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Abstract

Serotonin receptors are G-protein-coupled receptors (GPCRs) involved in a variety of psychiatric disorders. G-proteins,
heterotrimeric complexes that couple to multiple receptors, are activated when their receptor is bound by the
appropriate ligand. Activation triggers a cascade of further signalling events that ultimately result in cell function
changes. Each of the several known G-protein types can activate multiple pathways. Interestingly, since several
G-proteins can couple to the same serotonin receptor type, receptor activation can result in induction of different
pathways. To reach a better understanding of the role, interactions and expression of G-proteins a literature search
was performed in order to list all the known heterotrimeric combinations and serotonin receptor complexes. Public
databases were analysed to collect transcript and protein expression data relating to G-proteins in neural tissues.
Only a very small number of heterotrimeric combinations and G-protein-receptor complexes out of the possible
thousands suggested by expression data analysis have been examined experimentally. In addition this has mostly
been obtained using insect, hamster, rat and, to a lesser extent, human cell lines. Besides highlighting which interactions
have not been explored, our findings suggest additional possible interactions that should be examined based on our
expression data analysis.
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Introduction
In normal physiology, the neurotransmitter serotonin
(5-hydroxytryptamine, 5-HT) and its receptors regulate
behaviours such as aggressiveness, anxiety, sex, sleep,
mood, learning, cognition and memory. They are involved
in numerous disease states, including depression, anxiety,
social phobia, schizophrenia, mania, autism, drug addiction,
obesity, obsessive-compulsive, panic and eating disorders.
Therefore serotonin receptors are the target of a variety of
pharmaceutical drugs. With the exception of the 5-HT3
receptor, a ligand-gated ion channel, serotonin receptors are
a group of membrane-bound G-protein-coupled receptors,
which, by means of G-proteins, activate intracellular path-
ways to produce an excitatory or inhibitory response [1].
G-proteins are heterotrimers consisting of three subunits:

Gα, Gβ and Gγ; they are located on the inner plasma
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membrane, from which they induce GPCR activation.
The Gβ and Gγ subunits form an inseparable complex,
the βγ complex [2]. In the absence of receptor stimulation
the Gα subunit binds guanosine diphosphate (GDP) and
the βγ complex, and remains dissociated from the recep-
tor. Binding of the ligand to the GPCR domain outside
the cell induces conformational changes of the intracel-
lular GPCR domain, giving rise to GPCR coupling to the
G heterotrimer. Consequently, the Gα protein exchanges
GDP for guanosine triphosphate (GTP), causing dissoci-
ation of the GTP-bound α-subunit from the βγ complex
and their separation from the activated receptor. Gα and
βγ therefore activate a cascade of further signalling events
that finally result in a change in cell function. The process
is terminated with GTP hydrolysis to GDP by Gα [3].
Various Gα families have been described: they can

activate different pathways or even exert opposite effects
on the same pathway. In general, the 5-HT1 (1A, 1B,
1D, 1E, 1F) receptor family and 5-HT5 receptors couple
with Gαi/o protein family to inhibit adenylate ciclase
(AC) activity, reducing the intracellular cyclic adenosine
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Table 1 G-protein isoforms

Protein
name

Gene name Validated at
protein level

Validated at
transcript level

G alpha proteins

Gαi1 GNAI1 2 -

Gαi2 GNAI2 4 6

Gαi3 GNAI3 1 -

Gα11 GNA11 1 -

Gα12 GNA12 1 5

Gα13 GNA13 1 2

Gα14 GNA14 - 1

Gα15 (or
Gα16)

GNA15 1 2

Gαolf GNAL 3 1

Gαo GNAO 2 1

Gαq GNAQ 1 2

Gαs GNAS 7 4

Gαt1 GNAT1 1 -

Gαt2 GNAT2 1 -

Gαt3 GNAT3 - 1

Gαz GNAZ - 2

G beta proteins

Gβ1 GNB1 1 2

Gβ1-like GNB1L 1 1

Gβ2 GNB2 1 2

Gβ2-like GNB2L1 1 17

Gβ3 GNB3 1 3

Gβ4 GNB4 1 1

Gβ5 GNB5 3 3

G gamma proteins

Gγ1 GNGT1 - 2

Gγ2 GNG2 1 5

Gγ3 GNG3 - 1

Gγ4 GNG4 1 -

Gγ5 GNG5 1 -

Gγ7 GNG7 1 1

Gγ8 GNG8 (alias GNG9) - 1

Gγ10 GNG10 1 -

Gγ11 GNG11 1 -

Gγ12 GNG12 1 -

Gγ13 GNG13 - 1

Gγt2 GNGT2 (alias GNG8 or
GNG9)

