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Abstract 

Background: Proinflammatory immune response involves a complex series of molecular events leading to inflam-
matory reaction at a site, which enables host to combat plurality of infectious agents. It can be initiated by specific 
stimuli such as viral, bacterial, parasitic or allergenic antigens, or by non-specific stimuli such as LPS. On counter with 
such antigens, the complex interaction of antigen presenting cells, T cells and inflammatory mediators like IL1α, IL1β, 
TNFα, IL12, IL18 and IL23 lead to proinflammatory immune response and further clearance of infection. In this study, 
we have tried to establish a relation between amino acid sequence of antigen and induction of proinflammatory 
response.

Results: A total of 729 experimentally-validated proinflammatory and 171 non-proinflammatory epitopes were 
obtained from IEDB database. The A, F, I, L and V amino acids and AF, FA, FF, PF, IV, IN dipeptides were observed as pre-
ferred residues in proinflammatory epitopes. Using the compositional and motif-based features of proinflammatory 
and non-proinflammatory epitopes, we have developed machine learning-based models for prediction of proinflam-
matory response of peptides. The hybrid of motifs and dipeptide-based features displayed best performance with 
MCC = 0.58 and an accuracy of 87.6 %.

Conclusion: The amino acid sequence-based features of peptides were used to develop a machine learning-based 
prediction tool for the prediction of proinflammatory epitopes. This is a unique tool for the computational identifica-
tion of proinflammatory peptide antigen/candidates and provides leads for experimental validations. The prediction 
model and tools for epitope mapping and similarity search are provided as a comprehensive web server which is 
freely available at http://metagenomics.iiserb.ac.in/proinflam/ and http://metabiosys.iiserb.ac.in/proinflam/.
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Background
The role of peptides as therapeutic agents has gained con-
siderable importance recently, and more than 7000 natu-
ral peptides have been reported which play a pivotal role 
in human physiology and have different applications such 
as, vaccines, and other immunotherapeutics [1]. How-
ever, in addition to the desired action, these peptides may 
show undesirable immuno-activity, for example B cell or 
T cell activation and other proinflammatory events [2–4]. 

Similarly in nature, different infectious agents also har-
bor immunomodulatory properties present in their pro-
teins, which help them in initiation and progression of 
the disease [5, 6]. Several examples of proinflammatory 
reactions are known where the pathogens get advantage 
of inflammation caused by their antigen. A well-known 
example is the proinflammatory response induced by the 
peptide Hp(2–20) of Helicobacter pylori which induces 
proinflammatory activities such as, recruiting and acti-
vating various immune cells like neutrophils and mono-
cytes, upregulation of integrins (Mac-1) and activation 
of the oxygen radical producing NADPH-oxidase. This 
leads to destruction of host mucosal tissue along with 
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reduction in the viability and function of antineoplastic 
lymphocytes [7]. Similarly, the peptide gG-2p20, which 
corresponds to amino acids 190–205 of glycoprotein G-2 
of Herpes Simplex Virus-2 (HSV-2), induces proinflam-
matory effects by recruiting and activating the phago-
cytic cells. This, in turn, leads to reduced function and 
viability of NK cells [8]. Since NK cells constitute early 
line of defense and particularly important in protection 
against HSV-2, such proinflammatory reaction caused by 
gG-2p20 peptide leads to HSV-2 infection. Furthermore, 
there are examples of other physiological diseases, such 
as transmissible spongiform encephalopathies (TSEs), 
where prion peptide PrP(106–126) increases the patho-
genicity due to its proinflammatory nature [9]. Similarly, 
LL-37, a 37 amino acid proinflammatory peptide gener-
ated from hCAP18 protein, has a role in pathogenesis 
of rheumatoid arthritis, systemic lupus erythematosus, 
atherosclerosis etc. [10]. Another example of proinflam-
matory peptide is C-peptide, a cleavage product of pro-
insulin which is used in peptide-therapeutics. It has a 
proinflammatory response in different tissues and this 
property leads to inflammation in kidney and vascula-
ture, worsening the disease in long term [11].

