
Luo ﻿Health Inf Sci Syst (2015) 3:3
DOI 10.1186/s13755-015-0011-0

SOFTWARE

MLBCD: a machine learning tool for big
clinical data
Gang Luo*

Abstract 

Background:  Predictive modeling is fundamental for extracting value from large clinical data sets, or “big clinical
data,” advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive
modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine
learning model, the values of one or more model parameters called hyper-parameters must typically be specified.
Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate
algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be
iteratively transformed into the relational table format before conducting predictive modeling. This transformation is
time-consuming and requires computing expertise.

Methods:  This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new
software system aiming to address these challenges and facilitate building machine learning predictive models using
big clinical data.

Results:  The paper describes MLBCD’s design in detail.

Conclusions:  By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clini-
cal data and increase the ability to foster biomedical discovery and improve care.

Keywords:  Machine learning, Big clinical data, Automatic algorithm selection, Automatic hyper-parameter value
selection, Entity–Attribute–Value, Pivot

© 2015 Luo. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The healthcare industry collects large amounts of clinical
data from diverse sources including electronic medical
records, sensors, and mobile devices. These large clinical
data sets, or “big clinical data,” provide opportunities to
advance clinical care and biomedical research. Predic-
tive analytics leverage these large, heterogeneous data
sets to further knowledge and foster discovery. Predictive
modeling can facilitate appropriate and timely care by
forecasting an individual’s health risk, clinical course, or
outcome. Approaches to predictive modeling include sta-
tistical methods such as logistic regression and machine
learning methods that improve automatically through
experience [1], such as support vector machine, neural
network, decision tree, and random forest. Compared to

statistical methods, machine learning can increase pre-
diction accuracy, sometimes doubling it, with less strict
assumptions, e.g., on data distribution [2–4].

Two major aspects of machine learning require sig-
nificant computing expertise and are poorly supported
by existing machine learning software such as Weka [5],
RapidMiner, R, and KNIME [6], making machine learn-
ing inaccessible to many healthcare researchers who use
clinical data to do research [7–9]. First, before a machine
learning model can be trained, an algorithm and hyper-
parameter values must be chosen. An example hyper-
parameter is the number of hidden layers in a neural
network. The chosen algorithm and hyper-parameter val-
ues can have a large impact on the resulting model’s per-
formance, sometimes changing accuracy from 1 to 95 %
[8]. Selecting an effective algorithm and hyper-parameter
values is currently an art, which requires deep machine
learning knowledge as well as repeated trials. It has been

Open Access

*Correspondence: gangluo@cs.wisc.edu
Department of Biomedical Informatics, University of Utah, Suite 140, 421
Wakara Way, Salt Lake City, UT 84108, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13755-015-0011-0&domain=pdf

Page 2 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

widely recognized that this is beyond the ability of lay-
man users with limited computing expertise, and also
frequently a non-trivial task even for machine learning
experts [7, 8, 10–12]. Emerging evidence suggests that
automatic search methods for the optimal algorithm
and hyper-parameter values can achieve equally good
or better results than careful manual tuning by machine
learning experts [10, 13]. However, when a large variety
of algorithms is considered, prior efforts such as Auto-
WEKA [8], hyperopt-sklearn [13], and MLbase [7, 14]
cannot quickly determine the optimal algorithm and
hyper-parameter values for a large data set, limiting their
usefulness in practice.

A major obstacle to automatic search is that a long time
is needed to examine a combination of an algorithm and
hyper-parameter values on the entire data set. When
determining an optimal combination, prior efforts at
automation examine many combinations on the entire
data set. On a data set with a modest number of data
instances and attributes, such as several thousand rows
and several dozen attributes, this can last several days
[8]. In practical applications, search time can be hun-
dreds or thousands of times longer for three reasons: (1)
The process of conducting machine learning is iterative.
If a particular set of clinical parameters yields low pre-
diction accuracy, the analyst will probably look at other
unused, available clinical parameters that may be pre-
dictive. A new search is required for each iteration. (2)
A data set can consist of many data instances, e.g., from
several healthcare systems. (3) A data set can include
many attributes, like those extracted from textual and/
or genomic data. The execution time of a machine learn-
ing algorithm typically grows at least linearly with the
number of attributes and superlinearly with the number
of data instances. Many predictive modeling problems
must be resolved for numerous diseases and outcomes to
attain personalized medicine. Search time will become a
bottleneck at this point, irrespective of whether it creates
an issue for a predictive modeling problem.

The second aspect is related to the data extrac-
tion required before data analysis. Many clinical data
are stored in the Entity-Attribute-Value (EAV) format
(see Fig. 1) [15]. Examples of electronic medical record
(EMR) systems using the EAV format include the Cerner

Powerchart EMR [16], Regenstrief EMR [17], Intermoun-
tain Healthcare’s HELP EMR [18], TMR EMR [19], and
Columbia-Presbyterian EMR [20]. Examples of clinical
study data management systems using the EAV format
include Oracle Clinical [21], Clintrial [22], TrialDB [23],
i2b2 (Informatics for Integrating Biology and the Bed-
side), REDCap, OpenClinica, LabKey, and Opal [24, 25].
A large portion of patient-generated health data, such as
those from home health equipment, in personal health
records, or from mobile apps, is stored in the EAV for-
mat [26]. Even in an enterprise clinical data warehouse
designed to provide data ready for analysis, some of the
largest tables (e.g., the fact tables) still use the EAV for-
mat [27, 28]. In the OMOP (Observational Medical Out-
comes Partnership) [29] and PCORnet (the National
Patient-Centered Clinical Research Network) Common
Data Models [30] and i2b2 data mart schema [31], some
of the largest tables (e.g., observation, diagnosis, proce-
dure, and lab result) use the EAV format.

The EAV data model uses tables with at least three col-
umns: the entity, attribute, and value. Usually, the entity
column identifies a clinical event and can be regarded as
a patient ID and date/time stamp pair [27, page 58]. The
attribute column identifies a clinical parameter. The value
column contains the clinical parameter’s value. In this
way, an EAV table combines many clinical parameters
and their values in the attribute and value columns.

Before performing predictive modeling, EAV data
must be transformed by pivot operations into relational
table formats (see Fig. 1), with each clinical parameter
of interest occupying its own column. Pivoting is often
performed repeatedly, as machine learning is an itera-
tive process. Since healthcare researchers with limited
computing expertise are known to have difficulty writ-
ing complex database queries [32], each round of piv-
oting requires work from a computing professional,
which creates dependencies and consumes significant
time and computing resources. Traditional pivoting
techniques often require repeatedly processing large
clinical data sets and/or performing multiple join
operations [33–35], either of which is computationally
expensive.

New approaches are needed to enable healthcare
researchers to build machine learning predictive models

Fig. 1  Pivot to obtain the columns for the three clinical parameters ‘test 1,’ ‘test 2,’ and ‘test 3’

Page 3 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

on big clinical data efficiently and independently. To fill
the gap, we present in this paper the design of a new
software system called MLBCD (Machine Learning
for Big Clinical Data) supporting the whole process of
iterative machine learning on big clinical data, includ-
ing clinical parameter extraction, feature construction,
machine learning algorithm and hyper-parameter selec-
tion, model building, and model evaluation. MLBCD can
be used once the researcher has defined the study popu-
lation and research question, has obtained the clinical
data set, and has finished data preparation [36] including
cleaning and filling in missing values. For clinical data,
filling in missing values usually requires applying medi-
cal knowledge, and therefore is unsuitable for complete
automation.

This work makes the following innovative
contributions:

1.	 We present the first software supporting the whole
process of iterative machine learning on big clini-
cal data, from clinical parameter extraction to model
evaluation. Currently no such software exists.

2.	 We present a new method to provide a solution to
a long-standing open problem in machine learn-
ing that has been widely recognized in the literature
[7, 11, 12, 14]. Our method efficiently (in less time)
and automatically searches for the optimal machine
learning algorithm and hyper-parameter values for a
given machine learning problem. Existing automatic
search methods are inefficient. Our method uses sam-
pling to search for the optimal algorithm and hyper-
parameter values concurrently. This has never been
done before. Our method uses new techniques such
as handling high-performance and low-performance
combinations of hyper-parameter values in different
ways. With proper extensions, these techniques can
be used for handling other problems in stochastic
optimization.

3.	 We present the first implementation method of effi-
cient pivoting techniques using the MapReduce
framework [37] for distributed computing. Pivot oper-
ations are essential for analyzing clinical data, but are
not supported by existing big data software for distrib-
uted computing such as Hadoop [38] and Spark [39].

4.	 MLBCD offers new features tailored to healthcare
researchers’ needs, such as the options of producing
only interpretable models, specifying forced inclu-
sion of a subset of input variables in the model, and
displaying the used input variables in descending
order of importance with cumulative impact on pre-
diction accuracy. Existing machine learning software
systems are not tailored to healthcare researchers’
needs.

Methods
MLBCD integrates techniques of fast pivoting, visual
query building, efficient and automatic selection of
machine learning algorithms and hyper-parameter val-
ues, and scalable machine learning. It provides an intui-
tive graphical user interface for each step of the analytical
process and can run on a cluster of commodity comput-
ers for scalable parallel processing. MLBCD uses a new
method for efficiently and automatically searching for the
optimal machine learning algorithm and hyper-parame-
ter values for a given machine learning problem. MLBCD
also provides the first implementation of efficient pivot-
ing techniques using the MapReduce framework [37] for
distributed computing.

After obtaining EAV data containing potentially predic-
tive clinical parameters, MLBCD can be used to perform
fast iterative machine learning. For example, hundreds
of thousands of clinical parameters exist in an EMR [27,
page 56]. An analyst typically starts the analytical process
from a few clinical parameters such as lab tests. With the
EAV tables containing all lab tests and their result values,
the analyst can use MLBCD to iteratively add more lab
tests for analysis until satisfactory prediction accuracy is
reached.

Results and discussion
This part of the paper is organized as follows. “Existing
big data software” provides some background on exist-
ing big data software relevant to MLBCD. “The design of
MLBCD” presents the design of MLBCD. “An automatic
selection method for machine learning algorithms and
hyper-parameter values” describes the efficient and auto-
matic selection method for machine learning algorithms
and hyper-parameter values used in MLBCD. “Evaluation
plan” mentions our evaluation plan for MLBCD. “Related
work” discusses related work.

Existing big data software
In this section, we provide some background on exist-
ing big data software relevant to MLBCD. Modern big
data software for distributed computing is developed to
support large-scale data-intensive applications not han-
dled well by parallel relational database systems. These
big data software systems typically run on a cluster of
commodity computers, borrow many techniques from
parallel relational database systems, and provide new
functions beyond those supported by parallel relational
database systems.

Hadoop [38] and Spark [39] are two widely used,
open source, big data software systems. Hadoop imple-
ments Google’s MapReduce framework [37] for distrib-
uted computing using the Map and Reduce functions.
The Map function converts an input element into zero

Page 4 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

or more key-value pairs. The Reduce function converts
a key and its list of associated values into zero or more
key-value pairs that can be of another type. Data are
stored in the Hadoop distributed file system, the open
source implementation of Google’s BigTable file system
[40]. Hadoop is unsuitable for iterative and interactive
jobs, as job execution usually requires repeated reading
and writing of data from and to disk, incurring significant
overhead [39]. Structured Query Language (SQL) is the
standard query language for relational database systems.
SQL’s declarative nature allows easier programming than
by low level Map and Reduce functions. Hive [41] is a
software system supporting a large portion of SQL on top
of Hadoop.

To overcome Hadoop’s shortcomings, Spark [39] was
developed on top of the Hadoop distributed file system.
To improve performance, Spark executes most opera-
tions in memory and avoids disk inputs/outputs when
possible. Like Hadoop, Spark supports the MapReduce
framework. Spark SQL [42, 43] is a software system sup-
porting many relational operators, a large portion of
SQL, and other functions on top of Spark. MLlib [7, 44,
45] is Spark’s machine learning library. Spark can run
SQL queries at a speed comparable to parallel relational
database systems and up to 100 times faster than Hive,
and iterative machine learning algorithms >100 times
faster than Hadoop [42]. Neither Spark SQL nor Hive
supports the pivot operator. MLBCD is developed using
Spark, Spark SQL, MLlib, and new techniques to address
existing software’s limitations.

