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Abstract The fractional Laplacian (−�)γ/2 commutes with the primary co-
ordination transformations in the Euclidean space R

d: dilation, translation
and rotation, and has tight link to splines, fractals and stable Levy processes.
For 0 < γ < d, its inverse is the classical Riesz potential Iγ which is dilation-
invariant and translation-invariant. In this work, we investigate the func-
tional properties (continuity, decay and invertibility) of an extended class of
differential operators that share those invariance properties. In particular,
we extend the definition of the classical Riesz potential Iγ to any non-
integer number γ larger than d and show that it is the unique left-inverse of
the fractional Laplacian (−�)γ/2 which is dilation-invariant and translation-
invariant. We observe that, for any 1 ≤ p ≤ ∞ and γ ≥ d(1 − 1/p), there exists
a Schwartz function f such that Iγ f is not p-integrable. We then introduce
the new unique left-inverse Iγ,p of the fractional Laplacian (−�)γ/2 with the
property that Iγ,p is dilation-invariant (but not translation-invariant) and that
Iγ,p f is p-integrable for any Schwartz function f . We finally apply that linear
operator Iγ,p with p = 1 to solve the stochastic partial differential equation
(−�)γ/2� = w with white Poisson noise as its driving term w.
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1 Introduction

Define the Fourier transform F f (or f̂ for brevity) of an integrable function f
on the d-dimensional Euclidean space R

d by

F f (ξ) :=
∫

Rd
e−i〈x,ξ 〉 f (x)dx, (1.1)

and extend the above definition to all tempered distributions as usual. Here
we denote by 〈·, ·〉 and ‖ · ‖ the standard inner product and norm on R

d

respectively.
Let S := S(Rd) be the space of all Schwartz functions on R

d and S ′ :=
S ′(Rd) the space of all tempered distributions on R

d. For γ > 0, define the
fractional Laplacian (−�)γ/2 by

F((−�)γ/2 f )(ξ) := ‖ξ‖γ F f (ξ), f ∈ S. (1.2)

The fractional Laplacian has the remarkable property of being dilation-
invariant. It plays a crucial role in the definition of thin plate splines [4], is
intimately tied to fractal stochastic processes (e.g., fractional Brownian fields)
[8, 12] and stable Levy processes [3], and has been used in the study of singular
obstacle problems [2, 10].

In this paper, we present a detailed mathematical investigation of the
functional properties of dilation-invariant differential operators together with
a characterization of their inverses. Our primary motivation is to provide
a rigorous operator framework for solving the stochastic partial differential
equation

(−�)γ/2� = w (1.3)

with white noise w as its driving term. We will show that this is feasible
via the specification of a novel family of dilation-invariant left-inverses of
the fractional Laplacian (−�)γ/2 which have appropriate Lp-boundedness
properties.

We say that a continuous linear operator I from S to S ′ is dilation-invariant
if there exists a real number γ such that

I(δt f ) = tγ δt(I f ) for all f ∈ S and t > 0, (1.4)

and translation-invariant if

I(τx0 f ) = τx0(I f ) for all f ∈ S and x0 ∈ R
d, (1.5)

where the dilation operator δt, t > 0 and the translation operator τx0 , x0 ∈ R
d are

defined by (δt f )(x) = f (tx) and τx0 f (x) = f (x − x0), f ∈ S, respectively. One
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may verify that the fractional Laplacian (−�)γ/2, γ > 0, is dilation-invariant
and translation-invariant, a central property used in the definition of thin plate
splines [4].

Next, we define the Riesz potential Iγ [9] by

Iγ f (x) = π−d/22−γ �((d − γ )/2)

�(γ /2)

∫
Rd

‖x − y‖γ−d f (y)dy, f ∈ S, (1.6)

where 0 < γ < d. Here the Gamma function � is given by �(z) = ∫ ∞
0 tz−1e−tdt

when the real part Re z is positive, and is extended analytically to a mero-
morphic function on the complex plane. For any Schwartz function f , Iγ f is
continuous and satisfies

|Iγ f (x)| ≤ Cε

(
sup
z∈Rd

| f (z)|(1 + ‖z‖)d+ε
)
(1 + ‖x‖)γ−d for all x ∈ R

d, (1.7)

where ε > 0 and Cε is a positive constant, see also Theorem 2.1. Then the
Riesz potential Iγ is a continuous linear operator from S to S ′. Moreover one
may verify that Iγ is dilation-invariant and translation-invariant, and also that
Iγ , 0 < γ < d, is the inverse of the fractional Laplacian (−�)γ/2; i.e.,

Iγ (−�)γ/2 f = (−�)γ/2 Iγ f = f for all f ∈ S (1.8)

because

F(Iγ f )(ξ) = ‖ξ‖−γF f (ξ), f ∈ S. (1.9)

A natural question then is as follows:

Question 1 For any γ > 0, is there a continuous linear operator I from S to S ′
that is translation-invariant and dilation-invariant, and that is an inverse of the
fractional Laplacian (−�)γ/2?

In the first result of this paper (Theorem 1.1), we give an affirmative answer
to the above existence question for all positive non-integer numbers γ with the
invertibility replaced by the left-invertibility, and further prove the uniqueness
of such a continuous linear operator.

To state that result, we recall some notation and definitions. Denote the
dual pair between a Schwartz function and a tempered distribution using
angle bracket 〈·, ·〉, which is given by 〈 f, g〉 = ∫

Rd f (x)g(x)dx when f, g ∈ S
(we remark that the dual pair between two complex-valued square-integrable
functions is different from their standard inner product). A tempered dis-
tribution f is said to be homogeneous of degree γ if 〈 f, δtg〉 = t−γ−d〈 f, g〉
for all Schwartz functions g and all positive numbers t. We notice that the
multiplier ‖ξ‖−γ in the Riesz potential Iγ , see (1.9), is a homogenous function
of degree −γ ∈ (−d, 0). This observation inspires us to follow the definition of
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homogeneous tempered distribution in [7] and then to extend the definition of
the Riesz potential Iγ to any non-integer number γ > d as follows:

Iγ f (x) := (2π)−d�(d − γ )

�(d + k0 − γ )

∫
Sd−1

∫ ∞

0
rk0−γ+d−1

×
(

− d
dr

)k0
(

eir〈x,ξ ′〉 f̂ (rξ ′)
)

drdσ(ξ ′), f ∈ S, (1.10)

where Sn−1 = {ξ ′ ∈ R
d : ‖ξ ′‖ = 1} is the unit sphere in R

d, dσ is the area
element on Sn−1, and k0 is a nonnegative integer larger than γ − d. Integration
by parts shows that the above definition (1.10) of Iγ f is independent on the
nonnegative integer k0 as long as it is larger than γ − d, and also that it
coincides with the classical Riesz potential when 0 < γ < d by letting k0 = 0
and recalling that the inverse Fourier transform F−1 f of an integrable function
f is given by

F−1 f (x) := (2π)−d
∫

Rd
ei〈x,ξ 〉 f (ξ)dξ. (1.11)

Because of the above consistency of definition, we call the continuous linear
operator Iγ , γ ∈ (0, ∞)\(Z+ + d), in (1.10) the generalized Riesz potential,
where Z+ is the set of all nonnegative integers.

Theorem 1.1 Let γ be a positive number with γ − d �∈ Z+, and let Iγ be the
linear operator def ined by (1.10). Then Iγ is the unique continuous linear
operator from S to S ′ that is dilation-invariant and translation-invariant, and
that is a left inverse of the fractional Laplacian (−�)γ/2.

Let Lp := Lp(Rd), 1 ≤ p ≤ ∞, be the space of all p-integrable functions on
R

d with the standard norm ‖ · ‖p. The Hardy–Littlewood–Sobolev fractional
integration theorem [11] says that the Riesz potential Iγ is a bounded linear op-
erator from Lq to Lp when 1 < p ≤ ∞, 0 < γ < d(1 − 1/p) and q = pd/(d +
γ p). Hence Iγ f ∈ Lp for any Schwartz function f when 0 < γ < d(1 − 1/p).
We observe that for any non-integer number γ larger than or equal to d(1 −
1/p), there exists a Schwartz function f such that Iγ f �∈ Lp, see Corollary 2.16.
An implication of this negative result, which will become clearer in the sequel
(cf. Section 4), is that we cannot generally use the translation-invariant inverse
Iγ to solve the stochastic partial differential equation (1.3). What is required
instead is a special left-inverse of the fractional Laplacian that is dilation-
invariant and p-integrable. Square-integrability in particular (p = 2) is a strict
requirement when the driving noise is Gaussian and has been considered in
prior work [12]; it leads to a fractional Brownian field solution, which is the
multi-dimensional extension of Mandelbrot’s celebrated fractional Brownian
motion [1, 8]. Our desire to extend this method of solution for non-Gaussian
brands of noise leads to the second question.
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Question 2 Let 1 ≤ p ≤ ∞ and γ > 0. Is there a continuous linear operator
I from S to S ′ that is dilation-invariant and a left-inverse of the fractional
Laplacian (−�)γ/2 such that I f ∈ Lp for all Schwartz functions f ?

In the second result of this paper (Theorem 1.2), we give an affirmative
answer to the above question when both γ and γ − d(1 − 1/p) are not integers,
and show the uniqueness of such a continuous linear operator.

To state that result, we introduce some additional multi-integer notation.
For x = (x1, . . . , xd) ∈ R

d and j = ( j1, . . . , jd) ∈ Z
d+ (the d-copies of the set

Z+), we set |j| := | j1| + · · · + | jd|, j! := j1! · · · jd! with 0! := 1, xj := x j1
1 · · · x jd

d

and ∂ j f (x) := ∂
j1

x1 · · · ∂ jd
xd f (x). For 1 ≤ p ≤ ∞ and γ > 0, we define the linear

operator Iγ,p from S to S ′ with the help of the Fourier transform:

F(Iγ,p f )(ξ) =
(
F f (ξ) −

∑
|j|≤γ−d(1−1/p)

∂ j(F f )(0)

j! ξ j
)
‖ξ‖−γ , f ∈ S, (1.12)

which is the natural Lp extension of the fractional integral operator that was
introduced in [1, 12, 13] for p = 2 and γ �∈ Z/2.

We call Iγ,p the p-integrable Riesz potential of degree γ , or the integrable
Riesz potential for brevity. Indeed, when both γ and γ − d(1 − 1/p) are non-
integers, the linear operator Iγ,p is the unique left-inverse of the fractional
Laplacian (−�)γ/2 that enjoys the following dilation-invariance and stability
properties.

Theorem 1.2 Let 1 ≤ p ≤ ∞, and γ is a positive number such that both γ and
γ − d + d/p are not nonnegative integers. Then Iγ,p in (1.12) is the unique
dilation-invariant left-inverse of the fractional Laplacian (−�)γ/2 such that its
image of the Schwartz space S is contained in Lp.

One of the primary application of the p-integrable Riesz potentials is the
construction of generalized random processes by suitable functional integra-
tion of white noise [12–14]. These processes are defined by the stochastic
partial differential equation (1.3), the motivation being that the solution should
essentially display the same invariance properties as the defining operator
(fractional Laplacian). In particular, these processes will exhibit some level
of self-similarity (fractality) because Iγ,p is dilation-invariant. However, they
will in general not be stationary because the requirement for a stable inverse
excludes translation invariance. It is this last aspect that deviates from the
classical theory of stochastic processes and requires the type of mathematical
safeguards that are provided in this paper. While the case of a white Gaussian
noise excitation is fairly well understood [12], it is not yet so when the driving
term is impulsive Poisson noise which leads to the specification of sparse
stochastic processes with a finite rate of innovation. The current status has
been to use the operator Iγ,2 to specify sparse processes with the restriction
that the impulse amplitude distribution must be symmetric [14, Theorem 2].
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Our present contribution is to show that one can lift this restriction by
considering the operator Iγ,1, which is the proper inverse to handle general
impulsive Poisson noise.

To state our third result, we recall some concepts about generalized random
processes and Poisson noises. Let D be the space of all compactly supported
C∞ functions with standard topology. A generalized random process is a
random functional � defined on D (i.e., a random variable �( f ) associated
with every f ∈ D) which is linear, continuous and compatible [6].

The white Poisson noise

w(x) :=
∑
k∈Z

akδ(x − xk) (1.13)

is a generalized random process such that the random variable associated with
a function f ∈ D is given by

w( f ) :=
∑
k∈Z

ak f (xk), (1.14)

where the ak’s are i.i.d. random variables with probability distribution P(a),
and where the xk’s are random point locations in R

n which are mutually
independent and follow a spatial Poisson distribution with Poisson parameter
λ > 0. The random point locations xk in R

n follow a spatial Poisson distribution
with Poisson parameter λ > 0 meaning that for any measurable set E with
finite Lebesgue measure |E|, the probability of observing n events in E (i.e.,
the cardinality of the set {k| xk ∈ E} is equal to n) is exp(−λ|E|)(λ|E|)n/n!.
Thus, the Poisson parameter λ represents the average number of random
impulses per unit.

