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Abstract

Background: Unraveling the signaling pathways responsible for the establishment of a metastatic phenotype in
carcinoma cells is critically important for understanding the pathology of cancer. The acquisition of cell motility is a
key property of metastatic tumor cells and is a prerequisite for invasion. Rho GTPases regulate actin cytoskeleton
reorganization and the cellular responses required for cell motility and invasion. Diacylglycerol kinase ¢ (DGKQ), an
enzyme that phosphorylates diacylglycerol to yield phosphatidic acid, regulates the activity of the Rho GTPases
Rac1 and RhoA. DGKC mRNA is highly expressed in several different colon cancer cell lines, as well as in colon
cancer tissue relative to normal colonic epithelium, and thus may contribute to the metastatic process.

Methods: To investigate potential roles of DGKC in cancer metastasis, a cellular, isogenic model of human
colorectal cancer metastatic transition was used. DGKC protein levels, Racl and RhoA activity, and PAK
phosphorylation were measured in the non-metastatic SW480 adenocarcinoma cell line and its highly metastatic
variant, the SW620 line. The effect of DGKC silencing on Rho GTPase activity and invasion through Matrigel-coated
Transwell inserts was studied in SW620 cells. Invasiveness was also measured in PC-3 prostate cancer and MDA-MB-
231 breast cancer cells depleted of DGKC,

Results: DGKC protein levels were elevated approximately 3-fold in SW620 cells compared to SW480 cells. There
was a concomitant increase in active Racl in SW620 cells, as well as substantial increases in the expression and
phosphorylation of the Rac1 effector PAK1. Similarly, RhoA activity and expression were increased in SW620 cells.
Knockdown of DGKC expression in SW620 cells by shRNA-mediated silencing significantly reduced Rac1 and RhoA
activity and attenuated the invasiveness of SW620 cells in vitro. DGKC silencing in highly metastatic MDA-MB-231
breast cancer cells and PC-3 prostate cancer cells also significantly attenuated their invasiveness.

Conclusion: Elevated DGKC expression contributes to increased Rho GTPase activation and the enhanced motility
of metastatic cancer cells. These findings warrant further investigation of the clinical relevance of DGKC upregulation
in colon and other cancers. Interfering with DGKC function could provide a means of inhibiting invasion and
metastasis.
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Background

Colorectal carcinoma (CRC) is one of the leading causes
of mortality in Western countries. The number of new
cases in the United States was predicted to reach 103,170
in the year 2012, with 51,690 deaths expected [1]. CRC
frequently metastasizes into a systemic disease, often in-
vading the lymph nodes and other visceral organs. The oc-
currence of metastases due to tumour progression is
responsible for the vast majority of cancer-related deaths.

The progression of normal colonic epithelium into ad-
enoma and later, into malignant adenocarcinoma, is as-
sociated with diverse genetic and epigenetic alterations
[2,3]. However, the vast majority of CRCs share a well
characterized sequence of inactivating mutations in
tumor suppressor genes and gain-of-function alterations
in oncogenes [2,4]. The molecular pathways perturbed
by these key genetic changes are relatively well under-
stood. In contrast, there is limited information about the
molecular changes that give rise to the subsequent
stages of colorectal progression, from carcinoma in situ,
to invasive carcinoma, to lymph node and visceral me-
tastasis [5]. Understanding how CRC metastases develop
is critical for the ultimate control of this cancer.

Metastasis is a complex process that begins with the
invasion of cancer cells into the surrounding tissues.
The acquisition of enhanced cell motility and invasive-
ness enable a tumor cell to break away from the primary
site, enter and exit the circulation, and successfully es-
tablish a metastatic colony [6]. Cancer cells acquire mi-
gratory and invasive properties through disruption of
cell-cell junctions, changes in focal adhesion complexes,
and extensive reorganization of the actin cytoskeleton
[7,8]. In mammalian cells, the generation of actin-based
dynamic motile structures is regulated by the Rho family
of small GTPases, of which the best studied members
are Cdc42, Racl and RhoA. RhoA is involved in the
maintenance of actin stress fibers and focal adhesions,
Racl in the formation of lamellipodia and membrane
ruffles and Cdc42 in the formation of filopodia [9,10].
The coordinated activation of these GTPases is thought
to be required for efficient migration [11,12].