- 2

For each human G-protein, it is shown the number of the related isoforms
subdivided by the validation status, according to UniProt. Note that, GNA15 is
the homolog gene encoding the murine Gα15 and the human Gα16 [13].
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monophosphate (cAMP) level whilst the Gαs family 5-
coupled to HT4, 5-HT6 and 5-HT7 receptors triggers a
pathway that leads to AC activation and cAMP produc-
tion. The 5-HT2 (2A, 2B, 2C) receptor family couple with
Gαq/11 proteins and stimulate the activity of phospholipase
C (PLC) increasing the intracellular inositol trisphosphate
(IP3), diacyl-glycerol (DAG) and Ca2+ levels [1]. However
Gαq can also indirectly alter cAMP production, by
decreasing Gαs protein abundance [4] or by activating
adenylate cyclase 8 (ADCY8) by the PLC/Ca2+/calmodulin
pathway [5]. Moreover, the Gαi/o family induces a decrease
in intracellular cAMP levels through AC inhibition.
The Gβ and Gγ subunits are closely associated forming

a βγ complex that can be separated only by denaturation,
except in cases when the complex involves β5, whose
bond to γ subunits is much weaker. At variance with
previous studies, the βγ complex does not remain inert
after dissociation from the α subunit, but plays a key role
both in the inactive and in the active receptor state
[6]. The βγ complex has the following functions: i) it
is required for optimal receptor-G-protein interaction,
because it enhances ligand affinity and receptor-G-protein
coupling, hence G-protein activation [7]; ii) its subunit
composition affects receptor-G-protein coupling specifi-
city [8,9]; iii) it activates specific pathways regardless
of the type of Gα subunit involved [10]. The role of γ
subunits is to transport the βγ complex from the endo-
plasmic reticulum to the plasma membrane. Although
all γ proteins share this property, translocation kinetics
differs widely among subunits, ranging from 10 sec of
the fastest, γ9, to several minutes of the slowest, γ3
[11]. It may be hypothesized that the γ subunits allowing
fast translocation are associated with human serotonin
receptors with a quicker turnover.

Review
Many G-protein isoforms, huge number of possible
heterotrimers
We have explored UniProt (www.uniprot.org) and Entrez
Gene (www.ncbi.nlm.nih.gov/gene) databases to establish
how many protein isoforms are currently known for each
G-protein subtype (Table 1). For example, we have found
10 isoforms of the Gαi2 subtype. Generally, the isoforms
do not derive from new gene loci but from different gene
expression regulation of the main transcript. In particular,
they are due to alternative splicing, use of alternative tran-
scription start sites (TSS) and alternative start codons. All
these detailed data are reported in Additional file 1 along
with some annotations. In brief, we found many more
protein isoforms than expected: Gα, Gβ, and Gγ proteins
may actually be as many as 53, 38, and 20, respectively,
raising the potential heterotrimers to about 40,000 combi-
nations. Most of the isoforms we reported are shorter
and lack one or more functional domains compared to
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the reference isoforms, so they could have a reduced
functional activity. In particular, the shorter Gα subtype
isoforms lack GTP domains, the Gβs lack WD domains
whereas the Gγs have no alterations lying in their func-
tional domains. Surprisingly, up till now, many isoforms
have not yet been confirmed at protein level according
to UniProt, so we looked for this information in the
literature. Unfortunately, the papers merely report the
name of the investigated G-protein and do not specify
its particular isoform. We also found nomenclature
inaccuracies, which are probably due to the former names
of G-protein: for example when the authors write “the
Gαq protein” it is unclear whether they mean GNAQ
(Gαq) or the entire family including also GNA11 (Gαq11),
GNA14 (Gαq14), or GNA15 (Gαq15 also Gαq16); simi-
larly, “Gαi protein” may indicate GNAI1 (Gαi1), GNAI2
(Gαi2), or GNAI3 (Gαi3). The same applies to “Gβγ” [12].
The nomenclature is not univocal even in some databases.
For example, in UniProt GNG8 is also called GNG9,
and GNGT2 is also called GNG8 or GNG9; therefore a
paper examining GNG9 could refer either to GNG8 or to
GNGT2. To overcome this ambiguity, the authors should
indicate the protein or gene identifier or protein sequence.

