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Abstract

Feed intake control is vital to ensuring optimal nutrition and achieving full potential for growth and development
in poultry. The aim of the present study was to investigate the effects of L-leucine, L-glutamate, L-tryptophan and
L-arginine on feed intake and the mRNA expression levels of hypothalamic Neuropeptide involved in feed intake
regulation in broiler chicks. Leucine, glutamate, tryptophan or arginine was intra-cerebroventricularly (ICV)
administrated to 4d-old broiler chicks respectively and the feed intake were recorded at various time points.
Quantitative PCR was performed to determine the hypothalamic mRNA expression levels of Neuropeptide Y (NPY),
agouti related protein (AgRP), pro-opiomelanocortin (POMC), melanocortin receptor 4 (MC4R) and corticotrophin
releasing factor (CRF). Our results showed that ICV administration of L-leucine (0.15 or 1.5 μmol) significantly
(P< 0.05) increased feed intake up to 2 h post-administration period and elevated both hypothalamic NPY and
AgRP mRNA expression levels. In contrast, ICV administration of L-glutamate (1.6 μmol) significantly (P< 0.05)
decreased feed intake 0.25, 0.5 and 2 h post-injection, and increased hypothalamic CRF and MC4R mRNA
expression levels. Meanwhile, both L-tryptophan (10 or 100 μg) and L-arginine (20 or 200 μg) had no significant
effect on feed intake. These findings suggested that L-leucine and L-glutamate could act within the hypothalamus
to influence food intake, and that both orexigenic and anorexigenic Neuropeptide genes might contribute directly
to these effects.
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Background
Metabolic fuels, including amino acids, could act on hypo-
thalamic neurons to regulate feeding behavior and energy
homeostasis, but the signaling mechanisms mediating
these effects are not fully clear [1]. The arcuate nucleus
(ARC) of the hypothalamus contains at least two distinct
groups of neurons controlling feeding behavior and energy
balance, which are, neurons that contain the orexigenic
Neuropeptide (including NPY and AgRP) and neurons
that contain the anorexigenic Neuropeptide (including
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POMC) [2,3]; and from the ARC, neurons project to
‘second order neurons’ in the paraventricular nucleus
(PVN) (responsible for producing corticotrophin-releasing
factor (CRF), a potent anorexigenic peptide), ventromedial
hypothalamus area (VMH), and lateral hypothalamic area
(LHA) to orchestrate feeding behavior [3,4].
In mammals, recent data indicated that brain amino

acid sensing also contributed to the homeostatic regula-
tion of food intake and body weight [5]. In avian, many
of the classic neurotransmitters, including amino acids,
had been shown to affect food intake when injected dir-
ectly into the central nervous system [6,7].
Leucine, glutamate, tryptophan and arginine are among

the important ‘bioactive amino acids’, and participate in
many important and diverse biochemical reactions
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associated with the normal physiology of the organism.
Leucine, an essential amino acid, likely represents a physio-
logical signal of hypothalamic amino acid availability [8]. It
enters the brain more quickly than other amino acids, and
it is the most potent activator of the amino-acid-sensitive
mTORC1 pathway in mammals [8,9]. Leucine intracereb-
roventricular (ICV) injection led to a decrease in food in-
take in mammals, by increasing hypothalamic mTOR
signaling [5]. In addition, It was reported that providing a
diet deficient in valine but with excess leucine resulted in a
rapid decrease in feed intake in pigs [10]. In contrast,
central administration of leucine significantly stimulated
food intake in neonatal chicks [11]. However, the effect of
ICV injection of leucine on hypothalamic orexigenic and
anorexigenic Neuropeptide remained to be elucidated.
L-glutamate is the most abundant free amino acid in

brain and is the predominant excitatory neurotransmit-
ter of the vertebrate central nervous system. Glutamate
was previously demonstrated to be an endogenous agent
involved in the neural control of food intake and body
weight in mammals [12,13]. Systemic, ICV or local ad-
ministration of glutamate or glutamate agonists into the
lateral hypothalamus could evoke a dose-related stimula-
tion of food intake in mammals [12,14]. Nonetheless,
currently there is still little information on the impact of
glutamate on feeding behavior in chickens, and results
have contrasted those obtained in mammals [15-17].
Tryptophan, an essential amino acid, is the precursor