Mutations in Rho GTPases are rarely the cause of
cancer; however the increased expression or activation
of Rho GTPases is associated with a variety of cancer
types [13], with enhanced invasion and metastatic po-
tential, [14—18] and disease progression [19,20]. RhoA
is overexpressed in colon carcinoma [19]. In contrast,
Racl levels are normal in colorectal tumors, but trun-
cated mutants of adenomatous polyposis coli (APC),
which is the cause of sporadic and familial colorectal tu-
mors [21], stimulate the activity of Asef, a Rac-specific
guanine exchange factor [22]. The finding that Rho
GTPase overexpression or hyperactivity, rather than ac-
tivating mutations, are involved in human cancer
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suggests their regulatory proteins have a prominent role
in deregulated signaling in cancer [23].

Rho GTPases cycle between inactive GDP-bound and
active GTP-bound conformations, which enables them
to function as binary switches. GTP-bound Rho pro-
teins interact with multiple downstream effectors to
elicit a variety of cellular responses including cytoskel-
etal reorganization, gene transcription, cell cycle regula-
tion, and vesicular traffic [24]. The Rho GTPase cycle is
tightly regulated by three classes of proteins. Guanine
nucleotide exchange factors (GEFs) activate GTPases
by promoting the exchange of GTP for GDP, whereas
GTPase activating proteins (GAPs) inactivate Rho pro-
teins by enhancing their intrinsic GTPase activity.
Guanine nucleotide dissociation inhibitors (GDIs) pre-
vent the dissociation of GDP and maintain the GTPases
in an inactive state. GDIs also sequester Rho GTPases
as soluble cytosolic complexes in which the C-terminal
membrane-targeting lipid moiety of the GTPase is pre-
vented from interacting with membranes [25,26]. Since
the vast majority of Rho GTPase protein exists in a bio-
logically inactive cytosolic complex with RhoGD], this is
a major point of regulation of Rho GTPase activity and
function. A thorough understanding of the mechanisms
that regulate Rho GTPases is therefore paramount for
understanding deregulated Rho GTPase signaling in
cancer.

Diacylglycerol kinases (DGKs) phosphorylate the lipid
second messenger diacylglycerol (DAG) to yield PA.
There are ten mammalian DGK isoforms (a, f, y, etc.),
each with specific patterns of expression, localization
within cells and distinct structural domains [27]. Our
previous studies demonstrated that DGK{ regulates both
Racl and RhoA activation [28,29]. DGK{ forms two in-
dependent multiprotein signaling complexes with Racl
and RhoA that function as selective RhoGDI dissociation
factors. In DGKU-deficient fibroblasts, Racl and RhoA
activation are decreased and cell migration is signifi-
cantly reduced [28,29]. In light of these findings, we hy-
pothesized that increased DGK{ expression in cells
would lead to enhanced Rho GTPase activity and
increased migratory potential. DGK{ mRNA is highly
expressed in colon cancer tissue relative to normal co-
lonic epithelium [30]. To investigate potential roles of
DGKU in colon cancer metastasis, we used a cellular, iso-
genic model of human CRC metastatic transition. The
SW480 and SW620 cell lines were established from bi-
opsies taken at different intervals from the same 50-
year-old CRC male patient [31]. SW480 cells derive from
the primary tumor, a poorly differentiated (grade 4) CRC
invading the muscularis propria. SW620 cells derive
from a lymph node metastasis taken from the same indi-
vidual six months later, when recurrent cancer with liver
and mesenteric lymph node metastases was discovered.
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Gene expression profile data available in the National
Center for Biotechnology Information Gene Expression
Omnibus (NCBI GEO) repository show the DGK{ tran-
script is increased in the metastatic SW620 cell line rela-
tive to the SW480 primary tumor line [5]. Here, we
demonstrate that increased DGK( protein levels in SW620
cells are associated with increased Rho GTPase activity
and downstream signaling. Silencing of DGK{ expression
in SW620 cells decreased Racl and RhoA activity and at-
tenuated cell invasion. DGKU silencing also attenuated the
invasiveness of PC-3 prostate cancer and MDA-MB-231
breast cancer cells. Collectively, our findings suggest inter-
fering with DGK{ function or expression may be a poten-
tial route to block the invasiveness of metastatic cancer
cells.

Methods

Cell lines and culture conditions

Human colorectal tumor cell lines SW480 (ATCC CCL-
227) and SW620 (ATCC CCL-228), prostate cancer cell
line PC-3 (ATCC CRL-1435), and breast cancer cell line
MDA-MB-231 (ATCC HTB-26) were obtained from the
American Type Culture Collection (ATCC, Manassas,
VA). The cells were verified according to ATCC Tech-
nical Bulletin No. 8 (2008) and grown at 37°C, 5% CO,
in Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS), 2 mM L-
glutamine, 100 units/ml penicillin and 100 pg/ml
streptomycin.

