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Abstract

NAergic A7 neurons.

increase in paired-pulse ratio.

Background: The descending noradrenergic (NAergic) system is one of the important endogenous analgesia
systems. It has been suggested that noxious stimuli could activate descending NAergic system; nevertheless, the
underlying neuronal circuit remains unclear. As NAergic neurons in the A7 catecholamine cell group (A7) are a part
of the descending NAergic system and the lateral parabrachial nucleus (LPB) is an important brainstem structure
that relays ascending nociceptive signal, we aimed to test whether LPB neurons have direct synaptic contact with

Results: Stereotaxic injections of an anterograde tracer, biotinylated dextran-amine (BDA), were administered to LPB
in rats. The BDA-labeled axonal terminals that have physical contacts with tyrosine hydroxylase-positive (presumed
noadrenergic) neurons were identified in A7. Consistent with these morphological observations, the excitatory
synaptic currents (EPSCs) were readily evoked in NAergic A7 neurons by extracellular stimulation of LPB. The EPSCs
evoked by LPB stimulation were blocked by CNQOX, a non-NMDA receptor blocker, and AP5, a selective NMDA
receptor blocker, showing that LPB-A7 synaptic transmission is glutamatergic. Moreover, the amplitude of LPB-A7
EPSCs was significantly attenuated by DAMGO, a selective p-opioid receptor agonist, which was associated with an

Conclusions: Taken together, the above results showed direct synaptic connections between LPB and A7
catecholamine cell group, the function of which is subject to presynaptic modulation by p-opioid receptors.
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Background

Norepinephrine (NE) is an important neuronal modu-
lator in the brain and plays significant roles in the
regulation of many brain functions, including pain
modulation [1]. Intrathecal injection of NE or -2 re-
ceptor agonists results in dramatic analgesia in rats [2],
the mechanisms underlying which have been shown to
involve inhibitory effect of NE on nociceptive neurons
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located in the substantia gelatinosa area of the dorsal
horn through activation of a2-adrenoceptors [1-3]. As
there are no noradrenergic (NAergic) neurons in the
dorsal horn of the spinal cord [4], it is generally be-
lieved that principal supply of NAergic innervation to
the dorsal horn arises from the locus coeruleus (LC)
(also referred to as the A6 catecholamine cell group)
and the A7 catecholamine cell group (A7) located, re-
spectively, in the dorsomedial and dorsolateral pons
[5-8]. Direct stimulation of the A7 area results in an
antinociceptive effect and the effect is blocked by intra-
thecal injection of a-2 receptor antagonists, showing
that NAergic A7 neurons are indeed involved in
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intrinsic analgesia mediated by NE acting on «-2 recep-
tors at the spinal cord level [9, 10].

The intrinsic NAergic pain regulatory system in the
spinal cord has low tonic activity [11]. In support of
this argument, recent studies of slice preparations have
shown that NAergic A7 neurons spontaneously fire ac-
tion potentials at a very low frequency (~0.5 Hz) when
the fast synaptic transmissions are blocked [12, 13].
Furthermore, the spontaneous firing rate of NAergic
A7 neurons is very sensitive to bath application of
substance-P [12, 14] and GABAg receptor antagonists
[15], showing that synaptic drives are needed for oper-
ation of this system. In vivo studies have shown that
peripheral noxious stimuli causes an early phase excita-
tion of NAergic LC neurons, followed by a late phase of
prolonged inhibition [16]; it also enhances NE release
in the dorsal spinal cord [17, 18]. These observations
suggest that ascending nociceptive signal might be a
possible source of synaptic drive for activating NAergic
neurons in the pons. Together with the fact that NE
modulates nociceptive neurons in the spinal cord, it is
likely that pontine NAergic neurons and dorsal horn
neurons have reciprocal connections and that such re-
ciprocal connections could function as a negative feed-
back system to inhibit the ascending nociceptive signal
by causing NE release at the spinal level. However, the
neuronal circuits that are responsible for the operation of
this negative feedback control system remain unclear. For
example, it is yet uncertain whether there are direct re-
ciprocal projections between pontine NAergic and dorsal
horn neurons, or relay by other nuclei in the brainstem is
involved. A potential candidate that can relay the noci-
ceptive signal to pontine NAergic neurons is the lateral
parabrachial nucleus (LPB), which receives direct synap-
tic connections from dorsal horn neurons and transfers
the nociceptive signal from peripheral to many pain-
related areas in the brain [19-21]. Accordingly, the aim
of this study is to test whether pontine NAergic neurons
receive direct synaptic input from LPB.

