
ORIGINAL PAPER

A mathematical analysis of the long-run behavior of genetic
algorithms for social modeling

Ludo Waltman • Nees Jan van Eck

Published online: 24 January 2012

� The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract We present a mathematical analysis of the

long-run behavior of genetic algorithms (GAs) that are

used for modeling social phenomena. Our analysis relies

on commonly used mathematical techniques in the field

of evolutionary game theory. We make a number of

assumptions in our analysis, the most important one being

that the mutation rate is positive but infinitely small. Given

our assumptions, we derive results that can be used to

calculate the exact long-run behavior of a GA. Using these

results, the need to rely on computer simulations can be

avoided. We also show that if the mutation rate is infinitely

small the crossover rate has no effect on the long-run

behavior of a GA. To demonstrate the usefulness of our

mathematical analysis, we replicate a well-known study by

Axelrod in which a GA is used to model the evolution of

strategies in iterated prisoner’s dilemmas. The theoretically

predicted long-run behavior of the GA turns out to be in

perfect agreement with the long-run behavior observed in

computer simulations. Also, in line with our theoretically

informed expectations, computer simulations indicate that

the crossover rate has virtually no long-run effect. Some

general new insights into the behavior of GAs in the

prisoner’s dilemma context are provided as well.

Keywords Genetic algorithm � Long-run behavior �
Social modeling � Economics � Evolutionary game theory

1 Introduction

The field of evolutionary computation is concerned with

the study of all kinds of evolutionary algorithms. These

algorithms can be used for various purposes. Perhaps the

most popular purpose for which they can be used is func-

tion optimization (e.g., Gen and Cheng 2000; Goldberg

1989; Michalewicz 1996). In the function optimization

context, evolutionary algorithms can be seen as heuristics

that serve as alternatives to more traditional techniques

from the fields of combinatorial optimization and mathe-

matical programming. Another important purpose for

which evolutionary algorithms can be used is the modeling

of biological and social phenomena (e.g., Mitchell 1996).

This is the topic with which we are concerned in this paper.

Our focus is in particular on the use of evolutionary

algorithms for modeling social phenomena.

When using evolutionary algorithms in the social

modeling context, one of the assumptions one makes is

that the agents whose behavior is being modeled are

boundedly rational. This basically means that the agents

are assumed not to behave in a utility-maximizing manner.

There are numerous ways in which boundedly rational

behavior can be modeled (e.g., Brenner 2006; Fudenberg

and Levine 1998). A popular approach is to rely on an

evolutionary metaphor. This is the approach that is taken

by evolutionary algorithms. In its simplest form, the

evolutionary approach assumes that there is a population

of agents and that for each agent in the population the

strategy it uses depends on the population-wide past per-

formance of strategies. The better the past performance of

a strategy, the more likely the strategy is to be used again.

The evolutionary approach also assumes that there always

is a small probability that an agent experiments with a new

strategy.
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The evolutionary approach to modeling boundedly

rational behavior has attracted a lot of attention, not only

from researchers in the field of evolutionary computation

but also from researchers in the social sciences, in partic-

ular from economists. Traditionally, economists have

typically relied on game-theoretic models to analyze

interactions between agents. These models assume agents

to behave in a fully rational way. Nowadays, however, the

limitations of game-theoretic models are well recognized

and many economists have started to study evolutionary

models of agent behavior. These models are based on the

assumption that the behavior of agents can best be

described using some evolutionary mechanism rather than

using the idea of full rationality.

In the field of economics, there are two quite separate

streams of research that are both concerned with the evo-

lutionary approach to modeling boundedly rational

behavior. One stream of research, which is usually referred

to as agent-based computational economics (e.g., Tesfat-

sion 2006), makes use of techniques from the field of

evolutionary computation. Especially genetic algorithms

(GAs) are frequently used. Early work in this stream of

research includes (Andreoni and Miller 1995; Arifovic

1994, 1996; Dawid 1996; Holland and Miller 1991; Marks

1992; Miller 1986), and examples of more recent work are

Alkemade et al. (2006, 2009), Georges (2006), Haruvy

et al. (2006), Lux and Schornstein (2005), Vriend (2000),

Waltman and Van Eck (2009), and Waltman et al. (2011).

The other stream of research is more closely related to

traditional game theory and is referred to as evolutionary

game theory (e.g., Gintis 2000; Maynard Smith 1982;

Vega-Redondo 1996; Weibull 1995). Like the traditional

game-theoretic approach, the evolutionary game-theoretic

approach is model-based and relies heavily on mathemat-

ical analysis. The use of computer simulations is not very

common in evolutionary game theory.

In this paper, it is not our aim to argue in favor of either

the agent-based computational economics approach, which

emphasizes algorithms and computer simulations, or the

evolutionary game-theoretic approach, which emphasizes

models and mathematical analysis. Instead, we want to

show how the former approach can benefit from the

mathematical techniques used in the latter approach. More

specifically, we want to show how evolutionary algorithms

that are used for modeling social phenomena can be ana-

lyzed mathematically using techniques that are popular in

evolutionary game theory. Our focus in this paper is on one

particular type of evolutionary algorithm, namely GAs with

a binary encoding. However, we emphasize that the

approach that we take can be applied to other types of

evolutionary algorithms as well. The reason for focusing on

GAs with a binary encoding is that this seems to be the type

of evolutionary algorithm that is used most frequently for

modeling social phenomena (e.g., Alkemade et al. 2006,

2007; Andreoni and Miller 1995; Arifovic 1994, 1996;

Ashlock et al. 1996; Axelrod 1987; Crowley et al. 1996;

Dawid 1996; Georges 2006; Ishibuchi and Namikawa

2005; Lux and Schornstein 2005; Marks 1992; Miller 1986,

1996; Van Bragt et al. 2001; Vriend 2000; Yao and

Darwen 1994).

The mathematical analysis that we present in this paper

deals with the long-run behavior of GAs with a binary

encoding. The GAs are assumed to be used in the social

modeling context (for theoretical work on GAs in the

function optimization context, see, e.g., Mitchell 1996; Nix

and Vose 1992; Rudolph 1994, 1998; Vose 1999). In the

terminology of Vriend (2000), we are concerned with GAs

that are used for modeling social learning (as opposed to

individual learning). Our work can be seen as an extension

of the work of Dawid (1996), who derived a number of

important mathematical results on the behavior of GAs. For

small and moderate population sizes, the results of Dawid

do not provide a full characterization of the long-run

behavior of GAs. We extend the work of Dawid by

deriving results that do provide a full characterization of

the long-run behavior of GAs for small and moderate

population sizes. Using our results, the long-run behavior

of a GA can be calculated exactly and need not be esti-

mated using computer simulations. This means that it is no

longer necessary to run a GA a large number of times for a

large number of iterations in order to get insight into its

long-run behavior. The use of our mathematical results

has at least three advantages over the use of computer

simulations:

1. Our mathematical results can be used to calculate the

long-run behavior of a GA exactly, while computer

simulations can only be used to estimate the long-run

behavior of a GA.

2. When using computer simulations, it can be difficult to

determine how many iterations of a GA are required to

approximate the long-run behavior of the GA reason-

ably closely. Our mathematical results do not have this

problem.

3. Calculating the exact long-run behavior of a GA using

our mathematical results requires less computing

time than obtaining a reasonably accurate estimate

of the long-run behavior of a GA using computer

simulations.

Our mathematical results have one important limitation,

which is that on most of today’s computers they can only

be used if the chromosome length is not greater than about

24 bits. If the chromosome length is greater than about 24

bits, the use of our mathematical results to calculate the

long-run behavior of a GA most likely requires a prohibi-

tive amount of computer memory.
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Like in Dawid (1996), the mathematical analysis pre-

sented in this paper relies on the assumption that the

mutation rate is positive but infinitely small. (In other

words, the analysis is concerned with the limit case in

which the mutation rate approaches zero.) In simulation

studies with GAs, researchers typically work with values

between 0.001 and 0.01 for the mutation rate. This seems

to be a rather pragmatic choice (cf. Dawid 1996). On the

one hand, lower values for the mutation rate would lead

to very slow convergence and, consequently, very long

simulation runs. On the other hand, higher values for the

mutation rate would lead to convergence to unstable,

difficult to interpret outcomes. We believe that our

assumption of an infinitely small mutation rate is justified

because an infinitely small mutation rate is less arbitrary

than a mutation rate whose value is determined solely

based on pragmatic grounds (cf. Foster and Young 1990).

The assumption of an infinitely small mutation rate is also

in line with the common practice in evolutionary game

theory, in which a similar assumption is almost always

made. The advantage of assuming an infinitely small

mutation rate is that it greatly simplifies the mathematical

analysis of the long-run behavior of GAs (see also Dawid

1996). In fact, GAs with an infinitely small mutation rate

can be analyzed in a similar way as well-known models

in evolutionary game theory (e.g., Foster and Young

1990; Kandori et al. 1993; Vega-Redondo 1997; Young

1993). Like in evolutionary game theory, mathematical

results provided by Freidlin and Wentzell (1998) are the

key tool for analyzing the long-run behavior to which

convergence will take place. We note that, in addition

to the assumption of an infinitely small mutation rate,

there are some other technical assumptions on which our

mathematical analysis relies. Most of these assumptions

are not very strong and will probably be satisfied by most

GAs.

To demonstrate the usefulness of our mathematical

analysis, we replicate a well-known study by Axelrod

(1987) (reprinted in Axelrod 1997; see also Dawid 1996;

Mitchell 1996). Axelrod used a GA to model the evolution

of strategies in iterated prisoner’s dilemmas (IPDs). He

showed that an evolutionary mechanism can lead to

cooperative behavior. Axelrod’s study has been one of the

first and also one of the most influential studies on the use

of evolutionary algorithms for modeling social phenomena.