Antibodies

Affinity-purified antibody to the N-terminus of DGK{ was
prepared from DGK{ antisera and has been thoroughly
characterized [28,32-34]. Monoclonal Racl antibody
(Catalogue number: 610650) was purchased from BD Bio-
sciences (San Jose, CA). A polyclonal antibody to PAK1
(Catalogue number: 2602) was purchased from Cell
Signaling Technologies (Danvers, MA). Anti-pPAK1 was a
gift from Dr. Jonathan Chernoff (Fox Chase Cancer
Center, Philadelphia, PA) [28,35]. Monoclonal anti o-
tubulin antibody (Catalogue number: T5168) was pur-
chased from Sigma-Aldrich (St. Louis, MO). Horseradish
peroxidase-conjugated anti-rabbit (Catalogue number:
711-035-152) and anti-mouse (Catalogue number: 715-
035-150) secondary antibodies were from Jackson Immuno-
Research Laboratories, Inc. (West Grove, PA).

Establishment of DGK{-knockdown SW620 and PC-3 cell
lines

A lentiviral vector containing a small hairpin RNA
(shRNA) construct targeted to human DGK{ gene (Catalog
no. RHS3979-9569052) and a pLKO.1 empty lentiviral vec-
tor were purchased from Open Biosystems. The empty
pLKO.1 vector (Catalog #RHS4080) contains a 18 bp stuffer
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sequence between the Agel and EcoRI restriction sites.
The shRNA oligonucleotides (oligo ID: TRCN0000000668,
Open Biosystems) corresponding to the sequence on hu-
man DGK{ gene are: sense, 5° TCG CAC AGG ATG AGA
TTT ATA 3’; antisense, 5° TAT AAA TCT CAT CCT
GTG CGA 3'. Ultra-pure plasmid DNAs were prepared ac-
cording to the manufacturer’s protocol. To generate stable
knockdown cell lines, SW620 cells were transfected with
the shRNA vector using FUGENE 6 Transfection Reagent
(Roche-applied-science). After transfection, cells were incu-
bated for 24 h. Transfectants were then selected with 7 ug/
ml puromycin (Cellgro Catalog no. 61-385-RA). After two
weeks, the stable clones were transferred to 96-well plates
using sterile cloning discs (Bel-Art Products), grown until
confluent, and then transferred to 60 mm cell plates. DGK{
levels in various clones were analyzed by immunoblotting.
Clones with DGK{ protein levels that were substantially re-
duced compared to the controls were selected and main-
tained in medium containing 7 pug/ml puromycin. SW620
cells stably transfected with pLKO.1 empty vector were
used as a control. DGK{ knockdown PC3 cell lines were
generated in the same manner using Attractene transfec-
tion reagent to transfect the cells and 2.2ug/ml puromycin
for selection.

Lentiviral knockdown of DGK{ expression in MDA-MB-231
cells

A set of 3 lentiviral vectors containing shRNA targeted to
the DGK{ gene (Thermoscientific; Catalogue no. RHS4531-
EG8525) were used to generate lentivirus using the second
generation packaging plasmids pMD2.G and psPAX2 from
Addgene. MBA-MD-231 cells were infected with mixture
of the 3 lentivirus and incubated for 30 hours at 37°C with
5% CO, before being used in the invasion assays or ex-
tracted for western analysis.

Rac1 activity assay

Levels of active Racl and RhoA were measured using a
GST-PAK1 PBD and GST-Rhotekin RBD pull-down assay,
respectively [36]. Cells were immediately harvested in
chilled lysis buffer (50 mM Tris—HCl, pH 7.4, 150 mM
NaCl, 1% Triton X-100, 20 mM MgCl,, and protease in-
hibitors). Lysates were centrifuged at 12,000 x g for 5 min.
Equivalent amounts of protein were incubated with GST-
PBD or -RBD beads for 30 min at 4°C. The beads were
washed with lysis buffer, boiled in reducing sample buffer,
and eluted proteins assayed for bound Racl or RhoA by
immunoblotting.

Western blot

Cells were lysed in an ice-cold lysis buffer (50 mM Tris—
HCL, pH7.5, 150 mM NaCl, 50 mM MgCl,, 1% Triton X-
100, 1 pg/ml antipain, 1 pg/ml pepstatin, 1 pg/ml leupeptin,
0.5 mM AEBSE and 1 mM benzamidine hydrochloride).