As the white Poisson noise w is a generalized random process, the stochastic
partial differential equation (1.3) can be interpreted as the following:

〈�, (−�)γ/2 f 〉 = 〈w, f 〉 for all f ∈ D. (1.15)

So if I is a left-inverse of the fractional Laplacian operator (−�)γ/2, then

� = I∗w (1.16)

is literally the solution of the stochastic partial differential equation (1.3) as

〈I∗w, (−�)γ/2 f 〉 = 〈w, I(−�)γ/2 f 〉 = 〈w, f 〉 for all f ∈ D, (1.17)

where I∗ is the conjugate operator of the continuous linear operator I from S
to S ′ defined by

〈I∗ f, g〉 := 〈 f, Ig〉 for all f, g ∈ S.

The above observation is usable only if we can specify a left-inverse (or
equivalently we can impose appropriate boundary condition) so that I∗w
defines a bona fide generalized random process in the sense of Gelfand and
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Vilenkin; mathematically, the latter is equivalent to providing its characteristic
functional by the Minlos–Bochner Theorem (cf. Section 4). The following
result establishes that Pγ w := I∗

γ,1w is a proper solution of the stochastic
partial differential equation (1.3), where w is the Poisson noise defined by
(1.13).

Theorem 1.3 Let γ be a positive non-integer number, λ be a positive number,
P(a) be a probability distribution with

∫
R

|a|dP(a) < ∞, and Iγ,1 be def ined as
in (1.12). For any f ∈ D, def ine the random variable Pγ w associated with f by

Pγ w( f ) :=
∑

k

ak Iγ,1( f )(xk) (1.18)

where the ak’s are i.i.d. random variables with probability distribution P(a), and
the xk’s are random point locations in R

n which are mutually independent and
follow a spatial Poisson distribution with Poisson parameter λ. Then Pγ w is the
generalized random process associated with the characteristic functional

ZPγ w( f ) = exp
(
λ

∫
Rd

∫
R

(
e−ia(Iγ,1 f )(x) − 1

)
dP(a)dx

)
, f ∈ D. (1.19)

The organization of the paper is as follows. In Section 2, we first introduce
a linear operator J
 for any homogeneous function 
 ∈ C∞(Rd\{0}) of degree
−γ , where γ − d �∈ Z+. The linear operator J
 becomes the generalized Riesz
potential Iγ in (1.10) when 
(ξ) = ‖ξ‖−γ ; conversely, any derivative of the
generalized Riesz potential Iγ is a linear operator J
 associated with some
homogeneous function 
:

∂ j Iγ f = J
j f for all f ∈ S and j ∈ Z
d
+,

where 
j(ξ) = (iξ)j‖ξ‖−γ . We then study various properties of the above
linear operator J
, such as polynomial decay property, dilation-invariance,
translation-invariance, left-invertibility, and non-integrability in the spatial
domain and in the Fourier domain. The proof of Theorem 1.1 is given at the
end of Section 2.

In Section 3, we introduce a linear operator U
,p for any homogeneous
function 
 ∈ C∞(Rd\{0}) of degree −γ , where 1 ≤ p ≤ ∞. The above linear
operator U
,p becomes the operator Iγ,p in (1.12) when 
(ξ) = ‖ξ‖−γ , and
the operator J
 in (2.1) when 0 < γ < d(1 − 1/p). We show that the linear
operator U
,p is dilation-invariant, translation-variant and p-integrable, and
is a left-inverse of the fractional Laplacian (−�)γ/2 when 
(ξ) = ‖ξ‖−γ . The
proof of Theorem 1.2 is given at the end of Section 3.

In Section 4, we give the proof of Theorem 1.3 and show that the generalized
random process Pγ w can be evaluated pointwise in the sense that we can
replace the function f in (1.18) by the delta functional δ.
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In this paper, the capital letter C denotes an absolute positive constant
which may vary depending on the occurrence.

2 Generalized Riesz potentials

Let γ be a real number such that γ − d �∈ Z+, and let 
 ∈ C∞(Rd\{0}) be a
homogeneous function of degree −γ . Following the definition of homogenous
tempered distributions in [7], we define the linear operator J
 from S to S ′ by

J
 f (x) := (2π)−d�(d − γ )

�(d + k0 − γ )

∫
Sd−1

∫ ∞

0

(ξ ′)rk0−γ+d−1

×
(

− d
dr

)k0
(

eir〈x,ξ ′〉 f̂ (rξ ′)
)

drdσ(ξ ′), f ∈ S, (2.1)

where Sn−1 = {ξ ′ ∈ R
d : ‖ξ ′‖ = 1} is the unit sphere in R

d, dσ is the area
element on Sn−1, and k0 is a nonnegative integer larger than γ − d.

Note that the linear operator J
 in (2.1) becomes the generalized Riesz
potential Iγ in (1.10) when 
(ξ) = ‖ξ‖−γ and γ > 0. Therefore we call the
linear operator J
 in (2.1) the generalized Riesz potential associated with the
homogeneous function 
 of degree −γ , or the generalized Riesz potential for
brevity.

The above definition of the generalized Riesz potential J
 is independent
on the nonnegative integer k0 as long as it satisfies k0 > γ − d, that can be
shown by integration by parts. Then, for γ ∈ (−∞, d), we may take k0 = 0 and
reformulate (2.1) as follows:

J
 f (x) = (2π)−d
∫

Rd
ei〈x,ξ 〉
(ξ) f̂ (ξ)dξ for all f ∈ S, (2.2)

or equivalently

Ĵ
 f (ξ) = 
(ξ) f̂ (ξ) for all f ∈ S, (2.3)

so that the role of the homogeneous function 
(ξ) in (2.1) is essentially that of
the Fourier symbol for a conventional translation-invariant operator.

Let S∞ be the space of all Schwartz functions f such that ∂ i f̂ (0) = 0
for all i ∈ Z

d+, or equivalently that
∫

Rd xj f (x)dx = 0 for all j ∈ Z
d+. Given

a homogenous function 
 ∈ C∞(Rd\{0}), define the linear operator i
 on
S∞ by

î
 f (ξ) = 
(ξ) f̂ (ξ), f ∈ S∞. (2.4)
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Clearly i
 is a continuous linear operator on the closed linear subspace
S∞ of S. For any function f ∈ S∞, applying the integration-by-parts technique
k0 times and noticing that limε→0 ε−γ |∂ i f̂ (εξ ′)| = 0 for all ξ ′ ∈ Sd−1 and i ∈ Z

d+,
we obtain that

J
 f (x) = (2π)−d�(d − γ )

�(d + k0 − γ )
lim
ε→0

∫
Sd−1

∫ ∞

ε

rk0+d−γ−1
(ξ ′)

×
(
− d

dr

)k0
(

eir〈x,ξ ′〉 f̂ (rξ ′)
)

drdσ(ξ ′)

= (2π)−d lim
ε→0

∫
Sd−1

∫ ∞

ε


(ξ ′)rd−γ−1eir〈x,ξ ′〉 f̂ (rξ ′)drdσ(ξ ′)

= (2π)−d
∫

Rd
ei〈x,ξ 〉
(ξ) f̂ (ξ)dξ = i
 f (x). (2.5)

Hence the generalized Riesz potential J
 is the extension of the linear operator
i
 from the closed subspace S∞ to the whole space S.

In the sequel, we will study further properties of the generalized Riesz
potential J
, such as the polynomial decay property (Theorem 2.1), the
continuity as a linear operator from S to S ′ (Corollary 2.3), the translation-
invariance and dilation-invariance (Theorem 2.7), the composition and left-
inverse property (Theorem 2.8 and Corollary 2.9), the uniqueness of various
extensions of the linear operator i
 from the closed subspace S∞ to the whole
space S (Theorems 2.11 and 2.14), the non-integrability in the spatial domain
(Theorem 2.15), and the non-integrability in the Fourier domain (Theorem
2.17). Some of those properties will be used to prove Theorem 1.1, which is
included at the end of this section.

2.1 Polynomial decay property and continuity

Theorem 2.1 Let γ be a positive number with γ − d �∈ Z+, k0 be the smallest
nonnegative integer larger than γ − d, and let 
 ∈ C∞(Rd\{0}) be a homoge-
neous function of degree −γ . If there exist positive constants ε and Cε such that

| f (x)| ≤ Cε(1 + ‖x‖)−k0−d−ε for all x ∈ R
d, (2.6)

then there exists a positive constant C such that

|J
 f (x)| ≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)k0+d+ε
)
(1 + ‖x‖)γ−d, x ∈ R

d. (2.7)
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Proof Noting that
( d

dr

)s
eir〈x,ξ ′〉 = s!

( ∑
|i|=s

(ix)iξ ′i
i!

)
eir〈x,ξ ′〉 and

( d
dr

)k0−s
f̂ (rξ ′) =

(k0 − s)! ∑|j|=k0−s
(ξ ′)j∂ j f̂ (rξ ′)

j! for all 0 ≤ s ≤ k0, we obtain from the Leibniz rule
that

( d
dr

)k0
(

eir〈x,ξ ′〉 f̂ (rξ ′)
)

=
k0∑

s=0

(
k0

s

){( d
dr

)k0−s
eir〈x,ξ ′〉

}
·
{( d

dr

)s
f̂ (rξ ′)

}

=
( ∑

|i|+|j|=k0

k0!
i!j! (ix)i(ξ ′)i+j∂ j f̂ (rξ ′)

)
eir〈x,ξ ′〉.

Substituting the above expression into (2.1) we get

J
 f (x) = (−1)k0
∑

|i|+|j|=k0

k0!
i!j! (ix)i

{ (2π)−d�(d − γ )

�(d + k0 − γ )

×
∫

Rd
ei〈x,ξ 〉(ξ i+j
(ξ)

)
∂ j f̂ (ξ)dξ

}

= �(d − γ )

�(d + k0 − γ )

∑
|i|+|j|=k0

k0!
i!j! (−x)i J
i+j( fj)(x), (2.8)

where 
i+j(ξ) = (iξ)i+j
(ξ) and fj(x) = xj f (x). Denote the inverse Fourier
transform of 
k, |k| = k0, by Kk. Then Kk ∈ C∞(Rd\{0}) is a homogeneous
function of degree γ − k0 − d [7, Theorems 7.1.16 and 7.1.18], and hence there
exists a positive constant C such that

|Kk(x)| ≤ C‖x‖γ−k0−d for all x ∈ R
d\{0}. (2.9)

For any ε > 0 and β ∈ (0, d), we have∫
Rd

‖x − y‖−β(1 + ‖y‖)−d−εdy

≤
( ∫

‖y‖≤(‖x‖+1)/2
+

∫
(‖x‖+1)/2≤‖y‖≤2(‖x‖+1)

+
∫

‖y‖≥2(‖x‖+1)

)

× ‖x − y‖−β(1 + ‖y‖)−d−εdy

≤ C(1 + ‖x‖)−β. (2.10)

Combining (2.8), (2.9) and (2.10) yields

|J
 f (x)| ≤ C
∑

|i|+|j|=k0

|x||i|
∣∣∣
∫

Rd
Ki+j(x − y)yj f (y)

∣∣∣dy

≤ C(1 + ‖x‖)k0

∫
Rd

‖x − y‖γ−k0−d(1 + ‖y‖)k0 | f (y)|dy

≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)k0+d+ε
)
(1 + ‖x‖)γ−d.

This proves the desired polynomial decay estimate (2.7). ��
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For any f ∈ S and j ∈ Z
d+ with |j| = 1, it follows from (2.1) that

∂ j(J
 f )(x) = J
(∂ j f )(x)

= (2π)−d�(d − γ )

�(d + k0 − γ )

∫
Sd−1

∫ ∞

0

(ξ ′)(iξ ′)jrk0+d−γ−1

×
(

− d
dr

)k0
(

eir〈x,ξ ′〉 f̂ (rξ ′)r
)

drdσ(ξ ′)

= (2π)−d�(d − γ )

�(d + k0 − γ )

∫
Sd−1

∫ ∞

0

(ξ ′)(iξ ′)jrk0+d−γ−1

×
{

r
(

− d
dr

)k0
(

eir〈x,ξ ′〉 f̂ (rξ ′)
)

−k0

(
− d

dr

)k0−1(
eir〈x,ξ ′〉 f̂ (rξ ′)

)}
drdσ(ξ ′)

=
(d + k0 − γ

d − γ
− k0

1

d − γ

)
J
j f (x) = J
j f (x),

where 
j(ξ) = (iξ)j
(ξ). Applying the argument inductively leads to

∂ j(J
 f ) = J
(∂ j f ) = J
j f for all f ∈ S and j ∈ Z
d
+, (2.11)

where 
j(ξ) = (iξ)j
(ξ). This together with Theorem 2.1 shows that J
 f is a
smooth function on R

d for any Schwartz function f .