The above evidences of proinflammatory property of 
peptide sequences underscore the correlation between 
amino acid sequence and its proinflammatory behavior. 
To the best of authors knowledge, there are no compu-
tational studies reported till date where any sequence-
based signature or feature has been investigated which 
could be responsible for proinflammatory behavior of a 
peptide. Although, several studies have focused on the 
prediction of different kind of immune epitopes, such as 
B cell epitopes [12–14], T cell epitopes [15–17], MHC 
binders [18], IL4-inducing peptides [19], IFN-gamma 
inducing MHC binders [20] and allergenicity [21, 22], 
there is no study known where the sequence-based fea-
tures have been examined to determine the proinflam-
matory nature of peptides. In this work, we have analyzed 
amino acid sequence of experimentally validated pro-
inflammatory epitopes (PiEs) in contrast to non-proin-
flammatory epitopes (NPiEs) and developed a machine 
learning-based classification method incorporating the 
sequence-based features, to predict the proinflammatory 
nature of peptides and proteins.

Results and discussion
The induction of proinflammatory immune response 
may be a desirable or undesirable property of peptide 
therapeutics. There are examples of therapeutic peptides 
where inflammation is a desirable property [3, 23]. How-
ever, examples like C-peptide have an undesirable pro-
inflammatory behavior, which worsen the disease [11]. 
The aim of this study is to develop an in silico method 

for predicting PiEs. In this study, we have analyzed the 
sequence-based properties which may contribute to its 
proinflammatory nature. Although in the past, several 
studies have been carried out on allergenic proteins/pep-
tides [21, 22], toxic peptides [24], MHC binders [18], CTL 
epitopes [17], and B cell epitopes [12]; this study focus on 
investigating the basic property of peptide antigens to ini-
tiate proinflammatory cascade, which involves recruiting 
several immune cells, activation of complement proteins 
and communication via different immune mediators, 
which are also known as cytokines. The cytokines, such 
as IL1α, IL1β, TNFα, IL12, IL18 and IL23, are considered 
as proinflammatory cytokines [25], which are established 
mediators measured during a proinflammatory reaction 
assay. In this study, the experimentally validated epitopes 
which are assayed positive for these cytokines were con-
sidered as PiEs. The epitopes which gave negative assay 
were considered as NPiEs (Fig.  1). The compositional 
and motif-based analysis were carried out on the main 
dataset, however, the prediction models were developed 
using both main and alternate dataset, as discussed in 
methods section.

Compositional analysis
In order to examine the abundance of amino acids in 
PiEs as compared to NPiEs, amino acid composition was 
computed for both the epitope classes. The composi-
tional analysis revealed that the average composition of 
Ala, Phe, Iso, Leu and Val amino acids is higher in PiEs 
as compared to NPiEs (Fig. 2; Additional file 1: Table S1), 
whereas, the amino acids Cys, Gly, Pro and Thr are less 
abundant in PiEs. It suggests a preferential abundance of 
some amino acids in PiEs. Similarly, the dipeptide com-
position was examined in both the classes and several 
dipeptides were observed to be significantly abundant 
(Welch’s t test, p < 0.05) in PiEs. The composition of 91 
dipeptides were found to differ significantly in PiEs as 
compared to NPiEs, of which the dipeptides AF, DA, GF, 
IN, KA, KD, RK, RM, TL and YA are the top ten dipep-
tides which showed the most significant differences in 
composition. Of these 91 significantly different dipep-
tides, AF, FA, FF, PF, IV, IN were also observed to be the 
most abundant in PiEs (Additional file 2: Table S2).

The composition-based analysis revealed that in PiEs, 
most of the preferred residues (Ala, Phe, Iso, Leu and 
Val) are aliphatic or hydrophobic amino acids. Similarly, 
the significant dipeptides, discussed in the above section, 
mostly included pairs of aliphatic or hydrophobic amino 
acids in different local orders.