How heterotrimer composition affects 5-HT receptor
behaviour
The mechanisms underpinning formation of one hetero-
trimer rather than another are poorly understood, but post-
translational modifications of G-proteins and of membrane
environments are likely to be involved [14]. Nonetheless
heterotrimer composition is critical, because it determines
what pathway is activated. For example, activation of 5-
HT1A receptor inhibits basal phosphoinositide hydrolysis
in the dorsal raphe nucleus but not in the hippocampus,
most likely due to different heterotrimer compositions in
the two tissues [15]. Moreover a single heterotrimer can
activate multiple pathways simultaneously, because some
Gα proteins have multiple effects. For example, some Gαi/
o family proteins inhibit AC leading to intracellular cAMP
reduction, whereas others can also inhibit Ca2+ or activate
K+ channels [16]. To complicate matters further, the same
serotonin receptor can couple to different heterotrimers
[7,17,18]; the same ligand may therefore simultaneously
activate multiple pathways but be unable to regulate a spe-
cific one. The mechanism appears to be irrational, since a
single switch (receptor) is unlikely to be able to control a
large number of lights (pathways).
Ligand-receptor binding affinity affects G-protein-

receptor affinity and vice versa, as described in Spodoptera
frugiperda Sf9 cells [7]. Such affinity also depends on
heterotrimeric composition; for example, coupling of Gαi3
to 5-HT1A or 5-HT1B receptor was more effective
than that of Gαi2 and Gαo in enhancing agonist [3H]-
5-HT affinity [14].
Since a variety of psychiatric disorders and/or drug
responses are held to be related to altered ligand-receptor
affinity, association studies have mainly explored receptor
and downstream effector polymorphisms to explain the
genetic basis of such different phenotypes [19-26]. How-
ever, given that G-proteins can affect ligand affinity, their
variations should also be considered in association studies.
For these reasons it is important to gain insights into the
role, the interactors and the expression of G-proteins in
determining cell responses as a consequence of receptor
activation.
The observations that in some GPCRs the G-protein

complex can modulate receptor activity state and that
the transition from active to inactive state depends on
the Gα subunit associated with the receptor make the
study of G-proteins even more intriguing [14]. In other
words, GPCRs can switch from inactive to active even in
the absence of binding to an agonist. This mechanism is
still poorly understood and may have important patho-
logical as well as physiological implications. In particular
significant activation even without serotonin has been
described with coupling of Gαz to 5-HT1A receptor, but
not to the other 5-HT1 receptors [27].
Finally, a scenario is emerging where different G-protein

combinations can bind the same receptor type, conferring
a different ligand affinity and activating several pathways.
This warrants investigation of the heterotrimeric combi-
nations that may form in humans, their distribution in
different tissues, and the differences in ligand binding
affinity among the heterotrimers resulting from binding of
one receptor type and various G-proteins.
How many couplings between 5-HT receptors and G-
proteins are known
In order to find out what is known about heterotrimer
associations with serotonin GPCRs, we have performed
a literature search. The papers specifically addressing
receptor-G-protein complexes were scanty, therefore data
were available for quite a small number of complexes out
of the possible thousands. Table 2 presents an exhaustive
list of all known combinations of the three types of G-
proteins and their associations with serotonin receptors in
human neural tissues or in similar models. In particular,
for each receptor, we have reported the experimentally
assessed complexes formed with the G-proteins, the
tissues or contexts where the complexes were deter-
mined and their references. We have also annotated
the couplings assessed as not present along with the
particular experimental context. The 5-HT1p and 5-HT3
receptors were excluded, because the former is expressed
in the nervous enteric system (not the central nervous
system), the latter because it is a serotonin-gated ion
channel not coupled to G-proteins, whereas 5-HT5B is



Table 2 Assessed couplings between G-proteins and serotonin receptors

Coupling
G subunits

Not coupling
G subunits

Notes Second messengers References

5-HT1A receptor

Gαs-?-? In guinea pig hippocampus - (Shenker, 1987) [28]

Gαi1-?-?

No(Gαs-?-?)
Human receptor and bovine G-proteins, in vitro reconstitution into
E. coli membranes. Affinity order is Gαi3 > Gαi1 > Gαi2> > Gαo. - (Bertin, 1992) [29]

Gαi2-?-?

