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Abstract In this paper we introduce an integrative approach
towards color texture classification and recognition using
a supervised learning framework. Our approach is based
on Generalized Learning Vector Quantization (GLVQ), ex-
tended by an adaptive distance measure, which is defined in
the Fourier domain, and adaptive filter kernels based on Ga-
bor filters. We evaluate the proposed technique on two sets
of color texture images and compare results with those other
methods achieve. The features and filter kernels learned by
GLVQ improve classification accuracy and they are able to
generalize much better for data previously unknown to the
system.

Keywords Adaptive metric · Adaptive filters ·
Classification · Color texture analysis · Gabor filters ·
Learning Vector Quantization

1 Introduction

Texture analysis and classification are topics of interest
due to their numerous possible applications, such as med-
ical imaging, industrial quality control and remote sensing.
A wide variety of methods for texture analysis has been de-
veloped such as co-occurrence matrices [11], Markov ran-
dom fields [34], autocorrelation methods [24, 29], Gabor

I. Giotis (�) · N. Petkov · M. Biehl
Johann Bernoulli Institute for Mathematics and Computer
Science, University of Groningen, PO Box 407, 9700 AK,
Groningen, The Netherlands
e-mail: i.e.giotis@rug.nl

K. Bunte
CITEC Center of Excellence—Cognitive Interaction Technology,
Bielefeld University, Universitaetsstrasse 21-23, 33615, Bielefeld,
Germany

filtering [6, 9, 16, 18, 21, 32] and wavelet decomposition
[33]. These methods mostly concern intensity images and
since color information is a vector quantity an adaptation to
the color domain is not always straightforward. Regarding
color texture, the possible approaches can be divided in three
categories [25] called parallel, sequential and integrative. In
the parallel approach [22, 27] textural features are extracted
solely from the luminance plane of an image and are used
together with color features. The sequential approach [12]
involves a quantization of the color space and subsequently
the extraction of statistical features from the indexed images.

The integrative approach [5, 14, 15, 20, 25] is the most
popular one and it describes color texture by combining
color information with the spatial relationships of image
regions within each color channel and between different
color channels. The simplest integrative approach would
only consist of a gray scale transformation of the input im-
age but in many cases this has been proven insufficient.
A very common advance of the integrative approach is based
on the opponent-process theory of human color vision that
has its roots in neuroscience. Ewald Hering [13] first noted
that there are some color combinations that humans are not
able to see, such as reddish-green or yellowish-blue, since
these colors contrast each other strongly. Hence, he pro-
posed that such color combinations can be the components
of one vision mechanism that oppose each other through a
process of excitatory and inhibitory responses. A popular
application of this theory in computer vision is the Gaussian
color model [8].

In this contribution we introduce a novel integrative ap-
proach towards color texture classification and recognition
based on adaptive filters through supervised learning. The
kernels we use are initialized as two-dimensional Gabor fil-
ters. A 2D Gabor filter acts as a local band-pass filter and
can achieve optimal joint localization both in the spatial and
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frequency domains [4]. Given a set of labeled color images
(RGB) for training and a bank of 2D Gabor filter kernels the
goal here is to learn a transformation of a color image to a
single channel (intensity) image and an optimal adaptation
of the kernels such that the responses of the transformed im-
ages when filtered with the optimized kernels will yield the
best possible classification.

Many signal processing techniques are based on insights
or empirical observations from neurophysiology or optical
physics. The proposed novel approach incorporates data-
driven adaptation of the system, e.g. example based learn-
ing. Furthermore, the “family” of filters used in our ap-
proach can be substituted, depending on the data domain and
the task at hand. As an example we explore in this paper the
use of rotation and scale invariant descriptors based on Ga-
bor filter responses [10]. We demonstrate that our approach
yields very good generalization ability.

The paper is structured as follows: In Sects. 2 and 3 we
present overviews of the existing approaches for color tex-
ture analysis and the Learning Vector Quantization algo-
rithm respectively. In Sect. 4 the Color Image Analysis LVQ
is explained in detail and Sect. 5 presents experimental re-
sults. Finally, in Sect. 6 we draw conclusions.

2 Overview of Existing Approaches

In texture analysis Gabor filter responses and Local Binary
Patterns are two very popular types of descriptor that have
been extended to color texture via integrative approaches
that are using the opponent color model.

