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SOFTWARE

MLBCD: a machine learning tool for big 
clinical data
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Abstract 

Background:  Predictive modeling is fundamental for extracting value from large clinical data sets, or “big clinical 
data,” advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive 
modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine 
learning model, the values of one or more model parameters called hyper-parameters must typically be specified. 
Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate 
algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be 
iteratively transformed into the relational table format before conducting predictive modeling. This transformation is 
time-consuming and requires computing expertise.

Methods:  This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new 
software system aiming to address these challenges and facilitate building machine learning predictive models using 
big clinical data.

Results:  The paper describes MLBCD’s design in detail.

Conclusions:  By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clini-
cal data and increase the ability to foster biomedical discovery and improve care.

Keywords:  Machine learning, Big clinical data, Automatic algorithm selection, Automatic hyper-parameter value 
selection, Entity–Attribute–Value, Pivot
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Background
The healthcare industry collects large amounts of clinical 
data from diverse sources including electronic medical 
records, sensors, and mobile devices. These large clinical 
data sets, or “big clinical data,” provide opportunities to 
advance clinical care and biomedical research. Predic-
tive analytics leverage these large, heterogeneous data 
sets to further knowledge and foster discovery. Predictive 
modeling can facilitate appropriate and timely care by 
forecasting an individual’s health risk, clinical course, or 
outcome. Approaches to predictive modeling include sta-
tistical methods such as logistic regression and machine 
learning methods that improve automatically through 
experience [1], such as support vector machine, neural 
network, decision tree, and random forest. Compared to 

statistical methods, machine learning can increase pre-
diction accuracy, sometimes doubling it, with less strict 
assumptions, e.g., on data distribution [2–4].

Two major aspects of machine learning require sig-
nificant computing expertise and are poorly supported 
by existing machine learning software such as Weka [5], 
RapidMiner, R, and KNIME [6], making machine learn-
ing inaccessible to many healthcare researchers who use 
clinical data to do research [7–9]. First, before a machine 
learning model can be trained, an algorithm and hyper-
parameter values must be chosen. An example hyper-
parameter is the number of hidden layers in a neural 
network. The chosen algorithm and hyper-parameter val-
ues can have a large impact on the resulting model’s per-
formance, sometimes changing accuracy from 1 to 95 % 
[8]. Selecting an effective algorithm and hyper-parameter 
values is currently an art, which requires deep machine 
learning knowledge as well as repeated trials. It has been 
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widely recognized that this is beyond the ability of lay-
man users with limited computing expertise, and also 
frequently a non-trivial task even for machine learning 
experts [7, 8, 10–12]. Emerging evidence suggests that 
automatic search methods for the optimal algorithm 
and hyper-parameter values can achieve equally good 
or better results than careful manual tuning by machine 
learning experts [10, 13]. However, when a large variety 
of algorithms is considered, prior efforts such as Auto-
WEKA [8], hyperopt-sklearn [13], and MLbase [7, 14] 
cannot quickly determine the optimal algorithm and 
hyper-parameter values for a large data set, limiting their 
usefulness in practice.

A major obstacle to automatic search is that a long time 
is needed to examine a combination of an algorithm and 
hyper-parameter values on the entire data set. When 
determining an optimal combination, prior efforts at 
automation examine many combinations on the entire 
data set. On a data set with a modest number of data 
instances and attributes, such as several thousand rows 
and several dozen attributes, this can last several days 
[8]. In practical applications, search time can be hun-
dreds or thousands of times longer for three reasons: (1) 
The process of conducting machine learning is iterative. 
If a particular set of clinical parameters yields low pre-
diction accuracy, the analyst will probably look at other 
unused, available clinical parameters that may be pre-
dictive. A new search is required for each iteration. (2) 
A data set can consist of many data instances, e.g., from 
several healthcare systems. (3) A data set can include 
many attributes, like those extracted from textual and/
or genomic data. The execution time of a machine learn-
ing algorithm typically grows at least linearly with the 
number of attributes and superlinearly with the number 
of data instances. Many predictive modeling problems 
must be resolved for numerous diseases and outcomes to 
attain personalized medicine. Search time will become a 
bottleneck at this point, irrespective of whether it creates 
an issue for a predictive modeling problem.

The second aspect is related to the data extrac-
tion required before data analysis. Many clinical data 
are stored in the Entity-Attribute-Value (EAV) format 
(see Fig.  1) [15]. Examples of electronic medical record 
(EMR) systems using the EAV format include the Cerner 

Powerchart EMR [16], Regenstrief EMR [17], Intermoun-
tain Healthcare’s HELP EMR [18], TMR EMR [19], and 
Columbia-Presbyterian EMR [20]. Examples of clinical 
study data management systems using the EAV format 
include Oracle Clinical [21], Clintrial [22], TrialDB [23], 
i2b2 (Informatics for Integrating Biology and the Bed-
side), REDCap, OpenClinica, LabKey, and Opal [24, 25]. 
A large portion of patient-generated health data, such as 
those from home health equipment, in personal health 
records, or from mobile apps, is stored in the EAV for-
mat [26]. Even in an enterprise clinical data warehouse 
designed to provide data ready for analysis, some of the 
largest tables (e.g., the fact tables) still use the EAV for-
mat [27, 28]. In the OMOP (Observational Medical Out-
comes Partnership) [29] and PCORnet (the National 
Patient-Centered Clinical Research Network) Common 
Data Models [30] and i2b2 data mart schema [31], some 
of the largest tables (e.g., observation, diagnosis, proce-
dure, and lab result) use the EAV format.

The EAV data model uses tables with at least three col-
umns: the entity, attribute, and value. Usually, the entity 
column identifies a clinical event and can be regarded as 
a patient ID and date/time stamp pair [27, page 58]. The 
attribute column identifies a clinical parameter. The value 
column contains the clinical parameter’s value. In this 
way, an EAV table combines many clinical parameters 
and their values in the attribute and value columns.

Before performing predictive modeling, EAV data 
must be transformed by pivot operations into relational 
table formats (see Fig. 1), with each clinical parameter 
of interest occupying its own column. Pivoting is often 
performed repeatedly, as machine learning is an itera-
tive process. Since healthcare researchers with limited 
computing expertise are known to have difficulty writ-
ing complex database queries [32], each round of piv-
oting requires work from a computing professional, 
which creates dependencies and consumes significant 
time and computing resources. Traditional pivoting 
techniques often require repeatedly processing large 
clinical data sets and/or performing multiple join 
operations [33–35], either of which is computationally 
expensive.

New approaches are needed to enable healthcare 
researchers to build machine learning predictive models 

Fig. 1  Pivot to obtain the columns for the three clinical parameters ‘test 1,’ ‘test 2,’ and ‘test 3’
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on big clinical data efficiently and independently. To fill 
the gap, we present in this paper the design of a new 
software system called MLBCD (Machine Learning 
for Big Clinical Data) supporting the whole process of 
iterative machine learning on big clinical data, includ-
ing clinical parameter extraction, feature construction, 
machine learning algorithm and hyper-parameter selec-
tion, model building, and model evaluation. MLBCD can 
be used once the researcher has defined the study popu-
lation and research question, has obtained the clinical 
data set, and has finished data preparation [36] including 
cleaning and filling in missing values. For clinical data, 
filling in missing values usually requires applying medi-
cal knowledge, and therefore is unsuitable for complete 
automation.

This work makes the following innovative 
contributions:

1.	 We present the first software supporting the whole 
process of iterative machine learning on big clini-
cal data, from clinical parameter extraction to model 
evaluation. Currently no such software exists.

2.	 We present a new method to provide a solution to 
a long-standing open problem in machine learn-
ing that has been widely recognized in the literature 
[7, 11, 12, 14]. Our method efficiently (in less time) 
and automatically searches for the optimal machine 
learning algorithm and hyper-parameter values for a 
given machine learning problem. Existing automatic 
search methods are inefficient. Our method uses sam-
pling to search for the optimal algorithm and hyper-
parameter values concurrently. This has never been 
done before. Our method uses new techniques such 
as handling high-performance and low-performance 
combinations of hyper-parameter values in different 
ways. With proper extensions, these techniques can 
be used for handling other problems in stochastic 
optimization.

3.	 We present the first implementation method of effi-
cient pivoting techniques using the MapReduce 
framework [37] for distributed computing. Pivot oper-
ations are essential for analyzing clinical data, but are 
not supported by existing big data software for distrib-
uted computing such as Hadoop [38] and Spark [39].

4.	 MLBCD offers new features tailored to healthcare 
researchers’ needs, such as the options of producing 
only interpretable models, specifying forced inclu-
sion of a subset of input variables in the model, and 
displaying the used input variables in descending 
order of importance with cumulative impact on pre-
diction accuracy. Existing machine learning software 
systems are not tailored to healthcare researchers’ 
needs.