for the synthesis of serotonin. In mammals, the effect of
tryptophan deficiency on growth was mainly associated
with a reduction of appetite and feed intake [18,19]. For
poultry, dietary tryptophan significantly elevated body
weight gain and feed intake [20], while central adminis-
tration had been shown to suppress food intake in free
fed chicks [21]. There is, however, limited research
information on the effects of central administration of
tryptophan on hypothalamic orexigenic and anorexigenic
Neuropeptide in broiler chicks.
L-arginine is one of the metabolically versatile amino

acids, giving rise to nitric oxide (NO); and NO is recog-
nized as one of feeding-regulatory factors in the brain of
mammals [22]. In mammals, central administration of
L-arginine with leptin blocked leptin’s inhibitory effects
on food intake and NOS activity [23,24]. In chickens,
L-arginine ICV injection had been shown to attenuate
the decrease in food intake induced by leptin [25]. How-
ever, there is currently limited research information on
the effects of L-arginine central administration on feed
intake in broiler chickens.
Therefore, the purpose of the present study was to de-

termine the effects of ICV administration of the amino
acids leucine, glutamate, tryptophan, and arginine on feed
intake and to elucidate the contribution of hypothalamic
orexigenic and anorexigenic Neuropeptide to the effects
of these amino acids in broiler chicks. We measured the
feed intake at various time points after central injection.
Additionally, the hypothalamic mRNA expression levels of
NPY, AgRP, POMC, MC4R, and CRF were tested.

Materials and methods
Experimental animals
1-d old broiler chicks were purchased from South China
Agricultural University Hatchery and were maintained
in a room at a constant temperature of 30 ± 1°C. Light-
ing was provided continuously for 24 h every day.
Chicks were given free access to a commercial starter
diet and water. 1 d prior to the experimental day, the
chicks (3-d old) were selected and distributed into 12
experimental groups based on their body weight and
average feed intake, so that the average body weight
was as uniform as possible within the same experi-
mental group. All experimental procedures followed
the guidance for animal experiments and handling of
the College of Animal Science of South China Agricultural
University.

Preparation of drugs
The amino acids L-leucine, L-glutamate, L-arginine and L-
tryptophan were purchased from Dingguo Biotechnology
Company (Beijing, China) and then each amino acid was
dissolved in 0.85% saline (as a vehicle for a total injection
volume of 5 μL) containing 0.1% Evans Blue solution to
facilitate injection site localization. Based on similar/other
experiments performed on chicks by other researchers
[11,21,26], we selected two doses of each amino acid
(0.15 or 1.5 μmol for L-leucine, 0.8 or 1.6 μmol for
L-glutamate, 10 or 100 μg for L-tryptophan, and 20 or
200 μg for L-arginine).

Intra-cerebroventricular (ICV) injection procedure
Chicks were injected using a micro-syringe using a
method adapted from Davis et al. [27] and Cline et al.
[28]. After data collection, the chick was decapitated and
its head sectioned along the frontal plane to determine
site of injection. Any chick without dye present in the
lateral ventricle system was eliminated from analysis.

Feed intake experiments
One hundred and forty four, 4-d old broiler chicks, fasted
for 3 h, were randomly assigned (12 chicks per treatment)
to receive L-leucine (0.15 μmol or 1.5 μmol in vehicle),
L-glutamate (0.8 or 1.6 μmol in vehicle), L-tryptophan
(10 or 100 μg in vehicle), L-arginine (20 or 200 μg) and
vehicle control (0.85% saline containing 0.1% Evans Blue
in the volume of 5 μL) by ICV administration. After
injection, the chicks were returned to their individual
cages and given ad libitum access to both feed and
water. Feed intake was monitored at 0.25, 0.5, 1, 1.5 and
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2 h post administration as follow. We gave chicks a cer-
tain amount of diet in a cup at the beginning of experi-
ment (0 h) and weighed the remaining diet at various time
points (0.25, 0.5, 1, 1.5 and 2 h), and then we could
calculate the cumulative feed intake of different time
points.