Methods

Tracer injection

The use of animals in this study was in accordance with
the rules for animal research of the Ethical Committee of
Chung-Shan Medical University. Male Sprague-Dawley
rats weighing 200-300 g were anaesthetized with 5 %
isoflurane in pure oxygen. A small craniotomy was made,
the dura was reflected, and a total of 0.3 pl of 10 % biotin
dextran amine (BDA: MW 10,000; Invitrogen, Carlsbad,
CA) in saline were injected via a 29-gauge stainless steel
needle tilted 28 degrees to the vertical into the LPB of the
left brainstem at the following coordinates: 5.30 mm pos-
terior to the bregma, 1.9 mm lateral to the midline, 6.9
mm ventral to the cortical surface [22]. The stainless steel
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needle remained in place for 10 min after injection to
minimize diffusion of the tracer along the needle tract.
After completion of injection procedure, the needle was
removed, the scalp was sutured, and the rats were re-
placed in their home cages.

Immunohistochemical tissue processing

After a survival period of 3-4 days, the animals were
deeply anesthetized with sodium pentobarbitone and
perfused via the cardiac-vascular system with normal
saline followed by fixative consisting of 4 % paraformal-
dehyde (Merck, Frankfurt, Germany) in 0.1 M phos-
phate buffer (PB), pH 7.4. The brains were then rapidly
removed and placed in the same fixative at 4 °C for 3—4
h and stored overnight in cold (4 °C) 0.1 M PB. The
brains were then transferred to 30 % sucrose in 0.01 M
PB for cryoprotection. Serial saggital brainstem sections
(50 um thick) containing the A7 area and parabrachial
nucleus were cut using a frozen sectioning technique.
To visualize BDA, free-floating sections were incubated
in ABC reagent (Vectastain ABC Peroxidase kit, Vector
Labs, Burlingame, CA, USA) overnight at 4 °C. Follow-
ing rinsing in 0.3 % Triton X-100 in phosphate buffered
saline (TPBS) and in phosphate buffer (PB), BDA injec-
tion was visualized by the dark Nickel (Ni)- diamino-
benzidine (DAB) reaction: 0.05 % DAB (DAB, Sigma, St.
Louis, MO, USA) containing 0.01 % H,O, and 0.04 %
nickel ammonium sulphate in 0.1 M PB for 10 min.
The reaction was terminated by extensive washes in
PB. For visualization of noradrenergic neurons in the
A7 area, sections were incubated in 2 % bovine serum
albumin and 10 % normal goat serum for 1 h and
subsequently in anti-rabbit tyrosine hydroxylase (TH;
diluted 1:3000) overnight at 4 °C. The TH antibody
was used here because we found that it stained dendritic
structures better than that of the dopamine-f-hydorxylase
antibody (DBH; Chemicon, Temecula, CA, USA) which
was used for post hoc immunostaining of neurons after
electrophysiology recording (see below). After rinsing with
TPBS, the sections were incubated in biotinylated second-
ary antibody (diluted 1:200) at room temperature for 1 h.
After several rinses in TPBS and in PB, immunoreactivity
for TH was visualized by the red Nova Red reaction
(Vector Labs) for 1-2 min at room temperature. For each
brain, all sections were mounted on slides and alternate
series were counterstained with cresyl violet to highlight
cytoarchitonic divisions; the other sections were dehy-
drated in ethanol and coverslipped with DPX (Sigma).