Gαi3-?-?

Gαo-?-?

Gαi1-?-?

No(Gαs-?-?) Human receptor transfected in human HeLa and hamster
CHO cells; affinity order is Gαi3 > Gαi2 > Gαi1 cAMP (Raymond, 1993) [30]Gαi2-?-?

Gαi3-?-?

Gαi2-?-?
Human receptor transfected in hamster CHO cells cAMP (Gettys, 1994) [31]

Gαi3-?-?

Gαo-?-?

No(Gαs-?-?)

Human receptor transfected in insect Sf9 cells - (Mulheron, 1994) [17]
No(Gαi1-?-?)

No(Gαi2-?-?)

No(Gαi3-?-?)

Gαi1-Gβ1-Gγ1

Human receptor, rat Gαs, Gαi1, Gαi2, Gαi3, Gαo, murine
Gαq, human Gαz, bovine Gβγ transfected in insect Sf9 cells.
Gγ1 less effective than Gγ2, Gγ3, Gγ5, Gγ7.

- (Butkerait, 1995) [7]

Gαi1-Gβ1-Gγ2

Gαi1-Gβ1-Gγ3

Gαi1-Gβ1-Gγ5

Gαi1-Gβ1-Gγ7 No(Gαs-Gβ1-Gγ2)

Gαi2-Gβ1-Gγ2 No(Gαq-Gβ1-Gγ2)

Gαi3-Gβ1-Gγ2

Gαo-Gβ1-Gγ2

Gαz-Gβ1-Gγ2

Gαq-Gβ1-Gγ2
No(Gα12-Gβ1-Gγ2)

Human receptor, rat Gαs, murine Gαq, human Gαz, bovine
Gβγ transfected in insect Sf9 cells; weak coupling with Gαq - (Barr, 1997) [27]

Gαz-Gβ1-Gγ2
No(Gα13-Gβ1-Gγ2)

No(Gαs-Gβ1-Gγ2)

Gαi1-?-?

Human receptor and G-proteins transfected in hamster CHO
cells, affinity order is Gαi2 > Gαi3, Gαi1, Gαo > Gαz - (Garnovskaya, 1997) [32]

Gαi2-?-?

Gαi3-?-?

Gαo-?-?

Gαz-?-?
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Table 2 Assessed couplings between G-proteins and serotonin receptors (Continued)

Gαi1-?-?

Human receptor and rat Gαs transfected in insect Sf9 cells - (Clawges, 1997) [14]
Gαi2-?-?

Gαi3-?-?

Gαo-?-?

Gαz-Gβ1-Gγ2 Human receptor and G-proteins transfected in Sf9 cells - (Barr, 1997) [33]

Gαi1-?-? Rat receptor and G-proteins transfected in rat GH4C1 cells. cAMP (Liu, 1999) [34]

Gαi2-?-? Human receptor and G-proteins transfected in human HeLa
cells, affinity order is Gαi1 > Gαi2 > > Gαi3 - (Lin, 2002) [35]

Gαi3-?-?

Gαi2-?-?

No(Gαi1-?-?)

Rat receptor and G-proteins transfected in human HEK293 cells cAMP (Albert, 1999) [36]No(Gαi3-?-?)

No(Gαo-?-?)

Gαz-?-? In rat hypothalamic paraventricular nucleus - (Serres, 2000) [37]

Gαi/o-?-?
Human receptor transfected in human HEK293 cells. cAMP (Malmberg, 2000) [38]

Gαs-?-?

Gαi3-?-?
Human receptor co-expressed with rat G-protein in monkey COS-7
cells.

- (Dupuis, 2001) [39]

Human receptor transfected in hamster CHO cells. - (Newman-Tancredi, 2002) [40]

Gαi1-?-? No(Gαt-?-?) Reconstitution in insect Sf9 cell expressing receptor and
rat Gαi1 and bovine Gαt - (Slessareva, 2003) [41]

Gαq-Gβ1-Gγ2 Recombinant human receptor, mouse Gαq, rat Gαi2, bovine
Gβγ co-expressed in insect Sf9. Strong coupling with Gαi2,
weak with Gαq.

- (Okada, 2004) [42]
Gαi2-Gβ1-Gγ2

Gαi/o-?-? No(Gαq-?-?) In situ reconstitution in insect Sf9 cells with purified human
receptor, squid Gαq, bovine Gαi and Gαo - (Okada, 2004) [42]

No(Gαi1-?-?)