RNA extraction
At 2 h after various amino acids ICV treatments, some
chicks were slaughtered, and the hypothalamuses were
quickly removed and snap frozen in liquid nitrogen.
Total RNA was isolated from the hypothalamic tissue
(about 50 mg) using TRIZOL reagent (Invitrogen, USA)
and purified with DNase I (Invitrogen, USA) according
to the manufacturer's instructions. The RNA concentra-
tion was determined using the photometer and the RNA
had an average OD260nm: OD280nm ratio between 1.8 and
2.0. The RNA quality was checked using 1.0% agarose
gel electrophoresis.

Reverse transcription and quantitative PCR
Synthesis of the first strand of cDNA was performed with
N10 random primer and MMLV (promega, USA) using
4 μg of total RNA. In the first step, a mixture of 3 μL of
the primer (N10), 8 μL RNA and 4 μL of DEPC water was
prepared in reaction tubes, and heated to 70°C for 5 m,
then cooled with ice. In the second step, a mixture of 1 μL
reverse transcriptase MMLV, 6 μL MMLV buffer, 0.5 μL
RNase Inhibitor, 1.5 μL dNTPs, and 6 μL DEPC water was
prepared. After overtaxing and a short centrifuge, this
mixture was added to the reaction mixture in step one.
The reaction mixture was then incubated at 37°C for
60 m, followed by 80°C for 5 m. This was properly stored
at -30 for use in Real-time PCR.
Real-time PCR was performed using one-step SYBR

Green PCR Mix (Takara, Dalian, China), containing
MgCl2, dNTP, and Hotstar Taq polymerase. Primers
were designed specifically for each gene by using
Primers 5.0 software (PREMIER Biosoft International,
USA). The reaction volumes and mixtures of reagents
were as follows: 10 μL of 2× SYBR Green Master
Mix, 0.5 μL primer (forward and reverse), 8.5 μL
water, and 1 μL cDNA template. Amplification and
melting curve analysis was performed in Stratergene
Mx3005P (Agilent Technologies, USA). Melting curve
analysis was conducted to confirm the specificity of
each product and the sizes of the products verified
on ethidium bromide-stained 1.0% agarose gels. The
relative mRNA expression was calculated by 2-ΔCt

(ΔCt = Cttarget gene-Ctβ-actin housekeeping gene), and each
gene expression in control group was presented as
100% [29]. Details of primer sequences, annealing
temperatures, and lengths (bp) are presented in
Table 1.
Statistical analysis
Data were analyzed by t-test (SPSS Statistics 17.0, SPSS
Inc, USA); and values are represented as means ± S.E.M.
Significance was established at the P < 0.05 level.

Results
ICV injection of leucine increased feed intake and
hypothalamic NPY and AgRP mRNA expression
To determine the effects of ICV injection of leucine on
feed intake, 0.15 μmol and 1.5 μmol of leucine were
administered. As shown in Figure 1, Feed intake was sig-
nificantly (P < 0.05) increased at 0.5, 1, 1.5 and 2 h post-
injection for the 0.15 μmol group, while for the 1.5 μmol
group, there was a significant increase in feed intake
when compared with control at 1 and 2 h post ICV
injection; and at 1.5 h post-injection, feed intake was
very close to a significant increase (P= 0.052). Feed in-
take was also increased at 0.5 h post-injection for the
1.5 μmol dose but was not statistically significant. There-
fore, both concentrations of leucine produced a signifi-
cant stimulatory effect on feed intake, with 0.15 μmol
producing a relatively higher stimulatory effect up to 2 h
post-injection.
ICV injection of leucine significantly increased both

AgRP and NPY mRNA expressions in the hypothalamus
(Figure 2). Both doses of leucine significantly increased
the mRNA expression levels of AgRP, but only high dose
(1.5 μmol) significantly increased the mRNA expression
levels of NPY. NPY mRNA was however increased to al-
most significant levels for the 0.15 μmol (P= 0.058).
The anorexigenic Neuropeptide POMC and CRF, and
the melanocortin receptor MC4R, had their mRNA ex-
pression levels reduced though the reduction did not
reach statistically significant levels for both doses of leu-
cine used.