Cai et al. BMC Cancer 2014, 14:208
http://www.biomedcentral.com/1471-2407/14/208

Cellular debris was removed by centrifugation (14,000 x g
for 10 min at 4°C). Total protein concentration of the su-
pernatants was determined using a colorimetric assay
method (Bio-Rad). 100 pg of total protein from each sam-
ple was resolved by SDS-PAGE, transferred onto PVDF
membrane (Millipore), immunoblotted with the affinity-
purified polyclonal antibodies to DGK{ (1:100) and horse-
radish peroxidase-conjugated goat anti-rabbit secondary
antibodies (1:800), and detected using enhanced chemilu-
minescence (Pierce Biotechnology). Differences in protein
loading were monitored by probing membranes with
monoclonal anti-a-Tubulin antibody.

Invasion assay

Cellular invasive ability was evaluated using Corning
6.5 mm Transwell inserts (8 um pore size, 24 well plate,
Fisher Scientific). For the SW620 and SW480 cell lines,
the upper surface of the inserts was coated with 100 ul
of 500 ug/ml Matrigel and the underside was treated
with either 15 ug/ml (SW480 versus SW620) or 100 ug/
ml (vector control versus shRNA) collagen type 1. The
cells were serum starved for 24 hours in DMEM con-
taining 0.25% FBS, then re-suspended in DMEM/0.25%
FBS/20 mM HEPES [pH 7.5] and seeded at 50,000 cells
per insert. The medium in the lower chamber consisted
of 600 ul DMEM/20% FBS/20 mM HEPES [pH 7.5], and
10 ug/ml collagen type I as chemoattractants. The cells
were incubated at 37°C in a humidified atmosphere con-
taining 5% CO, for approximately 70 hours. The PC-3
cell lines were starved in serum-free DMEM, then resus-
pended in DMEM/0.1% FBS/20 mM HEPES [pH 7.5],
and 25,000 cells each were seeded on inserts coated with
50 ul of 2 mg/ml Matrigel on the upper surface and 15
ug/ml collagen type I on the lower surface. The media in
the lower chamber was the same as for the SW620 and
SW480 lines. MDA-MB-231 cells were seeded at 25,000
cells per insert in serum-free DMEM/20 mM HEPES
[pH 7.5] on inserts coated with 50 ul of 1 mg/ml Matrigel
on the upper surface and 15ug/ml collagen type I on the
lower surface. The lower chamber contained DMEM/10%
EBS/10 ug/ml collagen type I. Both the PC3 and the
MDA-MB-231assays were incubated for 24 hrs. Following
incubation, the Matrigel was removed from the upper
chambers using a cotton swab and the cells were fixed
with 4% paraformaldehyde in PBS for 10 minutes, perme-
abilized with 0.5% Triton X-100 in PBS for 15 minutes,
and stained with 30 ug/ml propidium iodide in PBS with
0.03% Triton X-100 for 6 hours. To compare the invasive-
ness of the cell lines, the inserts were placed on 24 x
50 mm coverslips and imaged on a Zeiss Observer D1
microscope fitted with a 10x objective. For each insert,
five fields of view were imaged in a cross pattern and the
number of invading cells counted. The counts were then
averaged to obtain an invasive index. For each invasion
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assay plate, the invasive index of the inserts was normal-
ized to the vector control cell lines (or to the SW620 cell
line when compared to the SW480 line). Two control
SW620/vector and two SW620/shRNA knock down lines
were compared as well as three PC-3/vector and three
PC-3/shRNA lines. Lentiviral ShRNA infected verses vec-
tor infected MDA-MB-231 cells were also compared and
the average reduction in DGK{ expression following infec-
tion was determined by western analysis.

Results

DGKU expression is increased in a model of colorectal
cancer progression to metastasis

Analysis of endogenous DGK({ protein expression in
SW480 and SW620 cells by immunoblotting cell lysates
with an affinity purified anti-DGK{ antibody revealed a
marked increase in DGK{ expression in SW620 cells
(Figure 1A). Quantification of the band intensities after
normalization to tubulin levels revealed DGK{ was ele-
vated ~ 3-fold in SW620 cells (Figure 1B). These data are
consistent with the increased DGK{ mRNA polysomal re-
cruitment in SW620 cells compared to SW4380 cells [5].