Directly or indirectly, his study seems to have inspired

many researchers (e.g., Ashlock et al. 1996, 2006; Chong

and Yao 2005; Crowley et al. 1996; Fogel 1993; Ishibuchi

and Namikawa 2005; Mühlenbein 1991; Thibert-Plante and

Charbonneau 2007; Van Bragt et al. 2001; Yao and Darwen

1994). The results obtained by Axelrod are all based on

computer simulations. In this paper, we show that more or

less the same results can be calculated exactly, with no

need to rely on simulations. We also discuss some new

insights that exact calculations provide.

The mathematical analysis that we present in this paper

also has an important implication for the choice of the

parameters of a GA. The analysis indicates that if the

mutation rate is infinitely small the crossover rate has no

effect on the long-run behavior of a GA. This is a quite

remarkable result that, to the best of our knowledge, has

not been reported before in the theoretical literature on

GAs. The result implies that when GAs are used for

modeling social phenomena the crossover rate is likely to

be a rather insignificant parameter, at least when one is

mainly interested in the behavior of GAs in the long run

(for the short run, see Thibert-Plante and Charbonneau

2007). This suggests that in many cases the crossover rate

can simply be set to zero, in which case no crossover will

take place at all. Simulation results that we report in this

paper indeed show no significant effect of the crossover

rate on the long-run behavior of a GA.

The remainder of this paper is organized as follows: in

Sect. 2, we present a mathematical analysis of the long-

run behavior of GAs that are used for modeling social

phenomena. Based on the analysis, we derive an algorithm

for calculating the long-run behavior of GAs in Sect. 3. In

Sect. 4, we demonstrate an application of the algorithm by

replicating Axelrod’s study (1987). Finally, we discuss the

conclusions of our research in Sect. 5. Proofs of our

mathematical results are provided in the Appendix.

2 Analysis

The general form of the GAs that we analyze in this paper

is shown in Fig. 1. In this figure, and also in the rest of this

paper, the positive integers n and m and the probabilities

c and e denote, respectively, the population size, the

chromosome length, the crossover rate, and the mutation

rate. For simplicity, we assume the population size n to be

even. We further assume the crossover rate c and the

mutation rate e to remain constant over time. We also

assume e to be positive. The GAs that we analyze are

generalizations of the canonical GA discussed in, for

example, Goldberg (1989) and Mitchell (1996). Like the

canonical GA, we assume the use of a binary encoding, that

is, chromosomes correspond to bit strings in our GAs.

Unlike the canonical GA, we do not assume the use of

specific selection and crossover operators. Instead, the GAs

that we analyze may use almost any selection operator,

such as roulette wheel selection (sometimes referred to as

fitness-proportionate selection), tournament selection, or

rank selection, and any crossover operator, such as single-

point crossover, two-point crossover, or uniform crossover.

Furthermore, in the GAs that we analyze, the fitness of a
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chromosome may depend, either deterministically or sto-

chastically, on the entire population rather than only on the

chromosome itself. When using GAs for social modeling,

the fitness of a chromosome typically depends on the entire

population. This is referred to as state-dependent fitness in

Dawid (1996). In most studies, GAs that are used for social

modeling have the same general form as the GAs that we

analyze in this paper.

We now introduce the terminology and the mathemati-

cal notation that we use in our analysis. We note that an

overview of the mathematical notation is provided in

Table 1. There are l = 2m different chromosomes, deno-

ted by 0; . . .; l� 1: Each chromosome has a unique binary

encoding, which is given by a bit string of length m.1 C ¼
f0; . . .; l� 1g denotes the set of all chromosomes. i and j

denote typical chromosomes and take values in C: The

following definition introduces the notion of uniform and

non-uniform populations.

Definition 1 A population is said to be uniform if and

only if all n chromosomes in the population are identical. A

population is said to be non-uniform if and only if some

chromosomes in the population are different.

U denotes the set of all uniform populations. Obviously,

since there are l different chromosomes, there are also l
different uniform populations, that is, jUj ¼ l: uðiÞ 2 U
denotes the uniform population consisting of n times

chromosome i.d(i, j) denotes the Hamming distance

between chromosomes i and j, that is, the number of cor-

responding bits in the binary encodings of i and j that are

different. GðiÞ denotes the set of all chromosomes that have

the same binary encoding as chromosome i except that one

bit has been changed from one into zero. Conversely, HðiÞ
denotes the set of all chromosomes that have the same

binary encoding as chromosome i except that one bit has

been changed from zero into one. In mathematical notation,

GðiÞ ¼ fjjj\i and dði; jÞ ¼ 1g ð1Þ
HðiÞ ¼ fjjj [ i and dði; jÞ ¼ 1g: ð2Þ

Notice that j 2 GðiÞ if and only if i 2 HðjÞ: There are

m ¼ lm=2 ¼ m2m�1 ð3Þ

combinations of two chromosomes i and j such that

d(i, j) = 1, that is, such that the binary encodings of i and

j differ by exactly one bit. (To see this, notice that

there are l different chromosomes and that for each

chromosome there are m chromosomes that have the

same binary encoding except for one bit. Dividing by two

is necessary to avoid double counting.) k and k0 denote

indices that take values in f1; . . .; mg: eV denotes the set of

all populations in which there are exactly two different

chromosomes and in which the binary encodings of these

chromosomes differ by exactly one bit. There are

n ¼ eV ¼ mðn� 1Þ ¼ ðn� 1Þm2m�1 ð4Þ

such populations. (The order of the chromosomes within a

population has no effect on the behavior of a GA.

Populations consisting of the same chromosomes in

different orders are therefore considered identical.) V
denotes the set that is obtained by adding the uniform

populations to eV ; that is, V ¼ eV [ U: For i and j such that

d(i, j) = 1 and for k 2 f0; . . .; ng; vði; j; kÞ 2 V denotes the

population consisting of k times chromosome i and n - k
times chromosome j. Notice that v(i, j, k) = v(j, i, n - k)

and that v(i, j, 0) = u(j) and vði; j; nÞ ¼ uðiÞ: W denotes

the set of all possible populations. As shown in Nix and

Vose (1992, Lemma 1) and Dawid (1996), the number of

possible populations equals

jWj ¼ nþ l� 1

l� 1

� �

¼ ðnþ l� 1Þ!
n!ðl� 1Þ! : ð5Þ

(Again, populations consisting of the same chromosomes

in different orders are considered identical.) For t 2
f0; 1; . . .g; the random variable Wt 2 W denotes the

population at the beginning of iteration t of a GA. For i

and j such that d(i, j) = 1 and for k 2 f1; . . .; n� 1g and

k0 2 f0; . . .; ng; pði; j; k; k0Þ denotes the limit as the

mutation rate e approaches zero of the probability that

population v(i, j, k) is turned into population vði; j; k0Þ in a

single iteration of a GA. In mathematical notation,

pði; j; k; k0Þ ¼ lim
e!0

PrðWtþ1 ¼ vði; j; k0ÞjWt ¼ vði; j; kÞÞ ð6Þ

Fig. 1 General form of the genetic algorithms analyzed in this paper

1 In this paper, we use a standard binary encoding. Hence, if m = 2,

chromosomes 0, 1, 2, and 3 have binary encodings 00, 01, 10, and 11,

respectively. We emphasize that the use of a standard binary encoding

is by no means essential for our analysis. Other binary encoding

schemes, such as Gray encoding, can be used as well. This does not

require any significant changes in our analysis.
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where t 2 f0; 1; . . .g: Because the binary encodings of

chromosomes i and j differ by only one bit, applying the

crossover operator to chromosomes i and j has no effect. As

a consequence, the crossover operator has no effect on

pði; j; k; k0Þ: Moreover, because e approaches zero, the

mutation operator has no effect on pði; j; k; k0Þ either.

pði; j; k; k0Þ therefore equals the probability that the selec-

tion operator turns population v(i, j, k) into population

vði; j; k0Þ in a single iteration of a GA.

The following definition introduces the notion of almost

uniform populations.

Definition 2 A non-uniform population w 2 W n U is

said to be almost uniform if and only if

lim
e!0

PrðWtþN ¼ ujWt ¼ wÞ[ 0 ð7Þ

for all t 2 f0; 1; . . .g; some finite positive integer N, and

some u 2 U:

Hence, a non-uniform population is almost uniform if

and only if no mutation is required to go from the non-

uniform population to some uniform population. This is

not a very strong condition. In many cases, all non-uni-

form populations are almost uniform. For example, if a

GA uses roulette wheel selection or tournament selection,

there is always a possibility that the selection operator

selects n times the same chromosome. In other words, the

selection operator can turn any non-uniform population

into a uniform population in a single iteration. Because of

this, when roulette wheel selection or tournament selec-

tion is used, all non-uniform populations are almost

uniform.

The following two definitions introduce the notion of a

connection from one chromosome to another:

Definition 3 A direct connection from chromosome i to

chromosome j is said to exist if and only if d(i, j) = 1 and

lim
e!0

PrðWtþN ¼ uðjÞjWt ¼ vði; j; n� 1ÞÞ[ 0 ð8Þ

for all t 2 f0; 1; . . .g and some finite positive integer N.

Definition 4 A connection from chromosome i to chro-

mosome j is said to exist if and only if there exists a sequence

ði1; . . .; iNÞ such that i1; . . .; iN 2 C; i1 ¼ i; iN ¼ j; and iM is

directly connected to iM?1 for all M 2 f1; . . .;N � 1g:

Definition 3 states that there is a direct connection from

chromosome i to chromosome j if and only if the minimum

number of mutations required to go from uniform popu-

lation u(i) to uniform population u(j) is one. We note that in

many cases all chromosomes i and j such that d(i, j) = 1

have mutual direct connections. This is, for example, the

case if a GA uses roulette wheel selection and the fitness of

a chromosome is always positive. Definition 4 states that

there is a connection from chromosome i to chromosome j

if and only if there is a sequence of chromosomes starting

at i and ending at j such that each chromosome in the

sequence is directly connected to its successor. Clearly, if

all chromosomes i and j such that d(i, j) = 1 have mutual

direct connections, then each chromosome is connected to

all other chromosomes.