Methods
MLBCD integrates techniques of fast pivoting, visual 
query building, efficient and automatic selection of 
machine learning algorithms and hyper-parameter val-
ues, and scalable machine learning. It provides an intui-
tive graphical user interface for each step of the analytical 
process and can run on a cluster of commodity comput-
ers for scalable parallel processing. MLBCD uses a new 
method for efficiently and automatically searching for the 
optimal machine learning algorithm and hyper-parame-
ter values for a given machine learning problem. MLBCD 
also provides the first implementation of efficient pivot-
ing techniques using the MapReduce framework [37] for 
distributed computing.

After obtaining EAV data containing potentially predic-
tive clinical parameters, MLBCD can be used to perform 
fast iterative machine learning. For example, hundreds 
of thousands of clinical parameters exist in an EMR [27, 
page 56]. An analyst typically starts the analytical process 
from a few clinical parameters such as lab tests. With the 
EAV tables containing all lab tests and their result values, 
the analyst can use MLBCD to iteratively add more lab 
tests for analysis until satisfactory prediction accuracy is 
reached.

Results and discussion
This part of the paper is organized as follows. “Existing 
big data software” provides some background on exist-
ing big data software relevant to MLBCD. “The design of 
MLBCD” presents the design of MLBCD. “An automatic 
selection method for machine learning algorithms and 
hyper-parameter values” describes the efficient and auto-
matic selection method for machine learning algorithms 
and hyper-parameter values used in MLBCD. “Evaluation 
plan” mentions our evaluation plan for MLBCD. “Related 
work” discusses related work.

Existing big data software
In this section, we provide some background on exist-
ing big data software relevant to MLBCD. Modern big 
data software for distributed computing is developed to 
support large-scale data-intensive applications not han-
dled well by parallel relational database systems. These 
big data software systems typically run on a cluster of 
commodity computers, borrow many techniques from 
parallel relational database systems, and provide new 
functions beyond those supported by parallel relational 
database systems.

Hadoop [38] and Spark [39] are two widely used, 
open source, big data software systems. Hadoop imple-
ments Google’s MapReduce framework [37] for distrib-
uted computing using the Map and Reduce functions. 
The Map function converts an input element into zero 



Page 4 of 19Luo ﻿Health Inf Sci Syst  (2015) 3:3 

or more key-value pairs. The Reduce function converts 
a key and its list of associated values into zero or more 
key-value pairs that can be of another type. Data are 
stored in the Hadoop distributed file system, the open 
source implementation of Google’s BigTable file system 
[40]. Hadoop is unsuitable for iterative and interactive 
jobs, as job execution usually requires repeated reading 
and writing of data from and to disk, incurring significant 
overhead [39]. Structured Query Language (SQL) is the 
standard query language for relational database systems. 
SQL’s declarative nature allows easier programming than 
by low level Map and Reduce functions. Hive [41] is a 
software system supporting a large portion of SQL on top 
of Hadoop.

To overcome Hadoop’s shortcomings, Spark [39] was 
developed on top of the Hadoop distributed file system. 
To improve performance, Spark executes most opera-
tions in memory and avoids disk inputs/outputs when 
possible. Like Hadoop, Spark supports the MapReduce 
framework. Spark SQL [42, 43] is a software system sup-
porting many relational operators, a large portion of 
SQL, and other functions on top of Spark. MLlib [7, 44, 
45] is Spark’s machine learning library. Spark can run 
SQL queries at a speed comparable to parallel relational 
database systems and up to 100 times faster than Hive, 
and iterative machine learning algorithms >100 times 
faster than Hadoop [42]. Neither Spark SQL nor Hive 
supports the pivot operator. MLBCD is developed using 
Spark, Spark SQL, MLlib, and new techniques to address 
existing software’s limitations.

The design of MLBCD
In this section, we present the design of MLBCD. Dur-
ing iterative machine learning on big clinical data, three 
sequential steps are executed repeatedly. First, a set of 
clinical parameters is extracted from EAV data into rela-
tional table formats by pivoting. Second, raw clinical 
parameters are transformed to construct features, a.k.a. 
input variables or independent variables, of the predictive 
models to be built. This step is optional and often done 
by executing SQL queries. If this step is omitted, raw 
clinical parameters will be the input variables of the pre-
dictive models to be built. Third, one or more predictive 
models are built on the current set of clinical parameters 
and evaluated. If model performance is unsatisfactory, 
the analyst can add more clinical parameters and restart 
from the first step.

MLBCD covers all three steps and supports the whole 
process of iterative machine learning on big clinical data. 
MLBCD provides a separate intuitive graphical user 
interface for each step. At any time, the user can move 
easily between the three steps at will. MLBCD uses Spark 
as its basis for distributed computing, allowing it to run 

on a single computer as well as on a cluster of commod-
ity computers for parallel processing. As detailed below, 
MLBCD is built using the open source software systems 
Spark, Spark SQL, MLlib, and SQLeo [46], each of which 
either supports a Java application programming interface 
or is written in Java. MLBCD is written mainly in Java so 
it can call the functions in and interface with these soft-
ware systems. Figure 2 shows MLBCD’s architecture. In 
the following, we describe the software component for 
each of the three steps.

Step 1: Clinical parameter extraction
In the first step, MLBCD performs pivoting on Spark to 
extract desired clinical parameters. The pivot operator 
is currently not supported by Spark SQL, nor well sup-
ported by existing large-scale relational database systems. 
We use the MapReduce framework [37] to support the 
pivot operator on Spark and implement three efficient 
pivoting techniques that we have developed in Luo and 
Frey [33]. The first technique performs early removal 
of EAV tuples related to unneeded clinical parameters. 
The second technique facilitates pivoting across several 
EAV tables. The third technique supports multi-query 
optimization.

Our techniques fit well with MapReduce by forming 
one key-value pair per EAV tuple in the Map function. 
The key is the entity column of the EAV tuple. The value 
is the combination of the attribute and value columns of 
the EAV tuple. In the Map function, EAV tuples related 
to unneeded clinical parameters are filtered out early on 
[33]. The Reduce function combines all relevant EAV 
tuples with the same entity value from one or more EAV 
tables into a relational tuple. The Reduce function can 
write to multiple files for each record processed [38, 41], 
supporting multi-query optimization.

To let users with limited computing expertise avoid 
writing SQL-like statements for pivoting, MLBCD pro-
vides an intuitive graphical user interface to guide users 
through the pivoting process. In MLBCD’s input inter-
face, the user specifies sequentially (a) the EAV data’s 
storage location, such as the name of a comma-sepa-
rated values (CSV) file in the local file system, a file in 
the Hadoop distributed file system, or an EAV table 
in a relational database; (b) the fields of the EAV data 

Fig. 2  Architecture of MLBCD
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corresponding to the entity, attribute, and value columns, 
respectively; and (c) desired clinical parameters. When-
ever possible, the user will input by selecting from a list 
or navigating a directory of items rather than typing. 
After the user provides inputs and clicks “Extract clinical 
parameters”, MLBCD automatically loads the EAV data 
into Spark, then extracts the specified clinical parameters 
into relational table formats using the pivot operator on 
Spark. By default, the extracted relational data are stored 
in Spark’s default persistent storage space, the Hadoop 
distributed file system. In MLBCD’s input interface, the 
user can optionally modify the storage location of the 
relational data to be extracted, e.g., if the user wants to 
export the relational data as a CSV file for use by other 
programs.

As mentioned in Luo and Frey [33], there are three pos-
sible cases of pivoting: (a) pivoting on a single EAV table 
to generate a relational table; (b) pivoting across several 
EAV tables to generate a relational table from data scat-
tered across them; and (c) performing multiple pivot 
operations on the same EAV table or across the same set 
of EAV tables to generate multiple relational tables simul-
taneously. MLBCD’s input interface includes one tab for 
each case. After completing pivoting, MLBCD displays in 
its output interface the first few tuples in each relational 
table generated. This can help the user ensure that pivot-
ing has been done properly.

Some clinical data such as patient demographics are 
stored in the relational table format. MLBCD provides an 
intuitive graphical user interface to allow importing rela-
tional data, e.g., from a CSV file or relational database, 
into Spark. Both clinical data originally stored in the EAV 
format and clinical data stored in the relational table for-
mat then become available for the subsequent analytical 
process.

Step 2: Feature construction
In the second step, raw clinical parameters are trans-
formed to construct features. This will typically be done 
by using Spark SQL to execute SQL statements on the 
relational data extracted in Step 1. MLBCD provides a 
visual query builder to help users form SQL statements. 
Visual query building is widely used in relational data-
base systems. A visual query builder provides an intuitive 
graphical user interface, in which users form SQL state-
ments visually. For instance, to form a basic SQL query 
joining two tables, the user only needs to select the two 
tables through drag and drop, draw a line connecting 
their join attributes, and then check the attributes that 
will appear in the results.