Motif analysis
The proinflammatory immune response requires the 
activation of T cells by presentation of peptide bound 
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to MHC molecule. Several key amino acids of the pep-
tide bind at certain positions in the binding core of MHC 
which suggests that peptide may contain specific motif 
required for binding. In order to investigate if there are 
particular sequential motifs present in PiEs, the motifs 
were searched in the training datasets using MERCI soft-
ware as described in the Methods section. After applying 
different algorithms available in MERCI software, such as 
none, Koolman–Rohm and Betts–Russell, several motifs 
were discovered which were found to be exclusively pre-
sent in PiEs and NPiEs (Table 1; Additional file 3: Table 
S3). The overall coverage of a motif represents the total 
number of epitopes harboring that particular motif and 
same epitopes might also be covered by other motifs. Out 
of 583 PiEs present in positive dataset, the Betts–Russell 
algorithm, Koolman–Rohm algorithm and none algo-
rithm could identify 256, 192 and 179 unique PiEs using 
11, 10 and 10 motifs, respectively. Similarly, the above 

algorithms were used to identify motifs from NPiEs 
(Additional file 3: Table S3).

The “hydrophobic hydrophobic K hydrophobic hydro-
phobic” and “hydrophobic aliphatic polar N” were found 
to be the most frequent motifs and covered 54 and 44 
unique proinflammatory epitopes, respectively. Among 
motifs given by Koolman–Rohm algorithm, “basic A ali-
phatic” was the most recurring motif covering 41 unique 
proinflammatory epitopes. Interestingly, the 10 motifs 
obtained in MERCI analysis with none algorithm were 
same as the significant dipeptides obtained in the compo-
sitional analysis. MERCI motifs, which were discovered 
exclusively in proinflammatory epitopes against non-
proinflammatory epitopes, showed similar conservation 
of residues as observed in compositional analysis, for 
example, the motifs having highest coverage as shown in 
Table 2, are abundant in hydrophobic and aliphatic resi-
dues at various positions. Similar observations were also 

Fig. 1 Flowchart showing steps involved in the development of prediction model and web server
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reported earlier where MBP(85–105) peptide binds to 
MHC allele DRB1 * 1501 with a nonaromatic, hydropho-
bic anchor (L, V, or I) at position i and by a bulky hydro-
phobic residue (F or Y) at position i + 3 as primary anchor 
which may contribute to its immunodominance [26].

Machine learning‑based classification
The preliminary analysis unveiled that the PiEs differ 
from NPiEs in amino acid sequence-based features, and 
thus, sequence-based features can be exploited for their 
classification into PiEs and NPiEs epitopes using machine 
learning-based classification. Classification models 
for different features were developed using 6 different 
machine learning techniques (SVMlight and RandomFor-
est, BayesNet, NaiveBayes, IBk and J48). However, the 
performance of RandomForest, BayesNet, NaiveBayes, 

IBk and J48 models was observed to be lower as com-
pared to SVM-based models (Additional file 4: Table S4). 
Therefore, SVM-based models were implemented and 
discussed in the manuscript. Similarly, the performance 
of models on alternate dataset is mentioned in Additional 
file 5: Table S5.

Amino acid composition‑based models
The two classes of epitopes differed in amino acid com-
position as mentioned in the compositional analysis 

Fig. 2 Compositional analysis of proinflammatory and non-proinflammatory epitopes

Table 1 Number of  exclusive proinflammatory (Np) 
and non-proinflammatory epitopes (Nn) covered by motifs 
identified using different algorithms of MERCI software

For example, Betts–Russell algorithm-based proinflammatory and non-
proinflammatory motifs could identify 256 proinflammatory as well as 29 non-
proinflammatory unique epitopes, respectively

Algorithm for motif discovery Np Nn

Betts–Russell 256 29

Koolman–Rohm 192 15

None 179 9

Table 2 Motifs discovered in  proinflammatory epitopes 
along with the overall coverage for each motif

Proinflammatory MERCI motifs Overall coverage

Hydrophobic hydrophobic K hydrophobic hydropho-
bic

54

Hydrophobic aliphatic polar N 48

K hydrophobic aliphatic polar 46

Hydrophobic hydrophobic K small hydrophobic 45

Aliphatic R hydrophobic hydrophobic 44

Positive tiny L 43

Polar tiny hydrophobic aromatic hydrophobic 43

K hydrophobic L 42

Hydrophobic positive tiny hydrophobic polar 42

Hydrophobic hydrophobic aliphatic polar small 
aliphatic

41

Hydrophobic N aromatic hydrophobic 41
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(Fig. 2). Therefore, the amino acid composition was uti-
lized to classify the two classes by developing machine 
learning models. After optimization of parameters, the 
best performing SVM-based model was selected with rbf 
kernel (t =  2), gamma parameter (g) =  0.005, trade off 
factor (c) = 80 and a cost factor (j) of 1. The model per-
formed with an overall accuracy of 72.9 % and MCC was 
measured as 0.36. The threshold independent parameter 
area under curve (AUC) was found to be 0.77 (Table  3; 
Fig. 3).  