Jain et al. [15] proposed an approach that extends the use
of features extracted from Gabor filter responses to color
texture classification motivated by mechanisms of human
vision. For this purpose they compute features from each
color channel independently (unichrome features), as well
as features that capture the spatial correlation between spec-
tral bands (opponent features). Let himn be the response of
the i-th color channel of a given image when filtered with a
Gabor kernel with scale m and orientation n.The unichrome
features are defined as the square root of the energy of the
Gabor responses:

μimn =
√
√
√
√

(
∑

x,y

h2
imn(x, y)

)

.

The opponent features are based on the difference of normal-
ized energies between different color channels and scales in
the same orientation. The difference of normalized energies
is:

dijm′mn =
(

himn

μimn

− hjm′n
μjm′n

)

thus defining the opponent feature:

ψijm′mn =
√
√
√
√

(
∑

x,y

d2
ijm′mn

(x, y)

)

.

All unichrome and opponent features are concatenated into
a single feature vector that is used as a descriptor for the
given image. In the following we refer to this technique as
Opponent Color Features (OCF).

Local Binary Patterns (LBP) are based on the idea that
texture can be described by local spatial patterns and gray
scale contrast. The original LBP operator [23] creates labels
for the image pixels by thresholding their 3 × 3 neighbor-
hood with the center value. The pixels with lower intensities
than the center pixel are labeled with 0, whereas those with
equal or higher intensity values are labeled with 1. The la-
bels are read clockwise as a binary number. This process is
repeated for every pixel and the histogram of the 256 pos-
sible binary numbers is then used as a texture descriptor.
The LBP operator was further extended to use neighbor-
hoods of different sizes [24] using circular neighborhoods
and bi-linearly interpolated values at non-integer pixel co-
ordinates. In the following, the notation (P,R) is used to
denote pixel neighborhoods formed by P sampling points
on a circle of radius R. Another extension to the original
operator is the definition of the so called uniform patterns,
which can be used to reduce the length of the feature vector
and implement a simple rotation-invariant descriptor. This
extension was inspired by the fact that some binary patterns
occur more commonly in texture images than others. A lo-
cal binary pattern is called uniform if it contains at most two
transitions from 0 to 1 or vice versa when it is traversed cir-
cularly. Ojala et al. [24] noticed in their experiments that
uniform patterns account for a little less than 90 % of all
patterns when using a (8,1) neighborhood and for around
70 % with a (16,2) neighborhood. After the LBP labeled
image fl(x, y) has been obtained, the descriptor is defined
as:

Hi =
∑

x,y

I
{

fl(x, y) = i
}

, i = 0, . . . , n − 1.

The Color LBP extension [28] is based on the ability to take
the local threshold (neighborhood center) from n different
color channels. The neighborhood to be thresholded can also
be taken from these channels, which makes up a total of
n2 different combinations. The n2 histogram descriptors are
then concatenated into a single feature vector.

3 Review of the (Generalized Matrix) Learning Vector
Quantization

Learning Vector Quantization (LVQ) is a supervised proto-
type-based classification method [17]. The training is based
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on data points xi ∈ R
D and their corresponding label infor-

mation yi ∈ {1, . . . ,C}, where D denotes the dimension of
the feature vectors and C the number of classes. A set of pro-
totypes is characterized by their location in the feature space
wi ∈ R

D and the respective class label c(wi ) ∈ {1, . . . ,C}.
Classification is implemented as a winner-takes-all scheme.
For this purpose, a possibly parameterized dissimilarity
measure dΩ is defined, where Ω specifies the metric param-
eters which can be adapted during training. Given dΩ(x,w),
any data point x is assigned to the class label c(wi ) of the
closest prototype wi with dΩ(x,wi ) ≤ dΩ(x,wj ) for all
j �= i. The position of the closest (“winner”) prototype in
the feature space is then adapted according to a learning
rule, i.e. wi is moved closer to x if the data point is cor-
rectly classified and moved away from x if otherwise. The
number of prototypes used to represent a class can be cho-
sen by the user according to the nature of the data and the
task at hand. The typical number of prototypes assigned to
each class varies from 1 to 5.

A training scheme called Generalized LVQ (GLVQ) [30]
is derived as a minimization of the cost function:

fc

(

dΩ,J,K
) =

∑

i

Φ

(
dΩ(xi ,wJ ) − dΩ(xi ,wK)

dΩ(xi ,wJ ) + dΩ(xi ,wK)

)

(1)

where the quantities

dΩ
(

xi ,wJ
)

with c
(

wJ
) = c

(

xi
)

(2)

dΩ
(

xi ,wK
)

with c
(

wK
) �= c

(

xi
)

(3)

correspond to the distances of the feature vector xi from
the respective closest correct prototype wJ and the closest
wrong prototype wK . Φ must be a monotonic function and
throughout the following the identity Φ(x) = x is used.