In rat cortex - (Mannoury la Cour, 2006) [43]
Gαo-?-? No(Gαi2-?-?)

Gαi3-?-? No(Gαs-?-?)

No(Gαz-?-?)

Gαi3-?-?

No(Gao-?-?)

In rat anterior raphe area - (Mannoury la Cour, 2006) [43]

No(Gαi1-?-?)

No(Gαi2-?-?)

No(Gαs-?-?)

No(Gαz-?-?)

Gαo-?-? No(Gαs-?-?)

In rat hippocampus - (Mannoury la Cour, 2006) [43]Gαi1-?-? No(Gαz-?-?)

Gαi3-?-? No(Gαi2-?-?)
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Table 2 Assessed couplings between G-proteins and serotonin receptors (Continued)

Gαo-?-?

In rat hypothalamus - (Mannoury la Cour, 2006) [43]
Gαi1-?-? No(Gαs-?-?)

Gαi3-?-? No(Gαi2-?-?)

Gαz-?-?

Gαo-?-?

In rat hippocampus - (Martel, 2007) [44]
Gαi3-?-? No(Gαi1-?-?)

Gαs-?-?

Gαq-?-?

Gαi2-?-? No(Gαs-?-?)

In rat dorsal raphe nucleus cAMP (Valdizán, 2010) [45]Gαi3-?-? No(Gαz-?-?)

Gαo-?-? No(Gαi1-?-?)

Gαi2-?-?
Human receptor transfected in hamster CHO cells cAMP (Rauly-Lestienne, 2011) [46]

Gαi3-?-?

5-HT1B receptor

Gαi1-?-?

Human receptor and rat Gα transfected in insect Sf9 cells - (Clawges, 1997) [14]
Gαi2-?-?

Gαi3-?-?

Gαo-?-?

Gαi1-?-? No(Gαt-?-?) Reconstitution in insect Sf9 cell expressing receptor
and rat Gαi1 and bovine Gαt

-
(Bae, 1997; Bae, 1999; Slessareva, 2003)

[41,47,48]
-

-

Gαi2-?-? Human receptor and rat G-proteins transfected in
human HEK293 cells

cAMP (Albert, 1999) [36]

Gαi-?-?

No(Gαs-?-?)

Chimpanzee receptor transfected in human HEK293 cells - (Alberts, 2000) [49]
No(Gαq/11-?-?)

No(Gα13-?-?)

No(Gαo-?-?)

Gαi1-Gβ1-Gγ2 Human receptor, rat Gα and bovine Gβγ proteins transfected
in insect Sf9 cells

- (Brys, 2000) [50]

Gαi1-?-?
Human receptor and G-proteins transfected in human
HeLa cells, affinity order is Gαi1 > Gαi2 > > Gαi3 - (Lin, 2002) [35]Gαi2-?-?

Gαi3-?-?

Gαi3-?-? Human receptor transfected in hamster CHO cells - (Newman-Tancredi, 2003) [51]
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Table 2 Assessed couplings between G-proteins and serotonin receptors (Continued)

5-HT1D receptor

Gαi3-?-? Human receptor and rat Gα transfected in insect Sf9 cells - (Clawges, 1997) [14]

Gαi-?-?

No(Gαs-?-?)

Chimpanzee receptor transfected in human HEK293 cells - (Alberts, 2000) [49]
No(Gαq/11-?-?)

No(Gα13-?-?)

No(Gαo-?-?)

Gαi1-Gβ1-Gγ2

No(Gαq-Gβ1-Gγ2) Human receptor, rat Gαi/o, mouse Gαq and bovine Gβγ
proteins transfected in insect Sf9 cells

- (Brys, 2000) [50]
Gαi2-Gβ1-Gγ2

Gαi3-Gβ1-Gγ2

Gαo-Gβ1-Gγ2

Gαi1-?-?
Human receptor and G-proteins transfected in human HeLa
cells, affinity order is Gαi1 > Gαi2 > > Gαi3 - (Lin, 2002) [35]Gαi2-?-?

Gαi3-?-?

5-HT1E receptor

No(Gαi3-?-?) Human receptor and rat Gα transfected in insect Sf9 cells - (Clawges, 1997) [14]

5-HT1F receptor

Gαi-?-?

No(Gαs-?-?)