A good way to write the visual query builder in 
MLBCD is to modify the source code of SQLeo [46], an 
open source visual query builder written in Java. SQLeo 

currently supports several relational database systems, 
such as Oracle and PostgreSQL, but not Spark. The mod-
ification lets SQLeo interact with Spark SQL using Java 
Database Connectivity (JDBC) supported by SQLeo and 
Spark SQL. After the visual query builder forms a SQL 
statement and the user clicks “Run statement”, MLBCD 
uses Spark SQL to execute the SQL statement.

In addition to the visual query builder, MLBCD pro-
vides a command line interface for Spark. Advanced 
users can use the command line interface to perform 
operations supported by Spark and Spark SQL.

Step 3: Model building and evaluation
In the third step, machine learning models are built on 
the current set of clinical parameters and evaluated. 
MLBCD integrates machine learning functions of MLlib 
[7, 44, 45] by modifying the source code and/or calling 
the Java application programming interface of MLlib. 
Recall that MLlib is Spark’s distributed machine learning 
library and can run on a cluster of computers for parallel 
processing. MLlib implements multiple machine learning 
algorithms and feature selection techniques, all of which 
are supported by MLBCD.

Like Weka [5], MLBCD provides an intuitive graphi-
cal user interface for machine learning. Weka is the most 
widely used open source machine learning and data 
mining toolkit. Weka’s graphical user interface supports 
feature selection (optional), model building, and model 
evaluation. In the input interface, the user specifies the 
data file, independent variables, dependent variable, 
machine learning algorithm, and its hyper-parameter val-
ues. After the user clicks “Start,” Weka builds the model 
and presents its performance metrics. MLBCD’s graphi-
cal user interface for machine learning works similarly 
with one major difference. In Weka’s input interface, the 
user must select an algorithm before building the model. 
This requires computing expertise. Like Auto-WEKA [8], 
MLBCD treats the choice of feature selection technique 
as a hyper-parameter and uses the method described in 
“An automatic selection method for machine learning 
algorithms and hyper-parameter values” to automati-
cally search for the optimal algorithm, feature selection 
technique, and hyper-parameter values. If desired, the 
user can make changes in MLBCD’s input interface. If 
the resulting model’s accuracy is lower than a pre-deter-
mined threshold, such as area under the receiver oper-
ating characteristic curve (AUC) <0.8 [47, page 177], 
MLBCD automatically prompts the user to consider 
returning to Step 1 to add additional clinical parameters.

By default, MLBCD considers all input variables, 
machine learning algorithms, and feature selection tech-
niques. In the input interface, the user can optionally 
specify a subset of input variables deemed important 
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based on medical knowledge and must be included in 
the model. In this case, feature selection will be applied 
only to the other input variables. The user can also 
optionally specify the feature selection techniques and/
or algorithms to be explored, possibly based on a desired 
property. For instance, the user may want interpret-
able models such as decision tree and k-nearest neighbor 
(similar patients) [48]. In the output interface, a receiver 
operating characteristic (ROC) curve is displayed for 
binary classification. The user can mouse over the ROC 
curve to exploit trade-offs between sensitivity and speci-
ficity. To help simplify the model, the user can opt to see 
the used input variables sorted in descending order of 
importance, e.g., using backward feature elimination [1]. 
For each input variable, the accuracy of the model using 
all input variables up to it is shown. Often, not every clin-
ical parameter used in the model is routinely collected 
in all healthcare systems’ databases. By determining the 
set of clinical parameters essential for high accuracy, the 
user can simplify the model so other healthcare systems 
are more likely to adopt it.

An automatic selection method for machine learning 
algorithms and hyper‑parameter values
In this section, we present a new method for efficiently 
and automatically searching for the optimal algorithm 
and hyper-parameter values for a given machine learning 
problem. MLBCD uses this method to address existing 
automatic search methods’ inefficiencies mentioned in 
the Introduction. Our discussion focuses on a large data 
set. With some modifications, the new method will also 
apply to relatively small data sets, e.g., by using the test 
results on a few random combinations of hyper-param-
eter values to quickly determine whether a machine 
learning algorithm should be eliminated from further 
consideration. Any given accuracy measure, such as 
AUC, can be used in our method.

In “Overview of the automatic search method”, we 
give an overview of the new automatic search method. 
In “Background on hyper-parameters”, we provide 
some background on hyper-parameters. In “Review of 
the sequential model-based optimization method”, we 
briefly review the sequential model-based optimization 
method. We describe the observations and insights based 
on which the new automatic search method is designed 
in “Observations and insights”. In “The training and test 
samples”–“The iterative search process”, we present vari-
ous parts of the new automatic search method in detail.

Overview of the automatic search method
We consider all machine learning algorithms applica-
ble to the data set. We focus on the common case that 
no experimental results on previous machine learning 

problems are available. If this is not the case, experimen-
tal results on previous machine learning problems can 
be used to help select a good starting point of the search 
process for the current machine learning problem, e.g., 
in a way similar to that in Feurer et al. [49], and improve 
search efficiency.

The entire space of machine learning algorithms and 
hyper-parameter values is extremely large due to the large 
number of algorithms and possible hyper-parameter val-
ues. To efficiently and automatically search for the opti-
mal algorithm and hyper-parameter values, we perform 
progressive sampling, filtering, and fine-tuning to quickly 
narrow down the search space. As shown in Fig.  3, our 
key idea is to use progressive sampling to generate a 
sequence of random samples of the data set, one nested 
within another [50]. Inexpensive tests are conducted on 
small samples of the data set to eliminate unpromising 
algorithms and identify unpromising combinations of 
hyper-parameter values as early and as much as possible. 
More computational resources are devoted to fine-tun-
ing promising algorithms and combinations of hyper-
parameter values on larger samples of the data set. The 
search process is repeated for one or more rounds. As the 
sample of the data set expands, the search space shrinks. 
In the last round, (a large part of ) the entire data set is 
used to find an optimal combination of an algorithm and 
hyper-parameter values. Sampling has been used before 
for searching for the optimal machine learning algorithm 
[9, 50–57], but not for searching for the optimal algo-
rithm and hyper-parameter values concurrently.

Background on hyper‑parameters
In this section, we provide some background on hyper-
parameters needed for describing our automatic search 
method. There are two types of hyper-parameters: con-
ditional and unconditional. An unconditional hyper-
parameter is always used. In contrast, the relevance of 
a conditional hyper-parameter depends on the value of 
another hyper-parameter. For instance, for neural net-
work, the hyper-parameter of the number of hidden units 
in the second layer is relevant only if the hyper-parame-
ter of the number of layers in the neural network is ≥2. 
As shown in Fig.  4, all hyper-parameters of a machine 
learning algorithm form a tree or directed acyclic graph.

Fig. 3  An illustration of progressive sampling used in our automatic 
search method
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Review of the sequential model‑based optimization method
Our goal is to automatically search for the optimal 
machine learning algorithm and hyper-parameter values. 
The current approach for handling this problem [8, 13] is 
to treat the choice of algorithm as a new hyper-param-
eter at the root level and map this problem to the prob-
lem of searching for the optimal hyper-parameter values. 
Sequential model-based optimization [8, 10, 58, 59], also 
known as Bayesian optimization, is the state-of-the-art 
method for conducting this search. It proceeds in rounds. 
In each round, a new combination of hyper-parameter 
values is selected for testing.

More specifically, the sequential model-based optimi-
zation method first builds a regression model to predict 
a machine learning model’s accuracy based on hyper-
parameter values. Random forest is a commonly used 
regression modeling approach [8] and has been shown 
to outperform several other approaches for making this 
prediction [60]. For any combination of hyper-param-
eter values, evaluating the regression model’s output is 
cheaper than training the machine learning model and 
evaluating its accuracy on the data set. When training the 
regression model and using it to make predictions, inac-
tive conditional hyper-parameters are set to their default 
values [8].

Next, the following three steps are iterated until a 
pre-determined stopping criterion is satisfied: use the 
regression model to identify a promising combination 
of hyper-parameter values c to evaluate next; train a 
machine learning model and evaluate its accuracy a on 
the data set at c; and use the new data point (c, a) to 
update the regression model. In practice, it is possible 
for the regression model to be misdirected. To achieve 
robust performance even if this situation occurs, every 
second combination of hyper-parameter values to eval-
uate next is chosen at random. In this way, new areas of 
the hyper-parameter space can be explored [8].

Observations and insights
Our automatic search method is designed based on the 
following observations and insights.