The design of MLBCD
In this section, we present the design of MLBCD. Dur-
ing iterative machine learning on big clinical data, three
sequential steps are executed repeatedly. First, a set of
clinical parameters is extracted from EAV data into rela-
tional table formats by pivoting. Second, raw clinical
parameters are transformed to construct features, a.k.a.
input variables or independent variables, of the predictive
models to be built. This step is optional and often done
by executing SQL queries. If this step is omitted, raw
clinical parameters will be the input variables of the pre-
dictive models to be built. Third, one or more predictive
models are built on the current set of clinical parameters
and evaluated. If model performance is unsatisfactory,
the analyst can add more clinical parameters and restart
from the first step.

MLBCD covers all three steps and supports the whole
process of iterative machine learning on big clinical data.
MLBCD provides a separate intuitive graphical user
interface for each step. At any time, the user can move
easily between the three steps at will. MLBCD uses Spark
as its basis for distributed computing, allowing it to run

on a single computer as well as on a cluster of commod-
ity computers for parallel processing. As detailed below,
MLBCD is built using the open source software systems
Spark, Spark SQL, MLlib, and SQLeo [46], each of which
either supports a Java application programming interface
or is written in Java. MLBCD is written mainly in Java so
it can call the functions in and interface with these soft-
ware systems. Figure 2 shows MLBCD’s architecture. In
the following, we describe the software component for
each of the three steps.

Step 1: Clinical parameter extraction
In the first step, MLBCD performs pivoting on Spark to
extract desired clinical parameters. The pivot operator
is currently not supported by Spark SQL, nor well sup-
ported by existing large-scale relational database systems.
We use the MapReduce framework [37] to support the
pivot operator on Spark and implement three efficient
pivoting techniques that we have developed in Luo and
Frey [33]. The first technique performs early removal
of EAV tuples related to unneeded clinical parameters.
The second technique facilitates pivoting across several
EAV tables. The third technique supports multi-query
optimization.

Our techniques fit well with MapReduce by forming
one key-value pair per EAV tuple in the Map function.
The key is the entity column of the EAV tuple. The value
is the combination of the attribute and value columns of
the EAV tuple. In the Map function, EAV tuples related
to unneeded clinical parameters are filtered out early on
[33]. The Reduce function combines all relevant EAV
tuples with the same entity value from one or more EAV
tables into a relational tuple. The Reduce function can
write to multiple files for each record processed [38, 41],
supporting multi-query optimization.

To let users with limited computing expertise avoid
writing SQL-like statements for pivoting, MLBCD pro-
vides an intuitive graphical user interface to guide users
through the pivoting process. In MLBCD’s input inter-
face, the user specifies sequentially (a) the EAV data’s
storage location, such as the name of a comma-sepa-
rated values (CSV) file in the local file system, a file in
the Hadoop distributed file system, or an EAV table
in a relational database; (b) the fields of the EAV data

Fig. 2  Architecture of MLBCD

Page 5 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

corresponding to the entity, attribute, and value columns,
respectively; and (c) desired clinical parameters. When-
ever possible, the user will input by selecting from a list
or navigating a directory of items rather than typing.
After the user provides inputs and clicks “Extract clinical
parameters”, MLBCD automatically loads the EAV data
into Spark, then extracts the specified clinical parameters
into relational table formats using the pivot operator on
Spark. By default, the extracted relational data are stored
in Spark’s default persistent storage space, the Hadoop
distributed file system. In MLBCD’s input interface, the
user can optionally modify the storage location of the
relational data to be extracted, e.g., if the user wants to
export the relational data as a CSV file for use by other
programs.

As mentioned in Luo and Frey [33], there are three pos-
sible cases of pivoting: (a) pivoting on a single EAV table
to generate a relational table; (b) pivoting across several
EAV tables to generate a relational table from data scat-
tered across them; and (c) performing multiple pivot
operations on the same EAV table or across the same set
of EAV tables to generate multiple relational tables simul-
taneously. MLBCD’s input interface includes one tab for
each case. After completing pivoting, MLBCD displays in
its output interface the first few tuples in each relational
table generated. This can help the user ensure that pivot-
ing has been done properly.

Some clinical data such as patient demographics are
stored in the relational table format. MLBCD provides an
intuitive graphical user interface to allow importing rela-
tional data, e.g., from a CSV file or relational database,
into Spark. Both clinical data originally stored in the EAV
format and clinical data stored in the relational table for-
mat then become available for the subsequent analytical
process.

Step 2: Feature construction
In the second step, raw clinical parameters are trans-
formed to construct features. This will typically be done
by using Spark SQL to execute SQL statements on the
relational data extracted in Step 1. MLBCD provides a
visual query builder to help users form SQL statements.
Visual query building is widely used in relational data-
base systems. A visual query builder provides an intuitive
graphical user interface, in which users form SQL state-
ments visually. For instance, to form a basic SQL query
joining two tables, the user only needs to select the two
tables through drag and drop, draw a line connecting
their join attributes, and then check the attributes that
will appear in the results.

A good way to write the visual query builder in
MLBCD is to modify the source code of SQLeo [46], an
open source visual query builder written in Java. SQLeo

currently supports several relational database systems,
such as Oracle and PostgreSQL, but not Spark. The mod-
ification lets SQLeo interact with Spark SQL using Java
Database Connectivity (JDBC) supported by SQLeo and
Spark SQL. After the visual query builder forms a SQL
statement and the user clicks “Run statement”, MLBCD
uses Spark SQL to execute the SQL statement.

In addition to the visual query builder, MLBCD pro-
vides a command line interface for Spark. Advanced
users can use the command line interface to perform
operations supported by Spark and Spark SQL.

Step 3: Model building and evaluation
In the third step, machine learning models are built on
the current set of clinical parameters and evaluated.
MLBCD integrates machine learning functions of MLlib
[7, 44, 45] by modifying the source code and/or calling
the Java application programming interface of MLlib.
Recall that MLlib is Spark’s distributed machine learning
library and can run on a cluster of computers for parallel
processing. MLlib implements multiple machine learning
algorithms and feature selection techniques, all of which
are supported by MLBCD.

Like Weka [5], MLBCD provides an intuitive graphi-
cal user interface for machine learning. Weka is the most
widely used open source machine learning and data
mining toolkit. Weka’s graphical user interface supports
feature selection (optional), model building, and model
evaluation. In the input interface, the user specifies the
data file, independent variables, dependent variable,
machine learning algorithm, and its hyper-parameter val-
ues. After the user clicks “Start,” Weka builds the model
and presents its performance metrics. MLBCD’s graphi-
cal user interface for machine learning works similarly
with one major difference. In Weka’s input interface, the
user must select an algorithm before building the model.
This requires computing expertise. Like Auto-WEKA [8],
MLBCD treats the choice of feature selection technique
as a hyper-parameter and uses the method described in
“An automatic selection method for machine learning
algorithms and hyper-parameter values” to automati-
cally search for the optimal algorithm, feature selection
technique, and hyper-parameter values. If desired, the
user can make changes in MLBCD’s input interface. If
the resulting model’s accuracy is lower than a pre-deter-
mined threshold, such as area under the receiver oper-
ating characteristic curve (AUC) <0.8 [47, page 177],
MLBCD automatically prompts the user to consider
returning to Step 1 to add additional clinical parameters.

By default, MLBCD considers all input variables,
machine learning algorithms, and feature selection tech-
niques. In the input interface, the user can optionally
specify a subset of input variables deemed important

Page 6 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

based on medical knowledge and must be included in
the model. In this case, feature selection will be applied
only to the other input variables. The user can also
optionally specify the feature selection techniques and/
or algorithms to be explored, possibly based on a desired
property. For instance, the user may want interpret-
able models such as decision tree and k-nearest neighbor
(similar patients) [48]. In the output interface, a receiver
operating characteristic (ROC) curve is displayed for
binary classification. The user can mouse over the ROC
curve to exploit trade-offs between sensitivity and speci-
ficity. To help simplify the model, the user can opt to see
the used input variables sorted in descending order of
importance, e.g., using backward feature elimination [1].
For each input variable, the accuracy of the model using
all input variables up to it is shown. Often, not every clin-
ical parameter used in the model is routinely collected
in all healthcare systems’ databases. By determining the
set of clinical parameters essential for high accuracy, the
user can simplify the model so other healthcare systems
are more likely to adopt it.

An automatic selection method for machine learning
algorithms and hyper‑parameter values
In this section, we present a new method for efficiently
and automatically searching for the optimal algorithm
and hyper-parameter values for a given machine learning
problem. MLBCD uses this method to address existing
automatic search methods’ inefficiencies mentioned in
the Introduction. Our discussion focuses on a large data
set. With some modifications, the new method will also
apply to relatively small data sets, e.g., by using the test
results on a few random combinations of hyper-param-
eter values to quickly determine whether a machine
learning algorithm should be eliminated from further
consideration. Any given accuracy measure, such as
AUC, can be used in our method.

In “Overview of the automatic search method”, we
give an overview of the new automatic search method.
In “Background on hyper-parameters”, we provide
some background on hyper-parameters. In “Review of
the sequential model-based optimization method”, we
briefly review the sequential model-based optimization
method. We describe the observations and insights based
on which the new automatic search method is designed
in “Observations and insights”. In “The training and test
samples”–“The iterative search process”, we present vari-
ous parts of the new automatic search method in detail.

Overview of the automatic search method
We consider all machine learning algorithms applica-
ble to the data set. We focus on the common case that
no experimental results on previous machine learning

problems are available. If this is not the case, experimen-
tal results on previous machine learning problems can
be used to help select a good starting point of the search
process for the current machine learning problem, e.g.,
in a way similar to that in Feurer et al. [49], and improve
search efficiency.

The entire space of machine learning algorithms and
hyper-parameter values is extremely large due to the large
number of algorithms and possible hyper-parameter val-
ues. To efficiently and automatically search for the opti-
mal algorithm and hyper-parameter values, we perform
progressive sampling, filtering, and fine-tuning to quickly
narrow down the search space. As shown in Fig. 3, our
key idea is to use progressive sampling to generate a
sequence of random samples of the data set, one nested
within another [50]. Inexpensive tests are conducted on
small samples of the data set to eliminate unpromising
algorithms and identify unpromising combinations of
hyper-parameter values as early and as much as possible.
More computational resources are devoted to fine-tun-
ing promising algorithms and combinations of hyper-
parameter values on larger samples of the data set. The
search process is repeated for one or more rounds. As the
sample of the data set expands, the search space shrinks.
In the last round, (a large part of) the entire data set is
used to find an optimal combination of an algorithm and
hyper-parameter values. Sampling has been used before
for searching for the optimal machine learning algorithm
[9, 50–57], but not for searching for the optimal algo-
rithm and hyper-parameter values concurrently.

Background on hyper‑parameters
In this section, we provide some background on hyper-
parameters needed for describing our automatic search
method. There are two types of hyper-parameters: con-
ditional and unconditional. An unconditional hyper-
parameter is always used. In contrast, the relevance of
a conditional hyper-parameter depends on the value of
another hyper-parameter. For instance, for neural net-
work, the hyper-parameter of the number of hidden units
in the second layer is relevant only if the hyper-parame-
ter of the number of layers in the neural network is ≥2.
As shown in Fig. 4, all hyper-parameters of a machine
learning algorithm form a tree or directed acyclic graph.

Fig. 3  An illustration of progressive sampling used in our automatic
search method

Page 7 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

Review of the sequential model‑based optimization method
Our goal is to automatically search for the optimal
machine learning algorithm and hyper-parameter values.
The current approach for handling this problem [8, 13] is
to treat the choice of algorithm as a new hyper-param-
eter at the root level and map this problem to the prob-
lem of searching for the optimal hyper-parameter values.
Sequential model-based optimization [8, 10, 58, 59], also
known as Bayesian optimization, is the state-of-the-art
method for conducting this search. It proceeds in rounds.
In each round, a new combination of hyper-parameter
values is selected for testing.