Electrophysiology

Sprague-Dawley rat pups of both sexes, aged 8—10 days,
were used. They were anaesthetized with 5 % isoflurane in
pure oxygen and decapitated. Their brains rapidly exposed
and chilled with ice-cold artificial cerebrospinal fluid
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(ACSF) consisting of (in mM): 119 NaCl, 2.5 KCI, 1.3
MgSO,, 262 NaHCO;, 1 NaH,PO,, 2.5 CaCl,, and 11
glucose, oxygenated with 95 % O, and 5 % CO,, pH 7.4.
Sagittal brainstem slices (300 um) containing the trigeminal
motor nucleus (Mo5) and A7 area were cut using a vibro-
slicer (D.S.K. Super Microslicer Zero 1, Dosaka EM, Kyoto,
Japan) and were kept in an interface-type chamber at room
temperature (24-25 °C) for at least 90 min to allow
recovery.

Slices were transferred to an immersion-type record-
ing chamber mounted on an upright microscope
(BX51WI, Olympus Optical Co., Ltd., Tokyo, Japan)
and were continuously perfused with oxygenated ACSF
at 2—-3 ml/min. Neurons were viewed using Nomarski
optics; those located about 200 pum rostral to the anter-
ior border of Mo5 and having a large cell body (diam-
eter about 20-25 pm) were considered to be NAergic
A7 neurons [12-14] and were used for recordings
(Fig. 3a). The patch pipettes, pulled from borosilicate
glass tubing (1.5 mm outer diameter, 0.32 mm wall
thickness; Warner Instruments Corp., Hamden, CT,
USA), had a resistance of about 3—5 MQ when filled
with internal solution consisting of (in mM): 131 Cs-
gluconate, 20 CsCl, 10 HEPES, 2 EGTA, 8 NaCl, 2 ATP,
and 0.3 GTP; pH adjusted to 7.2 with CsOH. Record-
ings were made at room temperature (24-25 °C) with a
patch amplifier (Multiclamp 700 A; Axon Instruments
Inc; Union City, CA, USA) in voltage-clamp mode.
The membrane potential (Vm) was clamped at-70 mV
and a voltage step of 5 mV was applied at 0.1 Hz
throughout the recording to monitor serial resistances
and the data were discarded if the values varied by
more than 20 % of the original value, which was usually
less than 20 MQ. Signals were low-pass filtered at a
corner frequency of 2 kHz and digitized at 10 kHz
using a Micro 1401 interface running Signal software
(Cambridge Electronic Design, Cambridge, UK) for
episode-based capture recording. To elicit synaptic
activity, a constant current pulse (25-500 pA; 100 ps)
was delivered every 10 s through a bipolar stainless
steel electrode (FHC, Bowdoinham, ME 04008 USA).
To isolate excitatory postsynaptic currents (EPSCs) 1
uM strychnine plus 100 pM picrotoxin (Ptx) were
added to ACSF. All data are presented as the mean *
standard error of the mean (SEM) and were compared
using the paired ¢ test. The criterion for significance
was a p value < 0.05.