Generalized Matrix Learning Vector Quantization (GM-
LVQ) is an extension of the original algorithm with adaptive
dissimilarity measure based on the quadratic form:

dΩ(x,w) = (x − w)�Ω�Ω(x − w) (4)

The matrix Λ = Ω�Ω is assumed to be positive (semi-)
definite. Hence the measure corresponds to a (squared) Eu-
clidean distance in an appropriately transformed space

dΩ(x,w) = [

Ω(x − w)
]2 (5)

Specific restrictions may be imposed on the transformation
Ω ∈ R

M×D with M ≤ D without loss of generality. For
M < D, Ω transforms the D-dimensional data into a lower
M-dimensional space. This variant is referred to as Limited
Rank Matrix LVQ (LiRaM LVQ) and explained in [1, 2].
The original algorithm follows a stochastic gradient descent
for the optimization of the cost function (Eq. (1)). The gra-
dients are evaluated with respect to the contribution of sin-
gle instances xi , which are presented in random order and

sequentially during training. The algorithm has been intro-
duced and discussed in [31] and will be modified in the sub-
sequent sections.

4 Color Image Analysis Learning Vector Quantization

In this contribution we present an extension of the GMLVQ
concept, that is especially designed for color texture analy-
sis. We use the same cost function, Eq. (1), as in the origi-
nal GMLVQ algorithm and follow a stochastic gradient de-
scent procedure where the samples xi of the training set are
sequentially presented and the parameters accordingly up-
dated. We will refer to this algorithm as Color Image Anal-
ysis LVQ (CIA-LVQ) and to one sweep through the training
set as one epoch E.

Let D be a data set of color images of a priorly known
size (p × p) that belong to C different classes and a bank
of filter kernels G, initialized as a sum of Gabor filters with
different scales and orientations. The goal is to learn one
or more matrices Ωk that transform the color images into a
single-channel, “intensity” image, a set of optimized kernels
Ĝk and a set of prototypes wk such that the filter responses
of the transformed images will yield the best possible clas-
sification. In addition, we use an adaptation of the learning
rates that allows the system to be less dependent on their
initial values.

We use for both the filter kernels and the images their
representation in the Fourier domain. The image data are
vectorized thus resulting in a data set of complex vectors
xi ∈ C

N , where N = p · p · 3, with p denoting the image
patch size. These vectors are transformed by Ωk ∈ C

M×N ,
where M = p · p. The transformation Ωk ∈ C

M×N can be
considered as the equivalent of a color to gray scale image
transformation, with k referring to the index of a prototype
wk or the index of its class label for class-wise transforma-
tions. Subsequently, the transformed image data are filtered
with every kernel Gl ∈ G and the l responses are summed
up. The filter kernels are also represented as complex vectors
Gl ∈ C

M . The general form of the descriptor of an individ-
ual image is denoted as:

ri
k = xiΩ�

k ∗
∑

l

Gl (6)

where ∗ denotes the convolution. Each such descriptor is
associated with a label yi ∈ 1,2, . . . ,C.

Note that, Eq. (6) describes only one convolution with
a sum of kernels Ĝ = ∑

l Gl . At this point, this is not of
conceptual value. Since the algebraic property of distribu-
tivity holds for the operation of convolution in the Fourier
domain, Eq. (6) yields a result identical to what is described
above and can be simplified as:

ri
k = xiΩ�

k ∗ Ĝ (7)
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This obviously offers a gain in processing time, especially
for larger filter banks and also simplifies the optimization
process. In the following we optimize the sum of kernels Ĝ.

We define the dissimilarity measure as:

d
Ωk

Ĝk

(

xi ,wk
) = ∥

∥
∣
∣ri

k

∣
∣
2 − ∣

∣wk
∣
∣
2∥
∥

2 (8)

which corresponds to the difference of magnitudes between
a prototype and an image descriptor. In this fashion we en-
sure that two images containing the same texture pattern are
considered similar, independent of the position within the
image where this pattern occurs.