More specifically, the sequential model-based optimi-
zation method first builds a regression model to predict
a machine learning model’s accuracy based on hyper-
parameter values. Random forest is a commonly used
regression modeling approach [8] and has been shown
to outperform several other approaches for making this
prediction [60]. For any combination of hyper-param-
eter values, evaluating the regression model’s output is
cheaper than training the machine learning model and
evaluating its accuracy on the data set. When training the
regression model and using it to make predictions, inac-
tive conditional hyper-parameters are set to their default
values [8].

Next, the following three steps are iterated until a
pre-determined stopping criterion is satisfied: use the
regression model to identify a promising combination
of hyper-parameter values c to evaluate next; train a
machine learning model and evaluate its accuracy a on
the data set at c; and use the new data point (c, a) to
update the regression model. In practice, it is possible
for the regression model to be misdirected. To achieve
robust performance even if this situation occurs, every
second combination of hyper-parameter values to eval-
uate next is chosen at random. In this way, new areas of
the hyper-parameter space can be explored [8].

Observations and insights
Our automatic search method is designed based on the
following observations and insights.

Insight 1  It is time-consuming to test a combination of a
machine learning algorithm and hyper-parameter values
on the whole data set. It is much faster to test this com-
bination on a (relatively) small random sample of the data
set.

Insight 2  As shown in Fig. 5, for a specific combination
of a machine learning algorithm and hyper-parameter val-
ues, the model’s accuracy usually increases with a larger
training set. When the training set becomes large enough,
the model’s accuracy will stop increasing (much) [50]. A
random sample of the data set can be used to train the
model and estimate its accuracy. As long as the sample
is not too small, the estimate will give a rough idea of the
accuracy that can be achieved when (a large part of) the
whole data set is used to train the model.

Insight 3  Consider two machine learning algorithms.
As shown in Petrak [9], if one algorithm significantly out-
performs another in accuracy when a not-too-small, ran-
dom sample of the data set is used to train the model, the
former is also likely to outperform the latter in accuracy
when (a large part of) the whole data set is used to train
the model.

Insight 4  Consider a specific machine learning algo-
rithm and data set. To find out the highest accuracy the
algorithm can possibly achieve on the data set, it is insuf-
ficient to test only one combination of hyper-parameter
values. As shown in Bergstra and Bengio [61], random
search is an effective approach for searching the space of
all possible combinations of hyper-parameter values. We
can test a few random combinations and find the highest
accuracy they achieve on the data set. This accuracy will

Fig. 4  An example dependency graph formed by all hyper-parame-
ters of a machine learning algorithm

Fig. 5  Training set size vs. model’s accuracy

Page 8 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

give a rough idea of the highest accuracy the algorithm
can possibly achieve on the data set with optimal hyper-
parameter values.

Insight 5  The per data instance overhead of training
a model is usually much higher than that of testing the
model. In other words, training a model on a given num-
ber of data instances takes much longer than testing a
model on these data instances. Moreover, due to repeated
training, multi-fold cross validation is time-consuming to
perform. Consider a specific data set and combination of a
machine learning algorithm and hyper-parameter values.
For quickly obtaining a rough and relatively robust esti-
mate of the accuracy that the combination can achieve on
the data set, it would be good to train the model on one
sample of the data set and test the model on another dis-
joint, relatively large sample of the data set. This would be
more efficient than performing multi-fold cross validation
on the first sample of the data set [9].

Insight 6  In practice, there are often multiple good
combinations of machine learning algorithms and hyper-
parameter values, each of which can achieve accuracy
close to that of an absolutely optimal combination. Our
goal is not to find the absolutely optimal combination
and build the absolutely optimal model. Thus, an exhaus-
tive search of all possible combinations is unnecessary.
Instead, our goal is to find a good combination and build
a good model whose accuracy is close to that of an abso-
lutely optimal model in a reasonably short amount of time.
This is particularly important for performing fast iterative
analytics on big clinical data. For instance, knowing that
a good combination can achieve only a low level of accu-
racy can trigger consideration of feature engineering and/
or other alternatives. Then no time needs to be spent on
continuing searching for a much better combination that
is unlikely to exist. If time permits, further fine-tuning of
the best combination and/or model found so far can be
conducted in the background, like the way MLbase works
[7].

Insight 7  There are three types of machine learning algo-
rithms: base, meta, and ensemble [8]. A base algorithm
such as naive Bayes can be used independently. A meta
algorithm such as bagging takes a base algorithm together
with its hyper-parameter values as an input. An ensemble
algorithm such as voting takes several base algorithms as
input. If a base algorithm achieves low accuracy, a meta
or ensemble algorithm using it is unlikely to achieve high
accuracy, at least in comparison to one using a well-per-
forming base algorithm. In comparison, if a base algo-
rithm achieves reasonable accuracy, a meta or ensemble
algorithm using it may achieve high accuracy, regardless

of whether it is the best performing base algorithm. This
insight can be used to improve search efficiency.

Due to its inherent complexity, a meta or ensemble
algorithm is more expensive to test than a base algorithm
used by it. In the first few rounds of the search process,
we test base algorithms, but not meta or ensemble algo-
rithms, on relatively small samples of the data set. Unless
a base algorithm looks promising, we will not proceed
to test the meta or ensemble algorithms using it in later
rounds of the search process. In other words, poorly
performing base algorithms are eliminated in the first
few rounds. The subsequent rounds focus on testing the
remaining base algorithms that perform reasonably well,
as well as the meta and ensemble algorithms using them.
In this way, some unnecessary tests of meta or ensemble
algorithms are saved.

Insight 8  As mentioned in “ Review of the sequential
model-based optimization method“, in searching for the
optimal machine learning algorithm and hyper-parame-
ter values, the current approach [8, 13] treats the choice of
algorithm as a new hyper-parameter at the root level and
handles it in the same way as the other hyper-parameters,
which we call regular hyper-parameters. This approach is
suboptimal because the new hyper-parameter has differ-
ent properties than regular hyper-parameters.

The choice of machine learning algorithm tends to
affect the resulting model’s accuracy much more than
that of a regular hyper-parameter’s value. For a specific
machine learning problem and algorithm, usually only
a few hyper-parameters of the algorithm matter much,
while the others have little impact on the model’s accu-
racy [61]. Also, if a small change is made to a numeri-
cal hyper-parameter’s value, the model’s accuracy will
typically vary only slightly. In contrast, once the algo-
rithm changes, the model’s accuracy will often be greatly
altered.

The choice of machine learning algorithm affects the
relevance of many more hyper-parameters than a regu-
lar hyper-parameter. Once an algorithm is selected, most
hyper-parameters of the other algorithms, i.e., most reg-
ular hyper-parameters, become irrelevant. In contrast,
within the context of a specific algorithm, the value of
a regular hyper-parameter affects the relevance of few
other hyper-parameters or none at all.

By handling the choice of machine learning algorithm
and regular hyper-parameters in somewhat different
ways, the above two properties can be used to improve
search efficiency. For example, to guide the search
direction, a regression model is often built to predict
a machine learning model’s accuracy based on hyper-
parameter values [8, 10, 58, 59]. Instead of building a sin-
gle aggregate regression model for all hyper-parameters

Page 9 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

and algorithms, we can build a separate regression model
for each algorithm and its hyper-parameters. Due to sig-
nificantly reduced dimensionality, the regression mod-
els for individual algorithms can be made more accurate
than the aggregate one for all algorithms within the same
resource constraints. As another example, by eliminat-
ing unpromising algorithms in the first few rounds of the
search process, these algorithms’ hyper-parameters no
longer need to be considered further. Then in subsequent
rounds of the search process, we can focus on fine-tuning
the remaining promising algorithms’ hyper-parameter
values. The reduced search space makes it easier to find
good search results.

Insight 9  In the sequential model-based optimization
method, a regression model is used to select a new com-
bination of hyper-parameter values for testing in each
round. The new combination should be likely to achieve
high accuracy. The regression model is built using accu-
racy estimates for the combinations of hyper-parameter
values that have been tested previously.

The combinations of hyper-parameter values can be
classified into two types: the ones achieving high accu-
racy (high-performance) and the ones achieving low
accuracy (low-performance). As mentioned in Egg-
ensperger et al. [60], which new combination is selected
for testing in each round tends to be impacted mainly by
the accuracy estimates for the high-performance combi-
nations. The low-performance combinations are mainly
used to indicate low-performance regions in the search
space that should be avoided. Hence, it is more impor-
tant to obtain precise accuracy estimates for the high-
performance combinations than for the low-performance
ones. If a precise accuracy estimate is too expensive to
obtain for a low-performance combination, we can try to
quickly obtain a rough accuracy estimate for it. As long
as the rough accuracy estimate indicates that the com-
bination has low performance, it is often good enough
for selecting a good new combination for testing in each
round.

Details of the automatic search method  In the following,
we present the details of our automatic search method.
We proceed in multiple rounds and use progressive sam-
pling to quickly narrow down the search space. In each
round, we use an accuracy difference threshold τ and two
disjoint, random samples of the data set: one termed the
training sample and another termed the test sample. The
training sample is used to train models. The test sample is
used to evaluate each trained model’s accuracy. The accu-
racy reflects how promising the model’s corresponding
machine learning algorithm and hyper-parameter values
look by the current round.

The training and test samples
As shown in Fig. 3, the training sample expands from one
round to the next. An effective expansion method is to
increase the training sample size exponentially, e.g., dou-
ble the training sample size each round [50].

The initial training sample’s size needs to fulfill two
requirements. First, it should be large enough to give a
rough idea of the accuracy that can be achieved when (a
large part of) the whole data set is used to train a model.
Second, it should not be too large to make model train-
ing too slow. Otherwise, we cannot quickly eliminate
unpromising machine learning algorithms and identify
unpromising combinations of hyper-parameter values.

One approach fulfilling both requirements is to set the
initial training sample’s size to the maximum of the fol-
lowing two values: (1) a pre-determined constant such as
1000 and (2) the number of input variables (a.k.a. inde-
pendent variables) of the model multiplied by another
pre-determined constant, such as 10. By comparison,
existing work on using sampling to search for the optimal
machine learning algorithm typically uses a fixed sample
size as the starting point [9, 50–57]. In the presence of
many input variables, this fixed size may be too small,
leading to highly inaccurate estimates of the potential
of an algorithm and/or combination of hyper-parame-
ter values and to misguidance of the subsequent search
process.

The test sample remains the same over rounds, e.g.,
with a fixed size of 3000. The test sample needs to be
large enough to give a relatively robust estimate of the
model’s accuracy, but not necessarily more than that. In
fact, to avoid spending an excessive amount of time test-
ing models, the test sample should not be too large.

To efficiently and repeatedly generate random sam-
ples of the data set over rounds, the following approach
is used. A random number is appended as an additional
attribute to every data instance in the data set. All data
instances are sorted in ascending order of the attribute.
The attribute is removed during the last phase of sort-
ing, as it is no longer needed after that. Let ntraining and
ntest denote the training sample size and test sample size,
respectively. The first ntest data instances in the sorted
list form the test sample. The subsequent ntraining data
instances form the training sample.

The accuracy difference threshold
The accuracy difference threshold τ is used to eliminate
unpromising machine learning algorithms and identify
unpromising combinations of hyper-parameter values.
Initially, when the training sample is relatively small, we
are not quite sure of the potential of an algorithm and/or
combination of hyper-parameter values. The potential is
reflected by the accuracy achieved when (a large part of)

Page 10 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

the whole data set is used to train the model. To reduce
the likelihood of incorrectly eliminating unpromising
algorithms and identifying unpromising combinations
of hyper-parameter values, τ should be reasonably large,
such as 0.4. As the training sample expands over rounds,
we will have an increasingly better idea of the potential
of an algorithm and/or combination of hyper-parame-
ter values. To use this property to expedite the process
of narrowing down the search space, τ is decreased over
rounds. One approach is to perform linear decrease, such
as by 0.07 per round, until τ reaches a pre-determined
minimum value, such as 0.05.