Dipeptide composition‑based models
The models developed on AAC-based feature with vec-
tor size of 20, could not perform well both on threshold 
dependent as well as threshold independent parameters. 
Further, seeking better performance, dipeptide composi-
tion (DPC) was utilized, as input feature. The DPC-based 
SVM models yielded an overall accuracy of 81.5  % and 
MCC = 0.45 and AUC = 0.8. The optimized parameters 
for this model included rbf kernel (t  =  2), g  =  0.001, 
c = 10 and j = 1 (Table 3; Fig. 3).

Physiochemical properties‑based models
While exploring different sequence-based features for 
better classification of PiEs from NPiEs, the physiochem-
ical property-based models (explained in Methods) could 
only provide an accuracy of 79 % with MCC = 0.2, which 
was much lower as compared to AAC and DPC-based 
models (Table 3; Fig. 3) and hence, were not included in 
the tool.

Hybrid model
Among three sequence-based features mentioned above, 
the DPC-based model displayed the best performance. 
In order to further explore the possibility of better per-
formance, the motif information was incorporated into 

the DPC-based models. A hybrid model of DPC and 
MERCI motifs were developed using the same method-
ology which was used to develop the DPC models and 
validated by tenfold cross-validation. Furthermore, three 
different models were developed employing three differ-
ent algorithms of MERCI as described in method section. 
The overall accuracy of DPC-motif hybrid model with 
none algorithm (DPCHyb_NONE) was found to be 83 %, 
whereas, the DPC-motif hybrid model with Koolman–
Rohm (DPCHyb_KOOL) gave an accuracy of 84  %. The 
DPC-motif hybrid with Betts–Russell algorithm yielded 
an overall accuracy of 87.6  %, MCC =  0.58 along with 
an AUC of 0.88 and was selected. The model was devel-
oped using rbf kernel with g = 0.001, c = 8, j = 3 (Table 3; 
Fig. 3).

Performance on validation dataset
Although, the tenfold cross validation technique is well 
accepted practice in machine learning methods, there 
are chances of over-fitting. In order to examine the pos-
sibility that the observed performance of the final model 
could be due to over-optimization, the model was tested 
on validation dataset. The DPCHyb_BETTS model dis-
played an accuracy of 83.3 % with MCC = 0.43 and AUC 
of 0.77 on validation dataset (Table 3).

The DPCHyb_BETTS model could achieve good accu-
racy and MCC on DPC-motif hybrid inputs. The strategy 
of giving weightage worked well and enhanced the per-
formance of model in terms of accuracy, MCC and AUC. 
Since the prediction model performed well on unseen 
validation dataset, it attests that the performance of the 
model is not due to over optimization.

The performance of models developed on alternate 
dataset is mentioned in the Additional file 5: Table S5. In 
brief, among models developed on alternate dataset, Ran-
domForest performed best using AAC as input feature. 

Table 3 Performance of  different classification models developed using support vector machine as  machine learning 
technique

The hybrid model prepared using Dipeptide composition based features and MERCI displayed the best performance with an accuracy of 87.6 %. The same model 
showed an accuracy of 83.3 % on validation dataset

Feature Thre Sen Spec Acc MCC AUC Parameters

Performance on training data

 AAC 0.6 73.58 70.07 72.92 0.36 0.77 t:2 g:0.005 c:80 j:1

 DPC 0.4 86.11 62.04 81.53 0.45 0.8 t:2 g:0.001 c:10 j:1

 PHY 0.7 91.25 24.82 78.61 0.20 0.57 t:2 g:0.001:c:50:j:4

 DPCHyb_NONE 0.4 87.82 62.04 82.92 0.48 0.84 t:2 g:0.001 c:20 j:1

 DPCHyb_KOOL 0.4 89.54 60.58 84.03 0.49 0.85 t:2 g:0.001 c:4 j:2

 DPCHyb_BETTS 0.3 93.65 62.04 87.64 0.58 0.88 t:2 g:0.001 c:8 j:3

Performance on validation data

 DPCHyb_BETTS 0.3 91.1 50 83.33 0.43 0.71
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The accuracy of the AAC-based RandomForest model 
was 67.2 % with MCC = 0.34.