4.1 Explicit Form of the Learning Rules

The learning rules of CIA-LVQ can be derived from the
dissimilarity measure as presented in Eq. (8) by taking the
derivatives with respect to the parameters wk , Ωk and Ĝk .
The parameter updates read as follows:

wL = wL − α�wL (9)

ΩL = ΩL − ε�ΩL (10)

ĜL = ĜL − η�ĜL (11)

where

�wL =
∂fc(d

ΩJ

ĜJ
, d

ΩK

ĜK
, J,K)

∂�(wL)
+ i

∂fc(d
ΩJ

ĜJ
, d

ΩK

ĜK
, J,K)

∂	(wL)

(12)

�ΩL =
∂fc(d

ΩJ

ĜJ
, d

ΩK

ĜK
, J,K)

∂�(ΩL)
+ i

∂fc(d
ΩJ

ĜJ
, d

ΩK

ĜK
, J,K)

∂	(ΩL)

(13)

�ĜL =
∂fc(d

ΩJ

ĜJ
, d

ΩK

ĜK
, J,K)

∂�(ĜL)
+ i

∂fc(d
ΩJ

ĜJ
, d

ΩK

ĜK
, J,K)

∂	(ĜL)

(14)

In Eqs. (9)–(14) L ∈ {J,K} and α, ε and η are the learning
rates for the prototypes, the transformation matrix and the
kernel used for filtering respectively.

The derivatives with respect to the closest correct wJ and
closest wrong prototype wK together with the corresponding
matrices ΩJ , ΩK and the filter kernels ĜJ , ĜK for the given
training data point xi read:

�wL = −4 · γ L
[(∣

∣ri
L

∣
∣
2 − ∣

∣
(

wL
)∣
∣
2) · (wL

)]

(15)

�ΩL = γ L
[

4
(∣
∣ri

L

∣
∣
2 − ∣

∣
(

wL
)∣
∣
2) · ∣∣ĜL

∣
∣
2 · (xiΩT

L

)

xi∗] (16)

�ĜL = γ L
[

4
(∣
∣ri

L

∣
∣
2 − ∣

∣
(

wL
)∣
∣
2) · ∣∣xiΩT

L

∣
∣
2] ∗ (ĜL) (17)

with ∗ denoting the complex conjugate and

γ J =
2 · dΩK

ĜK
(xi ,wK)

(d
ΩJ

ĜJ
(xi ,wJ ) + d

ΩK

ĜK
(xi ,wK))2

(18)

γ K =
−2 · dΩJ

ĜJ
(xi ,wJ )

(d
ΩJ

ĜJ
(xi ,wJ ) + d

ΩK

ĜK
(xi ,wK))2

. (19)

Note, that since we are working with complex values we
have to take all derivatives with respect to the real and imag-
inary parts respectively.

4.2 Adaptation of the Learning Rates

Steepest descent methods rely upon the choice of the suit-
able magnitude for the update step (learning rate). Very
small steps usually only slow down convergence, whereas
very large steps might result in oscillatory or divergent be-
havior. In the case of CIA-LVQ the update steps are denoted
as α, ε and η and the issue of choosing their values is ad-
dressed by considering way-point averages over a number of
latest iteration steps together with an efficient step size adap-
tation. This technique is being discussed in [26] for normal-
ized gradients, but in CIA-LVQ we use its basic principles
without the normalization.

The general form of the update of a parameter x is an it-
erative process with an initial learning rate value ψ0 and an
initial parameter value x0. At every iteration step the cost
function fc(xj ) is computed. At first we perform k > 1 un-
altered gradient steps as follows:

xj+1 = xj − ψj�xj (20)

for j = 0,1, . . . , k − 1 with ψj = ψ0. Consequently, apart
from the current gradient step x̃t+1 we also compute the
way-point average of the previous k steps:

x̂t+1 = 1

k

k−1
∑

i=0

xt−i (21)

We determine the new position of the parameter xt+1 and
the new step size ψt+1 as:

xt+1 =
{

x̃t+1 if fc(x̃t+1) ≤ fc(x̂t+1),

x̂t+1 otherwise
(22)

ψt+1 =
{

ψt if fc(x̃t+1) ≤ fc(x̂t+1),

β · ψt otherwise, with β < 1
(23)

As long as a simple gradient descent step yields a position
for the parameter x that results in lower costs than the av-
erage of the k latest positions of x, the iterative process re-
mains unaltered. On the other hand, fc(x̃t+1) > fc(x̂t+1) in-
dicates that the step size is too large and should be reduced
by a factor β .
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In the next section we experiment with the algorithm and
show its use in practice.