It is well known that the population in the current iter-

ation of a GA has no effect on the behavior of the GA in

the long run (e.g., Dawid 1996; Nix and Vose 1992). More

specifically, the population an infinite number of iterations

in the future is statistically independent of the population in

the current iteration. The following lemma states this result

in a formal way:

Lemma 1 For each population w 2 W; there exists a

long-run probability �qðwÞ such that

lim
N!1

PrðWtþN ¼ wjWt ¼ wtÞ ¼ �qðwÞ ð9Þ

Table 1 Overview of the mathematical notation

C Set of all chromosomes

GðiÞ Set of all chromosomes that have the same binary

encoding as chromosome i except that one bit has

been changed from one into zero

HðiÞ Set of all chromosomes that have the same binary

encoding as chromosome i except that one bit has

been changed from zero into one

m Chromosome length

n Population size

�qðwÞ Long-run probability of population w

q̂ðwÞ Long-run limit probability of population w

q̂ Long-run limit distribution

U Set of all uniform populations

u(i) Uniform population consisting of n times chromosome i

V Set of all populations in which there are at most two

different chromosomes and in which the binary

encodings of chromosomes differ by at most one bit

v(i, j, k) Population consisting of k times chromosome i and

n - k times chromosome j

W Set of all populations

Wt Population at the beginning of iteration t of a GA

c Crossover rate

d(i, j) Hamming distance between chromosomes i and j

e Mutation rate

l Number of different chromosomes Number of uniform

populations

m Number of combinations of two chromosomes whose

binary encodings differ by exactly one bit

n Number of populations in which there are exactly two

different chromosomes and in which the binary

encodings of chromosomes differ by at most one bit

pði; j; k; k0Þ Probability that the selection operator turns population

v(i, j, k) into population vði; j; k0Þ in a single iteration

of a GA
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for all t 2 f0; 1; . . .g and all wt 2 W:

Proof See the Appendix.

In our analysis, we are concerned with the long-run

behavior of GAs in the limit as the mutation rate e
approaches zero. We therefore use the following definition:

Definition 5 For w 2 W; q̂ðwÞ ¼ lime!0 �qðwÞ is called

the long-run limit probability of population w.

We now introduce the vectors and matrices that we need

to state the main result of our analysis. We first note that

throughout this paper vectors and matrices are represented

by, respectively, bold lowercase and bold uppercase letters

and that the transpose of a matrix X is written as XT. IN

denotes an identity matrix of order N 9 N, and 0M 9 N and

1M 9 N denote matrices of order M 9 N in which all ele-

ments are equal to, respectively, zero and one. We simply

write I, 0, or 1 when the order of a matrix is clear from the

context. g = [gk] and h = [hk] denote vectors of length m
that satisfy

8k : gk; hk 2 C ð10Þ
8k : hk 2 HðgkÞ ð11Þ

8k; k0 : k 6¼ k0 ) ðgk; hkÞ 6¼ ðgk0 ; hk0 Þ: ð12Þ

Hence, for each k, (gk, hk) denotes a combination of two

chromosomes such that the binary encodings of the

chromosomes differ by exactly one bit. g and h together

contain all such combinations of two chromosomes.

A;B;C; and D denote matrices of order l 9 n, n 9

l, n 9 n, and l 9 l, respectively. Matrix A is given by

A ¼
að0; 1Þ � � � að0; mÞ

..

. . .
. ..

.

aðl� 1; 1Þ � � � aðl� 1; mÞ

2

6

4

3

7

5
ð13Þ

where

aði; kÞ ¼
~a1; if gk ¼ i
~a2; if hk ¼ i
01�ðn�1Þ; otherwise

8

<

:

ð14Þ

and

~a1 ¼ 01�ðn�2Þ 1
� �

; ~a2 ¼ 1 01�ðn�2Þ
� �

: ð15Þ

Matrix B is given by

B ¼
bð1; 0Þ � � � bð1; l� 1Þ

..

. . .
. ..

.

bðm; 0Þ � � � bðm; l� 1Þ

2

6

4

3

7

5
ð16Þ

where

bðk; iÞ ¼
~bðgk; hk; nÞ; if gk ¼ i
~bðgk; hk; 0Þ; if hk ¼ i
0ðn�1Þ�1; otherwise

8

<

:

ð17Þ

and

~bði; j; kÞ ¼
pði; j; 1; kÞ

..

.

pði; j; n� 1; kÞ

2

6

4

3

7

5
: ð18Þ

Matrix C is given by

C ¼
Cð1; 1Þ � � � Cð1; mÞ

..

. . .
. ..

.

Cðm; 1Þ � � � Cðm; mÞ

2

6

4

3

7

5
ð19Þ

where

Cðk; k0Þ ¼
eCðgk; hkÞ; if k ¼ k0

0ðn�1Þ�ðn�1Þ; otherwise

�

ð20Þ

and

eCði; jÞ ¼
pði; j; 1; 1Þ � � � pði; j; 1; n� 1Þ

..

. . .
. ..

.

pði; j; n� 1; 1Þ � � � pði; j; n� 1; n� 1Þ

2

6

4

3

7

5
:

ð21Þ

Matrix D is obtained from A, B, and C and is given by

D ¼ AðI� CÞ�1B� mI: ð22Þ

The following theorem states the main result of our

analysis:

Theorem 1 Let all non-uniform populations be almost

uniform, and let each chromosome in C be connected to all

other chromosomes in C: Then, (1) all non-uniform popu-

lations have a long-run limit probability of zero, that is,

q̂ðwÞ ¼ 0 for all w 2 W n U; and (2) the long-run limit

distribution q̂ ¼ q̂ðuð0ÞÞ � � � q̂ðuðl� 1ÞÞ½ � satisfies

q̂D ¼ 0 ð23Þ
q̂1 ¼ 1 ð24Þ

which has a unique solution.

Proof See the Appendix.

There are three comments that we would like to make on

the above theorem. First, the result that under certain

assumptions non-uniform populations have a long-run limit

probability of zero is not new. A similar result can be found
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in Dawid (1996, Proposition 4.2.1). Second, under the

assumptions of the theorem, the long-run limit probability

of a population does not depend on the crossover rate c.

This is a quite remarkable result that, to the best of our

knowledge, has not been reported before in the theoretical

literature on GAs. It indicates that in the limit as the

mutation rate e approaches zero c has no effect on the long-

run behavior of a GA. Third, the theorem can be used to

calculate the long-run limit distribution q̂ only if the

probabilities pði; j; k; k0Þ defined in (6) can be calculated for

all i and all j such that d(i, j) = 1 and for all k 2
f1; . . .; n� 1g and all k0 2 f0; . . .; ng: Whether this is

possible depends on the way in which the fitness of a

chromosome is determined and on the selection operator

that is used. This in turn depends heavily on the specific

problem that one wants to model using a GA. Because of

the dependence on the problem to be modeled, we cannot

provide any general results for the calculation of the

probabilities pði; j; k; k0Þ: In Sect. 4, however, we demon-

strate how the probabilities pði; j; k; k0Þ can be calculated

for a GA that is similar to the GA used by Axelrod in his

seminal paper on GA modeling (Axelrod 1987).

3 Algorithm

In this section, we present an algorithm for calculating the

long-run limit distribution q̂: The algorithm is based on

Theorem 1. Like Theorem 1, it assumes that all non-uni-

form populations are almost uniform and that each chro-

mosome in C is connected to all other chromosomes in C: It

also assumes that the probabilities pði; j; k; k0Þ defined in

(6) can be calculated for all i and all j such that d(i, j) = 1

and for all k 2 f1; . . .; n� 1g and all k0 2 f0; . . .; ng:
The most straightforward approach to calculating the

long-run limit distribution q̂ would be to start with calcu-

lating the matrices A;B; and C using (13)–(21). Matrix D

would then be calculated using (22), which would require

solving a linear system. Finally, q̂ would be obtained by

solving the linear system given by (23) and (24). Unfor-

tunately, this approach to calculating q̂ requires a lot of

computer memory and is therefore infeasible even for

problems of only moderate size. Most memory is required

for storing matrix C: This matrix has (at most) m (n - 1)2 =

(n - 1)2m2m-1 non-zero elements. Clearly, as the popula-

tion size n and the chromosome length m increase, storing

the non-zero elements of C in a computer’s main memory

soon becomes infeasible. The algorithm that we propose

for calculating q̂ exploits the sparsity of the matrices A;B;

and C in order to calculate matrix D in a memory-efficient

way. The algorithm does not require the entire matrices

A;B; and C to be stored in memory. The algorithm also

solves the linear system given by (23) and (24) in a

memory-efficient way. This is achieved by exploiting the

sparsity of D: The algorithm is shown in Fig. 2. We now

discuss it in more detail.

We first consider the efficient calculation of matrix D:

Let bC ¼ ðI� CÞ�1: Because C is a block diagonal matrix,

bC can be written as

bC ¼
bCð1; 1Þ � � � bCð1; mÞ

..

. . .
. ..

.

bCðm; 1Þ � � � bCðm; mÞ

2

6

4

3

7

5 ð25Þ

where

bCðk; k0Þ ¼ ðI� eCðgk; hkÞÞ�1; if k ¼ k0

0ðn�1Þ�ðn�1Þ; otherwise:

�

ð26Þ

Hence, bC is a block diagonal matrix too. Let D be written

as

Fig. 2 Algorithm for calculating the long-run limit distribution of a

genetic algorithm
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D ¼
dð0; 0Þ � � � dð0; l� 1Þ

..

. . .
. ..

.

dðl� 1; 0Þ � � � dðl� 1; l� 1Þ

2

6

4

3

7

5
: ð27Þ

Taking into account the sparsity of A;B; and bC; it can be

seen that

dði; jÞ ¼

P

i02GðiÞ ~a2~eði0; i;0Þ
þ
P

i02HðiÞ ~a1~eði; i0;nÞ�m; if i¼ j

~a2~eðj; i;nÞ; if j2 GðiÞ
~a1~eði; j;0Þ; if j2HðiÞ
0; otherwise

8

>

>

>

>

<

>

>

>

>

:

ð28Þ

where

~eði; j; kÞ ¼ ðI� eCði; jÞÞ�1~bði; j; kÞ: ð29Þ

This result shows that each non-zero element of D can be

calculated by solving one or more relatively small linear

systems, that is, systems of n - 1 equations and unknowns.