Monkey receptor transfected in human HEK293 cells - (Alberts, 2000) [49]
No(Gαq/11-?-?)

No(Gα13-?-?)

No(Gαo-?-?)

5-HT2A receptor

Gαi/o-?-?
In mouse NIH3T3 cells cPLA2 (not PLC, IP3) (Kurrasch-Orbaugh, 2003) [52]

Gα12/13-?-?

Gαq-?-?

Rat receptor and G-protein transfected in human HEK293 cells. Inositol Phosphate (Bhatnagar, 2004) [53]

Human receptor and G-protein transfected in human HEK293 cells. Inositol Phosphate (Millan, 2012) [54]

In rat cerebral cortical membranes. - (Odagaki, 2014) [55]

Gα11-?-?
Human G-proteins transfected in rat cortex A1A1v cells Inositol Phosphate (Shi, 2007) [56]

Gαq-?-?

Gα11-?-?
Human G-proteins transfected in rat cortex A1A1v cells Inositol Phosphate (Shi, 2007) [57]

Gαq/11-?-?
Human receptor transfected in hamster CHO cells. Ca2+ (Cussac, 2008) [58]

In rat cortex. - (Mannoury La Cour, 2009) [59]
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Table 2 Assessed couplings between G-proteins and serotonin receptors (Continued)

5-HT2B receptor

Gαq/11-Gβ1-Gγ2 Mouse receptors stably expressed in mouse fibroblast cells Ras (Launay, 1996) [60]

Gα13-?-?

No(Gαs-?-?)
In mouse LM6 and 1C11 and in M. natalensis carcinoid
tumor primary cultured cells

IP3, NOS, cGMP (Manivet, 2000) [61]No(Gαq/11-?-?)

No(Gαi-?-?)

Gαq/11-?-? Human receptor transfected in hamster CHO cells Ca2+ (Cussac, 2008) [58]

Gαq-?-? Human receptor and G-protein transfected in human HEK293 cells Inositol Phosphate (Millan, 2012) [54]

5-HT2C receptor

Gαi1-?-?
Mouse receptor and rat G-proteins expressed in Xenopus oocytes - (Chen, 1994) [62]

Gαo-?-?

Gαo-?-? No(Gαs-?-?)

Mouse receptor and G-proteins expressed in Xenopus oocytes Inositol Phosphate (Quick, 1994) [63]Gαq-?-? No(Gαolf-?-?)

Gα11-?-? No(Gαt-?-?)

Gαq-?-?
No(Gαt-?-?) Rat receptor and squid Gαq, bovine Gαt, Gαi/o proteins transfected

in insect Sf9 cells
- (Hartman, 1996) [64]

No(Gαi/o-?-?)

Gαi-?-?

No(Gαs-?-?)

Human receptor in human HEK293 cells IP3, cAMP (Alberts, 1999) [65]
No(Gαo-?-?)

No(Gαq/11-?-?)

No(Gα13-?-?)

Gαq-?-? No(Gαs-?-?) In rat choroid plexus epithelial cells Inositol Phosphate (Chang, 2000) [66]

Gαq-?-?*#
No(Gα11-?-?)*

Human receptor and mouse G-proteins (except human Gα16)
transfected in mouse NIH3T3 cells

Inositol Phosphate (Price, 2001) [67]
Gα11-?-?#

No(Gα12-?-?)*#

* with not edited receptor formGα13-?-?*
No(Gα13-?-?)#

# with edited receptor formGα15-?-?*
No(Gα14-?-?)*#

No(Gα15-?-?)#

No(Gα16-?-?)*#

Gαi3-?-?
Human receptor transfected in hamster CHO cells - (Cussac, 2002) [68]

Gαq/11-?-?

Gαq-?-?
No(Gαs-?-?) In rat choroid plexus epithelial cells and rat receptor transfected

in mouse NIH3T3 cells
Inositol Phosphate (via PLD, t PLC) (McGrew, 2002) [69]

Gα13-?-?

Gαq-?-?
Human receptor and squid G-protein reconstitution in insect Sf9 cells. Ca2+ (Okada, 2004) [70]

Human receptor and G-protein transfected in human HEK293 cells. Inositol Phosphate (Millan, 2012) [54]
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Table 2 Assessed couplings between G-proteins and serotonin receptors (Continued)

Gαq-Gβ1-Gγ2 Recombinant human receptor, mouse Gαq, rat Gαi2,
bovine Gβγ co-expressed in insect Sf9. Strong coupling
with Gαi2, weak with Gαq.