In all experiments, 6.7 mM biocytin was routinely
included in the internal solution to fill the recorded
neurons (Fig. 3a). Neurons were filled by passive diffu-
sion of biocytin from the patch pipette during the re-
cording period, without application of current. After
recording, the pipettes were withdrawn and the slices
fixed overnight at 4 °C in 4 % paraformaldehyde (Merck)
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in 0.1 M phosphate buffer (PB, pH 7.4), then rinsed
with PB several times, and subjected to immunohisto-
chemistry (IHC) procedures without further sectioning.
Briefly, the slices were rinsed in phosphate-buffered
saline containing 0.03 % Triton X-100 (PBST), then in-
cubated for 1 h at room temperature in PBST contain-
ing 2 % bovine serum albumin and 10 % normal goat
serum. The slices were then incubated overnight at 4 °C in
PBST containing a 1/1300 dilution of mouse antibody
against rat DBH (Chemicon, Temecula, CA, USA) and
a 1/200 dilution of avidin-AMCA (Vector Labs). After
PBST rinses, the slices were incubated for 2 h with
tetramethylrhodamine isothiocyanate (TRITC)- con-
jugated goat anti-mouse IgG antibodies (Jackson,
Pennsylvania, USA) diluted 1/50 in PBST, then ob-
served under a fluorescence microscope (Aioplan 2,
Zeiss, Oberkochen, Germany) or a confocal micro-
scope (Leica TCS SP5, Hamburger, Germany) for the
identification of cell types (Fig. 1c-e).

All chemicals used to prepared ACSF and pipette
solution preparation and Ba®* were from Merck; Ptx,
strychnine, and biocytin were from Sigma; and DL-
2-amino-5-phosphonopentanoic acid (AP5), 6,7-dini-
troquinoxaline- 2,3-dione (DNQX), DAMGO and
naloxone were from Tocris-Cookson (Bristol, UK).

Results

BDA Injection sites

The localization of injection sites was examined and
only experiments that had an injection site within the
LPB area were accepted for further investigation. An ex-
ample of an accepted injection site is shown in Fig. 1a, b.
An overlay of camera lucida drawings of all sections
with BDA deposits (Fig. 1a, b) shows that spreading of
the injected BDA was restricted to the LPB area in this
case. The injection sites (as indicated by the tissue
damaged by the cannula tip) were centered on the
central lateral (cl) LPB (Fig. 1c-h), and the injected
BDA extended to the lateral crescent (lcr), external
medial (em) and external lateral (el) subnuclei, as la-
beled neurons and neuritis were identified in these
areas (Fig. 1le-h). Some fibers in the superior cerebellar
peduncle (scp) were also labeled, but labeled neurons in
the deep cerebellar nuclei were not observed. Similar
injection site locations and trace spreading patterns
were observed in the other animal. The injection sites
of these two cases were compatible with previous stud-
ies [19, 21] and the observations described below were
based on these two cases.

Anterograde labeled axons in the A7 cell group

In sections that comprise BDA injection sites and the
trigeminal motor nucleus (Mo5), a cluster of TH-
immunoreactive (TH-ir) neurons located rostral to the
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, —— Rat56 slice 15
Fig. 1 BDA injection sites. a & b Camera lucida drawings from saggital brainstem sections that contain a BDA deposit in the parabrachial nucleus
(@ & b). c-g Microphotographs of a BDA injection site are shown in low-power (c: Nova Red; d: Nissl-stained) and magnified views (e & h: Nova
Red; f & g: Nissl-stained) The nomenclature for the divisions of subdivisions of the parabrachial nucleus was adapted from Sarhan et al. [21]. Note
that the injection site is centered in the central lateral (cl) subnuclus of the parabrachial nucleus. cl, central lateral subnucleus; dl, dorsal lateral
subnucleus; el, external lateral subnucleus; em, external medial subnucleus; Icr, lateral crescent subnucleus; I, lateral lemniscus; LPB, lateral parabrachial

bar =500 um (a-d), 150 um (e-h)

nucleus; m, medial parabrachial nucleus; mel, external lateral subnucleus of the mesencephalic parabrachial nucleus; Mo5, trigeminal motor
nucleus; scp, superior cerebellar peduncle; scpd, superior cerebellar peduncle, descending limb; s, superior lateral subnucleus of the
mesencephalic parabrachial nucleus; vl, ventral lateral subnucleus; vsc, ventral spinocerebellar tract; 7n, facial nerve; 7, facial nucleus. Scale