Corollary 2.2 Let γ, k0 and 
 be as in Theorem 2.1. If f satisf ies (2.6) for some
positive constants ε and Cε , then for any j ∈ Z

d+ with |j| < γ there exists a positive
constant Cj such that

|∂ j(J
 f )(x)| ≤ Cj

(
sup
z∈Rd

| f (z)|(1 + ‖z‖)k0+d+ε
)
(1 + ‖x‖)γ−|j|−d, x ∈ R

d. (2.12)

An easy consequence of the above smoothness result about J
 f is the
continuity of the generalized Riesz potential J
 from S to S ′.

Corollary 2.3 Let γ be a positive number with γ − d �∈ Z+, and let 
 ∈
C∞(Rd\{0}) be a homogeneous function of degree −γ . Then the generalized
Riesz potential J
 associated with the homogeneous function 
 is a continuous
linear operator from S to S ′.

Now consider the generalized Riesz potential J
 when 
 is a homogeneous
function of positive degree α. In this case,

J
 f (x) = (2π)−d
∫

Rd
ei〈x,ξ 〉
(ξ) f̂ (ξ)dξ for all f ∈ S
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by (2.2). Applying the integration-by-parts technique then gives

J
 f (x) = (2π)−d(−ixi)−1
∑

j+k=i

i!
j!k!

∫
Rd

ei〈x,ξ 〉∂ j
(ξ)∂k f̂ (ξ)dξ

for any i ∈ Z
d+. This, together with the identity

1 =
∑

|l|=�α�−|j|

(�α� − |j|)!
l!

( iξ
‖ξ‖2

)l
(−iξ)l, |j| ≤ �α�,

leads to the following estimate of J
 f (x):

|J
 f (x)| ≤ C(1 + ‖x‖)−�α� ∑
|j|+|k|≤�α�,|l|=�α�−|j|

∣∣∣
∫

Rd
ei〈x,ξ 〉
j,l(ξ)ξ l∂k f̂ (ξ)dξ

∣∣∣

≤ C(1 + ‖x‖)−�α� ∑
|j|+|k|≤�α�,|l|+|j|=�α�

|I
j,l fl,k(x)|,

where �α� is the smallest integer larger than α, 
j,l(ξ) = ∂ j
(ξ)(iξ/‖ξ‖2)l,
and f̂l,k(ξ) = (−iξ)l∂k f̂ (ξ). Note that 
j,l ∈ C∞(Rd\{0}) is a homogeneous
function of degree α − �α� < 0 when |j| + |l| = �α�, and also that functions
fl,k(x), |k|, |l| ≤ �α� are linear combinations of xi∂ j f (x), |i|, |j| ≤ �α�. We then
apply Theorem 2.1 to obtain the following polynomial decay estimate of J
 f
when 
 is a homogeneous function of positive degree:

Proposition 2.4 Let α be a positive non-integer number, and 
 ∈ C∞(Rd\{0})
be a homogeneous function of degree α. If there exist positive constants ε and
Cε such that ∑

|i|≤�α�
|∂ i f (x)| ≤ Cε(1 + ‖x‖)−�α�−d−ε for all x ∈ R

d,

then there exists a positive constant C such that

|J
 f (x)| ≤ C
( ∑

|i|≤�α�
sup
z∈Rd

|∂ i f (z)|(1 + ‖z‖)�α�+d+ε
)
(1 + ‖x‖)−α−d (2.13)

for all x ∈ R
d.

The estimates in (2.7) and (2.13) indicate that the generalized Riesz po-
tential J
 f has faster polynomial decay at infinity when the degree of the
homogeneous function 
 becomes larger. Next, we show that the generalized
Riesz potential J
 f has faster polynomial decay at infinity when f has
vanishing moments up to some order; i.e.,∫

Rd
xi f (x)dx = 0, |i| ≤ m0 (2.14)



Fractional Laplacian and sparse stochastic processes 411

where m0 ≥ 0. In this case, ∂ i f̂ (0) = 0 for all |i| ≤ m0, and hence

f̂ (ξ) =
∑

|k|=m0+1

m0 + 1

k!
∫ 1

0
ξk∂k f̂ (tξ)(1 − t)m0 dt (2.15)

by the Taylor expansion to f̂ at the origin. Now we assume that 
 ∈
C∞(Rd\{0}) is a homogeneous function of degree α ∈ (−m0 − 1, ∞)\Z. Then

|J
 f (x)| ≤ C
∑

|k|=m0+1

∫ 1

0

∫
‖ξ‖≤1

|ξ |α+m0+1|∂k f̂ (tξ)|dξdt + C
∫

|ξ |≥1
|ξ |α| f̂ (ξ)|dξ

≤ C
∑

|i|≤m0+1

sup
ξ∈Rd

(
(1 + ‖ξ‖)�α�+d|∂ i f̂ (ξ)|) (2.16)

for all x ∈ R
d with ‖x‖ ≤ 1, and

|J
 f (x)| ≤ C
∑

|k|=m0+1

∫ 1

0

∣∣∣
∫

Rd
e−i〈x,ξ 〉φ(‖x‖ξ)ξk
(ξ)∂k f̂ (tξ)dξ

∣∣∣dt

+ C
∑

|k|=m0+1

∫ 1

0

∣∣∣
∫

Rd
e−i〈x,ξ 〉(φ(ξ) − φ(‖x‖ξ)

)
ξk
(ξ)∂k f̂ (tξ)dξ

∣∣∣dt

+ C
∣∣∣
∫

Rd
e−i〈x,ξ 〉(1 − φ(ξ)

)

(ξ) f̂ (ξ)dξ

∣∣∣
≤ C(1 + ‖x‖)−�α�−m0−d

{ ∑
|k|=m0+1,|j|≤�α�+m0+d

×
∫ 1

0

∫
Rd

∣∣∣∂ j(φ(‖x‖ξ)ξk
(ξ)∂k f̂ (tξ)
)∣∣∣dξdt

}

+ C(1 + ‖x‖)−�α�−m0−d−1
{ ∑

|k|=m0+1,|j|≤�α�+m0+d+1

×
∫ 1

0

∫
Rd

∣∣∣∂ j((φ(ξ) − φ(‖x‖ξ))ξk
(ξ)∂k f̂ (tξ)
)∣∣∣dξdt

}

+ C(1 + ‖x‖)−�α�−m0−d−1

×
{ ∑

|j|≤�α�+m0+d+1

∫
Rd

∣∣∣∂ j((1 − φ(ξ))
(ξ) f̂ (ξ)
)∣∣∣dξ

}

≤ C
( ∑

|i|≤�α�+2m0+d+2

sup
ξ∈Rd

(1 + ‖ξ‖)�α�+d|∂ i f̂ (ξ)|
)
(1 + ‖x‖)−α−m0−d−1

(2.17)

for all x ∈ R
d with ‖x‖ ≥ 1, where φ is a C∞ function such that φ(ξ) = 1 for

all ξ in the unit ball B(0, 1) centered at the origin, and φ(ξ) = 0 for all ξ

not in the ball B(0, 2) with radius 2 and center at the origin. This proves
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the following result about the generalized Riesz potential J
 f when f has
vanishing moments upto some order.

Proposition 2.5 Let m0 ≥ 0, α ∈ (−m0 − 1, ∞)\Z, and 
 ∈ C∞(Rd\{0}) be a
homogeneous function of degree α. Then the following statements hold.

(i) If f satisf ies (2.14) and

∑
|i|≤�α�+2m0+d+2

sup
ξ∈Rd

(1 + ‖ξ‖)�α�+d|∂ i f̂ (ξ)| < ∞, (2.18)

then there exists a positive constant C such that

|J
 f (x)| ≤ C
( ∑

|i|≤�α�+2m0+d+2

sup
ξ∈Rd

(1 + ‖ξ‖)�α�+d|∂ i f̂ (ξ)|
)

×(1 + ‖x‖)−α−m0−d−1 for all x ∈ R
d. (2.19)

(ii) If f satisf ies (2.14) and

∑
|i|≤max(�α�+d,0)

sup
z∈Rd

(
(1 + ‖z‖)�α�+2m0+2d+2+ε |∂ i f (z)|) < ∞ (2.20)

for some ε > 0, then

|J
 f (x)| ≤ C
( ∑

|i|≤max(�α�+d,0)

sup
z∈Rd

(1 + ‖z‖)�α�+2m0+2d+2+ε |∂ i f (z)|
)

×(1 + ‖x‖)−α−m0−d−1 for all x ∈ R
d. (2.21)

The conclusions in Proposition 2.5 do not apply to the generalized Riesz
potential J
 f where 
 ∈ C∞(Rd\{0}) is a homogeneous function of degree
zero. In this case, applying the argument used to establish (2.16) and (2.17), we
have that

|J
 f (x)| ≤ C
∑

|i|≤m0+1

sup
ξ∈Rd

(
(1 + ‖ξ‖)d+ε |∂ i f̂ (ξ)|) (2.22)
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for all x ∈ R
d with ‖x‖ ≤ 1, and

|J
 f (x)| ≤ C(1 + ‖x‖)−m0−d

×
{ ∑

|k|=m0+1,|j|≤m0+d

∫ 1

0

∫
Rd

∣∣∂ j(φ(‖x‖ξ)ξk
(ξ)∂k f̂ (tξ)
)∣∣dξdt

}

+ C(1 + ‖x‖)−m0−d−1
∑

|k|=m0+1,|j|+|l|≤m0+d+1,|j|≤m0+d

∫ 1

0

∫
Rd

∣∣∂ j((φ(ξ) − φ(‖x‖ξ))ξk
(ξ)
)∣∣ × ∣∣∂k+l f̂ (tξ)

)∣∣dξdt

+ C(1 + ‖x‖)−m0−d−2
∑

|k|=m0+1,|j|+|l|≤m0+d+2,|l|≤1

∫ 1

0

∫
Rd

∣∣∂ j((φ(ξ) − φ(‖x‖ξ))ξk
(ξ)
)∣∣ × ∣∣∂k+l f̂ (tξ)

)∣∣dξdt

+ C(1 + ‖x‖)−m0−d−1
∑

|j|≤m0+d+1

∫
Rd

∣∣∂ j((1 − φ(ξ))
(ξ) f̂ (ξ)
)∣∣dξ

≤ C
( ∑

|i|≤2m0+d+2

sup
ξ∈Rd

(1 + ‖ξ‖)d+ε |∂ i f̂ (ξ)|
)
(1 + ‖x‖)−m0−d−1 (2.23)

for all x ∈ R
d with ‖x‖ ≥ 1, where ε ∈ (0, 1). Therefore

Proposition 2.6 Let 
 ∈ C∞(Rd\{0}) be a homogeneous function of degree
zero. Then the following statements hold.

(i) If f satisf ies (2.14) for some m0 ≥ 0 and∑
|i|≤2m0+d+2

sup
ξ∈Rd

(1 + ‖ξ‖)d+ε |∂ i f̂ (ξ)| < ∞

for some ε > 0, then there exists a positive constant C such that

|J
 f (x)| ≤ C
( ∑

|i|≤2m0+d+2

sup
ξ∈Rd

(1 + ‖ξ‖)d+ε |∂ i f̂ (ξ)|
)

× (1 + ‖x‖)−m0−d−1 for all x ∈ R
d.

(ii) If f satisf ies (2.14) for some m0 ≥ 0 and∑
|i|≤d+1

sup
z∈Rd

(
(1 + ‖z‖)2m0+2d+2+ε |∂ i f (z)|) < ∞

for some ε > 0, then

|J
 f (x)| ≤ C
( ∑

|i|≤d+1

sup
z∈Rd

(
(1 + ‖z‖)2m0+2d+2+ε |∂ i f (z)|

)

×(1 + ‖x‖)−m0−d−1 for all x ∈ R
d.
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2.2 Translation-invariance and dilation-invariance

In this subsection, we show that the generalized Riesz potential J
 from S to
S ′ is dilation-invariant and translation-invariant, and that its restriction on the
closed subspace S∞ of S is the same as the linear operator i
 on S∞.

Theorem 2.7 Let γ ∈ R with γ − d �∈ Z+, 
 ∈ C∞(Rd\{0}) be a homogeneous
function of degree −γ , and let J
 be def ined by (2.1). Then

(i) J
 is dilation-invariant;
(ii) J
 is translation-invariant; and

(iii) Ĵ
 f (ξ) = 
(ξ) f̂ (ξ) for any function f ∈ S∞.

Proof (i) For any f ∈ S and any t > 0,

J
(δt f )(x) = (2π t)−d�(d − γ )

�(d + k0 − γ )

∫
Sd−1

∫ ∞

0

(ξ ′)rk0−γ+d−1

×
(

− d
dr

)k0
(

eir〈x,ξ ′〉 f̂ (rξ ′/t)
)

drdσ(ξ ′) = t−γ δt(J
 f )(x),

where the first equality follows from δ̂t f (ξ) = t−d f̂ (ξ/t) and the second equal-
ity is obtained by change of variables. This leads to the dilation-invariance of
the generalized Riesz potential J
.
(ii) For any f ∈ S and a vector x0 ∈ R

d, we obtain from (2.1) that

J
(τx0 f )(x) = (2π)−d�(d − γ )

�(d + k0 − γ )

∫
Sd−1

∫ ∞

0
rk0−γ+d−1
(ξ ′)

×( − d
dr

)k0
(

eir〈x−x0,ξ
′〉 f̂ (rξ ′)

)
drdσ(ξ ′) = J
 f (x − x0),

where k0 is a nonnegative integer larger than γ − d. This shows that the
generalized Riesz potential J
 is translation-invariant.
(iii) The third conclusion follows by taking Fourier transform of the equation
(2.5) on both sides. ��

2.3 Composition and left-inverse

In this subsection, we consider the composition and left-inverse properties of
generalized Riesz potentials.