Increased Rho GTPase activation in SW620 cells

Since DGKU contributes to Racl and RhoA activation by
promoting their release from RhoGDI [28,29], we next
determined if the increased DGK( expression in SW620
cells results in increased Racl and RhoA activity. The
levels of GTP-bound Racl and RhoA were measured
using effector pull-down assays, with the GTPase bind-
ing domains of PAK1 and Rhotekin, respectively [36].
There was a significant increase (approximately 5-fold)
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Figure 1 DGKU is increased in metastatic SW620 cells relative to
non-metastatic SW480 cells. (A) Detergent extracts prepared from
lysates of SW480 and SW620 cells were analyzed by immunoblotting
with an affinity-purified anti-DGKC antibody (top) and an anti-a-
tubulin monoclonal antibody (bottom). (B) Graph showing the
quantification of DGKC levels by densitometric analysis of immunoblots.
The data were normalized to the level of a-tubulin and expressed as a
fold increase relative to the amount in SW480 cells. Values are the
average + SEM. of four independent experiments. The asterisk
indicates a highly significant difference (P < 0.01) from SW480 cells by
Student’s t-test.
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in Racl activity in SW620 cells despite the fact that total
Racl levels were unchanged (Figure 2A and B). RhoA
activity was increased approximately 3-fold, mirroring a
similar increase in total RhoA protein levels (Figure 2C,
D and E). Thus, the increases in active Racl and RhoA
in SW620 cells parallel the increased DGK{ expression.

Increased expression and phosphorylation of PAK1

The p2l-activated kinases (PAKs) are Ser/Thr protein
kinases whose activity is regulated by binding of active
Rac or Cdc42 [37]. Since Racl activity was increased in
SW620 cells, we evaluated whether PAK1 activity was
similarly increased. Binding of active Racl or Cdc42 to
PAK1 relieves autoinhibition and stimulates autophos-
phorylation, leading to increased kinase activity [37]. To
evaluate PAK1 activity in SW480 and SW620 cells, de-
tergent extracts of cell lysates were immunoblotted with
a phospho-specific PAK1 antibody. Two pPAK1 bands
were evident in SW480 cells; a faint upper band (Figure 3A,
top panel, arrow), which represents hyper-phosphorylated
PAK1, and a more prominent lower band, which is a less
phosphorylated version [35]. The intensity of the hyper-
phosphorylated band was significantly increased in SW620
cell lysates, while that of the lower band was unchanged,
indicative of increased PAK1 phosphorylation in SW620
cells (Figure 3B). In contrast to Racl, whose levels re-
mained unchanged, total PAK1 levels were substantially
(~10-fold) increased in SW620 cells (Figure 3A, bottom
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panel and Figure 3C). The increased PAK1 expression is
consistent with the increase in polysomal PAK1 mRNA in
SW620 versus SW480 cells [5].

Establishment of SW620 cells with stable knockdown of
DGKC( expression

To investigate potential roles for DGK( in the regulation
of colon cancer cell invasion, we created stable SW620
cell lines that harbour either a lentiviral vector (pLKO)
containing a short hairpin RNA (shRNA) sequence tar-
geted to the DGK{ mRNA or the pLKO vector with no
shRNA insert. Two control cell lines (SW620/Vectorl
and 2) and two knockdown lines (SW620/shRNA1 and
2) were chosen for further analysis. Immunoblotting of
cell lysates with the anti-DGK{ antibody revealed a
marked decrease in DGK{ expression in the SW620/
shRNA cell lines compared to the SW620/Vector lines
Figure 4A. Quantification of immunoblots revealed aver-
age decreases of 40 and 50%, for the shRNA1l and 2
knockdown lines, respectively (Figure 4B), whereas the
non-targeting shRNA vector control cells did not show
significantly decreased DGKC expression.

Rac1 and RhoA activity are decreased by silencing DGK(
expression

Racl and RhoA activity were assayed in the stable cells
lines. For these experiments, we chose the shRNA2 line
because it showed the greatest reduction in DGK{
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Figure 2 Increased Rac1 and RhoA activity in SW620 cells relative to SW480 cells. Detergent extracts from SW480 and SW620 cells were
incubated with immobilized GST-PBD (A) or GST-RBD (C) and the bound proteins were analyzed by immunoblotting (IB) for RacT or RhoA,
respectively (top panels). Total Rac1 and RhoA levels in the cell lysates are shown below. Tubulin is shown for comparison with RhoA. (B and D)
Quantification of active Rac1 and RhoA levels, respectively, by densitometric analysis of immunoblots. The data were normalized to the amount
of total Rac1 or tubulin (for RhoA) and are expressed as a fold increase relative to SW480 cells. (E) Graph showing the relative levels of RhoA in
SW480 and SW620 cells. In each case, values are the average from at least three independent experiments + S.E.M. The asterisks indicate a
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Figure 3 Increased PAK1 expression and phosphorylation in SW620 cells. (A) Detergent extracts prepared from SW480 and SW620 cells
were analyzed by immunoblotting for phosphorylated (p)PAKT, total PAKT and tubulin. (B) Graph showing the quantification of total PAK1 levels
by densitometric analysis of immunoblots. (C) Quantification of pPAK1 levels. The intensity of the upper pPAK1T band (arrow in A) was measured
and normalized to the level of tubulin. Values are the average + S.EM. of four independent experiments. One asterisk denotes a significant
difference (P < 0.05) and two asterisks, a highly significant difference (P < 0.01) from SW480 cells by Student's t-test.