Using one accuracy difference threshold per round is
one possible approach. Another possible approach is to
use two accuracy difference thresholds per round, one for
eliminating unpromising machine learning algorithms
and another for identifying unpromising combinations
of hyper-parameter values. The rationale for the second
approach is that the accuracy difference across different
algorithms may be larger than that across different com-
binations of hyper-parameter values for the same algo-
rithm. Accordingly, the accuracy difference threshold for
eliminating unpromising machine learning algorithms
may be larger than that for identifying unpromising
combinations of hyper-parameter values. It remains to
be seen whether the first approach suffices, or the sec-
ond approach is needed for quickly narrowing down the
search space.

The iterative search process
The search process is done in multiple rounds. We grad-
ually shrink the search space by eliminating unprom-
ising machine learning algorithms and identifying
unpromising combinations of hyper-parameter values
over rounds. Once an algorithm is eliminated, it will
no longer be used by itself in any subsequent round of
the search process. In contrast, once a combination of
hyper-parameter values is identified as unpromising,
it will no longer be used to train the machine learning
model in any subsequent round of the search process.
Nevertheless, it will still be used to build regression
models, which predict a machine learning model’s accu-
racy based on hyper-parameter values and are used to
guide the search direction.

The first round  In the first round, we start from a rela-
tively small training sample. The goal is to quickly eliminate
machine learning algorithms that obviously look unprom-
ising. We test every applicable algorithm. As mentioned
in Smith-Miles [62], for support vector machine, using a
different type of kernel essentially changes the algorithm.
Hence, the use of each type of kernel would be regarded as
a separate algorithm [13].

For each machine learning algorithm, we test both the
combination of its default hyper-parameter values and a
pre-determined number (e.g., 10) of random combina-
tions of hyper-parameter values, if any. The combination
of default hyper-parameter values, such as that in Weka
[5], was usually preselected by machine learning experts
to be one that performs well on various machine learn-
ing problems on average. It is a reasonably good starting
point of the search process. Using it can help quickly find
promising regions in the search space [49].

Consider a specific machine learning algorithm. For
each combination of hyper-parameter values chosen for
testing, we use the algorithm, hyper-parameter values,
and training sample to train a model and estimate the
model’s accuracy on the test sample. The estimated accu-
racy reflects, within the algorithm’s context, how prom-
ising the combination of hyper-parameter values looks
by the current round. The combinations outperformed
by the best one by a margin ≥τ in accuracy are regarded
as unpromising, as none of the former is likely to out-
perform the latter in accuracy when (a large part of) the
whole data set is used to train the model. Recall that τ is
the accuracy difference threshold.

Across all combinations of hyper-parameter values that
have been tested so far for a machine learning algorithm,
the highest accuracy achieved on the test sample reflects
how promising the algorithm looks by the current round.
For a reason similar to the one mentioned above, we
regard the algorithms outperformed by the best one by
a margin ≥τ in accuracy as unpromising and eliminate
them.

A subsequent round that is not the final one  In every
subsequent round except for the final one, the machine
learning algorithms remaining from the previous round
and combinations of hyper-parameter values that look
promising in the previous round serve as the basis of a
reduced search space. We expand the training sample,
decrease the accuracy difference threshold τ, and perform
further filtering and fine-tuning of algorithms and com-
binations of hyper-parameter values. We use the training
sample to obtain a more precise estimate of the potential
of each pair of a remaining algorithm and a combination
of hyper-parameter values that looks promising in the
previous round. We also test new combinations of hyper-
parameter values for the remaining algorithms.

More specifically, the following three steps are per-
formed. In the first step, for each pair of a remaining
machine learning algorithm and a combination of hyper-
parameter values that looks promising in the previous
round, we use the algorithm, hyper-parameter values,
and training sample to train a model and estimate the
model’s accuracy on the test sample. Compared to the

Page 11 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

accuracy estimate E1 obtained for the pair in the previous
round, this accuracy estimate E2 is a more precise esti-
mate of the potential of the algorithm and combination
of hyper-parameter values. As a result of expansion of
the training sample, we usually have E2 ≥ E1. The accu-
racy ratio r = E2/E1 reflects the degree of increase in
accuracy.

In the second step, we select and test new combina-
tions of hyper-parameter values, if any, for the remain-
ing machine learning algorithms. Exploration of new
areas of the search space is performed using the sequen-
tial model-based optimization method [8]. As reviewed
in “Review of the sequential model-based optimization
method“, this method first builds a regression model to
predict a machine learning model’s accuracy based on
hyper-parameter values, and then uses the regression
model to select new combinations of hyper-parameter
values for testing.

Traditionally, sequential model-based optimization [8,
10, 58, 59] was performed using a fixed training set. In
our case, the training sample expands over rounds, affect-
ing the machine learning model’s accuracy. We modify
the sequential model-based optimization method used in
Auto-WEKA [8, 58] to consider this factor. Auto-WEKA
uses random forest as the regression model.

For each remaining machine learning algorithm, a sep-
arate regression model is built on its hyper-parameters,
as explained in “Insight 8”. As the accuracy difference
threshold τ is reduced, the number of still promising
combinations of hyper-parameter values for the algo-
rithm tends to decrease over rounds. If the regression
model is built using only the still promising combinations
of hyper-parameter values, it will have low prediction
accuracy due to insufficient training data and misdirect
the subsequent search process.

To address this issue, the regression model is built
using all combinations of hyper-parameter values that
have been tested for the machine learning algorithm
so far. For a combination of hyper-parameter values
cu that has been regarded as unpromising by the previ-
ous round, we do not have an accuracy estimate E2 for
it from the current training sample, because obtaining
this estimate is expensive and not worthwhile. Neverthe-
less, we do have an accuracy estimate E1 for cu from the
previous round. For all combinations of hyper-parameter
values of the algorithm that look promising in the previ-
ous round, their average accuracy ratio avg_r reflects the
average degree of increase in accuracy due to expansion
of the training sample. We multiply E1 by avg_r to obtain
a rough accuracy estimate for cu for the current round.
As explained in “Insight 9”, this rough accuracy estimate
is imprecise, but often good enough for selecting good
new combinations of hyper-parameter values for testing.

Once the regression model is built for the machine
learning algorithm, the following three steps are repeated
for a pre-determined number of times (e.g., 8): use the
regression model to identify a promising combination of
hyper-parameter values c to evaluate next; use the train-
ing sample to train a machine learning model and eval-
uate its accuracy a on the test sample at c; and use the
new data point (c, a) to update the regression model. To
explore new areas of the hyper-parameter space, every
second combination of hyper-parameter values to evalu-
ate next is chosen at random.

In the third step, we proceed in a way similar to that
in the first round of the search process to eliminate
unpromising machine learning algorithms and identify
unpromising combinations of hyper-parameter values.

Iterations of the search process  We repeat the above pro-
cess for a pre-determined number of rounds (e.g., 5) until
the accuracy difference threshold τ reaches a pre-deter-
mined minimum value, such as 0.05. As the training sam-
ple expands, the number of promising machine learning
algorithms and the total number of promising combina-
tions of hyper-parameter values tend to decrease. That is,
the search space shrinks. After τ reaches the pre-deter-
mined minimum value, each pair of a remaining promis-
ing algorithm and a combination of hyper-parameter val-
ues has similar potential. The pair achieving the highest
accuracy is the best one found.

The final round  In the final round, we use the whole
data set and best combination of the machine learning
algorithm and hyper-parameter values found to train and
evaluate a model. This model is the final one returned by
our automatic search method. Alternatively, we can pro-
gressively expand the training sample, use the best combi-
nation and training sample to train a model, and evaluate
its accuracy on the test sample for one or more times. We
stop once we have enough confidence in convergence [50],
i.e., the accuracy achieved by the best combination no
longer improves (much) as the training sample expands.
Early stopping expedites the search process.

Additional details on handling different types of machine
learning algorithms  As mentioned in “Insight 7”, in the
first few (e.g., 4) pre-determined rounds of the search pro-
cess, we test base algorithms, but not meta or ensemble
algorithms. In later rounds, we test the remaining base
algorithms as well as meta and ensemble algorithms using
them. In each such round, base algorithms are tested
before meta and ensemble algorithms.

All hyper-parameters of a meta or ensemble algo-
rithm using one or more base algorithms can be classi-
fied into three types: the ones specifying the selections

Page 12 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

of base algorithms, the ones controlling the process of
combining base algorithms, and the base algorithms’
hyper-parameters. In conducting sequential model-
based optimization for the meta or ensemble algorithm,
a regression model is built on the first two types of hyper-
parameters. When testing the meta or ensemble algo-
rithm, the hyper-parameters of the third type are set to
the best values found for the base algorithms so far. In
the first round of the search process encountering the
meta or ensemble algorithm, for the first two types of
hyper-parameters, we test both the combination of the
algorithm’s default hyper-parameter values and a pre-
determined number (e.g., 10) of random combinations of
hyper-parameter values, if any. Starting from this round,
if a base algorithm is eliminated, it will no longer be used
by itself in any subsequent round of the search process.
Nevertheless, it can still be used by a meta or ensemble
algorithm in future rounds.

Evaluation plan
MLBCD is a large software system. It will take us sev-
eral years to fully implement MLBCD. In this section, we
present our evaluation plan for MLBCD. Our evaluation
will use a test case and be completed in three stages. Dur-
ing the process of building MLBCD, we will assess user
needs, preferences, and requirements (Stage 1). After
MLBCD is built, we will evaluate its usability among
healthcare researchers (Stage 2), then its utility among
both healthcare researchers and computer scientists
(Stage 3).

Demonstration test case: overview
MLBCD will be useful for any disease. As a demonstra-
tion test case, we will use MLBCD to build new models
to accurately predict asthma diagnoses in children with
clinically significant bronchiolitis. Both bronchiolitis and
asthma are lung diseases caused by airway inflammation.
Of pediatric chronic diseases, asthma is the most com-
mon [63, 64]. Asthma affects 7.1 million children (9.6 %)
in the US [65, 66], incurring an annual total direct health-
care cost of about 9.3 billion dollars [63]. Asthma is the
most frequent reason for preventable pediatric hospitali-
zation [67] and school absenteeism due to chronic con-
ditions [68]. Bronchiolitis, a disease mostly of children
under age two, is highly associated with asthma. Clini-
cally significant bronchiolitis during infancy, defined as
bronchiolitis incurring an outpatient clinic visit, emer-
gency department visit, and/or hospitalization, precedes
31 % of cases of asthma between ages 4 and 5.5 [69].
More than 1/3 of children by age two have experienced
clinically significant bronchiolitis [70], with 14–40 %
eventually diagnosed with asthma [71, 72]. Clinically sig-
nificant bronchiolitis increases a child’s risk of asthma

2-10 times [69, 71, 73–79]. Thus, accuracy for predicting
asthma diagnoses will be higher on children with clini-
cally significant bronchiolitis than on all children [80, 81].

In 18–75 % of asthmatic children, asthma is under-
diagnosed [82–86]. Also, clinicians experience difficulty
diagnosing asthma in young children [87–89]. Predictive
models for asthma diagnoses can assist clinicians to make
timely asthma diagnoses and start asthma treatment ear-
lier [90], as well as help study efficacy of preventive inter-
ventions for asthma in randomized clinical trials [91, 92].
At present, >20 models for predicting asthma diagnoses
in children exist, but none was accurate or built specifi-
cally for children with clinically significant bronchiolitis
[80].

Stage 1: Assess user needs, preferences, and requirements
To create an effective and usable user interface during
the process of building MLBCD, we will conduct itera-
tive focus group sessions with 6–8 healthcare research-
ers to assess user needs, preferences, and requirements
and develop and refine “mock” prototypes until no new
needs are observed. We expect 2–4 iterations to reach
saturation.

Subject recruitment  Through personal contact and
announcement in our institute’s email lists, volunteer
healthcare researchers will be recruited from the Univer-
sity of Utah Health Sciences Center. We will recruit 6–8
healthcare researchers with limited computing expertise
and obtain informed consent before the focus groups. 6–8
participants are often considered an ideal size of a focus
group [93]. Purposeful sampling will be used to maximize
variation to adequately capture differences in user per-
spectives [94, 95]. Participants will receive pseudonyms
used to link their responses to questions to protect pri-
vacy. If any healthcare researcher drops out during the
study, we will recruit another one for replacement.