Theorem 2.8 Let γ1 and γ2 ∈ R satisfy γ2 < d, γ1 + γ2 < d and γ1 − d �∈ Z+,
and let 
1, 
2 ∈ C∞(Rd\{0}) be homogeneous functions of degree −γ1 and −γ2

respectively. Then

J
1(J
2 f ) = J
1
2 f for all f ∈ S. (2.24)
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As a consequence of Theorem 2.8, we have the following result about left-
invertibility of the generalized Riesz potential J
.

Corollary 2.9 Let γ ∈ (−d, ∞) with γ − d �∈ Z+ and 
 ∈ C∞(Rd\{0}) be ho-
mogeneous of degree −γ with 
(ξ) �= 0 for all ξ ∈ Sd−1. Then J
 J
−1 is an
identity operator on S. If we further assume that γ ∈ (−d, d), then both J
−1 J


and J
 J
−1 are identity operators on S.

Taking 
(ξ) = ‖ξ‖−γ in the above corollary yields that the linear operator
Iγ in (1.10) is a left-inverse of the fractional Laplacian (−�)γ/2.

Corollary 2.10 Let γ be a positive number with γ − d �∈ Z+. Then Iγ is a left-
inverse of the fractional Laplacian (−�)γ/2.

Proof of Theorem 2.8 Let k0 be the smallest nonnegative integer such that
k0 − γ1 + d > 0, and set 
(ξ) = 
1(ξ)
2(ξ). If k0 = 0, then the conclusion
(2.24) follows from (2.2). Now we assume that k0 ≥ 1. Then

J
1(J
2 f )(x) = (2π)d�(d − γ1)

�(d + k0 − γ1)
lim
ε→0

∫
Sd−1

∫ ∞

ε


(ξ ′)rk0+d−γ1−1

×
{

r
(

− d
dr

)k0
(

eir〈x,ξ ′〉 f̂ (rξ ′)r−γ2−1
)

−k0

(
− d

dr

)k0−1(
eir〈x,ξ ′〉 f̂ (rξ ′)r−γ2−1

)}
drdσ(ξ ′)

= (2π)d�(d + 1 − γ1)

�(d + k0 − γ1)
lim
ε→0

∫
Sd−1

∫ ∞

ε


(ξ ′)rk0+d−γ1−1

×
(

− d
dr

)k0−1(
eir〈x,ξ ′〉 f̂ (rξ ′)r−γ2−1

)
drdσ(ξ ′)

= · · ·

= (2π)−d�(d + k0 − γ1)

�(d + k0 − γ1)
lim
ε→0

∫
Sd−1

∫ ∞

ε


(ξ ′)rk0+d−γ1−1

×
(

eir〈x,ξ ′〉 f̂ (rξ ′)r−γ2−k0

)
drdσ(ξ ′)

= J
1
2 f (x) for all x ∈ R
d,

where the second equality is obtained by applying the integration-by-
parts technique and using the fact that εk0+d−γ1

( d
dr

)k0−1(
eir〈x,ξ ′〉 f̂ (rξ ′)r−γ2−1

)∣∣
r=ε
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converges to zero uniformly on ξ ∈ Sd−1 under the assumption that γ1 + γ2 <

d. The conclusion (2.24) then follows. ��

2.4 Translation-invariant and dilation-invariant extensions of the linear
operator i


In this subsection, we show that the generalized Riesz potential J
 in (2.1) is
the only continuous linear operator from S to S ′ that is translation-invariant
and dilation-invariant, and that is an extension of the linear operator i
 in (2.4)
from the closed subspace S∞ to the whole space S.

Theorem 2.11 Let γ be a positive number with γ − d �∈ Z+, 
 ∈ C∞(Rd\{0})
be a nonzero homogeneous function of degree −γ , and let J
 be def ined by
(2.1). Then I is a continuous linear operator from S to S ′ such that I is dilation-
invariant and translation-invariant, and that the restriction of I on S∞ is the same
as the linear operator i
 in (2.4) if and only if I = J
.

To prove Theorem 2.11, we need two technical lemmas about extensions of
the linear operator i
 on S∞.

Lemma 2.12 Let γ be a positive number with γ − d �∈ Z+, 
 ∈ C∞(Rd\{0}) be
a homogeneous function of degree −γ , and let J
 be def ined by (2.1). Then a
continuous linear operator I from S to S ′ is an extension of the linear operator
i
 on S∞ if and only if

I f = J
 f +
∑
|i|≤N

∂ i f̂ (0)

i! Hi (2.25)

for some integer N and tempered distributions Hi, i ∈ Z
d+ with |i| ≤ N.

Proof The sufficiency follows from Theorem 2.7 and the assumption that
Hi, |i| ≤ N, in (2.25) are tempered distributions. Now the necessity. By
Corollary 2.3 and Theorem 2.7, I − J
 is a continuous linear operator from
S to S ′ that satisfies that (I − J
) f = 0 for all f ∈ S∞. This implies that
the inverse Fourier transform of the tempered distribution (I − J
)∗g is
supported on the origin for any Schwartz function g. Hence there exist an
integer N and tempered distribution Hi, |i| ≤ N, such that F−1((I − J
)∗g) =∑

|i|≤N〈g, Hi〉δ(i)/i!, where the tempered distributions δ(i), i ∈ Z
d+, are defined

by 〈δ(i), f 〉 = ∂ i f (0) [7, Theorem 2.3.4]. Then 〈(I − J
) f, g〉 = 〈 f̂ ,F−1(I −
J
)∗g〉 = ∑

|i|≤N〈Hi, g〉∂ i f̂ (0)/i! for all Schwartz functions f and g, and hence
(2.25) is established. ��
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Lemma 2.13 Let γ be a positive number with γ − d �∈ Z+, and consider the
continuous linear operator K from S to S ′:

K f =
∑
|i|≤N

∂ i f̂ (0)

i! Hi, f ∈ S (2.26)

where N ∈ Z+ and Hi, |i| ≤ N, are tempered distributions, Then the following
statements hold.

(i) The equation

K(δt f ) = t−γ δt(K f ) (2.27)

holds for any f ∈ S and t > 0 if and only if for every i ∈ Z
d+ with |i| ≤ N,

Hi is homogeneous of degree γ − d − |i|.
( ii) The linear operator K is translation-invariant if and only if there exists a

polynomial P of degree at most N such that Hi = (−i∂)i P for all i ∈ Z
d+

with |i| ≤ N.
(iii) The linear operator K is translation-invariant and satisf ies (2.27) if and

only if Hi = 0 for all i ∈ Z
d+ with |i| ≤ N.

Proof (i) The sufficiency follows from the homogeneous assumption on
Hi, |i| ≤ N, and the observation that

∂ iδ̂t f (0) = t−d−|i|∂ i f̂ (0) for all f ∈ S and i ∈ Z
d
+. (2.28)

Now the necessity. Let φ be a C∞ function such that φ(ξ) = 1 for all ξ ∈ B(0, 1)

and φ(ξ) = 0 for all ξ �∈ B(0, 2), where B(x, r) is the ball with center x ∈ R
d

and radius r > 0. Define ψi ∈ S, i ∈ Z
d+, with the help of the Fourier transform

by

ψ̂i(ξ) = ξ i

i! φ(ξ). (2.29)

One may verify that

∂ i′ψ̂i(0) =
{

1 if i′ = i,

0 if i′ �= i.
(2.30)

For any i ∈ Z
d+ with |i| ≤ N, the homogeneous property of the tempered

distribution Hi follows by replacing f in (2.27) by ψi and using (2.30).
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(ii) (⇐=) Given f ∈ S and x0 ∈ R
d,

K(τx0 f )(x) =
∑
|i|≤N

∑
j+k=i

(−ix0)
k

k!
∂ j f̂ (0)

j! (−i∂)i P(x)

=
∑
|j|≤N

(−i)j∂ j f̂ (0)

j!
( ∑

|k|≤N−|j|

∂ j+k P(x)

k! (−x0)
k
)

=
∑
|j|≤N

(−i)j∂ j f̂ (0)

j! ∂ j P(x − x0) = K f (x − x0), (2.31)

where the first equality follows from

∂ iτ̂x0 f (0) =
∑
j≤i

(
i
j

)
(−ix0)

i−j∂ j f̂ (0), (2.32)

and the third equality is deducted from the Taylor expression of the polyno-
mial ∂ j P of degree at most N − |j|.

(=⇒) By (2.32) and the translation-invariance of the linear operator K,

∑
|i|≤N

∑
j+k=i

(−ix0)
k

k!
∂ j f̂ (0)

j! Hi =
∑
|i|≤N

∂ j f̂ (0)

j! τx0 Hj (2.33)

holds for any Schwartz function f and x0 ∈ R
d. Replacing f in the above

equation by the function ψ0 in (2.29) and then using (2.30), we get

τx0 H0 =
∑
|i|≤N

(−ix0)
i

i! Hi. (2.34)

This implies that 〈H0, g(· + x0)〉 = ∑
|i|≤N

(−ix0)
i

i! 〈Hi, g〉 for any Schwartz func-
tion g. By taking partial derivatives ∂k, |k| = N + 1, with respect to x0 of both
sides of the above equation, using the fact that ∂kxi = 0 for all k ∈ Z+ with
|k| = N + 1, and then letting x0 = 0, we obtain that 〈H0, ∂

kg〉 = 0 holds for
any g ∈ S and k ∈ Z+ with |k| = N + 1. Hence H0 = P for some polynomial
P of degree at most N. The desired conclusion about Hi, |i| ≤ N, then follows
from (2.34) and τx0 H0(x) = ∑

|i|≤N
(−x0)

i

i! ∂ i P(x) by the Taylor expansion of the
polynomial P.
(iii) Clearly if Hi = 0 for all |i| ≤ N, then K f = 0 for all f ∈ S and hence
K is translation-invariant and satisfies (2.27). Conversely, if K is translation-
invariant and satisfies (2.27), it follow from the conclusions (i) and (ii) that
for every i ∈ Z

d+ with |i| ≤ N, Hi is homogeneous of degree γ − d − |i| �∈ Z

and also a polynomial of degree at most N − |i|. Then Hi = 0 for all i ∈ Z
d+

with |i| ≤ N because the homogeneous degree of any nonzero polynomial is a
nonnegative integer if it is homogeneous. ��
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We now have all of ingredients to prove Theorem 2.11.

Proof of Theorem 2.11 The sufficiency follows from Corollary 2.3 and
Theorem 2.7. Now the necessity. By Lemma 2.12, there exist an integer N
and tempered distributions Hi, |i| ≤ N, such that (2.25) holds. Define K f =∑

|i|≤N
∂ i f̂ (0)

i! Hi for any f ∈ S. Then K f is a continuous linear operator from S
to S ′ and

I f = J
 f + K f, f ∈ S. (2.35)

Moreover the linear operator K satisfies (2.27) and is translation-invariant
by (2.35), Theorem 2.7 and the assumption on I. Then K f = 0 for all f ∈ S
by Lemma 2.13. This together with (2.35) proves the desired conclusion that
I = J
. ��

2.5 Translation-invariant extensions of the linear operator i
 with additional
localization in the Fourier domain

Given a nonzero homogeneous function 
 ∈ C∞(Rd\{0}) of degree −γ , we
recall from (2.2) and Theorem 2.7 that J
 is translation-invariant and the
Fourier transform of J
 f belongs to K1 when γ ∈ (0, d), where

K1 =
{

h :
∫

Rd
|h(ξ)|(1 + ‖ξ‖)−Ndξ < ∞ for some N ≥ 1

}
. (2.36)

In fact, the generalized Riesz potential J
 is the only extension of the linear
operator i
 on S∞ to the whole space S with the above two properties.

Theorem 2.14 Let γ > 0 with γ − d �∈ Z+, 
 ∈ C∞(Rd\{0}) be a nonzero ho-
mogeneous function of degree −γ , and the continuous linear operator I from
S to S ′ be an extension of the linear operator i
 on S∞ such that the Fourier
transform of I f belongs to K1 for all f ∈ S. Then I is translation-invariant if
and only if I = J
 and γ ∈ (0, d).