expression. The levels of GTP-bound Racl and RhoA
were significantly decreased in SW620/shRNA2 cells,
as compared with SW620 cells, while cells with non-
targeting shRNA (SW620/Vectorl) showed no significant
change in either Racl or RhoA activity (Figure 5A-D).
Notably, Racl and RhoA total protein levels were not af-
fected by shRNA against DGKC. These results suggest de-
creased DGKU levels lead to decreased Racl and RhoA
activity, but not expression.

Decreased invasion of SW620 cells by stable knockdown
of DGK(

We recently reported that DGK{-null mouse embryonic
fibroblasts migrate less in two- and three-dimensional
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Figure 4 Stable shRNA expression reduces DGKC levels in
SW620 cells. (A) Equivalent amounts of protein from detergent
extracts of SW620 cells, SW620 cells stably expressing an empty
lentiviral vector (Vector1 and 2), or SW620 cells expressing an shRNA
against DGK( (shRNAT and 2) were immunoblotted with anti-DGK(
(top) and anti-tubulin (bottom) antibodies. (B) Graph showing DGKC
protein levels in each cell line as measured by densitometric analysis
of western blots. The data were normalized to the level of tubulin
and are expressed as a percentage of DGKC in SW620 cells. Values
are the average of at least three independent experiments + SEM.
Statistical analysis was performed by a one-way ANOVA followed by
a Tukey post-hoc multiple comparison test. The asterisks denote a
highly significant difference (P < 0.001) from SW620 cells.

migration assays than their wild type counterparts [28].
To determine if silencing DGK{ expression affects the in-
vasion of SW620 cells through a 3-D matrix, we compared
SW480, SW620, SW620/vector and SW620/shRNA cells
in an in vitro invasion assay. In agreement with previous
reports [38-40], SW620 cells consistently invaded more
through Matrigel-coated Transwell inserts than SW480
cells (Figure 6A). On average, the SW620/shRNA cells
lines had DGK{ protein levels that were reduced by
approximately 40% compared to SW620 cells, whereas
SW620/Vector lines had DGK{ levels comparable to
SW620 cells as expected (Figure 6B). The average invasion
of the SW620/shRNA cell lines through the Transwell
inserts was significantly less than SW620/vector cell lines
(P <0.05), suggesting siRNA-mediated silencing of DGK{
expression decreases the invasiveness of SW620 colon
cancer cells (Figure 6C). Taken together, these results sug-
gest DGK( contributes to the overall invasive potential of
SW620 colon cancer cells.

DGKC depletion decreases the invasiveness of prostate
cancer and metastatic breast cancer cells
To validate and extend the generality of our findings in
colon cancer cells, DGK{ was depleted from two add-
itional cell lines, the PC-3 prostate cancer line and the
highly metastatic breast cancer line MDA-MB-231. Three
stable cell lines each of PC-3/Vector and PC-3/shRNA
were chosen for analysis. Western blotting of cell lysates
revealed DGK( expression was reduced in the PC-3/
shRNA lines compared to PC-3/Vector lines (Figure 7A).
Quantification of the western blot signals revealed an aver-
age decrease of approximately 40% in the shRNA lines
(Figure 7B). The average invasiveness of the PC-3/shRNA
was reduced by approximately 60% compared to PC-3/
Vector lines (Figure 7C).