- (Okada, 2004) [42]
Gαi2-Gβ1-Gγ2

Gαq-?-? No(Gαi/o-?-?) In situ reconstitution in insect Sf9 cells with purified human
receptor, squid Gαq, bovine Gαi and Gαo - (Okada, 2004) [42]

Gαq/11-?-? Human receptor transfected in hamster CHO cells Ca2+ (Cussac, 2008) [58]

5-HT4 receptor

Gαs-Gβ1-Gγ2

No(Gαi2-Gβ1-Gγ2)

Murine receptor and G-proteins transfected in insect Sf9 cells cAMP (Ponimaskin, 2002) [71]
No(Gαi3-Gβ1-Gγ2)

No(Gα12-Gβ1-Gγ2)

No(Gαq-Gβ1-Gγ2)

Gαs-?-? Human receptor transfected in human HEK293 cells;
5HT4a receptor coupled only to Gαs, while 5HT4b
isoform coupled to Gαs and Gαi/o

cAMP, Ca2+

(Pindon, 2002) [72]
Gαi/o-?-? (not IP3)

Gαs-Gβ1-Gγ2
No(Gαi2-Gβ1-Gγ2)

Murine receptor and G-proteins transfected in insect Sf9 cells Inositol Phosphate, RhoA (Ponimaskin, 2002) [73]
Gα13-Gβ1-Gγ2

No(Gα12-Gβ1-Gγ2)

No(Gαq-Gβ1-Gγ2)

Gαs-?-? Human receptor transfected in monkey COS-7 cells cAMP, Inositol Phosphate (Pellissier, 2011) [74]

5-HT5A receptor

No(Gαs-Gβ1-Gγ2)

Human receptor, rat Gαi/o, human Gαz and Gα16, bovine
Gαs, mouse Gαq, Gα11, Gα12 and Gα13, bovine Gβγ
reconstituted in insect Sf9 cells

- (Francken, 2000) [75]

Gαi1-Gβ1-Gγ2 No(Gαz-Gβ1-Gγ2)

Gαi2-Gβ1-Gγ2 No(Gαq-Gβ1-Gγ2)

Gαi3-Gβ1-Gγ2 No(Gα11-Gβ1-Gγ2)

Gαo-Gβ1-Gγ2 No(Gα12-Gβ1-Gγ2)

No(Gα13-Gβ1-Gγ2)

No(Gα16-Gβ1-Gγ2)

Gαi1-Gβ1-Gγ2

Human receptor, rat Gαi/o, human Gαz, bovine Gαs
and Gβγ reconstituted in insect Sf9 cells

- (Francken, 2001) [76]
Gαi2-Gβ1-Gγ2 No(Gαs-Gβ1-Gγ2)

Gαi3-Gβ1-Gγ2 No(Gαz-Gβ1-Gγ2)

Gαo-Gβ1-Gγ2

Gαi/o-?-? Human receptor transfected in rat C6 glioma cells IP3, Ca2+, cAMP, cADPR (Noda, 2003) [77]

5-HT6 receptor

Gαs-?-?
In human HEK293 cells stably expressing human receptor. cAMP (Baker, 1998) [78]

Human receptor and G-protein, assessed in vitro. cAMP (Kang, 2005) [79]
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Table 2 Assessed couplings between G-proteins and serotonin receptors (Continued)

5-HT7 receptor

Gαs-?-? No(Gαi-?-?) In human HEK293 cells stably expressing human receptor cAMP, Ca2+/calmodulin (Baker, 1998) [78]

Gαs-?-?
No(Gαq/11-?-?)

Human receptor transfected in murine LM cells cAMP (Adham, 1998) [80]
No(Gαi-?-?)

Gαs-?-?
No(Gαo-?-?) Human receptor transfected in human HEK293 cells,

affinity order is Gαs > Gαi = Gαq/11 cAMP (Alberts, 2001) [81]Gαi-?-?
No(Gα13-?-?)

Gαq/11-?-?