Proof The sufficiency follows from (2.2) and Theorem 2.7. Now we prove the
necessity. By the assumption on the linear operator I, applying an argument
similar to the proof of Lemma 2.12, we can find a family of functions gi ∈
K1, |i| ≤ N, such that

Î f (ξ) =
(

f̂ (ξ) −
∑

|i|≤γ−d

∂ i f̂ (0)

i! ξ i
)

(ξ) +

∑
|i|≤N

∂ i f̂ (0)

i! gi(ξ) (2.37)
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for any Schwartz function f . This together with (2.32) and the translation-
invariance of the linear operator I implies that

−
∑

|i|≤γ−d

∑
j+k=i

∂ j f̂ (0)

k!j! (−ix0)
kξ i
(ξ) +

∑
|i|≤N

∑
j+k=i

∂ j f̂ (0)

k!j! (−ix0)
kgi(ξ)

= eix0ξ
(

−
∑

|i|≤γ−d

∂ i f̂ (0)

i! ξ i
(ξ) +
∑
|i|≤N

∂ i f̂ (0)

i! gi(ξ)
)
.

As x0 ∈ R
d in (2.38) is chosen arbitrarily, we conclude that

−
∑

|i|≤γ−d

∂ i f̂ (0)

i! ξ i
(ξ) +
∑
|i|≤N

∂ i f̂ (0)

i! gi(ξ) = 0 for all f ∈ S.

Substituting the above equation into (2.37), we then obtain Î f (ξ) = f̂ (ξ)
(ξ)

for all f ∈ S. This, together with the observation that f̂
 ∈ K1 for all f ∈ S if
and only if γ < d, leads to the desired conclusion that I = J
 and γ ∈ (0, d).

��

2.6 Non-integrability in the spatial domain

Let γ > 0 with γ − d �∈ Z+ and 
 ∈ C∞(Rd\{0}) be a nonzero homogeneous
function of degree −γ . For any Schwartz function f , there exists a positive
constant C by Theorem 2.1 such that |J
 f (x)| ≤ C(1 + ‖x‖)γ−d for all x ∈
R

d. Hence J
 f ∈ Lp, 1 ≤ p ≤ ∞, when γ < d(1 − 1/p). In this subsection,
we show that the above p-integrability property for the generalized Riesz
potential J
 is no longer true when γ ≥ d(1 − 1/p).

Theorem 2.15 Let 1 ≤ p ≤ ∞,0 < γ ∈ [d(1 − 1/p),∞)\Z and 
 ∈ C∞(Rd\{0})
be a nonzero homogeneous function of degree −γ . Then there exists a Schwartz
function f such that J
 f �∈ Lp.

Letting 
(ξ) = ‖ξ‖−γ in Theorem 2.15 leads to the conclusion mentioned in
the abstract:

Corollary 2.16 Let 1 ≤ p ≤ ∞ and d(1 − 1/p) ≤ γ �∈ Z+. Then Iγ f is not p-
integrable for some function f ∈ S.

Proof of Theorem 2.15 Let the Schwartz functions φ and ψi, i ∈ Z
d+, be as in

the proof of Lemma 2.13. We examine three cases to prove the theorem.
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Case I d(1 − 1/p) ≤ γ < min(d, d(1 − 1/p) + 1) In this case, 1 ≤ p < ∞
and

J
ψ0(x) =
∫

Rd
K(x − y)ψ0(y)dy (2.38)

by (2.2), where K is the inverse Fourier transform of 
. By [7, Theorems 7.1.16
and 7.1.18], K ∈ C∞(Rd\{0}) is a homogeneous function of order γ − d ∈
(−d, 0), which implies that

|∂ i K(x)| ≤ C‖x‖γ−d−|i| for all i ∈ Z
d
+ with |i| ≤ 1. (2.39)

Using (2.38) and (2.39), and noting that ψ0 ∈ S satisfies
∫

Rd ψ0(y)dy = 1, we
obtain that for all x ∈ R

d with ‖x‖ ≥ 1,

|J
ψ0(x) − K(x)| ≤
∫

‖y‖≤‖x‖/2
|K(x − y) − K(x)||ψ0(y)|dy

+
( ∫

‖x‖/2≤‖y‖≤2‖x‖
+

∫
2‖x‖≤‖y‖

)
|K(x − y)||ψ0(y)|dy

+|K(x)|
∫

‖y‖≥‖x‖/2
|ψ0(y)|dy

≤ C(1 + ‖x‖)γ−d−1. (2.40)

We notice that
∫
‖x‖≥1(1 + ‖x‖)(γ−d−1)pdx < ∞ and

∫
‖x‖≥1 |K(x)|pdx = ∞ be-

cause K is a nonzero homogenous function of degree γ − d and d − p <

(d − γ )p ≤ d. The above two observations together with the estimate in (2.40)
prove that J
ψ0 �∈ Lp, the desired conclusion with f = ψ0.

Case II d < γ < d(1 − 1/p) + 1. In this case, d < p ≤ ∞ and

J
ψ0(x) = 1

d − γ

∑
|j|=1

J
j(ϕj)(x) + 1

d − γ

∑
|i|=1

(−x)i J
iψ0(x) (2.41)

by taking k0 = 1 in (2.8), where 
i(ξ) = (iξ)i
(ξ) and ϕi(x) = xiψ0(x). Let Ki

be the inverse Fourier transform of the function 
i, |i| = 1. Noticing that 
i is
homogeneous of degree −γ + 1 and that

∫
Rd ϕi(x)dx = 0, we then apply similar

argument to the one used in establishing (2.40) and obtain

|J
i(ϕi)(x)| + |J
iψ0(x) − Ki(x)| ≤ C‖x‖γ−d−2 if ‖x‖ ≥ 1.

Hence
∫

‖x‖≥1

∣∣J
ψ0(x) − 1

d − γ

∑
|i|=1

(−x)i Ki(x)
∣∣p

dx ≤ C
∫

‖x‖≥1
‖x‖(γ−d−1)pdx < ∞

(2.42)
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if d < p < ∞ and

sup
‖x‖≥1

∣∣J
ψ0(x) − 1

d − γ

∑
|i|=1

(−ix)i Ki(x)
∣∣ ≤ C sup

‖x‖≥1
‖x‖γ−d−1 < ∞ (2.43)

if p = ∞. Set K(x) := ∑
|i|=1(−x)i Ki(x). Then K is homogeneous of degree γ −

d by the assumption on 
, and is not identically zero because

〈K, g〉 =
∫

Rd

(ξ)

( ∑
|i|=1

ξ i∂ iĝ(ξ)
)

dξ = −
∫

Rd

( ∑
|i|=1

∂ i(ξ i
(ξ))
)

ĝ(ξ)dξ

=
∫

Sd−1

∫ ∞

0

(
d
(rξ ′) + r

d
dr


(rξ ′)
)
ĝ(rξ ′)rd−1drdσ(ξ ′)

= (d − γ )

∫
Rd


(ξ)ĝ(ξ)dξ �≡ 0

where g ∈ S∞. Thus
∫
‖x‖≥1 |K(x)|pdx = +∞ when d < p < ∞, and K(x) is

unbounded on R
d\B(0, 1) when p = ∞. This together with (2.42) and (2.43)

proves that J
ψ0 �∈ Lp and hence the desired conclusion with f = ψ0.

Case III γ ≥ d(1 − 1/p) + 1 Let k0 be the integer such that d(1 − 1/p) ≤
γ − k0 < d(1 − 1/p) + 1, and set 
j(ξ) = (iξ)j
(ξ), |j| = k0. Noting that
J
ψj(x) = J
jψ0(x)/j! and 
j is homogeneous of degree −γ + k0, we have
obtained from the conclusions in the first two cases that J
ψj �∈ Lp. Hence
the desired conclusion follows by letting f = ψj with |j| = k0. ��

2.7 Non-integrability in the Fourier domain

If γ < d, it follows from (2.2) that for Schwartz functions f and g, 〈J
 f, g〉 can
be expressed as a weighted integral of ĝ:

〈J
 f, g〉 =
∫

Rd
h(ξ)ĝ(ξ)dξ, (2.44)

where h(ξ) = (2π)−d
(−ξ) f̂ (−ξ) ∈ K1. In this subsection, we show that the
above reformulation (2.44) to define 〈J
 f, g〉 via a weighted integral of ĝ
cannot be extended to γ > d.

Theorem 2.17 Let γ ∈ (d, ∞)\Z, 
 ∈ C∞(Rd\{0}) be a nonzero homogeneous
function of degree −γ , and let J
 be def ined by (2.1). Then there exists a
Schwartz function f such that the Fourier transform of J
 f does not belong
to K1.

Proof Let φ and ψ0 be the Schwartz functions in the proof of Lemma 2.13, and
let g ∈ S∞ be so chosen that its Fourier transform ĝ is supported in B(0, 1) and
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satisfies
∫

Rd 
(ξ)ĝ(−ξ)dξ = 1. Now we prove that Ĵ
ψ0 �∈ K1. Suppose on the

contrary that Ĵ
ψ0 ∈ K1. Then

〈J
ψ0, n−dg(·/n)〉 = (2π)−d�(d − γ )

�(d + k0 − γ )

∫
Sd−1

∫ ∞

ε

rk0+d−γ−1
(ξ ′)

×
(

− d
dr

)k0
(
ψ̂0(rξ ′)ĝ(−rnξ ′)

)
drdσ(ξ ′)

= (2π)−d
∫

Rd
ĝ(−nξ)
(ξ)dξ

= (2π)−dnγ−d
∫

Rd

(ξ)ĝ(−ξ)dξ

→ +∞ as n → ∞ (2.45)

by (2.1) and (2.5). On the other hand,

|〈J
ψ0, n−dg(·/n)〉| = (2π)−d
∣∣∣
∫

Rd
Ĵ
ψ0(ξ)ĝ(−nξ)dξ

∣∣∣

≤ (2π)−d‖ĝ‖∞
∫

|ξ |≤1/n
| Ĵ
ψ0(ξ)|dξ → 0 as n → ∞, (2.46)

where we have used the hypothesis that Ĵ
ψ0 ∈ K1 to obtain the limit. The
limits in (2.45) and (2.46) contradict each other, and hence the Fourier
transform J
ψ0 does not belong to K1. ��

2.8 Proof of Theorem 1.1

Observe that J
 = Iγ when 
(ξ) = ‖ξ‖−γ and γ > 0, and that

J
 = (−�)−γ /2 if 
(ξ) = ‖ξ‖−γ and γ < 0. (2.47)

Then the necessity holds by Theorem 2.11, while the sufficiency follows from
Corollary 2.3, Theorem 2.7, and Corollary 2.9.

3 Integrable Riesz potentials

In Section 2, we have shown that the various attempts for defining a proper
(integrable) Riesz potential that is translation-invariant are doomed to failure
for γ > d. We now proceed by providing a fix which is possible if we drop the
translation-invariance requirement.
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Let 1 ≤ p ≤ ∞, γ ∈ R, and 
 ∈ C∞(Rd\{0}) be a homogeneous function of
degree −γ . We define the linear operator U
,p from S to S ′ with the help of
the Fourier transform by

F(U
,p f )(ξ) =
(

f̂ (ξ) −
∑

|i|≤γ−d(1−1/p)

∂ i f̂ (0)

i! ξ i
)

(ξ), f ∈ S. (3.1)

We call the linear operator U
,p a p-integrable Riesz potential associated with
the homogenous function 
, or integrable Riesz potential for brevity, as

U
,p = Iγ,p if 
(ξ) = ‖ξ‖−γ . (3.2)

Define

U∗

,p f (x) = (2π)−d

∫
Rd

(
ei〈x,ξ 〉 −

∑
|i|≤γ−d+d/p

(ix)iξ i

i!
)

(−ξ) f̂ (ξ)dξ, f ∈ S.

(3.3)

Then U∗

,p is the adjoint operator of the integrable Riesz potential U
,p:

〈U
,p f, g〉 = 〈 f, U∗

,pg〉 for all f, g ∈ S. (3.4)

If γ satisfies 0 < γ < d(1 − 1/p), then

U
,p f = J
 f for all f ∈ S. (3.5)

Hence in this case, it follows from Theorem 2.7 that U
,p is dilation-invariant
and translation-invariant, and a continuous extension of the linear operator
i
 on the closed subspace S∞ to the whole space S. Moreover U
,p f ∈
Lp and F(U
,p f ) ∈ Lq, 1 ≤ q ≤ p/(p − 1), for any Schwartz function f by
Theorem 2.1 and the following estimate:

|F(U
,p f )(ξ)| ≤ C‖ξ‖−γ (1 + ‖ξ‖)γ−d−1 for all ξ ∈ R
d.

So from now on, we implicitly assume that γ ≥ d(1 − 1/p), except when
mentioned otherwise.

In the sequel, we investigate with the properties of the p-integrable Riesz
potential U
,p associated with a homogenous function 
, such as dilation-
invariance and translation-variance (Theorem 3.1), Lp/(p−1)-integrability in
the Fourier domain (Corollary 3.2), Lp-integrability in the spatial domain
(Theorem 3.5 and Corollary 3.6), composition and left-inverse property
(Theorem 3.3 and Corollary 3.4), the uniqueness of dilation-invariant exten-
sion of the linear operator i
 from the closed subspace S∞ to the whole
space S with additional integrability in the spatial domain and in the Fourier
domain (Theorems 3.7 and 3.8). The above properties of the p-integrable
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Riesz potential associated with a homogenous function will be used to prove
Theorem 1.2 in the last subsection.