Insight 1  It is time-consuming to test a combination of a 
machine learning algorithm and hyper-parameter values 
on the whole data set. It is much faster to test this com-
bination on a (relatively) small random sample of the data 
set.

Insight 2  As shown in Fig. 5, for a specific combination 
of a machine learning algorithm and hyper-parameter val-
ues, the model’s accuracy usually increases with a larger 
training set. When the training set becomes large enough, 
the model’s accuracy will stop increasing (much) [50]. A 
random sample of the data set can be used to train the 
model and estimate its accuracy. As long as the sample 
is not too small, the estimate will give a rough idea of the 
accuracy that can be achieved when (a large part of ) the 
whole data set is used to train the model.

Insight 3  Consider two machine learning algorithms. 
As shown in Petrak [9], if one algorithm significantly out-
performs another in accuracy when a not-too-small, ran-
dom sample of the data set is used to train the model, the 
former is also likely to outperform the latter in accuracy 
when (a large part of ) the whole data set is used to train 
the model.

Insight 4  Consider a specific machine learning algo-
rithm and data set. To find out the highest accuracy the 
algorithm can possibly achieve on the data set, it is insuf-
ficient to test only one combination of hyper-parameter 
values. As shown in Bergstra and Bengio [61], random 
search is an effective approach for searching the space of 
all possible combinations of hyper-parameter values. We 
can test a few random combinations and find the highest 
accuracy they achieve on the data set. This accuracy will 

Fig. 4  An example dependency graph formed by all hyper-parame-
ters of a machine learning algorithm

Fig. 5  Training set size vs. model’s accuracy
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give a rough idea of the highest accuracy the algorithm 
can possibly achieve on the data set with optimal hyper-
parameter values.

Insight 5  The per data instance overhead of training 
a model is usually much higher than that of testing the 
model. In other words, training a model on a given num-
ber of data instances takes much longer than testing a 
model on these data instances. Moreover, due to repeated 
training, multi-fold cross validation is time-consuming to 
perform. Consider a specific data set and combination of a 
machine learning algorithm and hyper-parameter values. 
For quickly obtaining a rough and relatively robust esti-
mate of the accuracy that the combination can achieve on 
the data set, it would be good to train the model on one 
sample of the data set and test the model on another dis-
joint, relatively large sample of the data set. This would be 
more efficient than performing multi-fold cross validation 
on the first sample of the data set [9].

Insight 6  In practice, there are often multiple good 
combinations of machine learning algorithms and hyper-
parameter values, each of which can achieve accuracy 
close to that of an absolutely optimal combination. Our 
goal is not to find the absolutely optimal combination 
and build the absolutely optimal model. Thus, an exhaus-
tive search of all possible combinations is unnecessary. 
Instead, our goal is to find a good combination and build 
a good model whose accuracy is close to that of an abso-
lutely optimal model in a reasonably short amount of time. 
This is particularly important for performing fast iterative 
analytics on big clinical data. For instance, knowing that 
a good combination can achieve only a low level of accu-
racy can trigger consideration of feature engineering and/
or other alternatives. Then no time needs to be spent on 
continuing searching for a much better combination that 
is unlikely to exist. If time permits, further fine-tuning of 
the best combination and/or model found so far can be 
conducted in the background, like the way MLbase works 
[7].

Insight 7  There are three types of machine learning algo-
rithms: base, meta, and ensemble [8]. A base algorithm 
such as naive Bayes can be used independently. A meta 
algorithm such as bagging takes a base algorithm together 
with its hyper-parameter values as an input. An ensemble 
algorithm such as voting takes several base algorithms as 
input. If a base algorithm achieves low accuracy, a meta 
or ensemble algorithm using it is unlikely to achieve high 
accuracy, at least in comparison to one using a well-per-
forming base algorithm. In comparison, if a base algo-
rithm achieves reasonable accuracy, a meta or ensemble 
algorithm using it may achieve high accuracy, regardless 

of whether it is the best performing base algorithm. This 
insight can be used to improve search efficiency.

Due to its inherent complexity, a meta or ensemble 
algorithm is more expensive to test than a base algorithm 
used by it. In the first few rounds of the search process, 
we test base algorithms, but not meta or ensemble algo-
rithms, on relatively small samples of the data set. Unless 
a base algorithm looks promising, we will not proceed 
to test the meta or ensemble algorithms using it in later 
rounds of the search process. In other words, poorly 
performing base algorithms are eliminated in the first 
few rounds. The subsequent rounds focus on testing the 
remaining base algorithms that perform reasonably well, 
as well as the meta and ensemble algorithms using them. 
In this way, some unnecessary tests of meta or ensemble 
algorithms are saved.

Insight 8  As mentioned in “ Review of the sequential 
model-based optimization method“, in searching for the 
optimal machine learning algorithm and hyper-parame-
ter values, the current approach [8, 13] treats the choice of 
algorithm as a new hyper-parameter at the root level and 
handles it in the same way as the other hyper-parameters, 
which we call regular hyper-parameters. This approach is 
suboptimal because the new hyper-parameter has differ-
ent properties than regular hyper-parameters.

The choice of machine learning algorithm tends to 
affect the resulting model’s accuracy much more than 
that of a regular hyper-parameter’s value. For a specific 
machine learning problem and algorithm, usually only 
a few hyper-parameters of the algorithm matter much, 
while the others have little impact on the model’s accu-
racy [61]. Also, if a small change is made to a numeri-
cal hyper-parameter’s value, the model’s accuracy will 
typically vary only slightly. In contrast, once the algo-
rithm changes, the model’s accuracy will often be greatly 
altered.

The choice of machine learning algorithm affects the 
relevance of many more hyper-parameters than a regu-
lar hyper-parameter. Once an algorithm is selected, most 
hyper-parameters of the other algorithms, i.e., most reg-
ular hyper-parameters, become irrelevant. In contrast, 
within the context of a specific algorithm, the value of 
a regular hyper-parameter affects the relevance of few 
other hyper-parameters or none at all.

By handling the choice of machine learning algorithm 
and regular hyper-parameters in somewhat different 
ways, the above two properties can be used to improve 
search efficiency. For example, to guide the search 
direction, a regression model is often built to predict 
a machine learning model’s accuracy based on hyper-
parameter values [8, 10, 58, 59]. Instead of building a sin-
gle aggregate regression model for all hyper-parameters 
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and algorithms, we can build a separate regression model 
for each algorithm and its hyper-parameters. Due to sig-
nificantly reduced dimensionality, the regression mod-
els for individual algorithms can be made more accurate 
than the aggregate one for all algorithms within the same 
resource constraints. As another example, by eliminat-
ing unpromising algorithms in the first few rounds of the 
search process, these algorithms’ hyper-parameters no 
longer need to be considered further. Then in subsequent 
rounds of the search process, we can focus on fine-tuning 
the remaining promising algorithms’ hyper-parameter 
values. The reduced search space makes it easier to find 
good search results.

Insight 9  In the sequential model-based optimization 
method, a regression model is used to select a new com-
bination of hyper-parameter values for testing in each 
round. The new combination should be likely to achieve 
high accuracy. The regression model is built using accu-
racy estimates for the combinations of hyper-parameter 
values that have been tested previously.

The combinations of hyper-parameter values can be 
classified into two types: the ones achieving high accu-
racy (high-performance) and the ones achieving low 
accuracy (low-performance). As mentioned in Egg-
ensperger et al. [60], which new combination is selected 
for testing in each round tends to be impacted mainly by 
the accuracy estimates for the high-performance combi-
nations. The low-performance combinations are mainly 
used to indicate low-performance regions in the search 
space that should be avoided. Hence, it is more impor-
tant to obtain precise accuracy estimates for the high-
performance combinations than for the low-performance 
ones. If a precise accuracy estimate is too expensive to 
obtain for a low-performance combination, we can try to 
quickly obtain a rough accuracy estimate for it. As long 
as the rough accuracy estimate indicates that the com-
bination has low performance, it is often good enough 
for selecting a good new combination for testing in each 
round.

Details of the automatic search method  In the following, 
we present the details of our automatic search method. 
We proceed in multiple rounds and use progressive sam-
pling to quickly narrow down the search space. In each 
round, we use an accuracy difference threshold τ and two 
disjoint, random samples of the data set: one termed the 
training sample and another termed the test sample. The 
training sample is used to train models. The test sample is 
used to evaluate each trained model’s accuracy. The accu-
racy reflects how promising the model’s corresponding 
machine learning algorithm and hyper-parameter values 
look by the current round.

The training and test samples
As shown in Fig. 3, the training sample expands from one 
round to the next. An effective expansion method is to 
increase the training sample size exponentially, e.g., dou-
ble the training sample size each round [50].