Mo5 could be labeled with an antibody to TH using
Nova Red as the chromogen (Fig. 2a). This group of
TH-ir neurons has soma of a multipolar shape (Fig. 2b)
and is presumed to be NAergic A7 neurons. BDA
deposits in the LPB produced antetrograde labeling of
axons among cell bodies (Fig. 2a) and dendrites (Fig. 2d,
f) of NAergic A7 neurons. These labeled axonal termi-
nals with varicosity-like structures were stained dark
blue by nickel intensified DAB histochemical procedures
(see Fig. 2e, g). As the TH-ir elements were stained
brown-red using Nova Red as the chromogen, they
could be easily distinguished from the BDA-labeled
axonal terminals. As can be seen (Fig. 2c, e, g), many
swollen BDA-labeled varicosities and end-terminations
could be clearly identified, some of these being in close

proximity to soma (Fig. 2b, c), proximal and distal den-
drites of NAergic A7 neurons (Fig. 2d-g).

Characterization of LPB-A7 EPSCs

To further confirm that the above observed physical
contacts between BDA-labeled varicosities and TH-ir
soma and dendrites are functional synaptic contacts, we
made whole cell recordings from NAergic A7 neurons
in rats aged 8—10 days and examined whether extracel-
lular stimulation to the LPB could evoke synaptic cur-
rents in NAergic A7 neurons. The electrophysiological
criteria for recordings from NAergic A7 neurons have
been described previously [12, 13]. Briefly, we made
recordings in current-clamp mode and depolarizing/
hyperpolarizing current pulses were injected to check
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Fig. 2 BAD-labeled axonal terminals in the A7 area. a. Light microscopic photograph of a rat brainstem section showing BDA deposit in the
parabrachial nucleus and TH-ir neurons in the A7. Insert (b) shows a photograph of TH-ir neurons in the A7 with high power. Inserts (c), (e) and
(g) show high power photographs of axonal terminals in the A7 area as indicated by dotted squares in the (b), (d) and (f), respectively. Note the
terminals of BDA-labeled fibers with prominent en passant type varicosities (asterisks) and the contacts of terminals on large soma in (c), and

dendrites in (e, g) as indicated by arrows. d, dorsal; scp, superior cerebellar peduncle. Scale bar= 100 um (@), 50 um (b), 10 um (c-g)

the firing and membrane properties of the recorded
neurons. Neurons that displayed neither a voltage sag
nor rebound action potentials on injection of a hyperpo-
larizing current pulse, but displayed a voltage-dependent
delay in initiation of the first AP on injection of
depolarizing current pulses were used for subsequent
voltage-clamp recordings (see [12, 13]). All of the
recorded neurons showing above physiological criteria
were further confirmed to be DBH-ir by post hoc
IHC staining (Fig. 3a).

Under voltage-clamp recording with Vm clamped at
-70 mV and blockade of GABAergic and glycinergic
synaptic transmission by addition of 0.1 mM picrotoxin

and 1 puM strychnine into the bath medium, extracellular
stimulation of the trigeminal motor nucleus (Mo5),
superior cerebellar peduncle (scp) and 7th nerve could
not evoke detectable synaptic currents in NAergic A7
neurons until the stimulating intensity was increased up
to 500 pA, when inward currents of small amplitude
were elicited (Fig. 3b, ¢). In contrast, large and inward
synaptic currents were evoked with a small stimulating
intensity (threshold: 30 pA) in an intensity-dependent
manner when the stimulating electrode was positioned
in the LPB area (Fig. 3b, c). The synaptic currents
evoked by LPB stimulation were blocked by bath appli-
cation of 10 pM CNQX, a non-NMDA receptor blocker
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|25 pa