To silence DGK{ expression in MDA-MB-231 cells,
three different DGK{ shRNA constructs cloned into the
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indicated cell lines were incubated with immobilized GST-PBD or GST-RBD and the bound proteins were analyzed by immunoblotting (IB) for
Rac1 (A) or RhoA and tubulin (C). Total Rac1 and RhoA levels in the cell lysates are shown. (B and D) Quantification of active Racl and RhoA
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expressed as a percentage of the activity in SW620 cells. Values are the average of at least three independent experiments + S.E.M. The asterisks
indicate a highly significant difference from SW620 cells (P < 0.005) by Student's t-test.
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pGIPZ lentiviral vector were used to produce separate
lentivirus stocks (see Materials and Methods). MDA-
MB-231 cells infected with a mix of the three virus par-
ticles showed a substantial decrease in DGK{ expression
(approximately 60%) compared to cells infected with the
pGIPZ vector alone (Figure 7D and E). The invasion of
MDA-MB-231/shRNA cells was significantly reduced
compared to MDA-MB-231/Vector cells (Figure 7F).
Collectively, the results from silencing studies in SW620,
PC-3 and MDA-MB-231 cells strongly suggest DGK{
has a stimulatory role in cell invasion.

Discussion

The development of metastatic tumors is a major cause
of death in many human cancers. CRC progresses from
adenoma to malignant adenocarcinoma to invasive car-
cinoma, and finally, to metastatic cancer. The origin of
the SW480 and SW620 cell lines from the spontaneous
progression of a human CRC in a single patient makes
this a useful system for the analysis of gene expression
changes during the transition from invasive carcinoma
to metastasis. This isogenic, cellular model of CRC has
been extensively validated and several studies showed
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Figure 6 Silencing DGKU Expression Decreases Invasiveness of SW620 Cells. SW480, SW620, SW620/Vector, and SW620/shRNA cells were
placed in the upper chamber of a Transwell invasion plate and allowed to migrate across a Matrigel-coated, porous membrane for approximately
72 hrs. (A) Graph comparing the invasion of SW480 and SW620 cells. (B) Graph showing the average DGKC level in SW620/Vector and SW620/
ShRNA cell lines normalized to the DGKC level in SW620 cells. (C) Graph showing the average invasion of SW620/Vector and SW620/shRNA cell
lines. Values are the mean + SEM. from seven independent experiments. One asterisk indicates a significant difference (P < 0.05) and two asterisks,
a highly significant difference (P < 0.005) from SW620 cells by Student's t-test.
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Figure 7 DGKU Silencing Attenuates Invasion of PC-3 Prostate and MDA-MB-231 Breast Cancer Cells. (A) Western blot of DGKC (arrow) in
three PC-3/Vector and three PC-3/shRNA cell lines. Tubulin is shown for comparison. (B and C) Graphs showing the average DGKC level (B) and
invasion through Matrigel-coated Transwell inserts (C) of PC-3/Vector and PC-3/shRNA cell lines. The data were normalized to Empty Vector
control cells. Values in B and C are the mean + SEM. from five independent experiments. (D) Western blot of DGKC in MDA-MB-231/Vector and
MDA-MB-231/shRNA cells. Tubulin is shown for comparison. (E and F) Graphs showing the average DGKC level (E) and invasiveness (F) of
MDA-MB-231/Vector and MDA-MB-231/shRNA cells, normalized to the level in Empty Vector control cells. Values in E and F are the mean + S.EM.
from four independent experiments. An asterisk indicates a significant difference (P < 0.05) from Vector cells by Student’s t-test.

SW620 cells are more invasive than SW480 cells in vitro
[38,39]. In this study, we documented a ~3-fold increase
in the level of DGK{ protein in SW620 cells, as com-
pared to SW480 cells. Silencing of DGK{ expression by
~50% reduced the invasiveness of SW620 cells, suggest-
ing DGKU contributes significantly to the increased mo-
tility of this cancer cell line. Moreover, silencing DGK{
expression in PC-3 and MDA-MB-231 cells also lead to
reductions in their invasiveness. Taken together, these
findings strongly suggest DGKC contributes to the over-
all invasive potential of SW620, PC-3 and MDA-MB-231
cells.

The significance of these findings relates to our previ-
ous work, which established DGKU as a critical regulator
of both Racl and RhoA activity [28,29]. In the former
case, we showed DGKU(-derived PA activates PAKI,
which phosphorylates RhoGDI, allowing for the release
and subsequent Racl activation. Mouse embryonic fibro-
blasts deficient in DGKC have reduced Racl activity and
reduced Racl-related structures such as lamellipodia
and membrane ruffles [28]. Consistent with these find-
ings, knockdown of DGK{ expression in SW620 cells
significantly reduced Racl activity. Racl protein levels
remained constant however, suggesting DGK{ acts pri-
marily at the level of Racl activation. In DGK{-null

fibroblasts, even the complete absence of DGK{ only de-
creased Racl activity by ~ 50% suggesting other mecha-
nisms contribute to Racl activation. Indeed, at least two
additional DGK isoforms, DGK{ and DGK{ reportedly
contribute to the regulation of Racl activation. DGK{-
dependent activation of atypical PKC(/{ mediates the re-
lease of Rac from RhoGDI in epithelial cells in response
to hepatocyte growth factor [41,42], while DGKU acts as
an upstream suppressor of Racl activity in fibroblasts [43].
However, the polysomal mRNA expression of DGK{ or
DGK{ was not substantially different in SW480 and
SW620 cells and therefore the increased migration of
SW620 cells is not likely due to changes in the expression
of these isoforms.