The initial training sample’s size needs to fulfill two 
requirements. First, it should be large enough to give a 
rough idea of the accuracy that can be achieved when (a 
large part of ) the whole data set is used to train a model. 
Second, it should not be too large to make model train-
ing too slow. Otherwise, we cannot quickly eliminate 
unpromising machine learning algorithms and identify 
unpromising combinations of hyper-parameter values.

One approach fulfilling both requirements is to set the 
initial training sample’s size to the maximum of the fol-
lowing two values: (1) a pre-determined constant such as 
1000 and (2) the number of input variables (a.k.a. inde-
pendent variables) of the model multiplied by another 
pre-determined constant, such as 10. By comparison, 
existing work on using sampling to search for the optimal 
machine learning algorithm typically uses a fixed sample 
size as the starting point [9, 50–57]. In the presence of 
many input variables, this fixed size may be too small, 
leading to highly inaccurate estimates of the potential 
of an algorithm and/or combination of hyper-parame-
ter values and to misguidance of the subsequent search 
process.

The test sample remains the same over rounds, e.g., 
with a fixed size of 3000. The test sample needs to be 
large enough to give a relatively robust estimate of the 
model’s accuracy, but not necessarily more than that. In 
fact, to avoid spending an excessive amount of time test-
ing models, the test sample should not be too large.

To efficiently and repeatedly generate random sam-
ples of the data set over rounds, the following approach 
is used. A random number is appended as an additional 
attribute to every data instance in the data set. All data 
instances are sorted in ascending order of the attribute. 
The attribute is removed during the last phase of sort-
ing, as it is no longer needed after that. Let ntraining and 
ntest denote the training sample size and test sample size, 
respectively. The first ntest data instances in the sorted 
list form the test sample. The subsequent ntraining data 
instances form the training sample.

The accuracy difference threshold
The accuracy difference threshold τ is used to eliminate 
unpromising machine learning algorithms and identify 
unpromising combinations of hyper-parameter values. 
Initially, when the training sample is relatively small, we 
are not quite sure of the potential of an algorithm and/or 
combination of hyper-parameter values. The potential is 
reflected by the accuracy achieved when (a large part of ) 
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the whole data set is used to train the model. To reduce 
the likelihood of incorrectly eliminating unpromising 
algorithms and identifying unpromising combinations 
of hyper-parameter values, τ should be reasonably large, 
such as 0.4. As the training sample expands over rounds, 
we will have an increasingly better idea of the potential 
of an algorithm and/or combination of hyper-parame-
ter values. To use this property to expedite the process 
of narrowing down the search space, τ is decreased over 
rounds. One approach is to perform linear decrease, such 
as by 0.07 per round, until τ reaches a pre-determined 
minimum value, such as 0.05.

Using one accuracy difference threshold per round is 
one possible approach. Another possible approach is to 
use two accuracy difference thresholds per round, one for 
eliminating unpromising machine learning algorithms 
and another for identifying unpromising combinations 
of hyper-parameter values. The rationale for the second 
approach is that the accuracy difference across different 
algorithms may be larger than that across different com-
binations of hyper-parameter values for the same algo-
rithm. Accordingly, the accuracy difference threshold for 
eliminating unpromising machine learning algorithms 
may be larger than that for identifying unpromising 
combinations of hyper-parameter values. It remains to 
be seen whether the first approach suffices, or the sec-
ond approach is needed for quickly narrowing down the 
search space.

The iterative search process
The search process is done in multiple rounds. We grad-
ually shrink the search space by eliminating unprom-
ising machine learning algorithms and identifying 
unpromising combinations of hyper-parameter values 
over rounds. Once an algorithm is eliminated, it will 
no longer be used by itself in any subsequent round of 
the search process. In contrast, once a combination of 
hyper-parameter values is identified as unpromising, 
it will no longer be used to train the machine learning 
model in any subsequent round of the search process. 
Nevertheless, it will still be used to build regression 
models, which predict a machine learning model’s accu-
racy based on hyper-parameter values and are used to 
guide the search direction.

The first round  In the first round, we start from a rela-
tively small training sample. The goal is to quickly eliminate 
machine learning algorithms that obviously look unprom-
ising. We test every applicable algorithm. As mentioned 
in Smith-Miles [62], for support vector machine, using a 
different type of kernel essentially changes the algorithm. 
Hence, the use of each type of kernel would be regarded as 
a separate algorithm [13].

For each machine learning algorithm, we test both the 
combination of its default hyper-parameter values and a 
pre-determined number (e.g., 10) of random combina-
tions of hyper-parameter values, if any. The combination 
of default hyper-parameter values, such as that in Weka 
[5], was usually preselected by machine learning experts 
to be one that performs well on various machine learn-
ing problems on average. It is a reasonably good starting 
point of the search process. Using it can help quickly find 
promising regions in the search space [49].

Consider a specific machine learning algorithm. For 
each combination of hyper-parameter values chosen for 
testing, we use the algorithm, hyper-parameter values, 
and training sample to train a model and estimate the 
model’s accuracy on the test sample. The estimated accu-
racy reflects, within the algorithm’s context, how prom-
ising the combination of hyper-parameter values looks 
by the current round. The combinations outperformed 
by the best one by a margin ≥τ in accuracy are regarded 
as unpromising, as none of the former is likely to out-
perform the latter in accuracy when (a large part of ) the 
whole data set is used to train the model. Recall that τ is 
the accuracy difference threshold.

Across all combinations of hyper-parameter values that 
have been tested so far for a machine learning algorithm, 
the highest accuracy achieved on the test sample reflects 
how promising the algorithm looks by the current round. 
For a reason similar to the one mentioned above, we 
regard the algorithms outperformed by the best one by 
a margin ≥τ in accuracy as unpromising and eliminate 
them.

A subsequent round  that is not the final one  In every 
subsequent round except for the final one, the machine 
learning algorithms remaining from the previous round 
and combinations of hyper-parameter values that look 
promising in the previous round serve as the basis of a 
reduced search space. We expand the training sample, 
decrease the accuracy difference threshold τ, and perform 
further filtering and fine-tuning of algorithms and com-
binations of hyper-parameter values. We use the training 
sample to obtain a more precise estimate of the potential 
of each pair of a remaining algorithm and a combination 
of hyper-parameter values that looks promising in the 
previous round. We also test new combinations of hyper-
parameter values for the remaining algorithms.

More specifically, the following three steps are per-
formed. In the first step, for each pair of a remaining 
machine learning algorithm and a combination of hyper-
parameter values that looks promising in the previous 
round, we use the algorithm, hyper-parameter values, 
and training sample to train a model and estimate the 
model’s accuracy on the test sample. Compared to the 
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accuracy estimate E1 obtained for the pair in the previous 
round, this accuracy estimate E2 is a more precise esti-
mate of the potential of the algorithm and combination 
of hyper-parameter values. As a result of expansion of 
the training sample, we usually have E2 ≥ E1. The accu-
racy ratio r = E2/E1 reflects the degree of increase in 
accuracy.

In the second step, we select and test new combina-
tions of hyper-parameter values, if any, for the remain-
ing machine learning algorithms. Exploration of new 
areas of the search space is performed using the sequen-
tial model-based optimization method [8]. As reviewed 
in “Review of the sequential model-based optimization 
method“, this method first builds a regression model to 
predict a machine learning model’s accuracy based on 
hyper-parameter values, and then uses the regression 
model to select new combinations of hyper-parameter 
values for testing.

Traditionally, sequential model-based optimization [8, 
10, 58, 59] was performed using a fixed training set. In 
our case, the training sample expands over rounds, affect-
ing the machine learning model’s accuracy. We modify 
the sequential model-based optimization method used in 
Auto-WEKA [8, 58] to consider this factor. Auto-WEKA 
uses random forest as the regression model.

For each remaining machine learning algorithm, a sep-
arate regression model is built on its hyper-parameters, 
as explained in “Insight 8”. As the accuracy difference 
threshold τ is reduced, the number of still promising 
combinations of hyper-parameter values for the algo-
rithm tends to decrease over rounds. If the regression 
model is built using only the still promising combinations 
of hyper-parameter values, it will have low prediction 
accuracy due to insufficient training data and misdirect 
the subsequent search process.

To address this issue, the regression model is built 
using all combinations of hyper-parameter values that 
have been tested for the machine learning algorithm 
so far. For a combination of hyper-parameter values 
cu that has been regarded as unpromising by the previ-
ous round, we do not have an accuracy estimate E2 for 
it from the current training sample, because obtaining 
this estimate is expensive and not worthwhile. Neverthe-
less, we do have an accuracy estimate E1 for cu from the 
previous round. For all combinations of hyper-parameter 
values of the algorithm that look promising in the previ-
ous round, their average accuracy ratio avg_r reflects the 
average degree of increase in accuracy due to expansion 
of the training sample. We multiply E1 by avg_r to obtain 
a rough accuracy estimate for cu for the current round. 
As explained in “Insight 9”, this rough accuracy estimate 
is imprecise, but often good enough for selecting good 
new combinations of hyper-parameter values for testing.