Moreover, by calculating the elements of D one by one,

there is no need to store the entire matrices A;B; and C in

memory. Solving a linear system of n - 1 equations and

unknowns can be done using standard Gaussian elimination

methods. Except for very large values for the population

size n, today’s computers have sufficient main memory to

apply Gaussian elimination methods to such systems. We

further note that the amount of computation required for

obtaining D can be reduced by taking into account that

~eði; j; 0Þ ¼ ðI� eCði; jÞÞ�1~bði; j; 0Þ

¼ ðI� eCði; jÞÞ�1 1�
P

n

k¼1

~bði; j; kÞ
� �

¼ ðI� eCði; jÞÞ�1ð1� eCði; jÞ1� ~bði; j; nÞÞ
¼ ðI� eCði; jÞÞ�1ðI� eCði; jÞÞ1� ~eði; j; nÞ
¼ 1� ~eði; j; nÞ:

ð30Þ

Because of this, d(i, j) can be written as

dði; jÞ ¼

P

i02GðiÞð1� ~a2~eði0; i;nÞÞ
þ
P

i02HðiÞ ~a1~eði; i0;nÞ�m; if i¼ j

~a2~eðj; i;nÞ; if j2 GðiÞ
1� ~a1~eði; j;nÞ; if j2HðiÞ
0; otherwise.

8

>

>

>

>

<

>

>

>

>

:

ð31Þ

Using (31) rather than (28) to calculate D halves the

number of linear systems that need to be solved. In the

algorithm in Fig. 2, the calculation of D based on (31) is

performed between lines 3 and 3.

Matrix D has l2 = 22m elements. Consequently, storing

all elements of D in a computer’s main memory is possible

only if the chromosome length m is not too large. It follows

from (28) and (31) that the number of non-zero elements in

D equals l(m ? 1) = (m ? 1)2m. Hence, D is a rather

sparse matrix and a lot of memory can be saved by storing

only its non-zero elements.2 In addition to the memory

efficiency of the way in which D is stored, one should also

pay attention to the memory efficiency of the method that

is used to solve the linear system given by (23) and (24).

Gaussian elimination and other direct (i.e., non-iterative)

methods for solving linear systems generally require that at

least a large number of elements of the coefficient matrix,

including zero elements, are stored in memory. Conse-

quently, when using such a method to solve the linear

system given by (23) and (24), it would not be possible to

fully exploit the sparsity of D: Linear systems can also be

solved using iterative methods that require only the non-

zero elements of the coefficient matrix to be stored in

memory. One such method is the method of successive

overrelaxation (e.g., Barrett et al. 1994; Stewart 1994;

Tijms 1994, 2003). In the algorithm in Fig. 2, this method

is used to solve the linear system given by (23) and (24)

(see lines 3–3 of the algorithm). In addition to an initial

guess q̂0 for the solution of the linear system, the method of

successive overrelaxation also requires a value for the

relaxation factor x. The value of x, which should be

between 0 and 2, may have a large effect on the rate of

convergence of the method, and for some values of x the

method may not converge at all. An appropriate value for

x has to be determined experimentally. For x = 1, the

method of successive overrelaxation reduces to the Gauss-

Seidel method, which is another iterative method for

solving linear systems. We refer to Stewart (1994) for an

in-depth discussion of both the method of successive

overrelaxation and a number of alternative methods for

solving linear systems similar to the one given by (23) and

(24). We further note that the amount of main memory in

most of today’s computers allows the algorithm in Fig. 2 to

be run for chromosomes with length m up to about 24 bits.

4 Application

In this section, we demonstrate an application of the

algorithm presented in the previous section. We study the

use of a GA for modeling the evolution of strategies in

IPDs. The use of GAs in this context was first studied by

Axelrod (1987) (reprinted in Axelrod 1997; see also Dawid

1996; Mitchell 1996) and after him by many others (e.g.,

Ashlock et al. 1996, 2006; Crowley et al. 1996; Ishibuchi

and Namikawa 2005; Miller 1996; Mühlenbein 1991;

Thibert-Plante and Charbonneau 2007; Van Bragt et al.

2 The non-zero elements of D can be stored efficiently by using two

arrays: a one-dimensional array of size l for the diagonal elements of

D and a two-dimensional array of size m 9 l for the non-zero off-

diagonal elements of D: The element in the jth row and the ith
column of the latter array is used to store d(j, i), where j has the same

binary encoding as i except that the jth bit is inverted.
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2001; Yao and Darwen 1994). The algorithm presented in

the previous section is used to analyze the long-run

behavior of our GA. The results of the analysis are com-

pared with results obtained using computer simulations

(i.e., results obtained simply by running the GA). We

emphasize that our primary aim is merely to illustrate the

usefulness of the mathematical analysis provided in Sect. 2

and of the algorithm derived from the analysis in Sect. 3. It

is not our primary aim to provide new insights into the

behavior of GAs in the context of IPDs.

4.1 Genetic algorithm modeling in iterated prisoner’s

dilemmas

The way in which we model the evolution of strategies in

IPDs is similar to the way in which this was done by

Axelrod (1987). However, Axelrod studied two approaches

for modeling the evolution of strategies. In one approach,

the fitness of a chromosome is determined by the perfor-

mance of the chromosome in IPD games against a fixed set

of opponents. In the other approach, the fitness of a chro-

mosome is determined by the performance of the chro-

mosome in IPD games against other chromosomes in the

population. We restrict our attention to the second

approach. This is the approach on which almost all studies

after Axelrod’s work have focused (an exception is Mittal

and Deb 2006).

We model the evolution of strategies in IPDs using a GA

with a population size of n = 20 chromosomes. Each

chromosome represents a strategy for playing IPD games.

Players in IPD games are assumed to choose the action

they play, that is, whether they cooperate or defect, based

on their own actions and their opponent’s actions in the

previous s periods of the game, where s is referred to as

players’ memory length. Players are further assumed to

play only pure strategies. We use the same binary encoding

of strategies as was used by Axelrod (1987). For a

description of this encoding, we refer to Axelrod (1987,

1997), Dawid (1996), and Mitchell (1996). Using Axel-

rod’s encoding, the chromosome length m depends on the

memory length s. We consider three memory lengths, 1, 2,

and 3 periods, which result in chromosome lengths of,

respectively, 6, 20, and 70 bits. In each iteration of the GA,

each chromosome in the population plays an IPD game of

151 periods against all other chromosomes. In addition,

each chromosome also plays a game against itself. The

payoff matrix for a single period of an IPD game is shown

in Table 2. The payoffs in this matrix must satisfy

S\P\R\T ð32Þ

and

Sþ T\2R: ð33Þ

The payoff obtained by a chromosome in an IPD game

equals the mean payoff obtained by the chromosome in all

periods of the game. The fitness f of a chromosome equals

the mean payoff obtained by the chromosome in the IPD

games that it has played in the current iteration of the GA.

Like in Axelrod’s work (1987), we use sigma scaling (e.g.,

Mitchell 1996) to normalize the fitness of a chromosome.

The normalized fitness ~f of a chromosome is given by

~f ¼ max
f�lf

rf
þ 1; 0

� �

; if rf [ 0

1; otherwise

(

ð34Þ

where lf and rf denote, respectively, the mean and the

standard deviation of the fitness of the chromosomes in

the population. The selection operator that we use is

roulette wheel selection. Selection is performed based on

the normalized fitness of the chromosomes in the popu-

lation. The crossover operator that we use is single-point

crossover.

4.2 Calculation of the long-run limit distribution

of the genetic algorithm

In this subsection, we are concerned with the calculation of

the long-run limit distribution of the GA discussed in the

previous subsection. To calculate the long-run limit dis-

tribution of the GA, we use the algorithm presented in

Sect. 3. This algorithm assumes that the probabilities

pði; j; k; k0Þ defined in (6) can be calculated for all i and all j

such that d(i, j) = 1 and for all k 2 f1; . . .; n� 1g and all

k0 2 f0; . . .; ng: We now discuss the calculation of the

probabilities pði; j; k; k0Þ for our GA. For i0; j0 2 C; let

uði0; j0Þ denote the payoff obtained by chromosome i0 in an

IPD game against chromosome j0: Suppose that the popu-

lation in the current iteration of our GA equals

v(i, j, k), where i and j satisfy d(i, j) = 1 and where k 2
f1; . . .; n� 1g: That is, the population in the current iter-

ation of our GA consists of k times chromosome i and n - k
times chromosome j. The fitness fi of chromosome i is then

given by

fi ¼
kuði; iÞ þ ðn� kÞuði; jÞ

n
: ð35Þ

Similarly, the fitness fj of chromosome j is given by

Table 2 Payoff matrix for a single period of an iterated prisoner’s

dilemma game

Cooperate Defect

Cooperate R, R S, T

Defect T, S P, P

The payoff obtained by the row (column) player is reported first

(second)
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fj ¼
kuðj; iÞ þ ðn� kÞuðj; jÞ

n
: ð36Þ

Furthermore, the mean lf and the standard deviation rf of

the fitness of the chromosomes in the population are equal

to, respectively,

lf ¼
kfi þ ðn� kÞfj

n
ð37Þ

and

rf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðfi � lfÞ2 þ ðn� kÞðfj � lfÞ2

n

s

: ð38Þ

The normalized fitness ~fi of chromosome i is obtained by

substituting fi, lf, and rf into (34). The normalized fitness
~fj of chromosome j is obtained in a similar way. Let ~pi

and ~pj denote the probabilities that the roulette wheel

selection operator selects, respectively, chromosome i and

chromosome j. Obviously, ~pi and ~pj equal

~pi ¼
k~fi

k~fi þ ðn� kÞ~fj

; ~pj ¼
ðn� kÞ~fj

k~fi þ ðn� kÞ~fj
: ð39Þ

pði; j; k; k0Þ; where k0 2 f0; . . .; ng; equals the probability

that the roulette wheel selection operator turns population

v(i, j, k) into population vði; j; k0Þ in a single iteration of our

GA. Taking into account that the roulette wheel selection

operator selects chromosomes independently of each other,

it can be seen that pði; j; k; k0Þ equals the probability mass

function of a binomial distribution and is given by

pði; j; k; k0Þ ¼ n
k
0

� �

~pi
k0~pj

n�k0 ð40Þ

where the binomial coefficient
n
k
0

� �

is defined as

n
k
0

� �

¼ n!