The DPCHyb_BETTS model (developed on main 
dataset) was incorporated in the webserver to allow the 
users to analyze and get predictions for their queries. It 
could serve as a computational substitute to the costly 
and time consuming experiments, as mentioned in case 
of HP(2–20) of H. pylori, gG2p20 of HSV-2, prion pep-
tide PrP(106–126) and C-peptide of proinsulin. Using 
this web-based tool, users can sort down number of can-
didates responsible for proinflammatory nature of an 
antigen, which can further be validated by experimental 
studies.

Webserver and tools
The predictive modeling yielded classification tools with 
good accuracy for predicting the proinflammatory prop-
erty of a peptide/protein and were used to develop a 
webserver by incorporating prediction model along with 
different other analysis tools. To show the translational 
application of “Proinflam” web server, a highly relevant 
example of the C-peptide from proinsulin protein is 
included in different modules (Peptide prediction, Pro-
tein Scan, Epitopes mapping and Similarity Search) of the 
web server. The C-peptide is a byproduct of proinsulin, 
located at position from 57 to 87 amino acids in the pro-
insulin protein, and was predicted as a proinflammatory 
epitope from the proinsulin protein using the web server. 
This peptide is responsible for the proinflammatory 

events in kidney and vasculature leading to diabetic 
nephropathy and atherosclerosis, respectively [11]. This 
example demonstrates the application and ability of the 
server to predict the proinflammatory epitopes in clini-
cally relevant real proteins.

Peptide prediction
This module is designed for submission of single or 
batch of peptide/protein sequences in FASTA format 
with a length ranging from 4 to 30 amino acids. This tool 
runs the queries through the prediction pipeline with 
DPCHyb_BETTS model and classifies the queries into 
PiEs or NPiEs. The threshold option is provided to select 
the stringency of positive prediction.

As an additional function, virtual screening and design-
ing option has been provided in the result table which 
allows the resubmission of the selected peptide. The 
virtual screening and designing involves substitution of 
amino acids at each position of peptide with the other 19 
natural amino acids, which are further predicted in terms 
of PiEs or NPiEs and the results are displayed as a table. It 
allows the user to predict the proinflammatory nature of 
different variants of a given query.

Protein scan
Apart from peptide prediction module, which was meant 
for small length peptides, this module can be used for 
identification of antigenic regions in a protein, which can 
induce proinflammatory response in a host. The provi-
sion of window length allows user to select desired length 
of peptide for prediction. Similar to the peptide predic-
tion module, this module runs query through prediction 
pipeline and virtual screening and provides the results as 
a table.

Epitope mapping
The prediction models achieved good accuracy in 
this study. However, user might want to investigate if 
there are previous reports of experimentally validated 
epitopes mapping to the query sequence. Therefore, 
‘Epitope mapping’ module is developed to assist the user 
for mapping experimentally validated PiEs on the query 
sequence. Using this tool, the user can map the query 
sequence with PiEs and can also link to related assays in 
IEDB database.

Similarity search
In contrast to the epitope mapping module where exact 
match with experimental data is carried out, the ‘Similar-
ity Search’ module performs Smith-Waterman search of 
query sequence in the database of experimentally vali-
dated PiEs. The top hits are shown with alignment and 
links to related assays in IEDB database.

Fig. 3 ROC plots of prediction models developed using SVMlight 
as machine learning technique. The DPCHyb_BETTS model (shown 
in blue) achieved highest area under curve (AUC = 0.88 as given in 
Table 3)
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Conclusion
The tendency of an antigen to initiate proinflammatory 
cascade, such as recruiting neutrophils, monocytes, and 
activate complement proteins, is of great importance in 
immunology and peptide therapeutics. Therefore, we 
have investigated sequence-based signatures which could 
be responsible for the proinflammatory nature of a pep-
tide and developed a machine learning-based prediction 
tool for the prediction of proinflammatory epitopes. The 
computational identification of proinflammatory anti-
genic candidates before going for expensive and time-
consuming experiments would be of great help to the 
scientific community. The developed computational tools 
are available freely for academic usage as a web server.