Once the regression model is built for the machine 
learning algorithm, the following three steps are repeated 
for a pre-determined number of times (e.g., 8): use the 
regression model to identify a promising combination of 
hyper-parameter values c to evaluate next; use the train-
ing sample to train a machine learning model and eval-
uate its accuracy a on the test sample at c; and use the 
new data point (c, a) to update the regression model. To 
explore new areas of the hyper-parameter space, every 
second combination of hyper-parameter values to evalu-
ate next is chosen at random.

In the third step, we proceed in a way similar to that 
in the first round of the search process to eliminate 
unpromising machine learning algorithms and identify 
unpromising combinations of hyper-parameter values.

Iterations of the search process  We repeat the above pro-
cess for a pre-determined number of rounds (e.g., 5) until 
the accuracy difference threshold τ reaches a pre-deter-
mined minimum value, such as 0.05. As the training sam-
ple expands, the number of promising machine learning 
algorithms and the total number of promising combina-
tions of hyper-parameter values tend to decrease. That is, 
the search space shrinks. After τ reaches the pre-deter-
mined minimum value, each pair of a remaining promis-
ing algorithm and a combination of hyper-parameter val-
ues has similar potential. The pair achieving the highest 
accuracy is the best one found.

The final round  In the final round, we use the whole 
data set and best combination of the machine learning 
algorithm and hyper-parameter values found to train and 
evaluate a model. This model is the final one returned by 
our automatic search method. Alternatively, we can pro-
gressively expand the training sample, use the best combi-
nation and training sample to train a model, and evaluate 
its accuracy on the test sample for one or more times. We 
stop once we have enough confidence in convergence [50], 
i.e., the accuracy achieved by the best combination no 
longer improves (much) as the training sample expands. 
Early stopping expedites the search process.

Additional details on handling different types of machine 
learning algorithms  As mentioned in “Insight 7”, in the 
first few (e.g., 4) pre-determined rounds of the search pro-
cess, we test base algorithms, but not meta or ensemble 
algorithms. In later rounds, we test the remaining base 
algorithms as well as meta and ensemble algorithms using 
them. In each such round, base algorithms are tested 
before meta and ensemble algorithms.

All hyper-parameters of a meta or ensemble algo-
rithm using one or more base algorithms can be classi-
fied into three types: the ones specifying the selections 
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of base algorithms, the ones controlling the process of 
combining base algorithms, and the base algorithms’ 
hyper-parameters. In conducting sequential model-
based optimization for the meta or ensemble algorithm, 
a regression model is built on the first two types of hyper-
parameters. When testing the meta or ensemble algo-
rithm, the hyper-parameters of the third type are set to 
the best values found for the base algorithms so far. In 
the first round of the search process encountering the 
meta or ensemble algorithm, for the first two types of 
hyper-parameters, we test both the combination of the 
algorithm’s default hyper-parameter values and a pre-
determined number (e.g., 10) of random combinations of 
hyper-parameter values, if any. Starting from this round, 
if a base algorithm is eliminated, it will no longer be used 
by itself in any subsequent round of the search process. 
Nevertheless, it can still be used by a meta or ensemble 
algorithm in future rounds.

Evaluation plan
MLBCD is a large software system. It will take us sev-
eral years to fully implement MLBCD. In this section, we 
present our evaluation plan for MLBCD. Our evaluation 
will use a test case and be completed in three stages. Dur-
ing the process of building MLBCD, we will assess user 
needs, preferences, and requirements (Stage 1). After 
MLBCD is built, we will evaluate its usability among 
healthcare researchers (Stage 2), then its utility among 
both healthcare researchers and computer scientists 
(Stage 3).

Demonstration test case: overview
MLBCD will be useful for any disease. As a demonstra-
tion test case, we will use MLBCD to build new models 
to accurately predict asthma diagnoses in children with 
clinically significant bronchiolitis. Both bronchiolitis and 
asthma are lung diseases caused by airway inflammation. 
Of pediatric chronic diseases, asthma is the most com-
mon [63, 64]. Asthma affects 7.1 million children (9.6 %) 
in the US [65, 66], incurring an annual total direct health-
care cost of about 9.3 billion dollars [63]. Asthma is the 
most frequent reason for preventable pediatric hospitali-
zation [67] and school absenteeism due to chronic con-
ditions [68]. Bronchiolitis, a disease mostly of children 
under age two, is highly associated with asthma. Clini-
cally significant bronchiolitis during infancy, defined as 
bronchiolitis incurring an outpatient clinic visit, emer-
gency department visit, and/or hospitalization, precedes 
31  % of cases of asthma between ages 4 and 5.5 [69]. 
More than 1/3 of children by age two have experienced 
clinically significant bronchiolitis [70], with 14–40  % 
eventually diagnosed with asthma [71, 72]. Clinically sig-
nificant bronchiolitis increases a child’s risk of asthma 

2-10 times [69, 71, 73–79]. Thus, accuracy for predicting 
asthma diagnoses will be higher on children with clini-
cally significant bronchiolitis than on all children [80, 81].

In 18–75  % of asthmatic children, asthma is under-
diagnosed [82–86]. Also, clinicians experience difficulty 
diagnosing asthma in young children [87–89]. Predictive 
models for asthma diagnoses can assist clinicians to make 
timely asthma diagnoses and start asthma treatment ear-
lier [90], as well as help study efficacy of preventive inter-
ventions for asthma in randomized clinical trials [91, 92]. 
At present, >20 models for predicting asthma diagnoses 
in children exist, but none was accurate or built specifi-
cally for children with clinically significant bronchiolitis 
[80].

Stage 1: Assess user needs, preferences, and requirements
To create an effective and usable user interface during 
the process of building MLBCD, we will conduct itera-
tive focus group sessions with 6–8 healthcare research-
ers to assess user needs, preferences, and requirements 
and develop and refine “mock” prototypes until no new 
needs are observed. We expect 2–4 iterations to reach 
saturation.

Subject recruitment  Through personal contact and 
announcement in our institute’s email lists, volunteer 
healthcare researchers will be recruited from the Univer-
sity of Utah Health Sciences Center. We will recruit 6–8 
healthcare researchers with limited computing expertise 
and obtain informed consent before the focus groups. 6–8 
participants are often considered an ideal size of a focus 
group [93]. Purposeful sampling will be used to maximize 
variation to adequately capture differences in user per-
spectives [94, 95]. Participants will receive pseudonyms 
used to link their responses to questions to protect pri-
vacy. If any healthcare researcher drops out during the 
study, we will recruit another one for replacement.

Data collection  Each focus group session will be held 
in a meeting room at the University of Utah Health Sci-
ences Center and last around 1  hour. Information will 
be solicited through a combination of semi-structured 
and open-ended questions on user needs, preferences, 
and requirements for MLBCD’s interface. We will take 
notes and record the sessions as digital audio files using 
a laptop equipped with a microphone and the Morae@ 
usability software [96]. Use of the equipment will be 
clearly disclosed. In the first session, we will present 
the background on developing MLBCD, the purpose of 
the focus group, and the test case described in “Stage 2: 
Evaluate MLBCD’s usability among healthcare research-
ers”. The healthcare researchers can opt to replace the 
test case with any case familiar to them and will provide 
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comments on how MLBCD’s interface should look. After 
the session, we will create interface mock-ups of MLBCD 
on paper. In each subsequent session, the healthcare 
researchers will be provided with the latest version of 
the mock-ups and asked to: (1) answer targeted ques-
tions regarding their interpretations of icons, messages, 
labels, and other symbols; (2) explain how they will use 
MLBCD to perform analytics for the test case; (3) pro-
vide comments on how the mock-ups should be modi-
fied. After each session, the focus group data will be ana-
lyzed using standard methods [97–100]. The digital audio 
recordings and session notes will be examined. Findings 
will be flagged and annotated using the Morae@ usability 
software and coded in a way similar to that described in 
“User feedback”. Then adjustments will be made to the 
mock-ups. The iterative process will continue until no 
new changes are identified.

We will develop a detailed user manual for MLBCD. 
After MLBCD is built, we will evaluate its usability and 
utility.

Stage 2: Evaluate MLBCD’s usability among healthcare 
researchers
Following iterative prototyping recommended by usabil-
ity experts [101, 102], we will evaluate MLBCD’s usa-
bility among healthcare researchers in two rounds. In 
the first round, we will identify initial issues and refine 
MLBCD. In the second round, we will identify remaining 
issues and finalize MLBCD. MLBCD will apply to all dis-
eases. As a test case, each healthcare researcher will use 
MLBCD to build new models to predict asthma diagno-
ses in children with clinically significant bronchiolitis.