k0!ðn� k0Þ! : ð41Þ

The algorithm presented in Sect. 3 also assumes that all

non-uniform populations are almost uniform and that each

chromosome in C is connected to all other chromosomes in

C: Because of the use of roulette wheel selection, the

assumption that all non-uniform populations are almost

uniform is satisfied. The assumption that each chromosome

in C is connected to all other chromosomes in C is satisfied

if and only if matrix D calculated in lines 3–3 of the

algorithm in Fig. 2 is irreducible. (D ¼ dði; jÞ½ � is said to

be irreducible if and only if there does not exist a non-

empty set of chromosomes eC � C such that d(i, j) = 0 for

all i 2 eC and all j 2 C n eC:) For the particular values that

we use for the parameters S, P, R, T, and s (see the next

subsection), D turns out to be irreducible. Hence, the

assumption that each chromosome in C is connected to all

other chromosomes in C is satisfied.

4.3 Analysis of the long-run behavior of the genetic

algorithm

In this subsection, we analyze the long-run behavior of our

GA for the prisoner’s dilemma payoffs S = 0, P = 1,

R = 3, and T = 5. These are the same payoffs as were used

by Axelrod (1987) (see also Axelrod 1984) and by many

others. The analysis is performed using the algorithm pre-

sented in Sect. 3. The use of this algorithm to analyze the

long-run behavior of our GA was discussed in the previous

subsection. We compare the results obtained using the

algorithm with results obtained using computer simulations

(i.e., results obtained simply by running the GA).3 The

parameter settings that we use are summarized in Table 3.

The long-run limit distribution for a memory length of

s = 1 period is shown in Fig. 3 (in dark gray). The dis-

tribution was calculated using the algorithm from Sect. 3.

As mentioned earlier, s = 1 results in a chromosome

length of m = 6 bits. This implies that there are l = 2m =

64 different chromosomes and, as a consequence, that there

are 64 different uniform populations. The long-run limit

distribution is a probability distribution over these popu-

lations. As can be seen in Fig. 3, the long-run limit dis-

tribution spreads most of its mass over approximately 15

populations. It puts almost no mass on the remaining

populations. Since all chromosomes in a uniform popula-

tion are identical and represent the same strategy, the long-

run limit distribution can be used to determine the long-run

limit probability that a particular strategy is played. How-

ever, when doing so, it should be noted that there is some

redundancy in the binary encoding of strategies that we use

(as was already pointed out by Axelrod (1987). Due to this

redundancy, it is possible that different chromosomes

represent the same strategy. Some strategies can be enco-

ded in two or three different ways, and the strategies

always cooperate and always defect can even be encoded

in twelve different ways. Taking into account the redun-

dancy in the encoding, we have calculated the long-run

limit probabilities of all possible strategies. The six strat-

egies with the highest long-run limit probability are

reported in Table 4. Together, these strategies have a long-

run limit probability of almost 0.95. The remaining strat-

egies all have very low long-run limit probabilities. It is

sometimes claimed (e.g., Axelrod 1984, 1987) that a very

effective strategy for playing IPD games is the tit-for-tat

3 The software used to obtain the results reported in this subsection is

available online at http://www.ludowaltman.nl/ga_analysis/. The

software runs in MATLAB and has been written partly in the

MATLAB programming language and partly in the C programming

language.
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strategy, which is the strategy of cooperating in the first

period and repeating the opponent’s previous action

thereafter. The results reported in Table 4 do not really

support this claim. As can be seen in the table, the always

defect strategy has by far the highest long-run limit prob-

ability. In the long run, this strategy is played about 43% of

the time. The tit-for-tat strategy has a long-run limit

probability of no more than 0.14. This is even slightly less

than the long-run limit probability of another cooperative

strategy, namely the strategy that keeps cooperating until

the opponent defects and then keeps defecting forever.

In order to check the correctness of the algorithm pre-

sented in Sect. 3, we have also used computer simulations

to analyze the long-run behavior of our GA. In other words,

we have also analyzed the long-run behavior of our GA

simply by running the GA. Like above, we first focus on

the behavior of the GA for a memory length of s = 1

period. We performed 500 runs of the GA. The crossover

rate was set to c = 1.0, and the mutation rate was set to

e ¼ 10�5: Because of the very small value of e; the simu-

lation results should be similar to the results obtained using

the algorithm from Sect. 3. (Recall that the latter results

hold in the limit as e approaches zero.) Each run of the GA

lasted 2� 105 iterations. This seemed sufficient for the GA

to reach its steady state. After the last iteration of a GA run,

we almost always observed that the population was uni-

form. Based on the 500 GA runs that we had performed, we

determined for each uniform population the probability of

observing that population at the end of a GA run. In this

way, we obtained a probability distribution over the uni-

form populations. This distribution is shown in Fig. 3 (in

light gray). Figure 3 allows us to compare the distribution

with the long-run limit distribution calculated using the

algorithm from Sect. 3. It can be seen that the two distri-

butions are very similar. This confirms the correctness of

the algorithm presented in Sect. 3.

In order to examine to what extent our GA results in the

evolution of cooperative strategies, we now focus on the

long-run mean fitness, that is, the mean fitness of a

Table 3 Genetic algorithm parameter settings

Number of runs 200 or 500

Length of a run 2� 105 iterations

Population size n 20 chromosomes

Chromosome length m 6, 20, or 70 bits

Selection operator Roulette wheel with sigma scaling

Crossover operator Single point

Crossover rate c 0.0, 0.5, or 1.0

Mutation rate e 10-2, 10-3, 10-4, or 10-5

Length of an IPD game 151 periods

Memory length s 1, 2, or 3 periods

IPD game payoffs S = 0, P = 1, R = 3, and T = 5

uniform population

pr
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Fig. 3 The long-run limit distribution calculated using the algorithm

presented in Sect. 3 (in dark gray) and a probability distribution over

the uniform populations obtained using computer simulations (in light
grey). The memory length s equals 1. On the horizontal axis, integers

between 0 and 63 are used to represent the uniform populations.

Integer i represents the uniform population consisting of 20 times

chromosome i

Table 4 The six strategies with the highest long-run limit probability

(reported in the first column)

Prob. Strategy Chromosomes

0.430 Always defect 0, 2, 8, 10, 16, 24, 32,

34, 40,42, 48, 50

0.147 Start cooperating; cooperate if and

only if both you and your opponent

cooperated in the previous period

56

0.139 Start cooperating; cooperate if and

only if your opponent cooperated

in the previous period (tit for tat)

44, 60

0.133 Start defecting; cooperate if and only

if you and your opponent played

different actions in the previous

period

6, 54

0.051 Start cooperating; cooperate unless

you cooperated in the previous

period and your opponent did not

13, 45, 61

0.049 Start defecting; cooperate unless you

cooperated in the previous period

and your opponent did not

29

The memory length s equals 1
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chromosome after a large number of iterations of the GA.

For various values of the memory length s, the crossover

rate c, and the mutation rate e; the long-run mean fitness

obtained using computer simulations is reported in Table 5.

The associated 95% confidence interval is also provided in

the table. The simulation results for s = 1 are based on 500

runs of the GA, and the simulation results for s = 2 and

s = 3 are based on 200 runs. (Simulation runs with s = 2

and s = 3 took more computing time than simulation runs

with s = 1. We therefore performed a smaller number of

runs with s = 2 and s = 3 than with s = 1.) Each run

lasted 2� 105 iterations. The long-run mean fitness was

calculated by taking the average over all GA runs of the

mean fitness of a chromosome at the end of a run. In the

limit as e approaches zero, the long-run mean fitness can be

calculated exactly and does not depend on c. The calcu-

lation of the long-run mean fitness is based on the long-run

limit distribution of the GA, which can be obtained using

the algorithm presented in Sect. 3. For s = 1 and s = 2,

the long-run mean fitness in the limit as e approaches zero

is reported in Table 5. For s = 3, we cannot calculate the

long-run limit distribution of the GA and we therefore do

not know the long-run mean fitness in the limit as e
approaches zero. Calculating the long-run limit distribution

of the GA is impossible for s = 3 because the chromosome

length equals m = 70 bits and because for such a chro-

mosome length storing the long-run limit distribution

requires a prohibitive amount of computer memory.

Based on the results in Table 5, a number of observa-

tions can be made. First, for s = 1 and s = 2, the results

obtained for e ¼ 10�4 and e ¼ 10�5 turn out to be very

similar to the results obtained for e! 0: This again con-

firms the correctness of the algorithm presented in Sect. 3.

Second, for s = 1, we find that the results are quite sen-

sitive to the value of e: Studies on GA modeling sometimes

report that the long-run behavior of a GA is relatively

insensitive to the value of e: Our results demonstrate that

this need not always be the case. Third, for small values of

e; it can be seen that increasing s leads to a higher long-run

mean fitness and, hence, to more cooperation. The

evolution of cooperative strategies in IPD games therefore

seems more likely when players have longer memory

lengths. Finally, it can be observed that the value of c has

no significant effect on our results. This is in line with the

mathematical analysis provided in Sect. 2. The mathe-

matical analysis implies that for e! 0 the long-run mean

fitness is independent of c. The results in Table 5 indicate

that this is the case not only for e! 0 but more generally.