Methods
Dataset
The availability of clean experimental data is very cru-
cial for any predictive modeling. Therefore, the Immune 
Epitope Database (IEDB) [27] for immune assays carried 
out for different peptide antigen was used to retrieve a 
clean dataset of 729 epitopes which were reported posi-
tive in assays in which any one of the proinflammatory 
cytokine [IL1α, IL1β, TNFα, IL12, IL18 and IL23] [25] 
was measured. Since these 729 epitopes were showing 
proinflammatory response in assays, these epitopes were 
considered as proinflammatory epitopes (PiEs) in this 
study. All those peptides which were assayed negative for 
proinflammatory cytokines were considered as non-pro-
inflammatory epitopes (NPiEs). The total retrieved data-
set contained 729 PiEs and 171 NPiEs ranging in length 
between 4 and 30 amino acids and was termed as ‘Main 
Dataset’. From the main dataset, 80  % of the data was 
assigned as training data and 20 % of the data was picked 
up randomly and kept as validation dataset (Fig. 1). The 
final training dataset contained 583 PiEs (positive data) 
and 137 NPiEs (negative data). The validation dataset 
contained 146 PiEs and 34 NPiEs.

Since the NPiEs (negative dataset) in main dataset was 
lesser in numbers as compare to PiEs (positive dataset), 
an additional dataset was constructed where the num-
ber of negative examples were kept equal to the num-
ber of positive examples. For this, 558 randomly picked 
non-T cell epitopes (NTCEs) data of 4–31 amino acid 
length were added to NPiEs of main dataset. The final-
ized alternate dataset contained 729 PiEs and 729 NPiEs 
(171 NPiEs + 558 NTCEs). The models were trained and 
tested in the same manner as done for the main dataset.

The main dataset was used for compositional and motif-
based analysis, whereas, both main dataset and alternate 
dataset were used for the development of machine learn-
ing-based models. The models developed using the main 
dataset were incorporated in web server as prediction tool.

Input features for machine learning
Composition‑based features
Amino acid composition Amino acid composition 
(AAC) is the percentages of each amino acid in the given 
length of amino acid sequence. AAC has widely been 
applied in different peptide and protein composition 
based classification method [28, 29]. Since there are 20 
amino acids, each peptide/protein is represented by 20 
types of compositions or a vector size of 20.

where, AAC(i) is the amino acid composition of the 
amino acid (i) and amino acid (i) is one of the 20 amino 
acids.

Di‑peptide composition Similar to the AAC, dipeptide 
composition (DPC) has also been extensively applied 
in sequence-based classifications, particularly in the 
immune epitope prediction algorithms [30, 31]. DPC dif-
fers from AAC in having pair of amino acids and thus also 
provides information on local arrangement. The percent-
age of every possible pair (dipeptide) of amino acids was 
calculated. The following equation has been used for this 
calculation:

where, DPC(i) is the dipeptide frequency of dipeptide (i) 
and the dipeptide (i) is one out of 400 dipeptides.

Physiochemical properties
In earlier studies, different physiochemical properties 
of amino acids have been used in several classification 
methods for predicting immune epitopes [24, 32] and 
these features are also implemented in this study for 
developing the prediction models. 10 different physico-
chemical properties were computed, namely amphi-
pathicity, hydrophobicity, pI value, bulky side chain, 
hydrophilicity, net-hydrogen, steric hindrance, charge, 
hydropathy, molecular weight [32, 33].

Motif‑based features
Identification of functional motifs in amino acid 
sequences has widely been exploited in functional anno-
tation of protein/peptide sequences. Several authors have 
discovered immunologically relevant motifs in immu-
noinformatics studies [19, 34]. In this analysis, motifs 
specific to PiEs were identified using MERCI software 
(http://dtai.cs.kuleuven.be/ml/systems/merci) [35]. 
MERCI software is a tool to identify exclusive motifs 
present in positive data by comparing it with negative 
data. The exclusive motif discovery using MERCI was 

AAC(i) =
Total number of amino acid (i)

Total number of all possible amino acids
× 100

DPC(i) =
Total number of dipeptides (i)

Total number of all possible dipeptides
× 100

http://dtai.cs.kuleuven.be/ml/systems/merci
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carried out using two steps. In the first step, PiEs were 
taken as positive and NPiEs were taken as negative data, 
which yielded exclusive motifs present in PiEs. In the sec-
ond step, in order to get the exclusive motifs present in 
NPiEs, the datasets were reversed, i.e. NPiEs as positive 
data and PiEs as negative data.