3.1 Dilation-invariance, translation-variance and integrability
in the Fourier domain

Theorem 3.1 Let 1 ≤ p ≤ ∞, γ ≥ d(1 − 1/p), k1 be the integral part of γ −
d(1 − 1/p), 
 ∈ C∞(Rd\{0}) be a nonzero homogeneous function of degree −γ ,
and let U
,p be def ined as in (3.1). Then the following statements hold.

(i) U
,p is dilation-invariant.
(ii) U
,p is not translation-invariant.

(iii) If supx∈Rd | f (x)|(1 + ‖x‖)k1+d+1+ε < ∞ for some ε > 0, then there exists a
positive constant C independent on f such that

|F(U
,p f )(ξ)| ≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)k1+d+1+ε
)
‖ξ‖k1−γ+1(1 + ‖ξ‖)−1

(3.6)
for all ξ ∈ R

d.
(iv) U
,p is a continuous linear operator from S to S ′, and an extension of the

operator i
 on the subspace S∞ to the whole space S.

As a consequence of Theorem 3.1, we have the following result about the
Lp/(p−1)-integrability of the Fourier transform of U
,p f for f ∈ S.

Corollary 3.2 Let 1 ≤ p ≤ ∞ and γ ≥ d(1 − 1/p) satisfy either p = 1 or γ −
d(1 − 1/p) �∈ Z+ and 1 < p ≤ ∞, k1 be the integral part of γ − d(1 − 1/p), 
 ∈
C∞(Rd\{0}) be a homogeneous function of degree −γ , and let U
,p be def ined
as in (3.1). Then the Fourier transform of U
,p f belongs to Lp/(p−1) for any
f ∈ S.

Proof of Theorem 3.1 (i) Given any t > 0 and f ∈ S,

F(U
,p(δt f ))(ξ) = t−d
(

f̂
(ξ

t

) −
∑

|i|≤γ−d+d/p

∂ i f̂ (0)

i!
(ξ

t

)i
)

(ξ)

= t−d−γF(U
,p f )
(ξ

t

)
.

This proves the dilation-invariance of the linear operator U
,p.
(ii) Suppose, on the contrary, that U
,p is translation-invariant. Then


(ξ)
∑

|i|≤γ−d+d/p

∂ iτ̂x0 f (0)

i! ξ i = 
(ξ)e−i〈x0,ξ 〉 ∑
|i|≤γ−d+d/p

∂ i f̂ (0)

i! ξ i, ξ ∈ R
d

(3.7)
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for all x0 ∈ R
d and f ∈ S. Note that the left-hand side of equation (3.7) is a

polynomial in x0 by (2.32) while its right hand side is a trigonometric function
of x0. Hence both sides must be identically zero, which implies that


(ξ)
∑

|i|≤γ−d+d/p

∂ i f̂ (0)

i! ξ i = 0, ξ ∈ R
d (3.8)

for all f ∈ S. Replacing f in the above equation by the function ψ0 in (2.29)
and using (2.30) and the assumption γ ≥ d(1 − 1/p) leads to a contradiction.
(iii) By the assumption on the homogeneous function 
, |
(ξ)| ≤ C‖ξ‖−γ .
Then for ξ ∈ R

d with ‖ξ‖ ≥ 1,

|F(U
,p f )(ξ)| ≤ C
(
‖ f̂‖∞ +

∑
|i|≤k1

‖∂ i f̂‖∞‖ξ‖|i|
)
‖ξ‖−γ

≤ C
( ∑

|i|≤k1+1

‖∂ i f̂‖∞
)
‖ξ‖k1−γ

by (3.1), and for ξ ∈ R
d with ‖ξ‖ ≤ 1,

|F(U
,p f )(ξ)| ≤ C
( ∑

|i|≤k1+1

‖∂ i f̂‖∞
)
‖ξ‖k1−γ+1

by the Taylor’s expansion to the function f̂ (ξ) at the origin. Combining the
above two estimates gives

|F(U
,p f )(ξ)| ≤ C
( ∑

|i|≤k1+1

‖∂ i f̂‖∞
)
‖ξ‖k1−γ+1(1 + ‖ξ‖)−1, ξ ∈ R

d. (3.9)

Note that

‖∂ i f̂‖∞ ≤ C
∫

Rd
| f (x)||x||i|dx ≤ C sup

z∈Rd

| f (z)|(1 + |z|)k1+d+1+ε (3.10)

for all i ∈ Z
d+ with |i| ≤ k1 + 1. Then the desired estimate (3.6) follows from

(3.9) and (3.10).
(iv) By (3.1) and the first conclusion of this theorem, the Fourier transform of
U
,p f is continuous on R

d\{0}, and satisfies

∫
Rd

|F(U
,p f )(ξ)|(1 + ‖ξ‖)γ−k1−d−1dξ ≤ C sup
z∈Rd

| f (x)|(1 + ‖x‖)k1+d+2.

Hence U
,p is a continuous linear operator from S to S ′. For any f ∈ S∞,
∂ i f̂ (0) = 0 for all i ∈ Z

d+. Then F(U
,p f ) = F(i
 f ) for all f ∈ S∞. This shows
that U
,p, 1 ≤ p ≤ ∞, is a continuous extension of the linear operator i
 from
the subspace S∞ ⊂ S to the whole space S. ��
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3.2 Composition and left-inverse of the fractional Laplacian

Direct calculation leads to

∑
|i|≤γ−d(1−1/p)

∂ i(ξk f̂ (ξ))|ξ=0

i! ξ i =
∑

|j|≤γ−|k|−d(1−1/p)

∂ j f̂ (0)

j! ξ j+k, k ∈ Z
d
+

for any γ ∈ R, 1 ≤ p ≤ ∞ and f ∈ S. This together with (3.1) implies that

U
,p(∂
k f ) = U
k,p f for all f ∈ S and k ∈ Z

d
+, (3.11)

where 
k(ξ) = (iξ)k
(ξ) for k ∈ Z
d+. In general, we have the following result

about composition of integrable Riesz potentials.

Theorem 3.3 Let 1 ≤ p ≤ ∞, real numbers γ1, γ2 satisfy γ1 ≥ d(1 − 1/p) and
−γ2 is larger than the integral part of γ1 − d(1 − 1/p), and let 
1, 
2 ∈
C∞(Rd\{0}) be homogenous of degree −γ1 and −γ2 respectively. Then

U
1,p(J
2 f ) = J
1
2 f for all f ∈ S. (3.12)

As a consequence of Theorems 2.8 and 3.3, we have the following result
about the left-inverse of the fractional Laplacian (−�)γ/2.

Corollary 3.4 Let 1 ≤ p ≤ ∞ and γ > 0 satisfy either 1 < p ≤ ∞ or p = 1 and
γ �∈ Z+, and the linear operator Iγ,p be def ined as in (1.12). Then Iγ,p is a left-
inverse of the fractional Laplacian (−�)γ/2, i.e., Iγ,p(−�)γ/2 f = f for all f ∈ S.

Proof of Theorem 3.3 Let k1 be the integral part of γ1 − d(1 − 1/p). Then
−γ2 > k1 by the assumption. Then F(J
2 f )(ξ) = 
2(ξ) f̂ (ξ) and
∂ i(F(J
2 f )(ξ))|ξ=0 = 0 for any i ∈ Z+ with |i| ≤ k1 and any Schwartz function
f . This implies that F(U
1,p(J
2 f ))(ξ) is equal to

(
Ĵ
2 f (ξ) −

∑
|i|≤γ1−d(1−1/p)

∂ i(F(J
2 f )(ξ))|ξ=0

i! ξ i
)

1(ξ),

which is the same as F(J
1
2 f )(ξ). Hence the equation (3.12) is established.
��

3.3 Lp-integrability in the spatial domain

If γ ∈ (0, d(1 − 1/p)), then it follows from (3.1) and Theorem 2.1 that
|U
,p f (x)| ≤ C(1 + ‖x‖)γ−d, x ∈ R

d (hence U
,p f ∈ Lp) for any Schwartz
function f . In this subsection, we provide a similar estimate for U
,p f when
γ ≥ d(1 − 1/p).
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Theorem 3.5 Let 0 < ε < 1, 1 ≤ p ≤ ∞, γ ∈ [d(1 − 1/p), ∞)\Z, k1 be the in-
tegral part of γ − d(1 − 1/p), and 
 ∈ C∞(Rd\{0}) be a homogeneous function
of degree −γ . If

| f (x)| ≤ C(1 + ‖x‖)−(k1+1+d+ε), x ∈ R
d (3.13)

then

|U
,p f (x)| ≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)k1+1+d+ε
)

×‖x‖min(γ−k1−d,0)(1 + ‖x‖)max(γ−k1−d,0)−1 (3.14)

for all x ∈ R
d, and

|U
,p f (x) − U
,p f (x′)| ≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)k1+1+d+ε
)
‖x − x′‖δ

×‖x‖min(γ−k1−d−δ,0)(1 + ‖x‖)max(γ−k1−d−δ,0)−1

(3.15)

for all x, x′ ∈ R
d with ‖x − x′‖ ≤ ‖x‖/4, where δ < min(|γ − k1 − d|, ε).

As an easy consequence of Theorem 3.5, we have

Corollary 3.6 Let 1 ≤ p ≤ ∞, γ ≥ d(1 − 1/p), and 
 ∈ C∞(Rd\{0}) be a ho-
mogeneous function of degree γ . If both γ and γ − d(1 − 1/p) are not nonneg-
ative integers, then U
,p f is Hölder continuous on R

d\{0} and belong to Lp for
any Schwartz function f .

Proof of Theorem 3.5 We investigate three cases to establish the estimates in
(3.14) and (3.15).

Case I k1 + 1 − γ < 0 Set hξ (t) = f̂ (tξ). Applying Taylor’s expansion to the
function hξ gives

f̂ (ξ) = hξ (1) =
k1∑

s=0

h(s)(0)

s! + 1

k1!
∫ 1

0
h(k1+1)

ξ (t)(1 − t)k1 dt

=
∑
|i|≤k1

∂ i f̂ (0)

i! ξ i + (k1 + 1)
∑

|j|=k1+1

ξ j

j!
∫ 1

0
∂ j f̂ (tξ)(1 − t)k1 dt. (3.16)

Hence
(

f̂ (ξ) −
∑
|i|≤k1

∂ i f̂ (0)

i! ξ i
)

(ξ) =

∑
|j|=k1+1

1

j!
j(ξ )̂gj(ξ), (3.17)

where 
j(ξ) = (iξ)j
(ξ) and

gj(x) = (k1 + 1)

∫ 1

0
(1 − t)k1(−x/t)j f (x/t)t−ddt ∈ L1, |j| = k1 + 1. (3.18)
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Taking inverse Fourier transform at both sides of the equation (3.17) yields

U
,p f (x) =
∑

|j|=k1+1

1

j!
∫

Rd
Kj(x − y)gj(y)dy (3.19)

where Kj, |j| = k1 + 1, is the inverse Fourier transform of 
j. Therefore

|U
,p f (x)| ≤ C
∫ 1

0

∫
Rd

‖x − y‖γ−d−k1−1‖y/t‖k1+1| f (y/t)|t−ddydt

= C
∫ 1

0

∫
Rd

‖x − ty‖γ−d−k1−1‖y‖k1+1| f (y)|dydt

≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)k1+1+d+ε
) ∫ 1

0
(t + ‖x‖)γ−d−k1−1dt

≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)k1+1+d+ε
)

×‖x‖min(γ−d−k1,0)(1 + ‖x‖)max(γ−d−k1,0)−1, (3.20)

where the first inequality holds because Kj ∈ C∞(Rd\{0}) is homogeneous
of degree γ − d − k1 − 1 ∈ (−d, 0) [7, Theorems 7.1.16 and 7.1.18], and the
second inequality follows from (2.10). Similarly,

|U
,p f (x) − U
,p f (x′)|

≤ C
∑

|j|=k1+1

∫
‖x−y‖≥2‖x−x′‖

‖x − x′‖δ‖x − y‖γ−d−k1−1−δ|gj(y)|dy

+C
∑

|j|=k1+1

∫
‖x−y‖≤2‖x−x′‖

‖x − y‖γ−d−k1−1|gj(y)|dy

+C
∑

|j|=k1+1

∫
‖x−y‖≤2‖x−x′‖

‖x′ − y‖γ−d−k1−1|gj(y)|dy

≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)k1+1+d+ε
)
‖x − x′‖δ

×‖x‖min(γ−d−k1−δ,0)(1 + ‖x‖)max(γ−d−k1−δ,0)−1 (3.21)

for all x, x′ ∈ R
d with ‖x − x′‖ ≤ ‖x‖/4, where δ < min(ε, |γ − k1 − d|). Then

the desired estimate (3.14) and (3.15) follow from (3.20) and (3.21) for the
case k1 + 1 − γ < 0.
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Case II k1 + 1 − γ > 0 and k1 ≥ 1 Applying Taylor’s expansion to the func-
tion hξ (t) = f̂ (tξ), we have

f̂ (ξ) −
∑
|i|≤k1

∂ i f̂ (0)

i! ξ i = k1

∑
|j|=k1

ξ j

j!
∫ 1

0

(
∂ j f̂ (tξ) − ∂ j f̂ (0)