Glutamate ICV injection reduced feed intake but
increased hypothalamic MC4R and CRF mRNA expression
To determine the effects of Glutamate ICV injection on
feed intake, 0.8 μmol and 1.6 μmol of L-glutamate were
administered (Figure 3). Feed intake was significantly
(P< 0.05) decreased at 0.25, 0.5 and 2 h post-injection
when a dose of 1.6 μmol was administered. For the same
dose, feed intake at 1, and 1.5 h post-injection reduced
despite not reaching statistically significant levels. In a
similar manner, feed intake was reduced when a dose of
0.8 μmol was administered but not significantly. There-
fore, glutamate elicited a dose dependant inhibitory effect
on feed intake in broiler chicks, with a higher dose signifi-
cantly decreasing feed intake.
The MC4R mRNA expression level was significantly

(P= 0.02) increased after glutamate ICV injection with
a 1.6 μmol concentration (Figure 4). For the lower
ICV injection concentration of 0.8 μmol, there was no



Table 1 Primer sequences and annealing temperatures

Gene Serial number Primer sequences (5’-3’) Annealing temp (°C) Length (bp)

β-actin NM_205518 FP: CACCGCAAATGCTTCTAAAC 58 100

RP: GCCATGCCAATCTCGTCTT

NPY NM_205473 FP: TGTTGAGGGAAAGCACAGAA 59 132

RP: GATTTGCTTCAGAGGAGTGGA

AgRP AB489993 FP: CATCCTCACCTCGGACCTCA 63 111

RP: GGGCCATCTGATCCAAGTCT

POMC NM_001031098 FP: AGAAGGGTTGGAACGAGA 61 99

RP: TACACCTTGATGGGTCTCC

MC4R NM_001031514 FP: TGGAACCAGAGCAACGGAC 62 156

RP: TGCCACAATGACCAAGACG

CRF AJ621492 FP: TCCCTGGACCTGACTTTCC 58 117

RP: GCCTCACTTCCCGATGATTT
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Figure 1 Cumulative feed intake of broiler chicks after ICV
administration with saline (control, n = 9), 0.15 μmol (n = 9) or
1.5 μmol (n = 9) L-leucine. Feed intake was recorded at 0.25, 0.5, 1,
1.5, and 2 h post-administration; Data are represented as means ± S.
E.M. Asterisk indicates significant difference from control group
within each time point (P< 0.05).
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significant increase in the mRNA expression level of
MC4R in the hypothalamus. CRF mRNA expression level
was also significantly increased (P= 0.015) for the higher
ICV injection concentration of 1.6 μmol but not for the
lower concentration of 0.8 μmol. However, POMC mRNA
expression levels at both concentrations of glutamate ICV
injection showed an insignificant increase. AgRP mRNA
expression level was reduced but not significantly, while
NPY mRNA expression level did not significantly increase.
The results clearly show an up-regulation of the anorexi-
genic factors though there were no significant changes in
mRNA expression levels of orexigenic factors.

Tryptophan ICV injection had no significant effect on
food intake in broiler chicks
10 and 100 μg of L-tryptophan were administered in
order to determine the effects of tryptophan ICV injec-
tion on feed intake in broiler chicks. There was clearly
no significant difference comparing with the control in
feed intake when a higher concentration (100 μg) was
used. However, the 10 μg L-tryptophan dose minimally
reduced feed intake throughout post-injection period
(2 h): 0.25 h (P= 0.189), 1 h (P= 0.224), and 1.5 h post-
injection (P= 0.270) when compared with control. Al-
though not significant, the minimal feed intake reduc-
tion was uniform and consistent. A summary of the
results is presented in Figure 5.

Arginine ICV injection did not significantly affect feed
intake
As shown in Figure 6, ICV injection of L-arginine (20
and 200 μg) did not significantly affect feed intake,
despite of the higher dose (200 μg) showing a steady
minimal increase in feed intake comparing with the
control from 0.5 h post-injection (P-values = 0.192,
0.269 and 0.245 at 0.5, 1.5 and 2 h post-injection,
respectively).