Data collection  Each focus group session will be held
in a meeting room at the University of Utah Health Sci-
ences Center and last around 1 hour. Information will
be solicited through a combination of semi-structured
and open-ended questions on user needs, preferences,
and requirements for MLBCD’s interface. We will take
notes and record the sessions as digital audio files using
a laptop equipped with a microphone and the Morae@
usability software [96]. Use of the equipment will be
clearly disclosed. In the first session, we will present
the background on developing MLBCD, the purpose of
the focus group, and the test case described in “Stage 2:
Evaluate MLBCD’s usability among healthcare research-
ers”. The healthcare researchers can opt to replace the
test case with any case familiar to them and will provide

Page 13 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

comments on how MLBCD’s interface should look. After
the session, we will create interface mock-ups of MLBCD
on paper. In each subsequent session, the healthcare
researchers will be provided with the latest version of
the mock-ups and asked to: (1) answer targeted ques-
tions regarding their interpretations of icons, messages,
labels, and other symbols; (2) explain how they will use
MLBCD to perform analytics for the test case; (3) pro-
vide comments on how the mock-ups should be modi-
fied. After each session, the focus group data will be ana-
lyzed using standard methods [97–100]. The digital audio
recordings and session notes will be examined. Findings
will be flagged and annotated using the Morae@ usability
software and coded in a way similar to that described in
“User feedback”. Then adjustments will be made to the
mock-ups. The iterative process will continue until no
new changes are identified.

We will develop a detailed user manual for MLBCD.
After MLBCD is built, we will evaluate its usability and
utility.

Stage 2: Evaluate MLBCD’s usability among healthcare
researchers
Following iterative prototyping recommended by usabil-
ity experts [101, 102], we will evaluate MLBCD’s usa-
bility among healthcare researchers in two rounds. In
the first round, we will identify initial issues and refine
MLBCD. In the second round, we will identify remaining
issues and finalize MLBCD. MLBCD will apply to all dis-
eases. As a test case, each healthcare researcher will use
MLBCD to build new models to predict asthma diagno-
ses in children with clinically significant bronchiolitis.

Subject recruitment  Using the same method described
in “Stage 1: Assess user needs, preferences, and require-
ments”, we will recruit two rounds of five healthcare
researchers who are not involved in the Stage 1 study,
have limited computing expertise, and are familiar with
pediatric asthma and bronchiolitis. Five users are usu-
ally enough to find most usability issues [103]. Purposeful
sampling will be used to ensure adequate variability. All
test participants will be current on information security
and privacy policy training approved by the University of
Utah. After providing consent, each will be given a copy of
MLBCD’s user manual and a metadata document detail-
ing tables and columns containing attributes to be used
for the evaluation study. The work will be done non-con-
tinuously, as it takes time, e.g., to extract clinical param-
eters.

Demonstration test case: details  We will use the same
patient population, data set, and computing environment
for both the Stage 2 and Stage 3 studies:

1.	 Patient population Our study cohort includes chil-
dren who had healthcare visits (outpatient clinic visit,
emergency department visit, and hospitalization) at
Intermountain Healthcare facilities for bronchiolitis
(ICD-9-CM discharge diagnosis code 466.1 [104]  )
before age two in the past 18 years, about 97,000
unique patients. Intermountain Healthcare is the
largest healthcare system in Utah, with 22 hospitals
and 185 clinics.

2.	 Data set We will use a large clinical and administra-
tive data set in the Intermountain Healthcare enter-
prise data warehouse. Secondary analysis will be per-
formed on a de-identified version of the data stored
on a password-protected and encrypted computer
cluster. The data set includes ~400 attributes and rep-
resents electronic documentation of ~85 % of pediat-
ric care delivered in Utah [105]. For the last 18 years,
data captured cover more than 3000 patients under
age two and 3700 healthcare visits at Intermountain
Healthcare facilities for bronchiolitis per year. Inter-
mountain Healthcare dedicates extensive resources
to ensure data integrity and accuracy.

3.	 Computing environment All experiments will be con-
ducted on the HIPAA-compliant Homer computer
cluster at the University of Utah [106]. With proper
authorization, all research team members and test
participants at the University of Utah can use their
university computers to access this cluster. Our anal-
ysis results will provide a cornerstone to expand test-
ing of MLBCD on other test cases and clinical data
sets in the future.

Information about the predictive models  Clinical and
administrative attributes will be used to build machine
learning models.

Defining the prediction target (i.e., the dependent vari-
able): The method described in Schatz et al. [107–109]
will be used to identify asthma. A patient is considered to
have asthma if he/she has (1) at least one ICD-9 diagnosis
code of asthma (493.xx) or (2) ≥2 “asthma-related medi-
cation dispensings (excluding oral steroids) in a 1-year
period,” “including β-agonists (excluding oral terbutaline),
inhaled steroids, other inhaled anti-inflammatory drugs,
and oral leukotriene modifiers” [107]. Identifying asthma
needs medication order and refill information. Our data
set includes this information, as Intermountain Health-
care has its own health insurance plan (SelectHealth). If
the Intermountain Healthcare enterprise data warehouse
is missing too much refill information, we will use claim
data in the all-payer claims database [110] to compensate.

A child who will ever develop asthma can benefit from
timely asthma diagnosis and preventive interventions for
asthma [111]. Hence, our prediction target will be ever

Page 14 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

developing asthma by a certain age. No consensus exists
on the optimal cut-off age [112]. To help select an appro-
priate cut-off age, we will plot the cumulative rate of ever
developing asthma vs. age [113–115]. The age at which
the cumulative rate starts to level off can be an appropri-
ate cut-off point, as it ensures including most children
who will ever develop asthma.

Let C denote the selected cut-off age. For a healthcare
visit for bronchiolitis that occurred in year 1, data from
year 1 up to year C + 1 are needed for computing the
dependent variable’s value. Hence, given our 18 years of
data on pediatric patient encounters, we can use the first
18-C years of data on healthcare visits for bronchiolitis
and ensure that all values of the dependent variable are
computable. That is, we have 18-C years of effective data.
If the cumulative rate of ever developing asthma does
not level off, we will choose C = 14 to ensure that at least
four years of effective data are available.

Performance evaluation We will use the first 16-C
years’ effective data to train predictive models. The (17-
C)-th and (18-C)-th years’ effective data will be used as
the test data to obtain a model’s final accuracy estimate,
reflecting use in practice. If a child incurred healthcare
visits for bronchiolitis in both the training and test data,
we will remove the child from the test data, as correct
prediction can be made by memorizing the child’s out-
come. For a similar reason, if standard, stratified tenfold
cross validation [5, Section 5.3] needs to be conducted
during model training, the training data will be split into
ten partitions based on patient IDs so that all healthcare
visits for bronchiolitis of the same patient will be put into
the same partition.

Data pre-processing We will use standard techniques,
such as imputation, to handle missing values and detect
and correct/remove invalid values [1, 36]. For clinical
and administrative attributes, we will use grouper mod-
els such as the Diagnostic Cost Groups (DCG) system to
group procedures, diseases, and drugs and reduce attrib-
utes [116, Chapter 5].

Input variables Predictors of asthma diagnoses in bron-
chiolitis patients have not been fully identified. In our
recent papers [80, 117], we compiled an extensive list of
known predictors of asthma diagnoses in bronchiolitis
patients. All known predictors stored in the Intermoun-
tain Healthcare enterprise data warehouse will be used as
input variables. In addition, our data set contains attrib-
utes beyond the known predictors.

Predictive models As one predictive model does not fit
all [118], separate predictive models will be developed for
children presenting with bronchiolitis at <6, 6–12, and
13–24 months of age [119]. The final model will be the
combination of all models. We will use the standard per-
formance metric of the AUC [5].

User feedback  In either round after model building is
completed, we will survey the five healthcare research-
ers using a combination of semi-structured and open-
ended questions. We will gather quantitative outcome
measures including prediction accuracy, time on task,
satisfaction, self-efficacy for building machine learning
predictive models with big clinical data, adequacy, trust-
worthiness, and documentation quality as described in
Table 1. The questionnaire will include a text field for
user comments on MLBCD, if any. We will incorporate

Table 1  Description of the dependent variables

Variable Description

Prediction accuracy AUC achieved by the predictive model built

Time Number of hours spent on building the predictive model

Satisfaction Responses to three questions: (1) How satisfied were you with the
predictive model built? (2) How easy was the predictive model building
process? and (3) How much effort did it take to complete the predictive
modeling task? Ratings are on a 1–7 scale with anchors of not at all/
completely; difficult/easy; and a lot of effort/little effort

Self-efficacy for building machine learning predictive
models with big clinical data

Response to the question: overall how confident are you about your ability
to build machine learning predictive models with big clinical data [129]?
Rating is on a 1–5 scale with anchors of not at all/completely confident

Adequacy How sufficiently do you think MLBCD supports building machine learning
predictive models with big clinical data? Rating is on a 1–7 scale with
anchors of not at all/sufficiently

Trustworthiness How much sense do you think the predictive models make clinically? Rat-
ing is on a 1–7 scale with anchors of not at all/completely.

Documentation quality Responses to two questions: (1) How comprehensive is MLBCD’s user man-
ual? (2) How easy is MLBCD’s user manual to understand? Ratings are on
a 1–7 scale with anchors of not at all/comprehensive; and difficult/easy

Page 15 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

suggestions from these comments and refine/finalize
MLBCD.

A formal user satisfaction survey will be conducted
using the System Usability Scale (SUS), a publicly avail-
able 10-item scale [120, 121]. The scale provides an over-
all satisfaction rating for products. Higher scores indicate
more positive usability perceptions [122]. The SUS is a
widely used industry standard. A meta-analysis [123]
endorsed the SUS above other instruments, as it applies
to various products, is easy to use, and has a score that
is easy to interpret. The scale has acceptable psychomet-
rics. The internal consistency reliability ratings using
Cronbach’s alpha ranged from 0.85 to 0.91 [123]. Factor
analysis revealed one factor: usability [123]. The scale
correlates well with other usability questionnaires for
adequate concurrent validity [122].

Analysis We will conduct a qualitative analysis using
the accepted inductive approach recommended by Pat-
ton et al. [94, 124]. Textual comments provided by the
five healthcare researchers will be loaded into ATLAS
qualitative analysis software [125]. We will highlight quo-
tations and text relevant to the issue of using MLBCD.
Quotations will be reviewed, categorized into pre-
codes, and aggregated into categories after several itera-
tions. General themes will be identified by synthesis of
categories.

Quantitative analyses will consist of summing the
scores on the SUS and reporting descriptive statistics on
each quantitative outcome measure.

Stage 3: Test MLBCD’s utility
Using the same test case in “Stage 2: Evaluate MLBCD’s
usability among healthcare researchers”, we will evaluate
MLBCD’s utility in two parts. Part 1 compares healthcare
researchers with MLBCD to computer scientists without
MLBCD representing the state of the art of model build-
ing. Part 2 compares computer scientists with and with-
out MLBCD.

Subject recruitment  We will recruit volunteer health-
care researchers using the same method described in
“Stage 1: Assess user needs, preferences, and require-
ments”. Through personal contact and announcement
in our institute’s email lists and course lectures, volun-
teer computer scientists among graduate students, staff,
and faculty with machine learning background will be
recruited at the University of Utah. All test participants
will be current on information security and privacy policy
training approved by the University of Utah.

In part 1, we will recruit 25 healthcare researchers
who are involved in neither the Stage 1 nor the Stage
2 study, have limited computing expertise, and are
familiar with pediatric asthma and bronchiolitis. After

providing consent, each will be given a copy of MLBCD’s
user manual and the metadata document (see “Subject
recruitment”). In addition, we will recruit 25 computer
scientists. After providing consent, each will be given a
copy of the metadata document. They will manually tune
machine learning models and spend more time on the
study than the other test participants.