Fig. 3 LPB-A7 EPSCs. a. Photographs of a Nomaskic image of a living saggital brainstem slice for electrophysiology recording (A1) and of a
fluorescent image of post hoc immunostaining after recording (A2-A3). The asterisk marks the position of extracellular stimulation of the LPB and
symbols x mark the positions of stimulation of the scp: superior cerebellar peduncle (n=5), Mo5: trigeminal motor nucleus (Mo5) and 7n: the 7th
(A1). A cluster of TH-ir neurons (A2, A3) was identified in A7: A7 catecholamine cell group (see glass pipette in A1), which was ~ 200 mm rostral
to the anterior border of the Mo5. One of the TH-ir neurons (see arrow in A3) was recorded and filled with biocytin (A4). D: dorsal; R: rostral. b.
Representative experiments show recording of EPSCs in NAergic A7 neurons responding to extracellular stimulation of the LPB (upper traces),
Mo5 (middle upper traces), 7n (middle lower traces), and scp (bottom traces). €. Summarized results of the experiments shown in B. Note that,
with a stimulating intensity < 100 pA, EPSCs were evoked only when the stimulating electrode was placed in the LPB. Parentheses indicate the
number of experiments conducted for testing LPB (n=7), Mo5 (n=5), 7n (n =50 and scp (n = 6) stimulation. d. Representative experiments show
that LPB-A7 EPSCs were blocked by CNQX (Vm =-70 mV) and by AP5 (Vm =+50 mV). Scale bar =250 um (A1), 30 um (A2-A4)
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(Fig. 3d, left traces); clamping Vm at +50 mV in the sub-
sequent recording revealed an outward current that was
blocked by bath application of 50 uM AP5, a selective
NMDA receptor blocker (Fig. 3d, right traces). These
results show that the excitatory postsynaptic currents
(EPSCs) evoked by LPB stimulation in NAergic A7 neu-
rons (referred as LPB-A7 EPSCs) were glutamatergic,
with glutamate acting at both non-NMDA and NMDA
receptors. The latency, 10-90 % rise time, half width of

LPB-A7 EPSCs was 3.3+2.3 ms, 1.7+0.2 ms and 8 +
0.7 ms, respectively.

Presynaptic modulation of p-receptor on LPB-A7 EPSCs

Given that LPB neurons have been shown to express
large amounts of p-opioid receptors at their axonal
terminals to modulate the release of neurotransmitters
[23, 24], activation of these presynaptic p-opioid recep-
tors at terminal from LPB are expected to have a
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presynaptic modulation on the evoked EPSCs if the
activity was indeed resulted from LPB stimulation. We
therefore examined the effect of p-opioid receptor acti-
vation on the amplitude and paired-pulse ratio (PPR) of
LPB-A7 EPSCs. Bath application of 0.5 upM DAMGO, a
selective p-opioid receptor agonist, significantly attenu-
ated the amplitude of LPB-A7 EPSCs to 47.5+12.6 %
(n=5 cells, p <0.01, paired-t test) of the baseline level
(Fig. 4a, b). Subsequent application of 5 pM naloxone, a
selective p-receptor blocker, significantly reversed the
effect of DAMGO; the EPSC amplitude was reversed to
86.7 £13.1 % of the baseline level (Fig. 4a, b), showing
that effect of DAMGO application was due to activa-
tion of p-receptors. In addition to reducing the EPSC
amplitude, the effect of DAMGO was associated with
an increase in PPR, an indicator of presynaptic effect
[25]. The LPB-A7 EPSCs was evoked with a pair of
pulses with 50 ms of inter-pulse interval and the PPR
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was measured as ratio of amplitude of EPSCs evoked by
the second pulse to that by the first pulse. The PPR in
control conditions was 1.51 £ 0.6 and was increased to
299+1.32 (n=9 cells, p <0.01, paired-t test) upon
DAMGO application (Fig. 4c, d), indication a decrease
in probability of glutamate release upon p-receptor
activation. These results show that activation of p-
receptors inhibits LPB-A7 synaptic transmission
(Fig. 4a, b), which involved a presynaptic modulation
(Fig. 4¢, d). They further support the argument that the
evoked EPSCs are specific to LPB stimulation.