)
(1 − t)k1−1dt,

Multiplying by 
(ξ) both sides of the above equation and then taking the
inverse Fourier transform, we obtain

U
,p f (x) =
∑
|j|=k1

1

j!
( ∫

Rd
Kj(x − y)gj(y)dy − Kj(x)

∫
Rd

gj(y)dy
)
, (3.22)

where

gj(x) = k1

∫ 1

0
(1 − t)k1−1(−x/t)j f (x/t)t−ddt ∈ L1, |j| = k1. (3.23)

Recalling that Kj ∈ C∞(Rd\{0}), |j| = k1 are homogeneous of degree γ − d −
k1 ∈ (−d, 0),

|∂ i Kj(x)| ≤ C‖x‖γ−d−k1−|j|, |i| ≤ 1. (3.24)

Combining (2.10), (3.22), (3.23) and (3.24), we get

|U
,p f (x)| ≤ C
∑
|j|=k1

∫ 1

0

∫
Rd

|Kj(x − ty) − Kj(x)|‖y‖k1 | f (y)|dy

≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)k1+d+1+ε
)

×
{ ∫ 1

0

∫
‖y‖≤‖x‖/2

t‖y‖‖x‖γ−d−k1−1(1 + ‖y‖)−d−1−εdydt

+(1 + ‖x‖)−1
∫ 1

0

∫
‖y‖≥‖x‖/2

‖x − ty‖γ−d−k1(1 + ‖y‖)−d−εdydt

+‖x‖γ−d−k1

∫ 1

0

∫
‖y‖≥‖x‖/2

(1 + ‖y‖)−d−1−εdydt
}

≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)k1+d+1+ε
)

×‖x‖min(γ−k1−d,0)(1 + ‖x‖)max(γ−k1−d,0)−1, (3.25)
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and

|U
,p f (x) − U
,p f (x′)|

≤ C
∑
|j|=k1

∫ 1

0

( ∫
‖ty‖≤‖x‖/4

+
∫

‖ty‖≥4‖x‖
+

∫
‖x‖/4≤‖ty‖≤4‖x‖

)

|Kj(x − ty) − Kj(x) − Kj(x′ − ty) + Kj(x′)|‖y‖k1 | f (y)|dy

≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)k1+d+1+ε
) ∑

|j|=k1

{
‖x − x′‖δ

×
∫ 1

0

∫
‖ty‖≤‖x‖/4

t‖y‖‖x‖γ−d−k1−1−δ(1 + ‖y‖)−d−1−εdydt + ‖x − x′‖δ

×
∫ 1

0

∫
t‖y‖≥4‖x‖

(‖x‖γ−k1−d−δ + ‖y‖γ−k1−d−δ
)
(1 + ‖y‖)−d−1−εdydt

+
∫ 1

0

∫
‖x‖/4≤‖ty‖≤4‖x‖

(
|Kj(x − ty) − Kj(x′ − ty)| + |Kj(x) − Kj(x)|

)

×(1 + ‖x‖/t)−d−1−εdydt
}

≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)k1+d+1+ε
)
‖x − x′‖δ‖x‖γ−k1−d−δ(1 + ‖x‖)−1.

(3.26)

Then the desired estimates (3.14) and (3.15) are proved in the case that k1 +
1 − γ > 0 and k1 ≥ 1.

Case III k1 + 1 − γ > 0 and k1 = 0 In this case, γ ∈ (0, 1) and

U
,p f (x) =
∫

Rd

(
K(x − y) − K(x)

)
f (y)dy (3.27)

where K is the inverse Fourier transform of 
(ξ). Then, by applying the
argument used in establishing (3.25), we have

|U
,p f (x)| ≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)d+1+ε
)

×
{ ∫

‖y‖≤‖x‖/2
t‖y‖‖x‖γ−d−1(1 + ‖y‖)−d−1−εdy

+(1 + ‖x‖)−1
∫

‖y‖≥‖x‖/2
‖x − y‖γ−d(1 + ‖y‖)−d−εdy

+‖x‖γ−d
∫

‖y‖≥‖x‖/2
(1 + ‖y‖)−d−1−εdy

}

≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)d+1+ε
)
‖x‖γ−d(1 + ‖x‖)−1, (3.28)
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and

|U
,p f (x) − U
,p f (x′)|

≤
( ∫

‖y‖≤‖x‖/4
+

∫
‖y‖≥4‖x‖

+
∫

‖x‖/4≤‖y‖≤4‖x‖

)

|K(x − y) − K(x) − K(x′ − y) + K(x′)|| f (y)|dy

≤ C
(

sup
z∈Rd

| f (z)|(1 + ‖z‖)k1+d+1+ε
)
‖x − x′‖δ‖x‖γ−d−δ(1 + ‖x‖)−1, (3.29)

which yields the desired estimates (3.14) and (3.15) for k1 + 1 − γ > 0 and
k1 = 0. ��

3.4 Unique dilation-invariant extension of the linear operator i

with additional integrability in the spatial domain

We now show that U
,p is the only dilation-invariant extension of the linear
operator i
 from the subspace S∞ to the whole space S such that its image is
contained in Lp.

Theorem 3.7 Let 1 ≤ p ≤ ∞, γ > 0 have the property that both γ and γ −
d(1 − 1/p) are not nonnegative integers, 
 ∈ C∞(Rd\{0}) be a nonzero ho-
mogeneous function of degree −γ , and the linear map I from S to S ′ be a
homogeneous extension of the linear operator i
 on S∞. Then I f belongs to
Lp for any Schwartz function f if and only if I = U
,p.

Proof The sufficiency follows from (3.1) and Theorems 1.1 and 2.1 for γ <

d(1 − 1/p), and from (3.1), Theorem 3.1 and Corollary 3.6 for γ ≥ d(1 − 1/p).
Now the necessity. By the assumption on the linear operator I from S to S ′,
similar to the argument used in Lemma 2.12, we can find an integer N and
tempered distributions Hi, |i| ≤ N, such that

I f = U
,p f +
∑
|i|≤N

∂ i f̂ (0)

i! Hi for all f ∈ S. (3.30)

Replacing f in (3.30) by ψj in (2.29) and using (2.30) gives that Hj/j! = Iψj −
U
,pψj. Hence

Hj ∈ Lp (3.31)

by Corollary 3.6 and the assumption on the linear map I. By (3.30),
Theorem 3.1 and the assumption on the linear operator I, (I − U
,p)(δt f ) =
t−γ δt((I − U
,p) f ) for all f ∈ S. Hence Hj is homogeneous of order γ − d − |j|
by Lemma 2.13. This together with (3.31) implies that Hj = 0 for all j ∈ Z

d+ with
|j| ≤ N. The desired conclusion I = U
,p then follows. ��
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3.5 Unique dilation-invariant extension of the linear operator i

with additional integrability in the Fourier domain

In this subsection, we characterize all those dilation-invariant extensions I of
the linear operator i
 on the subspace S∞ to the whole space S such that Î f is
q-integrable for any Schwartz function f .

Theorem 3.8 Let 1 ≤ q ≤ ∞, γ ∈ [d/q, ∞)\Z and 
 ∈ C∞(Rd\{0}) be a
nonzero homogeneous function of degree −γ , and the linear map I from S to
S ′ be a dilation-invariant extension of the linear operator i
 on S∞. Then the
following statements hold.

(i) If 1 ≤ q < ∞, then the Fourier transform of I f belongs to Lq for any
Schwartz function f if and only if γ − d/q �∈ Z+ and I = U
,q/(q−1).

(ii) If q = ∞ and γ �∈ Z+, then the Fourier transform of I f belongs to L∞ for
any Schwartz function f if and only if I = U
,1.

(iii) If q = ∞ and γ ∈ Z+, then the Fourier transform of I f belongs to L∞ for
any Schwartz function f if and only if

Î f (ξ) = Û
,1 f (ξ) +
∑

|i|=−γ

∂ i f̂ (0)

i! gi(ξ) (3.32)

for some bounded homogeneous functions gi, |i| = −γ , of degree 0.

Proof (i) The sufficiency follows from Theorem 3.1 and Corollary 3.2. Now we
prove the necessity. As every q-integrable function belong to K1, similar to the
argument used in the proof of Lemma 2.12, we can find functions gi ∈ K1, |i| ≤
N, such that

Î f (ξ) = F(U
,q/(q−1) f )(ξ) +
∑
|i|≤N

∂ i f̂ (0)

i! gi(ξ). (3.33)

Let ψj, j ∈ Z
d+ be defined as in (2.29). Replacing f by ψj with |j| ≤ N and using

(2.30) gives

Îψj(ξ) =
(
ψ̂j(ξ) −

∑
|i|≤−γ−d/q

∂ iψ̂j(0)

i! ξ i
)

(ξ) + gj(ξ)

=
{

ξ j

j! (φ(ξ) − 1)
(ξ) + gj(ξ) if |j| ≤ γ − d/q,

ξ j

j! φ(ξ)
(ξ) + gj(ξ) if |j| > γ − d/q.
(3.34)

Note that ξ j

j! (φ(ξ) − 1)
(ξ) ∈ Lq when |j| < γ − d/q, and ξ j

j! φ(ξ)
(ξ) ∈ Lp

when |j| > γ − d/q. This, together with (3.34) and the assumption that Îψj ∈
Lq, proves that

gj ∈ Lq for all j ∈ Z
d
+ with γ − d/q �= |j| ≤ N. (3.35)
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By the homogeneous property of the linear map I, the functions gi, |i| ≤ N, are
homogeneous of degree −γ + |i|, i.e.,

gi(tξ) = t−γ+|i|gi(ξ), for all t > 0. (3.36)

Combining (3.35) and (3.36) proves that gj = 0 for all j ∈ Z
d+ with γ − d/q �=

|j| ≤ N, and the desired conclusion Î f (ξ) = F(U
,q/(q−1) f )(ξ) for all f ∈ S
when γ − d/q �∈ Z+.

Now it suffices to prove that γ − d/q �∈ Z+. Suppose on the contrary that
γ − d/q ∈ Z+. Then 1 < q < ∞ as γ �∈ Z. By (3.34) and the assumption on the
linear map I, we have∫

ξ �∈suppφ

|gj(ξ) − ξ j
(ξ)/j!|qdξ =
∫

ξ �∈suppφ

| Îψj(ξ)|qdξ < ∞

for all j ∈ Z
d+ with |j| = γ − d/q. This, together with (3.36) and the fact that

the support suppφ of the function φ is a bounded set, implies that gj(ξ) −
ξ j
(ξ)/j! = 0 for all j ∈ Z

d+ with |j| = γ − d/q. By substituting the above
equality for gj into (3.34) we obtain

Îψj(ξ) = φ(ξ)ξ j
(ξ)/j! (3.37)

for all j ∈ Z
d+ with |j| = γ − d/q. This leads to a contradiction, as Îψj(ξ) ∈ Lq

by the assumption on the linear map I, and φ(ξ)ξ j
(ξ)/j! �∈ Lq by direction
computation.
(ii) and (iii) The necessity is true by (3.32) and Theorem 3.1, while the
sufficiency follows from (3.33)–(3.36). ��

3.6 Proof of Theorem 1.2

The conclusions in Theorem 1.2 follow easily from (2.47), (3.2), Theorem 3.7
and Corollary 3.4.

4 Sparse stochastic processes

In this section, we will prove Theorem 1.3 and fully characterize the gen-
eralized random process Pγ w, which is a solution of the stochastic partial
differential equation (1.3). In particular, we provide its characteristic func-
tional and its pointwise evaluation.

4.1 Proof of Theorem 1.3

To prove Theorem 1.3, we recall the Levy continuity theorem, and a funda-
mental theorem about the characteristic functional of a generalized random
process.

Lemma 4.1 [5] Let ξk, k ≥ 1, be a sequence of random variables whose char-
acteristic functions are denoted by μk(t). If limk→∞ μk(t) = μ∞(t) for some
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continuous function μ∞(t) on the real line, then ξk converges to a random
variable ξ∞ in distribution whose characteristic function E(e−itξ∞) is μ∞(t).