5 Experiments

In order to evaluate the usefulness of the proposed algo-
rithm, we perform classification on patches of pictures taken
from the VisTex [3] and the KTH-TIPS [7] databases. From
the VisTex database we use 29 color images with size
128 × 128 pixels from the groups Bark, Brick, Fabric and
Food. The KTH-TIPS set is used in its original form and
consists of 810 color images with size 200×200 pixels from
10 different classes: Sandpaper, Aluminium Foil, Sponge,
Styrofoam, Corduroy, Linen, Brown Bread, Cotton, Orange
Peel and Cracker. Although in texture classification litera-
ture every image is often considered as a different class, here
we distinguish into four and ten different classes respec-
tively, which are equivalent to the conceptual groups that the
images belong to. Despite its increased difficulty, this clas-
sification task allows us to better demonstrate the ability of
CIA-LVQ to describe general characteristics of real-world
texture patterns.

We split both data sets in two subsets. One subset is used
for training whereas the other is never seen during training
and we use it for evaluation. Figures 1 and 2 depict the train-
ing and evaluation images from the VisTex database. Fig-

Fig. 1 Images, used to provide patches for training and test (VisTex)

ures 3 and 4 depict examples of training and evaluation im-
ages respectively from the KTH-TIPS database.

For our experiments we draw 15 × 15 patches randomly
from each image. The training subsets of images are further

Fig. 2 Images, used to provide patches for evaluation (VisTex)

Fig. 3 Images, used to provide patches for training and test
(KTH-TIPS)
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Fig. 4 Images, used to provide patches for evaluation (KTH-TIPS

divided in training and test sets of patches. The VisTex train-
ing subset consists of 200 patches per image. We use 150
patches per image (2400 data points) for training and test
the performance of CIA-LVQ on the remaining 50 patches
per image (800 data points). With respect to the KTH-TIPS
training subset we draw 9 patches per image and use 6 for
training (3240 data points) and the remaining 3 (1640 data
points) for testing. The test sets may contain patches which
partially overlap with those used for training. Therefore we
use the images in Figs. 2 and 4 in order to create evaluation
sets that have never been seen in the training process and
thus better demonstrate the generalization ability of the pro-
posed approach. The evaluation sets consist of 50 and 6 ran-
domly drawn patches per image for VisTex and KTH-TIPS
respectively.

A note is due here to the nature of the filters used for ini-
tialization. A 2D Gabor filter is defined as a Gaussian kernel
function modulated by a sinusoidal plane wave. All filter
kernels can be generated from one basic wavelet by dilation
and rotation. In these experiments we initialize the adaptive
filter banks as follows: Every bank consists of 16 Gabor
filters of bandwidth equal to 1 at eight orientations θ = 0,
22.5, 45, 67.5, 90, 112.5, 135 and 157.5 degrees and two
scales (wavelengths) varying by one octave λ = {5,5

√
2}.

These scales ensure that the Gabor function yields an ad-
equate number of visible parallel excitatory and inhibitory
stripe zones. Dependent on the patch size and the nature of
the data at hand different scales might be more suitable. We
set the phase offset φ = 0 and the aspect ratio γ = 1 for all
filters. In this way we create center-on symmetric filters with
circular support.

We run the localized version of CIA-LVQ with matrices
Ωk initialized with the identity matrix and 4 prototypes per
class for E =300 epochs. The prototypes are initialized as
the mean of the corresponding class. Regarding VisTex the
training error is 5.75 % and the error on the test set 15 %.
For the KTH-TIPS data set CIA-LVQ reaches training and
test errors of 15.4 % and 22.8 % respectively.

We use the same data sets and the same filter banks to
compare with the Gabor-based Opponent Color Features
(OCF) [15], the Color Local Binary Patterns (Color LBP)
[28] and the common approach of deriving textural informa-
tion only from the luminance plane of images [5]. The lumi-
nance approach is considered to often outperform combined
color and texture features [19]. We implement this approach
with a RGB to gray (RGB2G) transformation, which builds
intensity values by a weighted sum of the color components
of every pixel:

I(x,y) = 0.2989 ·R(x,y) +0.587 ·G(x,y) +0.114 ·B(x,y) (24)

We again vectorize all patches s and in this case the im-
age patch descriptor is given by

r2(s) = s ∗
∑

l

Gl . (25)

