A 5BC 6A 6B
I, 124 1828 212 1636 244 142244 5 1454 2363 12223362
14 1
Trao969 2,048 0 0 64 0 0 —4 0 0 0
[g] 7A 8ABC 10A 10B 11AB 12A 15A 20AB
Hg ]373 122.4,82 135.102 22}02 12”2 1246212 13,515 121020
P 32 45
Traooeg 8 0 20 0 4 0 4 0

Table 6 Frame shapes and spinor characters for Ug(2)

[g] 1A 2A 2B 2C 3A 3B 3C aA 48 4CDE 4F 4G
ol 124 216 1828 12 1636 39 1636 1848 48 142244 444 149244
g N i = bEl

Traoseg 2048 0O 0 0 64 -8 64 256 0 0 0 0

[g] 5A 6AB  6C 6D 6E 6F 6G 6H 7A 8A 8BCD

I, 1454 160 2%t 1P36° 1202326017260 12923262363 1373 1%t 12)482
2233 1232 04 34 2242
Traoe6g O 0 0 72 0 0 0 0 8 32 0

[g] 9ABC 10A 11AB 12AB 12C 12DE  12FGH 12l 15A 18AB

Iy 1393 122108 12112 233123 123242122 13123 1223122 24612 1.35.15 12182
32 52 1463 2262 2346 42

Traoeeg 4 0 4 4 16 12 0 0 4 0
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Table 10 continued
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Table 12 Character table of Ug(2) - Part|

X22
X23
X24
X25
X26
X27
X28
X29
X30
X31
X32
X33
X34
X35
X36
X37
X38
X39
X40
X41
X42
X43
X44
X45
X46

1A
1A
1A
1A
1A
1A
1

22
231
252
385
440
560
616

6930

8064

9240

9240

9240

10395
10395
10395
10395
10395
11264
13860
14784
18711
18711
20790
20790
24640
25515
25515
32768
37422
40095

2A
1A
2A
2A
2A
2A

120

—80
—24
-30
-30

195
195
—246
260
—440
—440
—320
—180
320
—24
400
400
690
384
—360
—360
—360
315

28
1A
28
2B
28
28

1

6

7

28
17
24
—16
40
—14
—14
35
35
35

100
64

2C
1A
2C
2C
2C
2C

—16

27

3A
3A
1A
3A
3A
3A

o O O O O

3B
3B
1A
3B
3B
3B
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(1 =3i4/3)/2

Table 13 Character table of Us(2) - Partll.a; = q + 6i/3,c_3

9C
9C
3B
9C
9C
9C

9B

8D 9A

8C

8B

7A 8A

6H
3C
2C
6H
6H
6H

6G
3C
2B
6G
6G
6G

6F

6D 6E
3B

6C
3A
2A
6C
6C
6C

6B

6A
3B
2A
6B

9A
3B
9A
9B

9B

4C 4D 4E

8B
8B
8B
8B

7A 4B

3C
2A
6F

3A
2B

3B

[¢%]

8D 3B

8C
8C
8C
8C

7A  8A

2B

2A
6A
6B

[¢°]

8D 9B

7A  8A
1A 8A
7A  8A

6D 6E

[9°]

8D 9A

8D 9B

6F

6D 6E

6A
6B

[9"]

9A

6F

6A 6D 6E

"

X1

X2

X3

X4