Subject recruitment  Using the same method described 
in “Stage 1: Assess user needs, preferences, and require-
ments”, we will recruit two rounds of five healthcare 
researchers who are not involved in the Stage 1 study, 
have limited computing expertise, and are familiar with 
pediatric asthma and bronchiolitis. Five users are usu-
ally enough to find most usability issues [103]. Purposeful 
sampling will be used to ensure adequate variability. All 
test participants will be current on information security 
and privacy policy training approved by the University of 
Utah. After providing consent, each will be given a copy of 
MLBCD’s user manual and a metadata document detail-
ing tables and columns containing attributes to be used 
for the evaluation study. The work will be done non-con-
tinuously, as it takes time, e.g., to extract clinical param-
eters.

Demonstration test case: details  We will use the same 
patient population, data set, and computing environment 
for both the Stage 2 and Stage 3 studies:

1.	 Patient population Our study cohort includes chil-
dren who had healthcare visits (outpatient clinic visit, 
emergency department visit, and hospitalization) at 
Intermountain Healthcare facilities for bronchiolitis 
(ICD-9-CM discharge diagnosis code 466.1 [104]  ) 
before age two in the past 18  years, about 97,000 
unique patients. Intermountain Healthcare is the 
largest healthcare system in Utah, with 22 hospitals 
and 185 clinics.

2.	 Data set We will use a large clinical and administra-
tive data set in the Intermountain Healthcare enter-
prise data warehouse. Secondary analysis will be per-
formed on a de-identified version of the data stored 
on a password-protected and encrypted computer 
cluster. The data set includes ~400 attributes and rep-
resents electronic documentation of ~85 % of pediat-
ric care delivered in Utah [105]. For the last 18 years, 
data captured cover more than 3000 patients under 
age two and 3700 healthcare visits at Intermountain 
Healthcare facilities for bronchiolitis per year. Inter-
mountain Healthcare dedicates extensive resources 
to ensure data integrity and accuracy.

3.	 Computing environment All experiments will be con-
ducted on the HIPAA-compliant Homer computer 
cluster at the University of Utah [106]. With proper 
authorization, all research team members and test 
participants at the University of Utah can use their 
university computers to access this cluster. Our anal-
ysis results will provide a cornerstone to expand test-
ing of MLBCD on other test cases and clinical data 
sets in the future.

Information about  the predictive models  Clinical and 
administrative attributes will be used to build machine 
learning models.

Defining the prediction target (i.e., the dependent vari-
able): The method described in Schatz et  al. [107–109] 
will be used to identify asthma. A patient is considered to 
have asthma if he/she has (1) at least one ICD-9 diagnosis 
code of asthma (493.xx) or (2) ≥2 “asthma-related medi-
cation dispensings (excluding oral steroids) in a 1-year 
period,” “including β-agonists (excluding oral terbutaline), 
inhaled steroids, other inhaled anti-inflammatory drugs, 
and oral leukotriene modifiers” [107]. Identifying asthma 
needs medication order and refill information. Our data 
set includes this information, as Intermountain Health-
care has its own health insurance plan (SelectHealth). If 
the Intermountain Healthcare enterprise data warehouse 
is missing too much refill information, we will use claim 
data in the all-payer claims database [110] to compensate.

A child who will ever develop asthma can benefit from 
timely asthma diagnosis and preventive interventions for 
asthma [111]. Hence, our prediction target will be ever 
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developing asthma by a certain age. No consensus exists 
on the optimal cut-off age [112]. To help select an appro-
priate cut-off age, we will plot the cumulative rate of ever 
developing asthma vs. age [113–115]. The age at which 
the cumulative rate starts to level off can be an appropri-
ate cut-off point, as it ensures including most children 
who will ever develop asthma.

Let C denote the selected cut-off age. For a healthcare 
visit for bronchiolitis that occurred in year 1, data from 
year 1 up to year C +  1 are needed for computing the 
dependent variable’s value. Hence, given our 18 years of 
data on pediatric patient encounters, we can use the first 
18-C years of data on healthcare visits for bronchiolitis 
and ensure that all values of the dependent variable are 
computable. That is, we have 18-C years of effective data. 
If the cumulative rate of ever developing asthma does 
not level off, we will choose C = 14 to ensure that at least 
four years of effective data are available.

Performance evaluation We will use the first 16-C 
years’ effective data to train predictive models. The (17-
C)-th and (18-C)-th years’ effective data will be used as 
the test data to obtain a model’s final accuracy estimate, 
reflecting use in practice. If a child incurred healthcare 
visits for bronchiolitis in both the training and test data, 
we will remove the child from the test data, as correct 
prediction can be made by memorizing the child’s out-
come. For a similar reason, if standard, stratified tenfold 
cross validation [5, Section  5.3] needs to be conducted 
during model training, the training data will be split into 
ten partitions based on patient IDs so that all healthcare 
visits for bronchiolitis of the same patient will be put into 
the same partition.

Data pre-processing We will use standard techniques, 
such as imputation, to handle missing values and detect 
and correct/remove invalid values [1, 36]. For clinical 
and administrative attributes, we will use grouper mod-
els such as the Diagnostic Cost Groups (DCG) system to 
group procedures, diseases, and drugs and reduce attrib-
utes [116, Chapter 5].

Input variables Predictors of asthma diagnoses in bron-
chiolitis patients have not been fully identified. In our 
recent papers [80, 117], we compiled an extensive list of 
known predictors of asthma diagnoses in bronchiolitis 
patients. All known predictors stored in the Intermoun-
tain Healthcare enterprise data warehouse will be used as 
input variables. In addition, our data set contains attrib-
utes beyond the known predictors.

Predictive models As one predictive model does not fit 
all [118], separate predictive models will be developed for 
children presenting with bronchiolitis at <6, 6–12, and 
13–24  months of age [119]. The final model will be the 
combination of all models. We will use the standard per-
formance metric of the AUC [5].

User feedback  In either round after model building is 
completed, we will survey the five healthcare research-
ers using a combination of semi-structured and open-
ended questions. We will gather quantitative outcome 
measures including prediction accuracy, time on task, 
satisfaction, self-efficacy for building machine learning 
predictive models with big clinical data, adequacy, trust-
worthiness, and documentation quality as described in 
Table  1. The questionnaire will include a text field for 
user comments on MLBCD, if any. We will incorporate 

Table 1  Description of the dependent variables

Variable Description

Prediction accuracy AUC achieved by the predictive model built

Time Number of hours spent on building the predictive model

Satisfaction Responses to three questions: (1) How satisfied were you with the 
predictive model built? (2) How easy was the predictive model building 
process? and (3) How much effort did it take to complete the predictive 
modeling task? Ratings are on a 1–7 scale with anchors of not at all/
completely; difficult/easy; and a lot of effort/little effort

Self-efficacy for building machine learning predictive  
models with big clinical data

Response to the question: overall how confident are you about your ability 
to build machine learning predictive models with big clinical data [129]? 
Rating is on a 1–5 scale with anchors of not at all/completely confident

Adequacy How sufficiently do you think MLBCD supports building machine learning 
predictive models with big clinical data? Rating is on a 1–7 scale with 
anchors of not at all/sufficiently

Trustworthiness How much sense do you think the predictive models make clinically? Rat-
ing is on a 1–7 scale with anchors of not at all/completely.

Documentation quality Responses to two questions: (1) How comprehensive is MLBCD’s user man-
ual? (2) How easy is MLBCD’s user manual to understand? Ratings are on 
a 1–7 scale with anchors of not at all/comprehensive; and difficult/easy
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suggestions from these comments and refine/finalize 
MLBCD.

A formal user satisfaction survey will be conducted 
using the System Usability Scale (SUS), a publicly avail-
able 10-item scale [120, 121]. The scale provides an over-
all satisfaction rating for products. Higher scores indicate 
more positive usability perceptions [122]. The SUS is a 
widely used industry standard. A meta-analysis [123] 
endorsed the SUS above other instruments, as it applies 
to various products, is easy to use, and has a score that 
is easy to interpret. The scale has acceptable psychomet-
rics. The internal consistency reliability ratings using 
Cronbach’s alpha ranged from 0.85 to 0.91 [123]. Factor 
analysis revealed one factor: usability [123]. The scale 
correlates well with other usability questionnaires for 
adequate concurrent validity [122].

Analysis We will conduct a qualitative analysis using 
the accepted inductive approach recommended by Pat-
ton et  al. [94, 124]. Textual comments provided by the 
five healthcare researchers will be loaded into ATLAS 
qualitative analysis software [125]. We will highlight quo-
tations and text relevant to the issue of using MLBCD. 
Quotations will be reviewed, categorized into pre-
codes, and aggregated into categories after several itera-
tions. General themes will be identified by synthesis of 
categories.