5 Conclusions

In this paper, we have presented a mathematical analysis of

the long-run behavior of GAs that are used for modeling

social phenomena. Under the assumption of a positive but

infinitely small mutation rate, the analysis provides a full

characterization of the long-run behavior of GAs with a

binary encoding. Based on the analysis, we have derived an

algorithm for calculating the long-run behavior of GAs. In

an economic context, the algorithm can for example be

used to determine whether convergence to an equilibrium

will take place and, if so, what kind of equilibrium will

emerge. Compared with computer simulations, the main

advantage of the algorithm that we have derived is that it

calculates the long-run behavior of GAs exactly. Computer

simulations only estimate the long-run behavior of GAs.

To demonstrate the usefulness of our mathematical

analysis, we have replicated a well-known study by Axel-

rod in which a GA is used to model the evolution of

strategies in IPDs (Axelrod 1987). We have used both our

exact algorithm and computer simulations to replicate

Axelrod’s study. By comparing the results of the two

approaches, we have confirmed the correctness of our

algorithm. We have also obtained some interesting new

insights. For example, when players have a memory length

of one period, the tit for tat strategy turns out to be less

important than is sometimes claimed (e.g., Axelrod 1984,

1987). In the long run, the strategy is played only 14% of

the time. Another finding is that the long-run behavior of a

GA can be quite sensitive to the value of the mutation rate.

Table 5 Long-run mean fitness and associated 95% confidence interval for various values of the memory length s, the crossover rate c, and the

mutation rate e

s = 1 s = 2 s = 3

c = 0.0 c = 0.5 c = 1.0 c = 0.0 c = 0.5 c = 1.0 c = 0.0 c = 0.5 c = 1.0

e ¼ 10�2 2.76 ± 0.05 2.71 ± 0.05 2.79 ± 0.04 2.64 ± 0.08 2.72 ± 0.07 2.67 ± 0.07 2.67 ± 0.06 2.64 ± 0.07 2.70 ± 0.06

e ¼ 10�3 2.23 ± 0.08 2.24 ± 0.08 2.25 ± 0.08 2.34 ± 0.12 2.41 ± 0.11 2.38 ± 0.11 2.55 ± 0.09 2.60 ± 0.09 2.59 ± 0.08

e ¼ 10�4 1.93 ± 0.09 1.94 ± 0.09 1.90 ± 0.09 2.25 ± 0.12 2.24 ± 0.12 2.32 ± 0.12 2.57 ± 0.09 2.53 ± 0.09 2.50 ± 0.09

e ¼ 10�5 1.85 ± 0.09 1.81 ± 0.09 1.85 ± 0.09 2.28 ± 0.12 2.31 ± 0.11 2.22 ± 0.12 2.58 ± 0.09 2.44 ± 0.10 2.44 ± 0.10

e! 0 1.84 1.84 1.84 2.29 2.29 2.29 ? ? ?

For e! 0; the long-run mean fitness has been calculated exactly
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We regard this as a serious problem, since the value of the

mutation rate is typically chosen in a fairly arbitrary way

without any empirical justification (see also Dawid 1996).

The mathematical analysis that we have presented also

reveals that if the mutation rate is infinitely small the

crossover rate has no effect on the long-run behavior of a GA.

This remarkable result is perfectly in line with the simulation

results that we have reported in Sect. 4. For various values of

the mutation rate, the simulation results show no significant

effect of the crossover rate on the long-run behavior of a GA.

Hence, when GAs are used for modeling social phenomena,

the crossover rate seems to be a rather unimportant param-

eter, at least when the focus is on the long run (for the short

run, see Thibert-Plante and Charbonneau 2007). It seems

likely that in many cases leaving out the crossover operator

altogether has no significant effect on the long-run behavior

of a GA. Interestingly, leaving out the crossover operator

brings GAs quite close to well-known models in evolution-

ary game theory, such as those studied in Kandori et al.

(1993) and Vega-Redondo (1997).

Finally, we note that an analysis such as the one presented

in this paper can be performed not only for GAs with a binary

encoding but also for other types of evolutionary algorithms.

From a modeling point of view, a binary encoding in many

cases has the disadvantage that it lacks a clear interpretation

(e.g., Dawid 1996). The use of a binary encoding can there-

fore be difficult to justify and may even lead to artifacts (as

shown in Waltman and Van Eck 2009; Waltman et al. 2011).

Probably for these reasons, some researchers use evolution-

ary algorithms without a binary encoding (e.g., Haruvy et al.

2006; Lux and Schornstein 2005). The analysis presented in

this paper then does not directly apply. However, when the

action space of agents is assumed discrete, the long-run

behavior of evolutionary algorithms without a binary

encoding can still be analyzed in a similar way as we have

done in this paper, namely by relying on mathematical results

provided by Freidlin and Wentzell (1998). This indicates that

our approach is quite general and can be adapted relatively

easily to other types of evolutionary algorithms.
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Appendix

In this appendix, we prove the mathematical results pre-

sented in Sect. 2. Before proving the results, we first pro-

vide some definitions and lemmas on Markov chains.

Definition 6 A collection of random variables {Xt},

where the index t takes values in f0; 1; . . .g and where

X0;X1; . . . take values in a finite set X ; is called a finite

discrete-time Markov chain if

PrðXtþ1 ¼ xtþ1jXt ¼ xtÞ ¼ PrðXtþ1 ¼ xtþ1jXt ¼ xt; . . .;X0

¼ x0Þ ð42Þ

for all t and all x0; . . .; xtþ1 2 X : The elements of X are

called the states of the Markov chain. X is called the state

space of the Markov chain.

Definition 7 A finite discrete-time Markov chain {Xt} is

said to be time-homogeneous if

PrðXtþ1 ¼ xtþ1jXt ¼ xtÞ ¼ pðxt; xtþ1Þ ð43Þ

for all t, all xt; xtþ1 2 X ; and some function p : X 2 ! ½0; 1�
that does not depend on t. For x; x0 2 X ; the probability

pðx; x0Þ is called the transition probability from state x to

state x0: The matrix

P ¼ pðx; x0Þ½ �x;x02X ð44Þ

is called the transition matrix of the Markov chain.

In the remainder of this appendix, the term Markov

chain always refers to a finite discrete-time Markov chain

that is time-homogeneous.

Definition 8 Consider a Markov chain {Xt}. A row vector

�p ¼ ½�pðxÞ�x2X that satisfies

�pP ¼ �p ð45Þ
�p1 ¼ 1 ð46Þ

is called a stationary distribution of the Markov chain. For

x 2 X ; the probability �pðxÞ is called the stationary proba-

bility of state x.

Definition 9 A Markov chain {Xt} is said to be irreduc-

ible if for each x; x0 2 X there exists a positive integer N

such that PrðXtþN ¼ x0jXt ¼ xÞ[ 0:

Lemma 2 If a Markov chain {Xt} is irreducible, it has a

unique stationary distribution �p:

Proof See, for example, Tijms (1994, Th. 2.3.3).

Definition 10 An irreducible Markov chain {Xt} is said to

be aperiodic if for each x 2 X there exists a positive integer N

such that PrðXtþM ¼ xjXt ¼ xÞ[ 0 for all integers M C N.

Lemma 3 If a Markov chain {Xt} is irreducible and

aperiodic, then

lim
t!1

PrðXt ¼ xjX0 ¼ x0Þ ¼ �pðxÞ ð47Þ

for all x; x0 2 X :

Proof See, for example, Tijms (1994, Th. 2.3.1 and

Lemma 2.3.2).
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Lemma 4 Let a Markov chain {Xt} be irreducible. Let

Y � X and Y 6¼£: Let

T ¼ pðx; x0Þ½ �x;x02Y ; U ¼ pðx; x0Þ½ �x2Y;x02XnY ð48Þ

V ¼ pðx; x0Þ½ �x2XnY;x02Y ; W ¼ pðx; x0Þ½ �x;x02XnY ð49Þ

and let

PY ¼ Tþ UðI�WÞ�1V: ð50Þ

Let {Yt} denote a Markov chain with state space Y and

transition matrix PY : Markov chain {Yt} is then irreducible

and has stationary probabilities �pYðyÞ that are given by

�pYðyÞ ¼
�pðyÞ

P

y02Y �pðy0Þ ð51Þ

where y 2 Y:

Proof See Kemeny and Snell (1960, Th. 6.1.1).4

Definition 11 Consider a set X : For x; x0 2 X ; the

ordered pair ðx; x0Þ is called an arrow from x to x0: For

x1; . . .; xN 2 X ; the sequence of arrows ððx1; x2Þ; ðx2; x3Þ;
. . .; ðxN�2; xN�1Þ; ðxN�1; xNÞÞ is called a path from x1 to xN.

For x 2 X ; a set of arrows E is called an x-tree on X if it

satisfies the following conditions:

1. E contains no arrow that starts at x.

2. For each x0 2 X n fxg;E contains exactly one arrow

that starts at x0:
3. For each x0 2 X n fxg;E contains a path from x0 to x

(or, formulated more accurately, for each x0 2 X n fxg;
there exists a path from x0 to x such that E contains all

arrows of the path).

Lemma 5 Let a Markov chain {Xt} be irreducible. For

x 2 X ; let EðxÞ denote the set of all x-trees on X : The

stationary probabilities �pðxÞ of the Markov chain are then

given by

�pðxÞ ¼ ~pðxÞ
P

x02X ~pðx0Þ ð52Þ

where x 2 X and

~pðxÞ ¼
X

E2EðxÞ

Y

ðx;x0Þ2E

pðx; x0Þ: ð53Þ

Proof A proof is provided by Freidlin and Wentzell

(1998, Ch. 6, Lemma 3.1) (see also Dawid 1996, Th. 4.2.1).

Using the above definitions and lemmas, we now prove

the mathematical results presented in Sect. 2.