For OCF we use a k-nearest neighbors (k-NN) classification
scheme with precisely the set of features and the dissimilar-
ity measure suggested by the authors of [15], whereas for
the Color LBP we use rotation-invariant uniform LBP his-
tograms in (8,1) neighborhoods and the Euclidean distance
in an k-NN scheme. We choose the size of the neighborhood
in relation to the patch size and the dimensions of the fea-
ture vectors created. With respect to the RGB2G approach
we use the k-NN scheme with a dissimilarity measure simi-
lar to Eq. (8):

dG
(

xi ,xj
) = ∥

∥
∣
∣r2

(

xi
)∣
∣
2 − ∣

∣r2
(

xj
)∣
∣
2∥
∥

2
. (26)

Regarding all k-NN schemes we cross-validate the number
of nearest neighbors using the values k = 1,3, . . . ,15 on the
testing image patches from the training subsets. The optimal
k obtained is then used for experimenting on the previously
unseen evaluation image patches. Ties are solved by default-
ing to the 1-NN classifier.

5.1 Comparisons on the VisTex Data Set

The k-NN scheme shows a test error of 9.1 % based on the
OCF (k = 3), 2 % based on the Color LBP (k = 1) and
25.8 % based on the RGB2G transformation (k = 1), but
the most interesting comparison relies on the evaluation set
which displays the generalization ability of each method.
Here the k-NN scheme produces much higher error rates of
35.2 %, 25.2 % and 50 % for OCF, Color LBP and RGB2G
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Table 1 Confusion matrices for the VisTex evaluation set

CIA-LVQ:

Bark Brick Fabric Food
∑

Bark 179 2 23 4 208

Brick 5 85 1 2 93

Fabric 2 13 176 19 210

Food 14 0 0 125 139
∑

200 100 200 150 650

Class-wise accuracy of estimation in %

89.50 85.00 88.00 83.33

OCF:

Bark Brick Fabric Food
∑

Bark 111 10 35 36 192

Brick 70 78 10 26 184

Fabric 16 12 155 11 194

Food 3 0 0 77 80
∑

200 100 200 150 650

Class-wise accuracy of estimation in %

55.50 78.00 77.50 51.33

Color LBP:

Bark Brick Fabric Food
∑

Bark 152 24 2 6 174

Brick 21 56 12 1 178

Fabric 2 12 138 3 127

Food 25 8 4 140 181
∑

200 100 200 150 650

Class-wise accuracy of estimation in %

76.00 56.00 69.00 93.33

RGB2G:

Bark Brick Fabric Food
∑

Bark 79 12 38 38 167

Brick 64 62 34 28 188

Fabric 16 15 113 13 157

Food 41 11 15 71 138
∑

200 100 200 150 650

Class-wise accuracy of estimation in %

39.50 62.00 56.50 47.33

respectively, while the CIA-LVQ has an error of 13.1 %, in
the same order of magnitude as for the test patches. Table 1
presents in detail the confusion matrices and classwise ac-
curacies of all methods for the evaluation set.

CIA-LVQ consistently outperforms all other methods
and displays remarkable ability to generalize for previously
unknown data. The magnitude of the prototypes, which clas-
sify the evaluation set are shown in Fig. 5. Additionally
we show some example patches from the evaluation set,
which are classified correctly together with their descriptors
in Fig. 6 and some examples of wrongly classified patches
in Fig. 7. Finally, Fig. 8 depicts in the spatial domain the
optimized sums of kernels that are used together with the
corresponding prototypes in order to classify the evaluation
set. The accuracy rates of the proposed approach don’t vary
a lot among the different classes. However, Brick and Food
are the most difficult to classify using a small patch size due
to the large size of the texture patterns and the possibly low
contrast respectively. Therefore, Color LBP being invariant
to monotonic contrast changes outperforms CIA-LVQ for
the class Food.

5.2 Comparisons on the KTH-TIPS Database

The k-NN scheme shows a test error of 41.7 % based on the
OCF (k = 13), 26.4 % based on the Color LBP (k = 11) and
of 52.7 % based on the RGB2G transformation (k = 11),
which are all higher than what CIA-LVQ can achieve. On
the evaluation set the superior performance of the proposed
technique is further clarified. The k-NN scheme reaches er-
ror rates of 46.4 %, 35.6 % and 58.4 % for OCF, Color LBP
and RGB2G respectively, while the CIA-LVQ has an error
of 20.3 %, again in the same order of magnitude as for the
test patches. Table 2 presents in detail the confusion matri-
ces and classwise accuracies of all methods for the evalua-
tion set of the KTH-TIPS database.