In part 2, we will recruit 25 computer scientists not
involved in part 1. After providing consent, each will be
given a copy of MLBCD’s user manual and the meta-
data document. The metadata document describes each
attribute in the data set in detail. If any computer scien-
tist needs clinical input such as explaining clinical con-
cepts during the study, we will arrange a clinician to
provide consultation.

Build predictive models  In part 1, each of the 25
healthcare researchers will build predictive models with
MLBCD. Each of the 25 computer scientists will build
models without MLBCD. In part 2, each of the 25 com-
puter scientists will build models with MLBCD. Finally,
we will select from all of these models the one achieving
the highest AUC, use MLBCD to refine it if possible, and
determine our final model.

Model comparison and sample size justification In part
1, we will compare the AUCs achieved by the 25 health-
care researchers with MLBCD to those achieved by the
25 computer scientists without MLBCD. We will use two
one-sided equivalence tests [126] to test our primary
hypothesis that healthcare researchers can use MLBCD
to achieve similar prediction accuracy as computer sci-
entists without MLBCD. Here as an approximation, we
treat AUCs from different test participants as independ-
ent measures by regarding participants as a random sam-
ple from the population. A sample size of 25 instances
per group will achieve 80 % power at a significance level
of 0.05 when the true standardized difference of AUC
between the two groups is 1.29 and the equivalence limits
of the standardized difference are −2 and 2. We would
regard the Stage 3 study successful if the non-equivalence
hypothesis is rejected.

In part 2, we will compare the AUCs achieved by the 25
computer scientists without MLBCD to those achieved
by the other 25 computer scientists with MLBCD. We
will use a one-sided independent-sample t test to test
the secondary hypothesis that computer scientists with
MLBCD can achieve higher prediction accuracy than
those without MLBCD. A sample size of 25 instances per
group will have 80 % power at a significance level of 0.05
to detect a standardized difference of AUC between the
two groups of 0.7.

We will record and describe the number of hours each
test participant spent building the predictive model.

Page 16 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

If our models cannot achieve high prediction accu-
racy, we will develop separate models for different sub-
groups of bronchiolitis patients defined by characteristics
such as prematurity, co-morbidity, or type of healthcare
visit for bronchiolitis. If both healthcare researchers and
computer scientists still achieve low prediction accu-
racy, e.g., because asthma diagnoses are not predictable,
we cannot tell whether MLBCD is effective. In this case,
we will choose another test case, where it is known that
some machine learning algorithm can achieve high pre-
diction accuracy and statistical methods cannot. Statisti-
cal methods are known to perform poorly for predicting
asthma diagnoses in children [80].

Ethics approval
We have already obtained institutional review board
approvals from the University of Utah and Intermountain
Healthcare for the study on evaluating MLBCD.

Preliminary user study
In preparation for the formal evaluation of MLBCD, we
conducted a preliminary user study to assess user needs.
We recruited two volunteer healthcare researchers with
limited computing expertise from the University of Utah
Health Sciences Center. Both of them were given a meta-
data document detailing tables and columns containing
attributes to be used for the evaluation study. We first
asked the two healthcare researchers to imagine build-
ing machine learning predictive models for the test case
described in “Stage 2: Evaluate MLBCD’s usability among
healthcare researchers” using existing software such as an
Oracle database and Weka [5]. Both of them mentioned
that without asking for help from computing profession-
als, they did not know how to transform big EAV data into
relational table formats, such as performing pivot opera-
tions by writing complex SQL queries. One of them knew
how to perform pivot operations in Excel, which works for
only small data sets. Neither of them knew how to choose

an appropriate machine learning algorithm and hyper-
parameter values. In fact, one of them had never heard
of hyper-parameters before and did not know that hyper-
parameter values could be chosen in machine learning
software such as Weka. Next, we described to the two
healthcare researchers at a high level how MLBCD will
work and showed them an early-stage prototype graphical
user interface for a basic pivot function: pivoting on a sin-
gle EAV table to generate a relational table. Both of them
mentioned that a software tool like MLBCD would be very
useful to them and greatly reduce the barriers for them to
build machine learning predictive models by themselves.
Also, the prototype graphical user interface for the basic
pivot function is intuitive for them to understand. Find-
ings from the preliminary user study confirmed the need
for a user-friendly software tool and supported conduct-
ing a formal evaluation described in “Stage 1: Assess user
needs, preferences, and requirements”.

Related work
As described in our review paper [12], computer science
researchers have developed multiple automatic selec-
tion methods for machine learning algorithms and/or
hyper-parameter values. Most of these methods focus
on either searching for an effective algorithm or search-
ing for an effective combination of hyper-parameter val-
ues. Only a few methods can select both algorithms and
hyper-parameter values simultaneously. None of these
methods can efficiently handle big clinical data in the
presence of a large variety of algorithms, limiting these
methods’ usefulness in practice. The automatic selection
method described in this paper addresses the limitations
of these methods. Table 2 shows a summary of the com-
parison between the automatic selection method used in
MLBCD and existing automatic selection methods for
machine learning algorithms and/or hyper-parameter
values. A detailed review of existing methods is provided
in our paper [12].

Table 2  MLBCD vs. existing automatic selection methods for machine learning algorithms and/or hyper-parameter val-
ues

Method Select algorithms Select hyper-parameter
values

Can efficiently
handle big data

Can handle a wide range
of algorithms

Can handle various
types of hyper-
parameters

MLBCD ✓ ✓ ✓ ✓ ✓
[130] ✓ × × × ×
[57, 131] ✓ × × ✓ ×
[9, 51, 54, 55, 132] ✓ × ✓ ✓ ×
[58, 61] × ✓ × × ✓
[10, 59, 133–138] × ✓ × × ×
[7, 8, 13, 14] ✓ ✓ × ✓ ✓

Page 17 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

Google provides the Google Prediction API [127]
that has some degree of automation for machine learn-
ing problems. The API’s internal workings have never
been published. Also, the API puts a limit of ≤2.5 GB
on the training data size. Amazon provides a ser-
vice for machine learning: Amazon Machine Learn-
ing [128]. This service uses only two machine learning
algorithms: logistic regression and linear regression.
For many predictive modeling problems, other algo-
rithms significantly outperform these two algorithms.
Due to privacy concerns, many healthcare systems
allow researchers to use their clinical data only behind
the firewall. Consequently, machine learning services
hosted by external companies become essentially inac-
cessible to researchers in these healthcare systems. In
comparison, MLBCD can be installed on computers
behind the firewall and are accessible to researchers in
any healthcare system.

Conclusions
We describe the design of MLBCD, a new software sys-
tem aiming to enable healthcare researchers with limited
computing expertise to develop machine learning predic-
tive models. MLBCD supports the whole process of itera-
tive machine learning on big clinical data, from clinical
parameter extraction to model building and evaluation.
MLBCD will open the use of big clinical data to many
healthcare researchers and increase the ability to foster
biomedical discovery and improve care. We are currently
in the process of building MLBCD.

Abbreviations
AUC: area under the receiver operating characteristic curve; CSV: comma-
separated values; EAV: Entity–Attribute–Value; EMR: electronic medical
record; i2b2: Informatics for Integrating Biology and the Bedside; JDBC: Java
Database Connectivity; MLBCD: machine learning for big clinical data; OMOP:
observational medical outcomes partnership; PCORnet: the National Patient-
Centered Clinical Research Network; ROC: receiver operating characteristic;
SQL: structured query language.

Acknowledgements
We thank Xiaoming Sheng, Michael D. Johnson, Flory L. Nkoy, Bryan L. Stone,
Charlene R. Weir, Katherine Sward, Maureen A. Murtaugh, David E. Jones, and
Philip J. Brewster for helpful discussions.

Compliance with ethical guidelines

Competing interests
The author declares that he has no competing interests.

Received: 27 April 2015 Accepted: 22 September 2015

References
	 1.	 Steyerberg EW. Clinical prediction models: a practical approach to

development, validation, and updating. New York: Springer; 2009.

	 2.	 Kuhn M, Johnson K. Applied predictive modeling. New York: Springer;
2013.

	 3.	 Axelrod RC, Vogel D. Predictive modeling in health plans. Dis Manag
Health Outcomes. 2003;11(12):779–87.

	 4.	 Asadi H, Dowling R, Yan B, Mitchell P. Machine learning for outcome
prediction of acute ischemic stroke post intra-arterial therapy. PLoS
One. 2014;9(2):e88225.

	 5.	 Witten IH, Frank E, Hall MA. Data mining: practical machine learning
tools and techniques. 3rd ed. Burlington: Morgan Kaufmann; 2011.

	 6.	 Jovic A, Brkic K, Bogunovic N. An overview of free software tools for
general data mining. In: Proceedings of MIPRO; 2014. p. 1112–7.

	 7.	 Kraska T, Talwalkar A, Duchi JC, Griffith R, Franklin MJ, Jordan MI.
MLbase: a distributed machine-learning system. CIDR: Proc; 2013.

	 8.	 Thornton C, Hutter F, Hoos HH, Leyton-Brown K. Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms.
In: Proceedings of KDD; 2013. p. 847–55.

	 9.	 Petrak J. Fast subsampling performance estimates for classification
algorithm selection. In: Proceedings in ECML Workshop on Meta-
Learning: Building Automatic Advice Strategies for Model Selection and
Method Combination; 2000. pp 3–14.

	 10.	 Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of
machine learning algorithms. In: Proceedings of NIPS; 2012. p. 2960–8.

	 11.	 Nickson T, Osborne MA, Reece S, Roberts SJ. Automated machine learn-
ing on big data using stochastic algorithm tuning. 2014. Available at
http://arxiv.org/abs/1407.7969.

	 12.	 Luo G. A review of automatic selection methods for machine learning
algorithms and hyper-parameter values. 2015. Available at http://pages.
cs.wisc.edu/~gangluo/automatic_selection_review.pdf.

	 13.	 Komer B, Bergstra J, Eliasmith C. Hyperopt-sklearn: automatic hyperpa-
rameter configuration for scikit-learn. In: Proceedings of SciPy; 2014. p.
33–9.

	 14.	 Sparks ER, Talwalkar A, Franklin MJ, Jordan MI, Kraska T. TuPAQ: an effi-
cient planner for large-scale predictive analytic queries. 2015. Available
at http://arxiv.org/abs/1502.00068.

	 15.	 Dinu V, Nadkarni PM. Guidelines for the effective use of entity-
attribute-value modeling for biomedical databases. I J Med Inform.
2007;76(11–12):769–79.

	 16.	 Cerner’s electronic medical record homepage. 2015. https://
www.cerner.com/solutions/Hospitals_and_Health_Systems/
Electronic_Medical_Record/.

	 17.	 McDonald CJ, Blevins L, Tierney WM, Martin DK. The Regenstrief medi-
cal records. MD Comput. 1988;5(5):34–47.

	 18.	 Warner HR, Olmsted CM, Rutherford BD. HELP—a program for medical
decision-making. Comput Biomed Res. 1972;5(1):65–74.

	 19.	 Stead WW, Hammond WE, Straube MJ. A chartless record—Is it
adequate? In: Proceedings of Annual Symposium on Computer Applic-
tion Medical Care; 1982. p. 89–94.

	 20.	 Friedman C, Hripcsak G, Johnson SB, Cimino JJ, Clayton PD. A general-
ized relational schema for an integrated clinical patient database. In:
Proceedings of Annual Symposium Computer Appliction in Medical
Care; 1990. p. 335–9.

	 21.	 Oracle Clinical homepage. 2015. http://www.oracle.com/us/products/
applications/health-sciences/e-clinical/clinical/index.html.

	 22.	 Oracle Health Sciences Clintrial homepage. 2015. http://www.oracle.
com/us/industries/life-sciences/health-sciences-clintrial-363570.html.

	 23.	 Brandt CA, Nadkarni P, Marenco L, Karras BT, Lu C, Schacter L, et al.
Reengineering a database for clinical trials management: lessons for
system architects. Control Clin Trials. 2000;21(5):440–61.

	 24.	 CohortExplorer. 2015. https://metacpan.org/pod/CohortExplorer.
	 25.	 Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research

electronic data capture (REDCap)—a metadata-driven methodology
and workflow process for providing translational research informatics
support. J Biomed Inform. 2009;42(2):377–81.