Discussion
The main conclusion to be drawn from the present
results was that ICV injection of leucine stimulates feed
intake in broiler chicks. For the lower dose (0.15 μmol)
of leucine, the increase of feed intake was significant
from 0.5 h post-injection and this increase was sustained
up to 2 h post-injection. The higher dose of leucine sti-
mulated a significant increase in feed intake from 1 h
post-injection, sustaining it up to 2 h post-injection. It
was therefore the lower dose that was more effective at
influencing feed intake. Moreover, ICV injection of



Figure 2 Relative mRNA expression levels for hypothalamic
MC4R, POMC, CRF, NPY and AgRP 2 h after ICV injection of
leucine; Data are represented as means ± S.E.M. (n = 6). Asterisk
indicates significant difference from control group within each time
point (P< 0.05).
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Figure 4 Relative mRNA expression levels for hypothalamic
AgRP, NPY, MC4R, POMC and CRF 2 h after glutamate ICV
injection; Data are represented as means ± S.E.M. (n = 6). Asterisk
indicates significant difference from control group within each time
point (P< 0.05).
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leucine significantly increased the mRNA expression
levels of the orexigenic Neuropeptide NPY and AgRP.
NPY is a potent hypothalamic orexigenic peptide. Central

administration or over-expression of NPY resulted in sig-
nificant increases of food intake and body weight [30,31]. In
contrast, induced selective ablation or knockdown of NPY
or AgRP neurons in adult mice led to reduction of feed
intake [32,33]. AgRP, an antagonist of α-MSH in chickens,
can exert its orexigenic effects through binding to spe-
cific melanocortin receptor subtypes (MC3-R and MC4-R)
[34]. In our study, the mRNA expression levels of hypo-
thalamic orexigenic Neuropeptide NPY were significantly
increased by ICV injection of leucine. And this suggested
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Figure 3 Cumulative feed intake of broiler chicks after ICV
administration with saline (control, n = 9), 0.8 μmol (n = 10) or
1.6 μmol (n = 7) L-glutamate. Feed intake was recorded at 0.25,
0.5, 1, 1.5, and 2 h post-administration; Data are represented as
means ± S.E.M. Asterisk indicates significant difference from control
group within each time point (P< 0.05).
that leucine was able to trigger increased genetic transcrip-
tion of orexigenic Neuropeptide (NPY/AgRP) within hypo-
thalamic neurons, thereby causing an increase in feed
intake.
The findings of this study were consistent with a research

performed on leghorn chicks [11], where ICV injection of
200 μg leucine stimulated feeding behavior. Izumi et al
(2004) proposed that a metabolite of leucine increases feed
intake in chicks. This was because leucine was transaminase
to produce glutamate and α-ketoisocaproic acid, and α-
ketoisocaproic acid was converted to acetoacetyl-CoA in the
brain [11,35]. However, ICV injection of α-ketoisocaproate
had no effect on food intake, suggesting that it was not this
metabolite of leucine increased food intake in chicks [11].
Thus, it was assumed that glutamate resulting from the ex-
ogenous leucine stimulated feeding behavior. However, the
present study has determined that glutamate ICV injection
inhibited feed intake in the broiler chicks. Therefore, it was
still unclear whether a metabolite of leucine increases feed
intake or not, and if not, how leucine was able to modulate
this feeding effect in broiler chicks is yet to be elucidated.
But it was still likely that leucine or its metabolite modulate
its effects through the activation of AMPK-dependent
mechanisms leading to the inhibition of mTOR activity and
therefore a stimulation of feeding behavior in broiler chicks.
Further experiments to investigate signaling pathways of
leucine mediating effects on feeding behavior in poultry
were indeed required.
The present study has also determined that ICV injec-

tion of glutamate inhibits food intake in broiler chicks.
Significant increases in the mRNA levels of MC4R and
CRF were also observed 2 h post-injection. These results
suggested that L-glutamate acted within the hypothalamus
to inhibit food intake, and might exert its effects in



Figure 5 Cumulative feed intake of broiler chicks after ICV
administration with saline (control, n = 9), 10 μg (n= 8) or
100 μg (n = 9) L-tryptophan. Feed intake was recorded at 0.25, 0.5,
1, 1.5, and 2 h post-administration; Data are represented as means ±
S.E.M.
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Figure 6 Cumulative Feed Intake of broiler chicks after ICV
administration with saline (control, n = 8), 20 μg (n= 9) or
200 μg (n = 7) L-arginine, feed intake was recorded at 0.25, 0.5,
1, 1.5, and 2 h post-administration; Data are represented as
means ± S.E.M.
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collaboration with the anorexigenic genes, including CRF,
MC4R and POMC.
Although not significantly, in this study, POMC gene