RhoA activity was increased approximately 3-fold in
SW620 cells compared to SW480 cells. Furthermore,
there was a comparable increase in both RhoA and
DGK{ expression. Since DGKU is required for efficient
RhoA activation [29], the combination of increased
DGK{ and RhoA expression likely accounts for the in-
creased RhoA activity in SW620 cells. However, since
the level of RhoA activity but not protein was decreased
by DGKC silencing, it appears unlikely that DGK{ dir-
ectly regulates RhoA expression. Thus, our findings in
SW620 cells are consistent with our previous studies in
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mouse embryonic fibroblasts, which indicated that
DGK{ regulates RhoA activity [29].

Activating mutations in Rho GTPases are rarely
detected in human cancers. More frequently however,
overexpression and/or hyperactivation of Rho pro-
teins contribute to tumor progression and metastasis
[19,20,44—48]. One study found that Racl plays a key
role in the progression of CRC in vivo: decreased Racl ex-
pression blocked tumor formation in an orthotopic model
of colorectal adenocarcinoma, whereas its overexpression
in SW620 cells accelerated colorectal adenocarcinoma
progression when the cells were injected into athymic
nude mice [49]. In another study, RhoA activity correlated
with lymph node metastasis in human colorectal cancer.
More active RhoA in tumors with lymph node involve-
ment than in those that did not metastasize suggests in-
creased RhoA function is associated with enhanced tumor
cell motility [46]. Together, these findings suggest decreas-
ing Racl or RhoA expression, or alternatively, interfering
with their ability to achieve or maintain the active GTP-
bound state [50], is a viable strategy to reduce CRC pro-
gression and metastasis. The results presented herein sug-
gest decreasing DGKU expression or function is a potential
route to reducing Racl and RhoA activity and the migra-
tory ability of colon cancer cells. This strategy may be
beneficial not only in cancers where DGK{ is overex-
pressed, but possibly also in cases where DGK( is
expressed at normal levels but Racl or RhoA are overex-
pressed or hyperactive.

Analysis of data deposited in the Oncomine database
reveals DGK{ mRNA is highly expressed in several dif-
ferent colon cancer cell lines and in colon cancer tissue
relative to normal colonic epithelium [30,51]. Moreover,
DGK{ expression in CRC is high in comparison with
other cancer types [52]. Thus, DGK{ and its downstream
signaling pathways may be important factors influencing
colon cancer progression. However, a limitation of our
studies is the lack of correlative clinical data showing the
DGK{ protein level is elevated in metastatic cancer.
Thus, it will be important to validate our findings by
comparing DGK{ protein levels in primary and meta-
static tumor specimens. Moreover, the effect of silencing
DGK{ expression on the in vivo metastatic potential of
tumor cells with elevated DGK{ levels or high Rho
GTPase activity remains to be investigated.

Finding that DGK( is upregulated in other metastatic
cancers would suggest interfering with its function might
allow for a more general role in inhibiting tumor cell
motility and invasion. DGK{ is also overexpressed
several-fold in a variety of breast carcinoma and breast
adenocarcinoma cell lines [53]. We found that silencing
DGKU expression in highly metastatic MDA-MB-231
cells decreased their invasiveness, suggesting DGK{ sig-
naling also plays a role in the overall invasive potential
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of these cells. Similar results were obtained with PC-3
prostate cancer cells. Therefore, targeting DGK{ func-
tion in these cancers as well may provide new avenues
for therapeutic strategies.

Conclusion

In conclusion, our findings suggest DGK{ overexpres-
sion by colon carcinoma and other cancer cells plays an
important role in tumor cell invasion, a key requirement
for metastasis. Few molecular markers have proven to
correlate well with stage and prognosis in colon cancer,
particularly at later stages. It will be interesting to see if
elevated DGKU expression proves to be a predictive bio-
marker for patients with metastatic CRC or other cancer

types.
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