	 26.	 Eccher C, Piras EM, Stenico M. TreC—a REST-based regional PHR. Stud
Health Technol Inform. 2011;169:108–12.

	 27.	 Nadkarni PM. Metadata-driven software systems in biomedicine:
designing systems that can adapt to changing knowledge. New York:
Springer; 2011.

	 28.	 Lyman JA, Scully K, Harrison JH Jr. The development of health
care data warehouses to support data mining. Clin Lab Med.
2008;28(1):55–71.

http://arxiv.org/abs/1407.7969
http://pages.cs.wisc.edu/%7egangluo/automatic_selection_review.pdf
http://pages.cs.wisc.edu/%7egangluo/automatic_selection_review.pdf
http://arxiv.org/abs/1502.00068
https://www.cerner.com/solutions/Hospitals_and_Health_Systems/Electronic_Medical_Record/
https://www.cerner.com/solutions/Hospitals_and_Health_Systems/Electronic_Medical_Record/
https://www.cerner.com/solutions/Hospitals_and_Health_Systems/Electronic_Medical_Record/
http://www.oracle.com/us/products/applications/health-sciences/e-clinical/clinical/index.html
http://www.oracle.com/us/products/applications/health-sciences/e-clinical/clinical/index.html
http://www.oracle.com/us/industries/life-sciences/health-sciences-clintrial-363570.html
http://www.oracle.com/us/industries/life-sciences/health-sciences-clintrial-363570.html
https://metacpan.org/pod/CohortExplorer

Page 18 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

	 29.	 Observational Medical Outcomes Partnership (OMOP) Common Data
Model homepage. 2015. http://omop.org/CDM.

	 30.	 The National Patient-Centered Clinical Research Network (PCORnet)
Common Data Model homepage. 2015. http://www.pcornet.org/
resource-center/pcornet-common-data-model/.

	 31.	 Informatics for Integrating Biology and the Bedside (i2b2) Design Docu-
ment Data Repository (CRC) Cell. 2015. https://www.i2b2.org/software/
files/PDF/current/CRC_Design.pdf.

	 32.	 Einbinder JS, Scully KW, Pates RD, Schubart JR, Reynolds RE. Case study:
a data warehouse for an academic medical center. J Healthc Inf Manag.
2001;15(2):165–75.

	 33.	 Luo G, Frey LJ. Efficient execution methods of pivoting for bulk extrac-
tion of Entity-Attribute-Value-modeled data. IEEE J Biomed Health
Inform. 2015. doi:10.1109/JBHI.2015.2392553.

	 34.	 Cunningham C, Graefe G, Galindo-Legaria CA. PIVOT and UNPIVOT:
optimization and execution strategies in an RDBMS. In: Proceedings of
VLDB; 2004. p. 998–1009.

	 35.	 Dinu V, Nadkarni PM, Brandt C. Pivoting approaches for bulk extraction
of entity-attribute-value data. Comput Methods Programs Biomed.
2006;82(1):38–43.

	 36.	 Pyle D. Data preparation for data mining. San Francisco: Morgan Kauf-
mann; 1999.

	 37.	 Dean J, Ghemawat S. MapReduce: Simplified data processing on large
clusters. In: Proceedings of OSDI; 2004. p. 137–50.

	 38.	 White T. Hadoop: the definitive guide. 4th ed. Sebastopol: O’Reilly
Media; 2015.

	 39.	 Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster
computing with working sets. In: Proceedings of HotCloud; 2010.

	 40.	 Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, et al.
Bigtable: a distributed storage system for structured data. In: Proceed-
ings of OSDI; 2006. 205–18.

	 41.	 Thusoo A, Sen Sarma J, Jain N, Shao Z, Chakka P, Zhang N, et al. Hive—a
petabyte scale data warehouse using Hadoop. In: Proceedings of ICDE;
2010. p. 996–1005.

	 42.	 Xin RS, Rosen J, Zaharia M, Franklin MJ, Shenker S, Stoica I. Shark: SQL
and rich analytics at scale. In: Proceedings of SIGMOD Conference;
2013. p. 13–24.

	 43.	 Armbrust M, Xin R, Huai Y, Liu D, Bradley JK, Meng X, et al. Spark SQL:
relational data processing in Spark. In: Proceedings of SIGMOD; 2015.

	 44.	 Sparks ER, Talwalkar A, Smith V, Kottalam J, Pan X, Gonzalez JE, et al. MLI:
an API for distributed machine learning. In: Proceedings of ICDM; 2013.
p. 1187–92.

	 45.	 MLlib homepage. 2015. https://spark.apache.org/mllib/.
	 46.	 SQLeo homepage. 2015. http://sourceforge.net/projects/sqleo/.
	 47.	 Hosmer DW Jr, Lemeshow S, Sturdivant RX. Applied logistic regres-

sion. 3rd ed. Hoboken: Wiley; 2013.
	 48.	 Freitas AA. Comprehensible classification models: a position paper.

SIGKDD Explor. 2013;15(1):1–10.
	 49.	 Feurer M, Springenberg T, Hutter F. Initializing Bayesian hyperparam-

eter optimization via meta-learning. In: Proceedings of AAAI; 2015. p.
1128–35.

	 50.	 Provost FJ, Jensen D, Oates T. Efficient progressive sampling. In: Pro-
ceedings of KDD; 1999. p. 23–32.

	 51.	 Leite R, Brazdil P. Predicting relative performance of classifiers from
samples. In: Proceedings of ICML; 2005. p. 497–503.

	 52.	 Fürnkranz J, Petrak J. An evaluation of landmarking variants. In: Proceed-
ings of ECML/PKDD Workshop on Integrating Aspects of Data Mining,
Decision Support and Meta-Learning; 2001. p. 57–68.

	 53.	 John GH, Langley P. Static versus dynamic sampling for data mining. In:
Proceedings of KDD; 1996. p. 367–70.

	 54.	 Soares C, Petrak J, Brazdil P. Sampling-based relative landmarks: system-
atically test-driving algorithms before choosing. In: Proceedings of EPIA;
2001. p. 88–95.

	 55.	 Leite R, Brazdil P. Active testing strategy to predict the best classifica-
tion algorithm via sampling and metalearning. In: Proceedings of ECAI;
2010. p. 309–14.

	 56.	 Gu B, Liu B, Hu F, Liu H. Efficiently determining the starting sample
size for progressive sampling. In: Proceedings of ECML; 2001. p.
192–202.

	 57.	 Leite R, Brazdil P, Vanschoren J. Selecting classification algorithms with
active testing. In: Proceedings of MLDM; 2012. p. 117–31.

	 58.	 Hutter F, Hoos HH, Leyton-Brown K. Sequential model-based optimiza-
tion for general algorithm configuration. In: Proceedings of LION; 2011.
p. 507–23.

	 59.	 Bergstra J, Bardenet R, Bengio Y, Kégl B. Algorithms for hyper-parameter
optimization. In: Proceedings of NIPS; 2011. p. 2546–54.

	 60.	 Eggensperger K, Hutter F, Hoos HH, Leyton-Brown K. Efficient bench-
marking of hyperparameter optimizers via surrogates. In: Proceedings
of AAAI; 2015. p. 1114–20.

	 61.	 Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J
Mach Learn Res. 2012;13:281–305.

	 62.	 Smith-Miles K. Cross-disciplinary perspectives on meta-learning for
algorithm selection. ACM Comput Surv. 2008;41(1).

	 63.	 Roemer M. Health Care Expenditures for the Five Most Common Chil-
dren’s Conditions, 2008: Estimates for U.S. Civilian Noninstitutionalized
Children, Ages 0-17. MEPS Statistical Brief #349. Rockville, MD: AHRQ;
2011.

	 64.	 Malveaux FJ. The state of childhood asthma: introduction. Pediatrics.
2009;123(Suppl 3):S129–30.

	 65.	 Akinbami LJ, Moorman JE, Liu X. Asthma prevalence, health care use,
and mortality: United States, 2005–2009. Natl Health Stat Report.
2011;32:1–14.

	 66.	 Akinbami LJ, Moorman JE, Bailey C, Zahran HS, King M, Johnson CA,
et al. Trends in asthma prevalence, health care use, and mortality in the
United States, 2001–2010. NCHS Data Brief. 2012;94:1–8.

	 67.	 Weissman JS, Gatsonis C, Epstein AM. Rates of avoidable hospitali-
zation by insurance status in Massachusetts and Maryland. JAMA.
1992;268(17):2388–94.

	 68.	 Wang LY, Zhong Y, Wheeler L. Direct and indirect costs of asthma in
school-age children. Prev Chronic Dis. 2005;2(1):A11.

	 69.	 Carroll KN, Wu P, Gebretsadik T, Griffin MR, Dupont WD, Mitchel EF, et al.
The severity-dependent relationship of infant bronchiolitis on the
risk and morbidity of early childhood asthma. J Allergy Clin Immunol.
2009;123(5):1055–61.

	 70.	 Zorc JJ, Hall CB. Bronchiolitis: recent evidence on diagnosis and man-
agement. Pediatrics. 2010;125(2):342–9.

	 71.	 Piippo-Savolainen E, Korppi M. Wheezy babies-wheezy adults? Review
on long-term outcome until adulthood after early childhood wheezing.
Acta Paediatr. 2008;97(1):5–11.

	 72.	 Perlstein PH, Kotagal UR, Bolling C, Steele R, Schoettker PJ, Atherton
HD, et al. Evaluation of an evidence-based guideline for bronchiolitis.
Pediatrics. 1999;104(6):1334–41.

	 73.	 Hyvärinen M, Piippo-Savolainen E, Korhonen K, Korppi M. Teenage
asthma after severe infantile bronchiolitis or pneumonia. Acta Paediatr.
2005;94(10):1378–83.

	 74.	 Larouch V, Rivard G, Deschesnes F, Goulet R, Turcotte H, Boulet LP.
Asthma and airway hyper-responsiveness in adults who required
hospital admission for bronchiolitis in early childhood. Respir Med.
2000;94(3):288–94.

	 75.	 McConnochie KM, Roghmann KJ. Bronchiolitis as a possible cause of
wheezing in childhood: new evidence. Pediatrics. 1984;74(1):1–10.

	 76.	 Piippo-Savolainen E, Remes S, Kannisto S, Korhonen K, Korppi M.
Asthma and lung function 20 years after wheezing in infancy: results
from a prospective follow-up study. Arch Pediatr Adolesc Med.
2004;158(11):1070–6.

	 77.	 Sigurs N, Bjarnason R, Sigurbergsson F, Kjellman B. Respiratory syncytial
virus bronchiolitis in infancy is an important risk factor for asthma and
allergy at age 7. Am J Respir Crit Care Med. 2000;161(5):1501–7.

	 78.	 Ruotsalainen M, Piippo-Savolainen E, Hyvärinen MK, Korppi M. Adult-
hood asthma after wheezing in infancy: a questionnaire study at
27 years of age. Allergy. 2010;65(4):503–9.

	 79.	 James KM, Gebretsadik T, Escobar GJ, Wu P, Carroll KN, Li SX, et al. Risk of
childhood asthma following infant bronchiolitis during the respiratory
syncytial virus season. J Allergy Clin Immunol. 2013;132(1):227–9.

	 80.	 Luo G, Nkoy FL, Stone BL, Schmick D, Johnson MD. A systematic review
of predictive models for asthma development in children. Available at
http://pages.cs.wisc.edu/~gangluo/asthma_development.pdf.

	 81.	 Altman DG, Bland JM. Diagnostic tests 2: predictive values. BMJ.
1994;309(6947):102.

	 82.	 Nolte H, Nepper-Christensen S, Backer V. Unawareness and undertreat-
ment of asthma and allergic rhinitis in a general population. Respir
Med. 2006;100(2):354–62.

http://omop.org/CDM
http://www.pcornet.org/resource-center/pcornet-common-data-model/
http://www.pcornet.org/resource-center/pcornet-common-data-model/
https://www.i2b2.org/software/files/PDF/current/CRC_Design.pdf
https://www.i2b2.org/software/files/PDF/current/CRC_Design.pdf
http://dx.doi.org/10.1109/JBHI.2015.2392553
https://spark.apache.org/mllib/
http://sourceforge.net/projects/sqleo/
http://pages.cs.wisc.edu/%7egangluo/asthma_development.pdf

Page 19 of 19Luo ﻿Health Inf Sci Syst (2015) 3:3

	 83.	 Yeatts K, Davis KJ, Sotir M, Herget C, Shy C. Who gets diagnosed with
asthma? Frequent wheeze among adolescents with and without a
diagnosis of asthma. Pediatrics. 2003;111(5 Pt 1):1046–54.