Proof of Lemma 1 Notice that

PrðWtþ1 ¼ wtþ1jWt ¼ wtÞ ¼ PrðWtþ1 ¼ wtþ1jWt

¼ wt; . . .;W0 ¼ w0Þ ð54Þ

for all t 2 f0; 1; . . .g and all w0; . . .;wtþ1 2 W: That is,

the population in iteration t ? 1 of a GA depends only on

the population in iteration t. Given the population in

iteration t, the population in iteration t ? 1 is independent

of the populations in iterations 0; . . .; t � 1: Notice further

that

PrðWtþ1 ¼ wtþ1jWt ¼ wtÞ ¼ qðwt;wtþ1Þ ð55Þ

for all t 2 f0; 1; . . .g; all wt;wtþ1 2 W; and some function

q :W2 ! ½0; 1� that does not depend on t. That is, the

probability of going from one population to some other

population remains constant over time. (Recall that the

crossover rate c and the mutation rate e are assumed to

remain constant over time.) It now follows from

Definitions 6 and 7 that {Wt}, where the index t takes

values in f0; 1; . . .g; is a Markov chain with state space W
and transition probabilities qðw;w0Þ: Since the mutation

rate e is assumed to be positive, any population can be

turned into any other population in a single iteration of a

GA. Hence, qðw;w0Þ[ 0 for all w;w0 2 W: Consequently,

it follows from Definitions 9 and 10 that Markov chain

{Wt} is irreducible and aperiodic. Lemma 3 then implies

that for each population w 2 W there exists a stationary

probability �qðwÞ such that

lim
t!1

PrðWt ¼ wjW0 ¼ w0Þ ¼ �qðwÞ ð56Þ

for all w0 2 W: We refer to a stationary probability �qðwÞ as

the long-run probability of population w. Finally, (9) is

obtained from (56) by taking into account the time-

homogeneity of Markov chain {Wt}. This completes the

proof of Lemma 1.

Proof of Theorem 1 As shown in the proof of Lemma 1,

{Wt}, where the index t takes values in f0; 1; . . .g; is an

irreducible and aperiodic Markov chain with state space

W: Markov chain {Wt} has stationary probabilities �qðwÞ; to

which we refer as long-run probabilities. We now introduce

some additional mathematical notation. Like in the proof of

Lemma 1, the function q :W2 ! ½0; 1� denotes the tran-

sition probabilities of Markov chain {Wt}. For w;w0 2
W; qðw;w0Þ is a polynomial in the mutation rate e and can

therefore be written as

qðw;w0Þ ¼
X

1

l¼0

aðw;w0; lÞel ð57Þ

where aðw;w0; 0Þ; aðw;w0; 1Þ; . . . denote the coefficients of

the polynomial. cðw;w0Þ is defined as

cðw;w0Þ ¼ minfljaðw;w0; lÞ 6¼ 0g: ð58Þ

4 The terminology used in Kemeny and Snell (1960) differs from the

terminology used in many other texts on Markov chains. In particular,

an ergodic Markov chain in Kemeny and Snell (1960) corresponds to

an irreducible Markov chain in this paper.
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That is, cðw;w0Þ is defined as the rate at which qðw;w0Þ
approaches zero as e approaches zero. It follows from this

definition that cðw;w0Þ equals the minimum number of

mutations required to go from population w to population

w0 in a single iteration of a GA. aðw;w0Þ is defined as

aðw;w0Þ ¼ aðw;w0; cðw;w0ÞÞ: ð59Þ

For w 2 W; ~qðwÞ is defined as

~qðwÞ ¼
X

E2EðwÞ

Y

ðw;w0Þ2E

qðw;w0Þ ð60Þ

where EðwÞ denotes the set of all w-trees on W: Since the

transition probabilities qðw;w0Þ are polynomials in e; ~qðwÞ
is a polynomial in e too. ~qðwÞ can therefore be written as

~qðwÞ ¼
X

1

l¼0

~aðw; lÞel ð61Þ

where ~aðw; 0Þ; ~aðw; 1Þ; . . . denote the coefficients of the

polynomial. ~cðwÞ is defined as

~cðwÞ ¼ minflj~aðw; lÞ 6¼ 0g: ð62Þ

That is, ~cðwÞ is defined as the rate at which ~qðwÞ
approaches zero as e approaches zero. ~aðwÞ is defined as

~aðwÞ ¼ ~aðw; ~cðwÞÞ: ð63Þ

Using the mathematical notation introduced above, we

first prove part (1) of Theorem 1. It follows from (57), (58),

and (60)–(62) that ~cðwÞ can be written as

~cðwÞ ¼ min
E2EðwÞ

X

ðw;w0Þ2E

cðw;w0Þ: ð64Þ

At least one mutation is required to go from a uniform

population u 2 U to any other population w 2 W n fug:
Hence, c(u, w) C 1 for all u 2 U and all w 2 W such that

u = w. Consequently, it follows from (64) that ~cðuÞ� l�
1 for all u 2 U and that ~cðwÞ� l for all w 2 W n U: We

now show that for each chromosome i it is possible to

construct a u(i)-tree E on W that satisfies
X

ðw;w0Þ2E

cðw;w0Þ ¼ l� 1: ð65Þ

Consider an arbitrary chromosome i. Let the function q :
C ! C satisfy the following conditions:

1. For each j = i, chromosome j is directly connected to

chromosome q(j).

2. For each j = i, qN(j) = i for some positive integer N.

In condition (2), qN(j) is defined as

qNðjÞ ¼ qðjÞ; if N ¼ 1

q qN�1ðjÞð Þ; otherwise.

�

ð66Þ

Because Theorem 1 assumes that each chromosome is

connected to all other chromosomes, a function q that

satisfies the above two conditions is guaranteed to exist. In

order to construct a u(i)-tree E onW that satisfies (65), we

start with an empty set of arrows E. For each j = i, we then

add an arrow to E that starts at u(j) and ends at

v(j, q(j), n - 1). It follows from condition (1) that one

mutation is required to go from u(j) to v(j, q(j), n - 1) in a

single iteration of a GA. Hence, c(u(j), v(j, q(j), n - 1)) =

1. Next, for each j = i, we add a path to E that starts at

v(j, q(j), n - 1) and ends at u(q(j)). Each path that we add

to E must contain no cycles, that is, it must contain no two

arrows ðw1;w
0
1Þ and ðw2;w

0
2Þ such that either w1 = w2 or

w01 ¼ w02: In addition, each path must only contain arrows

ðw;w0Þ for which cðw;w0Þ ¼ 0: Condition (1) guarantees the

existence of paths that satisfy the latter requirement. Due to

condition (2), for each u 2 U n fuðiÞg;E now contains a

path from u to u(i). Finally, for each w 2 W n U; if E does

not yet contain an arrow that starts at w, we add such an

arrow to E. We choose the arrows that we add to E in such a

way that, after adding the arrows, E contains, for each w 2
W n U; a path from w to some u 2 U (which implies that E

contains a path from w to u(i)). In addition, we only choose

arrows ðw;w0Þ for which cðw;w0Þ ¼ 0: We can choose the

arrows in this way because Theorem 1 assumes that all non-

uniform populations are almost uniform. Using Definition

11, it can be seen that the set of arrows E constructed as

discussed above is a u(i)-tree on W: Moreover, E satisfies

(65). We have therefore shown that for each chromosome i

a u(i)-tree E on W that satisfies (65) can be constructed.

Consequently, it follows from (64) that ~cðuÞ� l� 1 for all

u 2 U: Since it has been shown above that ~cðuÞ� l� 1 for

all u 2 U; this implies that ~cðuÞ ¼ l� 1 for all u 2 U: It has

also been shown above that ~cðwÞ� l for all w 2 W n U:
Hence, as the mutation rate e approaches zero, ~qðwÞ
approaches zero faster for w 2 W n U than for w 2 U: It

then follows from Lemma 5 that for all non-uniform pop-

ulations w 2 W n U the long-run probability �qðwÞ approa-

ches zero as e approaches zero. In other words, the long-run

limit probability q̂ðwÞ equals zero for all non-uniform

populations w 2 W n U: This completes the proof of part

(1) of Theorem 1.

We now prove part (2) of Theorem 1. It has been shown

above that ~cðuÞ ¼ l� 1 for all u 2 U: Consequently, as the

mutation rate e approaches zero,~qðuÞ approaches zero

equally fast for all u 2 U: Using Lemma 5, it can therefore

be seen that the long-run limit probability q̂ðuÞ of a uniform

population u 2 U is given by

q̂ðuÞ ¼ lim
e!0

�qðuÞ ¼ ~aðuÞ
P

u02U ~aðu0Þ : ð67Þ

For u 2 U; let eEðuÞ be defined as

eEðuÞ ¼ E 2 EðuÞ









P

ðw;w0Þ2E cðw;w0Þ ¼ l� 1
n o

: ð68Þ
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It then follows from (57) to (63) that ~aðuÞ can be written as

~aðuÞ ¼
X

E2eEðuÞ

Y

ðw;w0Þ2E

aðw;w0Þ: ð69Þ

Consider an arbitrary uniform population u 2 U and an

arbitrary u-tree E on W; where E 2 eEðuÞ: Let E1 and E2

denote sets of arrows that are given by

E1 ¼ fðw;w0Þ 2 Ejw 2 Vg ð70Þ
E2 ¼ E n E1: ð71Þ

It is immediately clear that E1 satisfies the following

conditions:

(A1) E1 contains no arrow that starts at u or at some

w 2 W n V:
(A2) For each v 2 V n fug;E1 contains exactly one arrow

that starts at v.

Notice that cðu0;wÞ� 1 for all u0 2 U and all w 2 W
such that u0 6¼ w: Notice further that, due to (68),
P

ðw;w0Þ2E1
cðw;w0Þ � l� 1: These observations

imply that, for each ðw;w0Þ 2 E1; cðw;w0Þ ¼ 1 if

w 2 U and cðw;w0Þ ¼ 0 otherwise. They also imply

that E1 satisfies the following condition:

(A3)
P

ðw;w0Þ2E1
cðw;w0Þ ¼ l� 1:It is easy to see that c(v,

w) C 1 for all v 2 V and all w 2 W n V and that

cðu0;wÞ� 2 for all u0 2 U and all w 2 W n V:
Consequently, E1 contains no arrows that end at

some w 2 W n V: This implies the following con-

dition on E1:

(A4) For each v 2 V n fug;E1 contains a path from v to u.