Discussion

The results of the studies described in this report pro-
vide morphological and electrophysiological evidence
for the existence of a monosynaptic connection be-
tween neurons in the lateral parabrachial nucleus and
noradrenergic neurons in the A7 catecholamine cell

a b
200- 0.5 uM DAMGO
— 50 uM Naloxone
X
o
L DAMGO 2 150+
e / S o ¢
N O |/ A Y.
\ A g 100'%%1 - l Hu
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(2] | |
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Fig. 4 Presynaptic modulation of LPB-A7 EPSCs by p—opioid receptors. a. Representative experiment showing that the amplitude of LPB-A7 EPSCs
was attenuated by DAMGO, and the effect was reversed by subsequent application of naloxone. b. Summarized results of the experiments shown
in a. The amplitude of the EPSCs was normalized to the averaged value of the baseline recording (see dotted line). c. Representative experiment
showing the effect of DAMGO on the PPR of LPB-A7 EPSCs. The upper traces are overlays of raw data traces (black: before and gray: after DAMGO
application); note that DAMGO attenuated EPSCs as shown above. The lower traces show normalization of the response evoked by the first pulse
of the two traces shown above and reveal an increase in the PPR by DAMGO. d. Summarized results of the experiments shown in c. The dotted
lines are the results of individual experiments and the symbol line and vertical line are the mean and standard error, respectively. Asterisks mark
significance at p < 0.01
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group. We have shown that LPB neurons project to the
A7 and target on the soma, the proximal and distal
dendrites of NAergic neurons. In addition, we have
shown that excitatory synaptic responses evoked in the
NAergic A7 neurons by extracellular stimulation of the
LPB area were mediated by glutamate acting at both
non-NMDA and NMDA receptors. The release of glu-
tamate from the axonal terminal of the LPB neurons is
modulated by p-opioid receptors.

Our anatomical experiments of light microscopic
observations show physical contacts of BDA-labeled
varicosities on TH-ir elements, including soma and
dendpritic aborizations in the A7 and suggest the exist-
ence of direct synaptic connections between LPB
neurons and NAergic A7 neurons. The reliability of
such anatomical data depends critically on obtaining a
precise BDA injection site in the LPB. Indeed, our
conclusions were drawn from observations made from
two animals in which the location of the tip of the
injection cannula and deposits of the injected BDA
were in the LPB area, though some contamination
occurred in the adjacent white-matter structure, the
superior cerebellar peduncle (scp; see Fig. 1). This
observation of BDA-labeled fibers in the scp raises the
possibility that some BDA-labeled buttons in A7
might come from cerebellar deep nuclei but not from
the LPB. However, no previous study has ever demon-
strated neuronal connection between the cerebellar deep
nuclei and the A7 cell group and our electrophysiological
results also disfavor this possibility (see below). In addition
to those on TH-ir elements, there were also TH-ir vari-
cosities (see asterisks in Fig. 2e)-g) making physical con-
tacts with non-TH-ir postsynaptic elements. In addition
to NAergic neurons, there are interneurons scattering
over the A7 area and making synaptic contacts with
NAergic neurons [12]. It has been suggested that some of
these interneurons are GABAergic, and afferents inputs
from the periaqueductal gray area (PGA) to the A7 area
could indirectly regulate NAergic neurons through
regulating of these GABAergic interneurons [26-30].
Accordingly, BDA-labeled varicosities without contacts
with TH-ir postsynaptic elements may contact GABAergic
interneurons in A7 and afferents from the LPB might
also indirectly regulate NAergic A7 neurons through
GABAergic interneurons.