	 84.	 Speight AN, Lee DA, Hey EN. Underdiagnosis and undertreatment of
asthma in childhood. Br Med J (Clin Res Ed). 1983;286(6373):1253–6.

	 85.	 Speight AN. Is childhood asthma being underdiagnosed and under-
treated? Br Med J. 1978;2(6133):331–2.

	 86.	 Majak P, Bak-Walczak E, Stelmach I, Jerzyn’ska J, Krakowiak J, Stel-
mach W. An increasing trend of the delay in asthma diagnosis after
the discontinuation of a population-based intervention. J Asthma.
2011;48(4):414–8.

	 87.	 Pedersen S. Preschool asthma—not so easy to diagnose. Prim Care
Respir J. 2007;16(1):4–6.

	 88.	 Caudri D, Wijga A, Schipper CM, Hoekstra M, Postma DS, Koppelman
GH, et al. Predicting the long-term prognosis of children with symp-
toms suggestive of asthma at preschool age. J Allergy Clin Immunol.
2009;124(5):903–10.

	 89.	 Humbert M. The right tools at the right time. Chest. 2006;130(1
Suppl):29S–40S.

	 90.	 Frey U, von Mutius E. The challenge of managing wheezing in infants. N
Engl J Med. 2009;360(20):2130–3.

	 91.	 Holt PG, Sly PD. Prevention of allergic respiratory disease in infants: cur-
rent aspects and future perspectives. Curr Opin Allergy Clin Immunol.
2007;7(6):547–55.

	 92.	 Mansbach JM, Camargo CA Jr. Respiratory viruses in bronchiolitis
and their link to recurrent wheezing and asthma. Clin Lab Med.
2009;29(4):741–55.

	 93.	 Krueger RA, Casey MA. Focus groups: a practical guide for applied
research. 5th ed. Thousand Oaks: SAGE Publications Inc.; 2014.

	 94.	 Patton MQ. Qualitative research and evaluation methods. 3rd ed. Thou-
sand Oaks: SAGE Publications; 2001.

	 95.	 Sandelowski M. Sample size in qualitative research. Res Nurs Health.
1995;18(2):179–83.

	 96.	 Morae@ usability testing software. 2015. http://www.techsmith.com/
morae.html, 2015.

	 97.	 McLafferty I. Focus group interviews as a data collection strategy. J Adv
Nurs. 2004;48:187–94.

	 98.	 Twohig PL, Putnam W. Group interviews in primary care research:
advancing the state of the art or ritualized research? Fam Pract.
2002;19:278–84.

	 99.	 Powell RA, Single HM. Focus groups. Int J Qual Health Care.
1996;8:499–504.

	100.	 Sharts-Hopko NC. Focus group methodology: when and why? J Assoc
Nurses AIDS Care. 2001;12:89–91.

	101.	 Nielsen J. Usability engineering. Cambridge: Morgan Kaufmann; 1993.
	102.	 Rubin J, Chisnell D. Handbook of usability testing: how to plan, design

and conduct effective tests. 2nd ed. Indianapolis: John Wiley & Sons;
2008.

	103.	 Nielsen J. How many test users in a usability study? 2012. http://www.
nngroup.com/articles/how-many-test-users/.

	104.	 Hasegawa K, Tsugawa Y, Brown DF, Mansbach JM, Camargo CA Jr.
Temporal trends in emergency department visits for bronchiolitis in the
United States, 2006 to 2010. Pediatr Infect Dis J. 2014;33(1):11–8.

	105.	 Byington CL, Reynolds CC, Korgenski K, Sheng X, Valentine KJ, Nelson
RE, et al. Costs and infant outcomes after implementation of a care
process model for febrile infants. Pediatrics. 2012;130(1):e16–24.

	106.	 Bradford W, Hurdle JF, LaSalle B, Facelli JC. Development of a HIPAA-
compliant environment for translational research data and analytics. J
Am Med Inform Assoc. 2014;21(1):185–9.

	107.	 Schatz M, Cook EF, Joshua A, Petitti D. Risk factors for asthma hospi-
talizations in a managed care organization: development of a clinical
prediction rule. Am J Manag Care. 2003;9(8):538–47.

	108.	 Desai JR, Wu P, Nichols GA, Lieu TA, O’Connor PJ. Diabetes and asthma
case identification, validation, and representativeness when using elec-
tronic health data to construct registries for comparative effectiveness
and epidemiologic research. Med Care. 2012;50(Suppl):S30–5.

	109.	 Wakefield DB, Cloutier MM. Modifications to HEDIS and CSTE algo-
rithms improve case recognition of pediatric asthma. Pediatr Pulmonol.
2006;41(10):962–71.

	110.	 The APCD (all-payer claims database) Council homepage. 2015. http://
www.apcdcouncil.org/.

	111.	 Andersson M, Hedman L, Bjerg A, Forsberg B, Lundbäck B, Rönmark E.
Remission and persistence of asthma followed from 7 to 19 years of
age. Pediatrics. 2013;132(2):e435–42.

	112.	 Savenije OE, Kerkhof M, Koppelman GH, Postma DS. Predicting who will
have asthma at school age among preschool children. J Allergy Clin
Immunol. 2012;130(2):325–31.

	113.	 Yunginger JW, Reed CE, O’Connell EJ, Melton LJ 3rd, O’Fallon WM,
Silverstein MD 3rd. A community-based study of the epidemiol-
ogy of asthma. Incidence rates, 1964–1983. Am Rev Respir Dis.
1992;146(4):888–94.

	114.	 Taussig LM, Wright AL, Holberg CJ, Halonen M, Morgan WJ, Martinez
FD. Tucson children’s respiratory study: 1980 to present. J Allergy Clin
Immunol. 2003;111(4):661–75.

	115.	 Matricardi PM, Illi S, Grüber C, Keil T, Nickel R, Wahn U, et al. Wheezing
in childhood: incidence, longitudinal patterns and factors predicting
persistence. Eur Respir J. 2008;32(3):585–92.

	116.	 Duncan I. Healthcare risk adjustment and predictive modeling. Winsted:
ACTEX Publications Inc.; 2011.

	117.	 Luo G, Nkoy FL, Gesteland PH, Glasgow TS, Stone BL. A systematic
review of predictive modeling for bronchiolitis. Int J Med Inform.
2014;83(10):691–714.

	118.	 Matricardi PM, Illi S, Keil T, Wagner P, Wahn U, Lau S. Predicting
persistence of wheezing: one algorithm does not fit all. Eur Respir J.
2010;35(3):701–3.

	119.	 Korppi M. Asthma predictive factors in infants with bronchiolitis:
asthma risk at 13–20 years of age. Eur Respir J. 2010;36(1):221–2.

	120.	 Brooke J. SUS—a quick and dirty usability scale. 1996. http://hell.meiert.
org/core/pdf/sus.pdf.

	121.	 Tullis T, Albert W. Measuring the user experience: collecting, analyzing
and presenting usability metrics. Morgan Kaufmann, 2008.

	122.	 Sauro J. Measuring usability with the System Usability Scale (SUS). 2011.
http://www.measuringusability.com/sus.php.

	123.	 Bangor A, Kortum PT, Miller JT. An empirical evaluation of the system
usability scale. Int J Human Comp Interact. 2008;24(6):574–94.

	124.	 Thomas DR. A general inductive approach for analyzing qualitative
evaluation data. Am J Eval. 2006;27(2):237–46.

	125.	 ATLAS qualitative analysis software. 2015. http://www.atlasti.com/index.
html.

	126.	 Schuirmann DJ. A comparison of the two one-sided tests procedure
and the power approach for assessing the equivalence of average bio-
availability. J Pharmacokinet Biopharm. 1987;15(6):657–80.

	127.	 Google Prediction API homepage. 2015. https://cloud.google.com/
prediction/docs.

	128.	 Amazon Machine Learning homepage. 2015. http://aws.amazon.com/
machine-learning/.

	129.	 Chen G, Gully SM, Eden D. Validation of a new general self-efficacy
scale. Organ Res Methods. 2001;4(1):62–83.

	130.	 Pfahringer B, Bensusan H, Giraud-Carrier CG. Meta-learning by land-
marking various learning algorithms. In: Proceedings of ICML; 2000.
p.743–50.

	131.	 Maron O, Moore AW. Hoeffding races: Accelerating model selection
search for classification and function approximation. In: Proceedings of
NIPS; 1993. p. 59–66.

	132.	 Brazdil P, Soares C, da Costa JP. Ranking learning algorithms: using
IBL and meta-learning on accuracy and time results. Mach Learn.
2003;50(3):251–77.

	133.	 Bengio Y. Gradient-based optimization of hyperparameters. Neural
Comput. 2000;12(8):1889–900.

	134.	 Guo XC, Yang JH, Wu CG, Wang CY, Liang YC. A novel LS-SVMs hyper-
parameter selection based on particle swarm optimization. Neurocom-
puting. 2008;71(16–18):3211–5.

	135.	 Adankon MM, Cheriet M. Model selection for the LS-SVM. Application
to handwriting recognition. Pattern Recogn. 2009;42(12):3264–70.

	136.	 Bardenet R, Brendel M, Kégl B, Sebag M. Collaborative hyperparameter
tuning. In: Proceedings of ICML; 2013. p. 199–207.

	137.	 Swersky K, Snoek J, Adams RP. Multi-task Bayesian optimization. In:
Proceedings of NIPS; 2013. p. 2004–12.

	138.	 Yogatama D, Mann G. Efficient transfer learning method for automatic
hyperparameter tuning. In: Proceedings of AISTATS; 2014. p. 1077–85.

http://www.techsmith.com/morae.html
http://www.techsmith.com/morae.html
http://www.nngroup.com/articles/how-many-test-users/
http://www.nngroup.com/articles/how-many-test-users/
http://www.apcdcouncil.org/
http://www.apcdcouncil.org/
http://hell.meiert.org/core/pdf/sus.pdf
http://hell.meiert.org/core/pdf/sus.pdf
http://www.measuringusability.com/sus.php
http://www.atlasti.com/index.html
http://www.atlasti.com/index.html
https://cloud.google.com/prediction/docs
https://cloud.google.com/prediction/docs
http://aws.amazon.com/machine-learning/
http://aws.amazon.com/machine-learning/

	MLBCD: a machine learning tool for big clinical data
	Abstract
	Background:
	Methods:
	Results:
	Conclusions:

	Background
	Methods
	Results and discussion
	Existing big data software
	The design of MLBCD
	Step 1: Clinical parameter extraction
	Step 2: Feature construction
	Step 3: Model building and evaluation

	An automatic selection method for machine learning algorithms and hyper-parameter values
	Overview of the automatic search method
	Background on hyper-parameters
	Review of the sequential model-based optimization method
	Observations and insights
	Insight 1
	Insight 2
	Insight 3
	Insight 4
	Insight 5
	Insight 6
	Insight 7
	Insight 8
	Insight 9
	Details of the automatic search method

	The training and test samples

	The accuracy difference threshold
	The iterative search process
	The first round
	A subsequent round that is not the final one
	Iterations of the search process
	The final round
	Additional details on handling different types of machine learning algorithms

	Evaluation plan
	Demonstration test case: overview
	Stage 1: Assess user needs, preferences, and requirements
	Subject recruitment
	Data collection

	Stage 2: Evaluate MLBCD’s usability among healthcare researchers
	Subject recruitment
	Demonstration test case: details
	Information about the predictive models
	User feedback

	Stage 3: Test MLBCD’s utility
	Subject recruitment
	Build predictive models

	Ethics approval
	Preliminary user study

	Related work

	Conclusions
	Acknowledgements
	References