In the study of generalized random processes, the characteristic functional
plays a similar role to the characteristic function of a random variable [6]. The
idea is to formally specify a generalized random process � by its characteristic
functional Z� given by

Z�( f ) := E(e−i�( f )) =
∫

R

e−ixdP(x), f ∈ D, (4.1)

where P(x) denotes the probability that �( f ) < x. For instance, we can show
[14] that the characteristic functional Zw of the white Poisson noise (1.13) is
given by

Zw( f ) = exp
(
λ

∫
Rd

∫
R

(
e−iaf (x) − 1

)
dP(a)dx

)
, f ∈ D. (4.2)

The characteristic functional Z� of a generalized random process � is a
functional from D to C that is continuous and positive-definite, and satisfies
Z�(0) = 1. Here the continuity of a functional L from D to C means that
limk→∞ L( fk) = L( f ) if fk ∈ D tends to f ∈ D in the topology of the space
D, while a functional L from D to C is said to be positive-def inite if

n∑
j,k=1

L( f j − fk)c jc̄k ≥ 0 (4.3)

for any f1, . . . , fn ∈ D and any complex numbers c1, . . . , cn. The remarkable
aspect of the theory of generalized random processes is that specification of
Z� is sufficient to define a process in a consistent and unambiguous way. This
is stated in the fundamental Minlos–Bochner theorem.

Theorem 4.2 [6] Let L be a positive-def inite continuous functional on D
such that L(0) = 1. Then there exists a generalized random process � whose
characteristic functional is L. Moreover for any f1, . . . , fn ∈ D, we may take
the positive measure P(x1, . . . , xn) as the distribution function of the random
variable �( f1), . . . , �( fn), where the Fourier transform of the positive measure
P(x1, . . . , xn) is L(y1 f1 + · · · + yn fn), i.e.,

L(y1 f1 + . . . + yn fn) =
∫

Rn
exp(−i(x1 y1 + . . . + xn yn))dP(x1, . . . , xn).

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3 Let N ≥ 1 and ϕ be a C∞ function supported in B(0, 2)

and taking the value one in B(0, 1). For any f ∈ D, define a sequence of
random variables �γ,N( f ) associated with f by

�γ,N( f ) :=
∑

k

akϕ(xk/N)Iγ,1 f (xk), (4.4)
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where the ak’s are i.i.d. random variables with probability distribution P(a),
and where the xk’s are random point locations in R

n which are mutually
independent and follow a spatial Poisson distribution with Poisson parameter
λ > 0. We will show that �γ,N, N ≥ 1, define a sequence of generalized
random processes, whose limit Pγ w( f ) := ∑

k ak Iγ,1( f )(xk) is a solution of the
stochastic partial differential equation (1.3).

As ϕ is a continuous function supported on B(0, 2),

�γ,N( f ) =
∑

xk∈B(0,2N)

akϕ(xk/N)Iγ,1 f (xk). (4.5)

Recall that Iγ,1 f is continuous on R
d\{0} by Corollary 3.6. Then the summation

of the right-hand side of (4.5) is well-defined whenever there are finitely many
xk in B(0, 2N) with none of them belonging to B(0, ε), ε > 0. Note that the
probability that at least one of xk lies in the small neighbor B(0, ε) is equal to

∞∑
n=1

e−λ|B(0,ε)| (λ|B(0, ε)|)n

n! = 1 − e−λ|B(0,ε)| → 0 as ε → 0.

We then conclude that �γ,N( f ) is well-defined and �γ,N( f ) < ∞ with proba-
bility one.

Denote the characteristic function of the random variable �γ,N( f ) by
Eγ,N, f (t):

Eγ,N, f (t) = E(e−it�γ,N( f )) = E(e−i�γ,N(t f )).

Applying the same technique as in [12, Appendix B], we can show that

Eγ,N, f (t) = exp
( ∫

Rd

∫
R

(
e−iatϕ(x/N)Iγ,1 f (x) − 1

)
dP(a)dx

)
. (4.6)

Moreover, the functional Eγ,N, f (t) is continuous about t by the dominated
convergence theorem, because

∣∣∣e−iatϕ(x/N)Iγ,1 f (x) − 1
∣∣∣ ≤ |a||t||Iγ,1 f (x)|

and∫
Rd

∫
R

|a||Iγ,1 f (x)|dP(a)dx =
( ∫

R

|a|dP(a)
)

×
( ∫

Rd
|Iγ,1 f (x)|dx

)
< ∞

by Corollary 3.6 and the assumption on the distribution P.
Clearly the random variable �γ,N( f ) is linear about f ∈ D; i.e.,

�γ,N(α f + βg) = α�γ,N( f ) + β�γ,N(g) for all f, g ∈ D and α, β ∈ R. (4.7)
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For any sequence of functions fk in D that converges to f∞ in the topology
of D, it follows from Theorem 3.5 and Corollary 3.6 that limk→∞ ‖Iγ,1 fk −
Iγ,1 f∞‖1 = 0. Therefore

∣∣∣
∫

Rd

∫
R

(
e−iatϕ(x/N)Iγ,1 fk(x) − 1

)
dP(a)dx

−
∫

Rd

∫
R

(
e−iatϕ(x/N)Iγ,1 f∞(x) − 1

)
dP(a)dx

∣∣∣

≤ |t|
( ∫

R

|a|dP(a)
)( ∫

Rd
ϕ(x/N)|Iγ,1 fk(x) − Iγ,1 f∞(x)|dx

)

→ 0 as k → ∞, (4.8)

which implies that the characteristic function of �γ,N( fk) converges to the
continuous characteristic function of �γ,N( f∞). Hence the random variable
�γ,N( fk) converges to �γ,N( f∞) by Lemma 4.1, which in turn implies that �γ,N

is continuous on D.
Set

Lγ,N( f ) = Eγ,N, f (1). (4.9)

For any sequence cl, 1 ≤ l ≤ n, of complex numbers and fl, 1 ≤ l ≤ n, of
functions in D,

∑
1≤l,l′≤n

Lγ,N( fl − fl′)clcl′ = E
( n∑

l,l′=1

e−i�γ,N( fl− fl′ )clcl′
)

= E
(∣∣∣

n∑
l=1

cle−i�γ,N( fl)
∣∣∣2) ≥ 0, (4.10)

which implies that Lγ,N is positive-definite. By Theorem 4.2, we conclude that
�γ,N defines a generalized random process with characteristic functional Lγ,N .

Now we consider the limit of the above family of generalized random
processes �γ,N, N ≥ 1. By Corollary 3.6, Iγ,1 f is integrable for all f ∈ D.
Then

lim
N→+∞

Eγ,N, f (t) = exp
( ∫

Rd

∫
R

(e−iatIγ,1 f (x) − 1)dP(a)dx
)

=: Eγ, f (t). (4.11)

Clearly Eγ, f (0) = 1 and Eγ, f (t) is continuous as Iγ,1( f ) is integrable. There-
fore by Lemma 4.1, �γ,N( f ) converges to a random variable, which is denoted
by Pγ ( f ) := ∑

k ak Iγ,1 f (xk), in distribution.
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As Iγ,1 f is a continuous map from D to L1, then limk→∞ ‖Iγ,1 fk −
Iγ,1 f∞‖1 = 0 whenever fk converges to f in D. Hence

∣∣∣
∫

Rd

∫
R

(
e−iatIγ,1 fk(x) − 1

)
dP(a)dx

−
∫

Rd

∫
R

(
e−iatIγ,1 f∞(x) − 1

)
dP(a)dx

∣∣∣

≤ |t|
( ∫

R

|a|dP(a)
)( ∫

Rd
|Iγ,1 fk(x) − Iγ,1 f∞(x)|dx

)

→ 0 as k → ∞, (4.12)

which implies that the characteristic function of Pγ ( fk) converges to the
characteristic function of Pγ ( f∞) (which is also continuous), and hence Pγ ( fk)

converges to Pγ ( f∞) in distribution by Lemma 4.1. From the above argument,
we see that Pγ ( f ) is continuous about f ∈ D.

Define Lγ ( f ) = Eγ, f (1). From (4.10) and (4.11), we see that
∑

1≤l,l′≤n

Lγ ( fl − fl′)cici′ = lim
N→∞

∑
1≤l,l′≤n

Lγ,N( fl − fl′)cicl′ ≥ 0 (4.13)

for any sequence cl, 1 ≤ l ≤ n, of complex numbers and fl, 1 ≤ l ≤ n, of func-
tions in D. Therefore by Theorem 4.2, Pγ w defines a generalized random
process with its characteristic functional given by

ZPγ w( f ) = exp
( ∫

Rd

∫
R

(e−iaIγ,1 f (x) − 1)dP(a)dx
)
. (4.14)

��

4.2 Pointwise evaluation

In this section, we consider the pointwise characterization of the generalized
random process Pγ w.

Theorem 4.3 Let γ, λ, P(a), Pγ w be as in Theorem 1.3, and Iγ,1 be def ined as
in (1.12). Then

Pγ w(y0) := lim
N→∞

Pγ w(gN,y0) (4.15)

is a random variable for every y0 ∈ R
d whose characteristic function is given by

E(e−itPγ w(y0)) = exp
(
λ

∫
R

∫
R

(
e−iatHy0 (x) − 1

)
dxdP(a)

)
, t ∈ R, (4.16)

where g ∈ D satisf ies
∫

Rd g(x)dx = 1, gN,y0(x) = Ndg(N(x − y0)), and

Ĥy0(ξ) =
(

ei〈y0,ξ 〉 −
∑
|i|≤γ

(iy0)
iξ i

i!
)
‖ξ‖−γ . (4.17)
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An interpretation is that the random variable Pγ w(y0) in (4.15) and its
characteristic function E(e−itPγ w(y0)) in (4.16) correspond formally to setting
f = δ(· − y0) (the delta distribution) in (1.18) and (1.19), respectively.

To prove Theorem 4.3, we need a technical lemma.

Lemma 4.4 Let γ be a positive non-integer number, g ∈ D satisfy
∫

Rd g(x)dx =
1, and Hy0 be def ined in (4.17). Then

lim
N→∞

‖Iγ,1gN,y0 − Hy0‖1 = 0 (4.18)

for all y0 ∈ R
d, where gN,y0(x) = Ndg(N(x − y0)).

Proof Let Kj be the inverse Fourier transform of (iξ)j‖ξ‖−γ and k1 be the
integral part of the positive non-integer number γ . Then from the argument in
the proof of Theorem 3.5,

Hy(x) =
{∑

|j|=k1

k1
j!

∫ 1
0 (Kj(x − ty) − Kj(x))(−y)j(1 − t)k1−1dt if k1 ≥ 1

K0(x − y) − K0(x) if k1 = 0.

(4.19)

Therefore for y0 �= 0,

‖Iγ,1gN,y0 − Hy0‖1

≤ C
∑
|j|=k1

∫
Rd

∫ 1

0

∫
Rd

|(Kj(x − ty) − Kj(x))yj

−(Kj(x − ty0) − Kj(x))yj
0||gN,y0(y)|dydtdx

≤ C
∑
|j|=k1

∫
Rd

∫ 1

0

∫
Rd

|Kj(x − ty) − Kj(x − ty0)|‖y‖k1 |gN,y0(y)|dydtdx

+C
∑
|j|=k1

∫
Rd

∫ 1

0

∫
Rd

|Kj(x − ty0) − Kj(x)||yj − yj
0||gN,y0(y)|dydtdx

≤ C
∫ 1

0

∫
Rd

(t‖y − y0‖)γ−k1(‖y0‖k1 + ‖y − y0‖k1)|gN,y0(y)|dydt

+C
∫ 1

0

∫
Rd

(t‖y0‖)γ−k1(‖y0‖k1−1‖y − y0‖ + ‖y − y0‖k1)|gN,y0(y)|dydt

→ 0 as N → ∞
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if k1 ≥ 1, and

‖Iγ,1gN,y0 − Hy0‖1

≤
∫

Rd

∫
Rd

|K0(x − y) − K0(x − y0)||gN,y0(y)dydx

≤
∫

Rd

( ∫
‖x−y‖≥2‖y−y0‖

|K0(x − y) − K0(x − y0)|dx

+
∫

‖x−y‖≤2‖y−y0‖
|K0(x − y)| + |K0(x − y0)|dx

)
|gN,y0(y)|dy

≤ CNd
∫

Rd
‖y − y0‖γ |g(N(y − y0))|dy

= CN−γ

∫
Rd

‖z‖γ |g(z)|dz → 0 as N → 0,

if k1 = 0. This shows that (4.18) for y0 �= 0.
The limit in (4.18) for y0 = 0 can be proved by using a similar argument, the

detail of which are omitted here. ��

Proof of Theorem 4.3 By Lemma 4.4 and the dominated convergence
theorem,

lim
N→∞

∫
Rd

∫
R

(e−iatIγ,1gN,y0 (x) − 1)dP(a)dx =
∫

Rd

∫
R

(e−iatHy0 (x) − 1)dP(a)dx

(4.20)

for all t ∈ R. Moreover as Hy0 is integrable from Corollary 3.6 and Lemma 4.4,
the function

∫
Rd

∫
R
(e−iatIγ,1 Hy0 (x) − 1)dP(a)dx is continuous about t. Therefore

(4.15) and (4.16) follows from Lemma 4.1. ��
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