It is immediately clear that E2 satisfies the following

conditions:

(B1) E2 contains no arrow that starts at some v 2 V:
(B2) For each w 2 W n V;E2 contains exactly one arrow

that starts at w.

(B3) For each w 2 W n V;E2 contains a path from w to

some v 2 V:
Furthermore, taking into account that E1 satisfies

condition (A3), (68) implies that E2 satisfies the

following condition:

(B4)
P

ðw;w0Þ2E2
cðw;w0Þ ¼ 0:

For u 2 U; let eE1ðuÞ denote a set that contains all sets of

arrows E1 satisfying conditions (A1)–(A4). Let eE 2 denote a

set that contains all sets of arrows E2 satisfying conditions

(B1)–(B4). Notice that eE 2 does not depend on u. Clearly,

for each E 2 eEðuÞ; there exist an E1 2 eE 1ðuÞ and an E2 2
eE2 such that E = E1 [ E2. Conversely, it can be seen that

for each E1 2 eE 1ðuÞ and each E2 2 eE 2 there exists an E 2
eEðuÞ such that E = E1 [ E2. Hence,

eEðuÞ ¼ E1 [ E2








E1 2 eE 1ðuÞ;E2 2 eE 2

n o

: ð72Þ

Equation 69 can now be written as

~aðuÞ ¼
P

E12eE 1ðuÞ

Q

ðw;w0Þ2E1
aðw;w0Þ

� �

�
P

E22eE 2

Q

ðw;w0Þ2E2
aðw;w0Þ

� �

: ð73Þ

Consequently, it follows from (67) that

q̂ðuÞ ¼ lim
e!0

�qðuÞ ¼

P

E12eE 1ðuÞ

Q

ðw;w0Þ2E1
aðw;w0Þ

P

u02U
P

E12eE 1ðu0Þ

Q

ðw;w0Þ2E1
aðw;w0Þ :

ð74Þ

Based on (74), the following observations can be made:

1. For w;w0 2 W such that w 6¼ w0 and such that there

exists an E1 2
S

u02U
eE 1ðu0Þ that contains an arrow

ðw;w0Þ; lime!0 �qðuÞ depends on the term of lowest

degree in the transition probability qðw;w0Þ and does

not depend on other terms in qðw;w0Þ:
2. For w;w0 2 W such that w 6¼ w0 and such that there

does not exist an E1 2
S

u02U
eE 1ðu0Þ that contains an

arrow ðw;w0Þ; lime!0 �qðuÞ does not depend on any of

the terms in the transition probability qðw;w0Þ:

Let {Vt}, where the index t takes values in f0; 1; . . .g;
denote a Markov chain with state space V; transition

probabilities rðv; v0Þ; and stationary probabilities �rðvÞ;
where v; v0 2 V: For v 6¼ v0; let

rðv; v0Þ ¼
aðv; v0Þe; if v 2 U and cðv; v0Þ ¼ 1

aðv; v0Þ; if v 62 U and cðv; v0Þ ¼ 0

0; otherwise.

8

<

:

ð75Þ

Furthermore, let rðv; vÞ ¼ 1�
P

v02Vnfvg rðv; v0Þ: Clearly,

Markov chain {Vt} is irreducible. Taking into account the

two observations made above, it can be seen that

lime!0 �rðvÞ ¼ lime!0 �qðvÞ for all v 2 V: That is, in the limit

as e approaches zero, corresponding states of Markov

chains {Vt} and {Wt} have the same stationary probability.

It follows from this that lime!0 �rðvÞ ¼ q̂ðvÞ for all v 2 V:
The following observations can be made:

1. For v 2 U and v0 2 V; cðv; v0Þ ¼ 1 if and only if

v = u(i) and v0 ¼ vði; j; n� 1Þ for some i and some j

such that d(i, j) = 1.

2. For v 2 U and v0 2 V such that cðv; v0Þ ¼ 1; qðv; v0Þ
equals the probability that the mutation operator

inverts one specific bit in the binary encoding of an

arbitrarily chosen chromosome and that it does not

invert any other bits in the binary encoding of the

chosen chromosome or of any other chromosome in

the population. This probability does not depend on v

or v0: Consequently, for all v1; v2 2 U and all v01; v
0
2 2 V
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such that cðv1;v
0
1Þ¼ cðv2;v

0
2Þ¼ 1;qðv1;v

0
1Þ¼ qðv2;v

0
2Þ

and hence aðv1;v
0
1Þ¼ aðv2;v

0
2Þ:

3. For v 2 V n U and v0 2 V; cðv; v0Þ ¼ 0 only if

v = v(i, j, k) and v0 ¼ vði; j; k0Þ for some i and some

j such that d(i, j) = 1 and for some k 2 f1; . . .; n� 1g
and some k0 2 f0; . . .; ng:

4. For v 2 V n U and v0 2 V such that cðv; v0Þ ¼
0; aðv; v0Þ ¼ pði; j; k; k0Þ; where i, j, k, and k0 satisfy

v = v(i, j, k) and v0 ¼ vði; j; k0Þ and where pði; j; k; k0Þ
is defined in (6).

Let a ¼ aðv; v0Þ for all v 2 U and all v0 2 V such that

cðv; v0Þ ¼ 1: Using (75), it follows from the first two

observations made above that rðv; v0Þ ¼ ae if v = u(i) and

v0 ¼ vði; j; n� 1Þ for some i and some j such that d(i, j)

= 1. It also follows that rðv; v0Þ ¼ 1� mae if v ¼ v0 2 U:
Furthermore, taking into account the last two observations

made above, it can be seen from (75) that rðv; v0Þ ¼
pði; j; k; k0Þ if v = v(i, j, k) and v0 ¼ vði; j; k0Þ for some i

and some j such that d(i, j) = 1 and for some k 2
f1; . . .; n� 1g and some k0 2 f0; . . .; ng: Finally, (75)

implies that rðv; v0Þ ¼ 0 if none of the above conditions

is satisfied. Let the vector ~v ¼ ~v1 � � � ~vn½ � be given by

~vT ¼

vðg1; h1; 1Þ
..
.

vðg1; h1; n� 1Þ
vðg2; h2; 1Þ

..

.

..

.

vðgm�1; hm�1; n� 1Þ
vðgm; hm; 1Þ

..

.

vðgm; hm; n� 1Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð76Þ

where g ¼ ½gk� and h ¼ ½hk� are defined in Sect. 2. Notice

that ~v contains each population in V n U exactly once. It

can be seen that

ð1�maeÞI

¼

rðuð0Þ;uð0ÞÞ � � � rðuð0Þ;uðl�1ÞÞ
..
. . .

. ..
.

rðuðl�1Þ;uð0ÞÞ � � � rðuðl�1Þ;uðl�1ÞÞ

2

6

6

4

3

7

7

5

ð77Þ

aeA ¼
rðuð0Þ; ~v1Þ � � � rðuð0Þ; ~vnÞ

..

. . .
. ..

.

rðuðl� 1Þ; ~v1Þ � � � rðuðl� 1Þ; ~vnÞ

2

6

4

3

7

5
ð78Þ

B ¼
rð~v1; uð0ÞÞ � � � rð~v1; uðl� 1ÞÞ

..

. . .
. ..

.

rð~vn; uð0ÞÞ � � � rð~vn; uðl� 1ÞÞ

2

6

4

3

7

5
ð79Þ

C ¼
rð~v1; ~v1Þ � � � rð~v1; ~vnÞ

..

. . .
. ..

.

rð~vn; ~v1Þ � � � rð~vn; ~vnÞ

2

6

4

3

7

5
ð80Þ

where A;B; and C are defined in (13), (16), and (19). Let S

denote a l 9 l matrix that is obtained from the matrices

in (77)–(80) and that is given by

S ¼ ð1� maeÞIþ aeAðI� CÞ�1B: ð81Þ

This can be written more simply as

S ¼ Iþ aeD ð82Þ

where D is defined in (22). Let {Ut}, where the index t takes

values in f0; 1; . . .g; denote a Markov chain with state space

U and transition matrix S: Using (77)–(81), it follows from

Lemma 4 that Markov chain {Ut} is irreducible and has

stationary probabilities �sðuÞ that are given by

�sðuÞ ¼ �rðuÞ
P

u02U �rðu0Þ ð83Þ

where u 2 U: Definition 8 states that the stationary

distribution �s ¼ �sðuð0ÞÞ � � � �sðuðl� 1ÞÞ½ � of Markov

chain {Ut} satisfies

�sS ¼ �s ð84Þ
�s1 ¼ 1: ð85Þ

Lemma 2 implies that this linear system has a unique

solution. The equality in (84) can be written as

�sðS� IÞ ¼ ae�sD ¼ 0: ð86Þ

Since a[ 0 and e [ 0; this can be simplified to

�sD ¼ 0: ð87Þ

Notice that D does not depend on e: �s therefore does not

depend on e either. Recall further that lime!0 �rðvÞ ¼ q̂ðvÞ
for all v 2 V and that q̂ðwÞ ¼ 0 for all w 2 W n U: Using

(83), it now follows that

�sðuÞ ¼ lim
e!0

�sðuÞ ¼ lim
e!0

�rðuÞ
P

u02U �rðu0Þ ¼
q̂ðuÞ

P

u02U q̂ðu0Þ ¼ q̂ðuÞ

ð88Þ

for all u 2 U: Hence, the stationary distribution �s of Mar-

kov chain {Ut} equals the long-run limit distribution q̂:

Consequently, (85) and (87) imply that q̂ satisfies (23) and

(24). It also follows that the linear system given by (23)

and (24) has a unique solution. This completes the proof of

part (2) of Theorem 1.
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