Quantitative analyses will consist of summing the 
scores on the SUS and reporting descriptive statistics on 
each quantitative outcome measure.

Stage 3: Test MLBCD’s utility
Using the same test case in “Stage 2: Evaluate MLBCD’s 
usability among healthcare researchers”, we will evaluate 
MLBCD’s utility in two parts. Part 1 compares healthcare 
researchers with MLBCD to computer scientists without 
MLBCD representing the state of the art of model build-
ing. Part 2 compares computer scientists with and with-
out MLBCD.

Subject recruitment  We will recruit volunteer health-
care researchers using the same method described in 
“Stage 1: Assess user needs, preferences, and require-
ments”. Through personal contact and announcement 
in our institute’s email lists and course lectures, volun-
teer computer scientists among graduate students, staff, 
and faculty with machine learning background will be 
recruited at the University of Utah. All test participants 
will be current on information security and privacy policy 
training approved by the University of Utah.

In part 1, we will recruit 25 healthcare researchers 
who are involved in neither the Stage 1 nor the Stage 
2 study, have limited computing expertise, and are 
familiar with pediatric asthma and bronchiolitis. After 

providing consent, each will be given a copy of MLBCD’s 
user manual and the metadata document (see “Subject 
recruitment”). In addition, we will recruit 25 computer 
scientists. After providing consent, each will be given a 
copy of the metadata document. They will manually tune 
machine learning models and spend more time on the 
study than the other test participants.

In part 2, we will recruit 25 computer scientists not 
involved in part 1. After providing consent, each will be 
given a copy of MLBCD’s user manual and the meta-
data document. The metadata document describes each 
attribute in the data set in detail. If any computer scien-
tist needs clinical input such as explaining clinical con-
cepts during the study, we will arrange a clinician to 
provide consultation.

Build predictive models  In part 1, each of the 25 
healthcare researchers will build predictive models with 
MLBCD. Each of the 25 computer scientists will build 
models without MLBCD. In part 2, each of the 25 com-
puter scientists will build models with MLBCD. Finally, 
we will select from all of these models the one achieving 
the highest AUC, use MLBCD to refine it if possible, and 
determine our final model.

Model comparison and sample size justification In part 
1, we will compare the AUCs achieved by the 25 health-
care researchers with MLBCD to those achieved by the 
25 computer scientists without MLBCD. We will use two 
one-sided equivalence tests [126] to test our primary 
hypothesis that healthcare researchers can use MLBCD 
to achieve similar prediction accuracy as computer sci-
entists without MLBCD. Here as an approximation, we 
treat AUCs from different test participants as independ-
ent measures by regarding participants as a random sam-
ple from the population. A sample size of 25 instances 
per group will achieve 80 % power at a significance level 
of 0.05 when the true standardized difference of AUC 
between the two groups is 1.29 and the equivalence limits 
of the standardized difference are −2 and 2. We would 
regard the Stage 3 study successful if the non-equivalence 
hypothesis is rejected.

In part 2, we will compare the AUCs achieved by the 25 
computer scientists without MLBCD to those achieved 
by the other 25 computer scientists with MLBCD. We 
will use a one-sided independent-sample t test to test 
the secondary hypothesis that computer scientists with 
MLBCD can achieve higher prediction accuracy than 
those without MLBCD. A sample size of 25 instances per 
group will have 80 % power at a significance level of 0.05 
to detect a standardized difference of AUC between the 
two groups of 0.7.

We will record and describe the number of hours each 
test participant spent building the predictive model.
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If our models cannot achieve high prediction accu-
racy, we will develop separate models for different sub-
groups of bronchiolitis patients defined by characteristics 
such as prematurity, co-morbidity, or type of healthcare 
visit for bronchiolitis. If both healthcare researchers and 
computer scientists still achieve low prediction accu-
racy, e.g., because asthma diagnoses are not predictable, 
we cannot tell whether MLBCD is effective. In this case, 
we will choose another test case, where it is known that 
some machine learning algorithm can achieve high pre-
diction accuracy and statistical methods cannot. Statisti-
cal methods are known to perform poorly for predicting 
asthma diagnoses in children [80].

Ethics approval
We have already obtained institutional review board 
approvals from the University of Utah and Intermountain 
Healthcare for the study on evaluating MLBCD.

Preliminary user study
In preparation for the formal evaluation of MLBCD, we 
conducted a preliminary user study to assess user needs. 
We recruited two volunteer healthcare researchers with 
limited computing expertise from the University of Utah 
Health Sciences Center. Both of them were given a meta-
data document detailing tables and columns containing 
attributes to be used for the evaluation study. We first 
asked the two healthcare researchers to imagine build-
ing machine learning predictive models for the test case 
described in “Stage 2: Evaluate MLBCD’s usability among 
healthcare researchers” using existing software such as an 
Oracle database and Weka [5]. Both of them mentioned 
that without asking for help from computing profession-
als, they did not know how to transform big EAV data into 
relational table formats, such as performing pivot opera-
tions by writing complex SQL queries. One of them knew 
how to perform pivot operations in Excel, which works for 
only small data sets. Neither of them knew how to choose 

an appropriate machine learning algorithm and hyper-
parameter values. In fact, one of them had never heard 
of hyper-parameters before and did not know that hyper-
parameter values could be chosen in machine learning 
software such as Weka. Next, we described to the two 
healthcare researchers at a high level how MLBCD will 
work and showed them an early-stage prototype graphical 
user interface for a basic pivot function: pivoting on a sin-
gle EAV table to generate a relational table. Both of them 
mentioned that a software tool like MLBCD would be very 
useful to them and greatly reduce the barriers for them to 
build machine learning predictive models by themselves. 
Also, the prototype graphical user interface for the basic 
pivot function is intuitive for them to understand. Find-
ings from the preliminary user study confirmed the need 
for a user-friendly software tool and supported conduct-
ing a formal evaluation described in “Stage 1: Assess user 
needs, preferences, and requirements”.

Related work
As described in our review paper [12], computer science 
researchers have developed multiple automatic selec-
tion methods for machine learning algorithms and/or 
hyper-parameter values. Most of these methods focus 
on either searching for an effective algorithm or search-
ing for an effective combination of hyper-parameter val-
ues. Only a few methods can select both algorithms and 
hyper-parameter values simultaneously. None of these 
methods can efficiently handle big clinical data in the 
presence of a large variety of algorithms, limiting these 
methods’ usefulness in practice. The automatic selection 
method described in this paper addresses the limitations 
of these methods. Table 2 shows a summary of the com-
parison between the automatic selection method used in 
MLBCD and existing automatic selection methods for 
machine learning algorithms and/or hyper-parameter 
values. A detailed review of existing methods is provided 
in our paper [12].

Table 2  MLBCD vs. existing automatic selection methods for machine learning algorithms and/or hyper-parameter val-
ues

Method Select algorithms Select hyper-parameter 
values

Can efficiently 
handle big data

Can handle a wide range 
of algorithms

Can handle various 
types of hyper-
parameters

MLBCD ✓ ✓ ✓ ✓ ✓
[130] ✓ × × × ×
[57, 131] ✓ × × ✓ ×
[9, 51, 54, 55, 132] ✓ × ✓ ✓ ×
[58, 61] × ✓ × × ✓
[10, 59, 133–138] × ✓ × × ×
[7, 8, 13, 14] ✓ ✓ × ✓ ✓
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Google provides the Google Prediction API [127] 
that has some degree of automation for machine learn-
ing problems. The API’s internal workings have never 
been published. Also, the API puts a limit of ≤2.5 GB 
on the training data size. Amazon provides a ser-
vice for machine learning: Amazon Machine Learn-
ing [128]. This service uses only two machine learning 
algorithms: logistic regression and linear regression. 
For many predictive modeling problems, other algo-
rithms significantly outperform these two algorithms. 
Due to privacy concerns, many healthcare systems 
allow researchers to use their clinical data only behind 
the firewall. Consequently, machine learning services 
hosted by external companies become essentially inac-
cessible to researchers in these healthcare systems. In 
comparison, MLBCD can be installed on computers 
behind the firewall and are accessible to researchers in 
any healthcare system.

Conclusions
We describe the design of MLBCD, a new software sys-
tem aiming to enable healthcare researchers with limited 
computing expertise to develop machine learning predic-
tive models. MLBCD supports the whole process of itera-
tive machine learning on big clinical data, from clinical 
parameter extraction to model building and evaluation. 
MLBCD will open the use of big clinical data to many 
healthcare researchers and increase the ability to foster 
biomedical discovery and improve care. We are currently 
in the process of building MLBCD.
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