While discovering the motifs with MERCI software, 
three algorithms were adopted: (a) none (b) Koolman–
Rohm, and (c) Betts–Russell. The length of motif was set 
as maximum of 9 amino acids because the size of binding 
core in both MHC I and II is 9 amino acids [36, 37]. The 
gap length was set to default (1).

Hybrid feature
The hybrid of compositional features and motif-based 
feature has already been used in various prediction tools 
by different authors [19, 20]. In this study, a hybrid of 
DPC and MERCI-based motifs was used to improve the 
classification performance. As described above, two sets 
of motifs were identified as exclusively found in PiEs and 
NPiEs, respectively. In order to make a hybrid feature, 
the presence of proinflammatory and non-proinflamma-
tory motifs was searched in the peptide. If the peptide 
is positive for proinflammatory motif, the weight of +1 
was assigned to the DPC based SVM score. Similarly, if 
the peptide is positive for non-proinflammatory motif, a 
weight of −1 was assigned to the SVM score.

Machine‑learning‑based prediction models
Support vector machine
In this study, support vector machine is used as the 
machine learning algorithm implemented using SVM-
light package available at http://svmlight.joachims.org/. 
SVM-based models are trained with a learning algorithm 
where it draws an optimal hyperplane in a multi-dimen-
sional feature space that creating a boundary dividing the 
datasets in two classes. Among different machine learn-
ing techniques, SVM performs well because it is effec-
tive in controlling the classifier’s capacity and associated 
potential for overfitting [38]. In particular, SVM has been 
hugely implemented in various immune epitopes predic-
tion tools [31, 39], protein structure prediction [40] and 
genomic data [41] because of its ability to handle noise 
and large dataset [42].

RandomForest
In this study, RandomForest (RF) has been implemented 
using randomForest package in R (http://cran.r-project.
org//). RF has been widely used for the binary as well as 
multiclass classification using nucleotide or amino acid 

compositions as feature inputs [43]. RF classification 
model, at optimized parameters with lowest out-of-bag 
(OOB) error, was selected for the classification purpose. 
The overall performance of the selected model was eval-
uated in terms of sensitivity, specificity, accuracy and 
MCC from the confusion matrix.

WEKA‑based techniques
In addition to the SVM and RF, BayesNet, NaiveBayes, 
IBk (kNN) and J48 machine learning algorithms were 
also evaluated through WEKA package. These techniques 
have already been implemented in immune epitope pre-
diction studies in earlier studies [31, 44]. Similar to SVM 
and RF, the performances were evaluated using sensitiv-
ity, specificity, accuracy, MCC and AUC.

Evaluating performance of models
Evaluation and comparison of learning methods is essen-
tial part of predictive modeling. Cross-validation tech-
nique is among most practiced techniques which involve 
dividing the data into two segments; the first part is used 
to train the model and the other holdout or test data is 
used to test the model. Tenfold cross validation tech-
nique has been adopted where at a given instance, nine 
segments were used in training the model and the rest 
one segment was used to test the model. The process is 
repeated ten times such that each segment can be tested. 
The performance of model was calculated by including 
results from all the ten predictions taken together. The 
performance of models can be measured by both thresh-
old dependent as well as threshold independent param-
eters. For threshold independent parameter, AUC was 
measured which was calculated by PERF software. For 
threshold dependent parameters, the parameters like 
sensitivity (Sen), specificity (Spec), accuracy (Acc) and 
Matthews’s correlation coefficient (MCC) were calcu-
lated. The following equations were used for the calcula-
tion of these parameters:

where, TP  =  True Positive, FP  =  False Positive, 
FN = False Negative, TN = True Negative.

Accuracy =
TP + TN

TP + FN + FP + TN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

MCC =

(TP × TN )− (FP × FN )
√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )

http://svmlight.joachims.org/
http://cran.r-project.org/
http://cran.r-project.org/
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