CIA-LVQ is outperformed only for the Corduroy class by
all three methods that we compare with, while Color LBP
achieves better results for Aluminium Foil, Brown Bread
and Cotton as well. The prototypes, which classify the eval-
uation set of KTH-TIPS are shown in Fig. 9, together with
examples of correctly (Fig. 10) and wrongly (Fig. 11) clas-
sified patches and their corresponding descriptors. The opti-
mized sums of kernels that are used are shown in Fig. 12.
The classes Corduroy, Brown Bread and Cotton are both
characterized from nuances of brown color and very diverse
patterns as well as the class Sponge. Therefore, the former
two are often mistaken for one another or Sponge from CIA-
LVQ. The same occurs also between Cotton and Linen that
are dominated by very similar colors and often low con-
trast. Finally, the performance of CIA-LVQ with regard to
the class Aluminium Foil is mostly due to the combination
of large textures and the small patch size.

6 Conclusion and Outlook

In this contribution we propose a prototype based frame-
work for color texture classification. As an example we ini-
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Fig. 5 Plots of the optimized
prototypes |(wL)| actively used
to classify the data in the
evaluation set of the VisTex
database. The names consist of
the corresponding class name
and the index number (1–4) of
the prototype

Fig. 6 Plots of the descriptors
|rk | of some correctly classified
image patches from the
evaluation set of VisTex
database

Fig. 7 Plots of the descriptors
|rk | of some wrongly classified
image patches from the
evaluation set of VisTex
database

tialize the system with Gabor filters and classify color tex-
ture patterns in 15 × 15 patches randomly drawn from im-
ages of two public data sets. The results show that CIA-LVQ
can learn typical texture patterns with very good generaliza-
tion, even from relatively small patches and filter banks and
it consistently outperforms state of the art techniques used

for color texture analysis. It is also of conceptual value that
this LVQ adaptation is suitable for learning in the complex
number domain.

The resulting filter kernels may not strictly conform to the
notion of Gabor filters, they preserve however the important
property of symmetric and periodic excitatory and inhibitory
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Fig. 8 Plots of the final form of
filter kernels actively used to
classify the evaluation set of the
VisTex database. The filter
kernels have been locally
adapted during training. The
names consist of the
corresponding class name and
the index number (1–4) of the
kernel

Table 2 Confusion matrices for the KTH-TIPS evaluation set

CIA-LVQ:

S/paper Al. Foil Sponge Styrofoam Corduroy Linen Br. Bread Cotton Or. Peel Cracker
∑

S/paper 129 0 2 0 0 4 0 9 0 0 144

Al. Foil 0 123 0 0 0 0 0 0 0 0 123

Sponge 0 0 107 0 41 0 30 0 0 0 178

Styrofoam 0 4 0 133 0 0 0 0 2 0 139

Corduroy 0 0 22 0 91 0 32 0 0 0 145

Linen 0 0 0 2 0 108 0 54 0 0 164

Br. Bread 0 0 3 0 3 0 51 0 0 1 58

Cotton 1 7 0 0 0 23 0 70 2 0 103

Or. Peel 0 0 0 0 0 0 0 0 131 1 132

Cracker 5 1 1 0 0 0 22 2 0 133 164
∑

135 135 135 135 135 135 135 135 135 135 1350

Class-wise accuracy of estimation in %

95.56 91.11 79.26 98.52 67.41 80.00 37.78 51.85 97.04 98.52

OCF:

S/paper Al. Foil Sponge Styrofoam Corduroy Linen Br. Bread Cotton Or. Peel Cracker
∑

S/paper 34 0 21 26 0 2 7 10 2 7 109

Al. Foil 0 112 1 1 2 1 7 4 0 6 134

Sponge 30 0 43 10 8 3 17 4 13 12 140

Styrofoam 28 0 15 61 3 17 7 13 0 7 151

Corduroy 7 4 7 6 97 2 3 22 0 5 153

Linen 2 0 0 2 1 91 4 10 2 3 115

Br. Bread 16 6 39 13 8 4 58 5 7 33 189

Cotton 3 0 1 5 1 3 1 61 6 0 81

Or. Peel 7 0 1 0 1 1 1 4 105 1 121

Cracker 8 13 7 11 14 11 30 2 0 61 157
∑

135 135 135 135 135 135 135 135 135 135 1350

Class-wise accuracy of estimation in %

25.19 82.96 31.85 45.19 71.85 67.41 42.96 45.19 77.78 45.19
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Table 2 (Continued)

Color LBP:

S/paper Al. Foil Sponge Styrofoam Corduroy Linen Br. Bread Cotton Or. Peel Cracker
∑