Extracellular stimulation of the LPB area evoked
EPSCs in NAergic A7 neurons with the intensity
threshold being about 30 pA. In our data pool, EPSCs
of large amplitude could be readily induced with a
stimulating intensity lower than 100 pA; in contrast,
within the same range of stimulating intensity (30—100
HA; see Fig. 3¢), no detectable EPSCs could be induced
when the stimulating electrode was positioned in the
scp, Mo5 or 7th nerve. Since the distance of these
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structures to NAergic A7 neurons are similar to that of
LPB to NAergic A7 neurons, especially scp is in vicinity
of the LPB, these observations show that the spread of
current delivered from the stimulating electrode with
an intensity of < 100 pA was limited to the local area,
so that LPB neurons were activated only when the
stimulating electrode was positioned in the LPB but not
in its vicinity. These observations also show no func-
tional connection between cerebellar efferent and
NAergic A7 neurons, therefore confirming our anatom-
ical observations that DAB-labeled buttons found in A7
were indeed from the LPB but not scp. The inhibition
of LPB-A7 EPSCs by DAMGO, a selective p-opioid re-
ceptor, further supports the argument that EPSCs
evoked by LPB stimulation were caused by glutamate
release from terminals of LPB neurons, because LPB
neurons have been shown to express p-opioid receptors
[23, 24]. Moreover, the effect of DAMGO on EPSC
amplitude was associated with an increase in PPR,
showing that p-opioid receptors are located at the
axonal terminal of LPB neurons and regulate glutamate
release. The EPSCs evoked by local LPB stimulation
were blocked by application of non-NMDA and NMDA
receptor blockers; these results echo previous studies
arguing that the majority of parabrachial neurons are
glutamatergic [31, 32]. The features of short delay-
latency, rapid and smooth rise phase, of PLB-A7 EPSCs
suggest that PLB-A7 EPSCs are monosynaptic. In brain
slice preparation at room temperature, the range of
latency between electrical stimulation and onset of syn-
aptic responses varies approximately from 2 to 4 ms
among different synapses; for example, the latency of
monosynaptic unitary EPSCs is described as 4 ms for
mossy fibers on CA3 pyramidal neurons in hippocam-
pus [33] and 3 ms for local inputs on stellate neurons
in visual cortex [34]. Since our recording conditions are
similar to these studies, namely using extracellular
stimulation and making recording at room temperature,
the latency of 3.3 ms for PLB-A7 EPSCs suggest that
the transmission is monosynaptic.

Conclusions

The above electrophysiological features together with
anatomical data all support the argument that LPB
input makes direct synaptic contacts with NAergic A7
neurons. Regarding to the physiological role, however,
whether this connection is involved in regulation of
nociception requires further evidences. This is because
LPB receives not only ascending projections from noci-
ceptive neurons in dorsal horn but also from the medial
portion of the nucleus of the solitary tract, which con-
veys signals from many visceral receptors, such as baro-
receptors and cardiopulmonary receptors, and from
gustatory receptors [35-38]. Due to the limitation of
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experimental material (brain slice) used in this study,
we were unable to specify whether the stimulated LPB
neurons in brain slice or the BDA labeled LPB neurons
in the tracing experiments were nociceptive. Neverthe-
less, as LPB is the major central target for the ascending
nociceptive signal from the dorsal spinal cord [39-41]
and NAergic A7 neurons forms a part of descending
analgesia system by projecting their axonal terminals to
the dorsal spinal cord, our results do suggest the possibil-
ity that noxious stimuli could excite NAergic A7 neurons,
one of the component of descending NAergic system,
through with the LPB-NAergic A7 connection; namely,
LPB-NAergic A7 connection could function as a negative
feedback control loop for pain regulation. Our results
also show that LPB-NAergic synaptic transmission is reg-
ulated by presynaptic p-opioid receptors. As neurons in
the A7 catecholamine cell group (both NAergic and in-
terneurons) receive enkephalin and other endogenous
opioids projection from the rostroventromedial medulla
and PGA [26, 27, 29], the efficiency and operation of
LPB-NAergic A7 synapses, a possible feedback control
loop for pain regulation, could be modulated by the other
components of descending analgesic systems, such PAG
and RVM.
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