mRNA levels were up-regulated by ICV injection of glu-
tamate, and this was in line with research findings that a
proportion of POMC/CART neurons were glutamatergic
since they had been reported to contain the vesicular
glutamate transporter 2 (VGLUT2), a marker for glutama-
tergic neurons [36]. Endogenous POMC neurons exerted
a tonic inhibitory effect on feeding and energy storage via
their release of desacetyl-α-MSH, the primary melanocor-
tin cleavage product in the brain, at downstream sites
containing MC4-R [37]. Both NPY and AgRP orexigenic
Neuropeptide did not show a significant change in mRNA
expression levels, consistent with other previous research
results [38] that these neurons were not glutamatergic but
GABAergic.
Baghbanzadeh and Babapour (2007) suggested that glu-

tamate, acting as a neurotransmitter, is involved in feed
intake regulation in broiler cockerels, and that this effect
was probably mediated by both ionotropic and metabotro-
pic receptors [15]. The results of this study were also con-
sistent with the research result that ICV injection of
glutamate in pigeons was able to decrease feed intake, in a
study to explore the possible involvement of glutamatergic
mechanisms in the control of food intake [12]. On the
other hand, inhibition of vesicular glutamate uptake could
increase feed intake in broilers [39]. ICV treatments with
N-methyl-D-aspartic acid (NMDA) or D, L-a-amino-3-
hydroxy-isoxazole prop ionic acid (AMPA) decreased feed
intake in 24 h-food deprived pigeons. In free-feeding
pigeons, glutamatergic receptor antagonists MK-801 and
CNQX treatments significantly increased both food intake
and feeding duration [12]. Therefore, combination of the
above results and the findings in the present study implied
that glutamate-mediated circuits, mediated by AMPA and
NMDA receptors, played a role in significantly inhibiting
feed intake in broiler chicks.
The present findings contrasted with those obtained in

mammals. Systemic, ICV or local injections of glutamate
or its agonists into the lateral hypothalamus elicits a dose-
dependent stimulation of feed intake in mammals
[14,15,40]; whereas tuberal lateral hypothalamic injection
of an NMDA antagonist suppressed feeding elicited by
NMDA [38,41]. The fact that glutamate stimulated food
intake after injection in the lateral hypothalamus in mam-
mals could be explained by an excitatory role of glutamate
on orexigenic MCH and orexin-containing neurons [38].
The results of this study showed that tryptophan ICV

injection did not significantly affect food intake in 3 h-
fasted broiler chicks. This was despite the 10 μg dose
leading to a steady minimal decrease in feed intake
throughout the 2 h -post-injection period. It might be
that the 10 μg of L-tryptophan was too low whereas
the 100 μg dose was too high to significantly affect feed
intake. In fact, a study by Bungo et al (2008) showed
that L-tryptophan ICV injection of 3d old chicks fed
ad libitum significantly suppressed feed intake, suggest-
ing that tryptophan injected into the brain of chicks was
promptly converted to serotonin (5-hydroxytryptamine
5-HT) and induced hypophagia via the 5-HT2A receptors
[21]. There was thus still need to further investigate the
effects of central tryptophan on food intake in broiler
chicks under different physiological conditions.
L-arginine ICV injection failed to significantly affect

feed intake in broiler chicks, though a higher injection
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dose (200 μg) showed a steady minimal and statistically
not significant increase in feed intake from 0.5 h
post-injection. These results were consistent with those
of Calapai et al (1998) where a 10 μg L-arginine ICV in-
jection dose did not affect feed intake in mice. Moreover
Calapai et al (1998) showed that L-arginine (administered
together with leptin) antagonized the leptin-induced food
intake reduction in mice, and linked this effect to the NO
pathway [23]. In addition, supplementation of canola
meal-based diets with arginine significantly increased feed
intake in broilers [42]. Our results therefore suggested that
arginine alone might not centrally and directly affect feed
intake in broiler chicks.
In conclusion, the results presented in this study

suggested that L-leucine and L-glutamate could act within
the hypothalamus to influence food intake, and both orexi-
genic and anorexigenic Neuropeptide might contribute
directly to this effect. ICV injection of leucine increased
feed intake and hypothalamic NPY and AgRP mRNA ex-
pression, while glutamate ICV injection reduced feed
intake but increased hypothalamic MC4R, CRF and
POMC mRNA expression levels. Tryptophan and arginine
may not directly affect feed intake when ICV injected in
broiler chicks.
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