S/paper 66 0 27 1 11 4 8 6 0 25 148

Al. Foil 0 134 0 0 0 0 0 0 0 0 134

Sponge 28 0 65 1 5 0 14 1 28 26 168

Styrofoam 0 0 0 126 0 30 0 6 0 2 164

Corduroy 2 0 8 0 109 1 15 5 0 5 145

Linen 0 1 0 1 0 69 0 36 0 0 107

Br. Bread 13 0 20 1 6 7 86 1 6 27 167

Cotton 0 0 0 2 1 20 0 72 5 3 103

Or. Peel 5 0 15 0 2 0 1 0 95 0 118

Cracker 21 0 0 3 1 4 11 8 1 47 96
∑

135 135 135 135 135 135 135 135 135 135 1350

Class-wise accuracy of estimation in %

48.89 99.26 48.15 93.33 80.74 51.11 63.70 53.33 70.37 34.81

RGB2G:

S/paper Al. Foil Sponge Styrofoam Corduroy Linen Br. Bread Cotton Or. Peel Cracker
∑

S/paper 26 1 17 38 2 11 9 7 24 5 140

Al. Foil 1 81 0 0 0 1 3 0 0 8 94

Sponge 22 2 33 13 5 11 16 5 26 14 147

Styrofoam 37 1 12 45 0 11 1 8 8 13 136

Corduroy 0 15 8 1 108 6 9 17 3 7 174

Linen 1 5 1 4 3 56 10 2 1 6 89

Br. Bread 10 6 22 7 3 9 50 2 10 37 156

Cotton 11 2 4 3 5 12 3 77 12 4 133

Or. Peel 24 1 32 19 3 10 7 16 51 6 169

Cracker 3 21 6 5 6 8 27 1 0 35 112
∑

135 135 135 135 135 135 135 135 135 135 1350

Class-wise accuracy of estimation in %

19.26 60.00 24.44 33.33 80.00 41.48 37.04 57.04 37.78 25.93

regions, the shape and size of which are data driven. In prin-
ciple every adaptive metric method could be extended fol-
lowing our suggestion, but we consciously choose LVQ be-
cause of its easily interpretable results and the lower com-
putational costs in comparison to other approaches. Sim-
ilarly to Gabor filters any other family of 2D filters com-
monly used to describe gray scale image information could
be adapted and applied to color image analysis with this
algorithm. Initializing with a filter bank of differences of
Gaussians for color edge detection is a possible example.
Furthermore, depending on the task at hand it might be de-
sirable that two patches in which the same texture occurs
on different positions should not be interpreted as simi-
lar. In this case another similarity measure should be used:

‖|r(xi ) − r(wL)|‖2, which is not based on the difference of

magnitudes. This might be of advantage for example in the

recognition of objects such as traffic signs, were a corner

or an edge might have different interpretations dependent

on their position in the image. Combinations of CIA-LVQ

with keypoint detectors to avoid the drawing of patches from

random positions within an image can also be easily imple-

mented and can be beneficial especially for tasks that are re-

lated to object recognition. A completely unbiased, regard-

ing the nature of the filters, variant of CIA-LVQ where the

adaptive kernels are randomly initialized is also of particular

interest mostly in cases where there is no prior knowledge

for the nature of the data (i.e. medical imaging).
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Fig. 9 Plots of the optimized
prototypes |(wL)| actively used
to classify the data in the
evaluation set of the KTH-TIPS
database. The names consist of
the corresponding class name
and the index number (1–4) of
the prototype

Fig. 10 Plots of the descriptors |rk | of some correctly classified image patches from the evaluation set of KTH-TIPS database

Fig. 11 Plots of the descriptors |rk | of some wrongly classified image patches from the evaluation set of KTH-TIPS database
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Fig. 12 Plots of the final form
of filter kernels actively used to
classify the evaluation set of the
VisTex database. The filter
kernels have been locally
adapted during training. The
names consist of the
corresponding class name and
the index number (1–4) of the
kernel

CIA-LVQ formulates a novel general principle: based on
a differentiable convolution and an adaptive filter bank, the
algorithm optimizes the classification. Contrary to standard
approaches which are either based on a single channel rep-
resentation of the images through a fixed transformation or
empirical observations for combining color and textural in-
formation, the proposed technique offers the alternative of
data driven learning of suitable, parameterized image de-
scriptors. The ability of automatically weighing different
color channels and different filters in localized neighbor-
hoods, according to their importance for the classification
task, is the most significant factor which qualifies our ap-
proach.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.
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