Gαs-Gβ1-Gγ2
No(Gαi2-Gβ1-Gγ2)

Murine receptor and G-proteins transfected in
insect Sf9 cells

RhoA, Cdc42 (NOT Rac1) (Kvachnina, 2005) [82]
Gα12-Gβ1-Gγ2

No(Gα13-Gβ1-Gγ2)

No(Gαq-Gβ1-Gγ2)

Gαs-Gβ1-Gγ2
No(Gαq-Gβ1-Gγ2)

Murine receptor and G-proteins transfected in
insect Sf9 cells

cAMP (Kvachnina, 2009) [83]
Gα12-Gβ1-Gγ2

No(Gαi-Gβ1-Gγ2)

No(Gα13-Gβ1-Gγ2)

“?” means that the particular Gβ or Gγ protein has not be identified in the reference paper. “-” means that the second messenger has not be assessed in the reference paper. Note: unfortunately some papers reported
Gαi/o, Gαi, or Gαq/11 without further distinction. Abbreviations: RhoA: Ras homolog gene family, member A; Cdc42: cell division control protein 42; Rac1: Ras-related C3 botulinum toxin substrate 1; cADPR: cyclic adenosine
diphosphoribose; PLD: phospholipase D; NOS: nitric-oxide synthase; cGMP: cyclic guanosine monophosphate; cPLA2: cytosolic phospholipases A2.
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a pseudogene in humans according to EntrezGene and
the related protein is absent in UniProt.
Many papers have addressed G-protein combinations

with 5-HT1A, 5-HT1B, 5-HT2A and 5-HT2C while only
one or two papers refer to 5-HT1E, 5-HT1F or 5-HT6.
The experimental models usually involve transfection of
human genes into Spodoptera frugiperda Sf9 cells, since
they express low levels of mammalian G-proteins, thus
avoiding competition with endogenously expressed G-
proteins in [35S]GTPγS binding assay [16].
However, to extend these findings to humans is not

necessarily correct. For example, the poor coupling of
Gαq to 5-HT1A and 5-HT2C could be due to a large
portion of the expressed but inactive Gαq [84], maybe
because Gαq is not post-translationally modified by pal-
mitoylation in Sf9 as in humans [85]. Other authors have
used hamster, mouse and human cells transfected with
rat, mouse and bovine constructs. The main methods
used to assess the compositions of the heterotrimers are
immunoprecipitation and western blot analysis, the bind-
ing with radio-ligands and FRET (Förster Resonance
Energy Transfer) by using fluorescent ligands.
For the majority of serotonergic receptors, coupling

data are available only in relation to Gα family proteins
without specifying which Gβ and Gγ were coupled.
However, the few data on Gβ and Gγ only concerned
Gβ1 with Gγ2. Gα proteins coupled to receptors are the
most commonly studied G-proteins, because they are held
to indicate the pathway activated by receptor stimulation.
In contrast, Gβ and Gγ proteins are believed merely to
play a structural role, that is to stabilize the receptor com-
plex, but they actively participate in signal transduction by
activating specific pathways.
We also annotated the second messengers activated

downstream G-proteins, when these data were available
in the related paper, since they allow to take into account
the converging effect of various Gα proteins and the
antagonistic/additive effects of Gβγ.

Investigation methods for the assessment of G-protein
activation
We have shown that G-protein heterotrimers recruited by
serotonin receptors have been evaluated experimentally.
This dearth of data is mainly due to the cumbersome
methods used to identify the heterotrimers involved in the
effects of ligands and to some technical limitations. In fact,
to assess the receptor-mediated G-protein activation, both
indirect and direct assays are available [16]. Indirect
methods, in spite of their good sensitivity, are focused
on measuring concentrations of second messengers but
the evaluation of these data can be complicated since
most receptors can activate different G-proteins.
In particular, since Gαs and Gαi/o proteins activate or

inhibit AC respectively, their activation can be indirectly
detected determining intracellular adenosine triphosphate
(ATP) conversion into cAMP. It is measured using [α-32P]
ATP as the enzyme substrate or using cAMP antibodies.
These methods cannot follow quick fluctuations as they
are based on static measurements after cell lysis. In the
case of the AC inhibiting Gαi/o proteins, another problem
regards the too low dynamic ranges of inhibition detec-
tion. To deal with this specific problem, chimeric Gαi/o
proteins were developed, but they do not exactly mimic
the natural G-proteins.
To test ligand efficacy on Gαq/11-coupled receptors,

[3H]IP3 concentration as product of PLC activity can
be measured using [3H]PIP2 (phosphatidyl inositol 4,5-
bisphosphate) substrate. Alternatively, antibodies can be
used, but, since IP3 has a short half life, it is preferred to
detect its stable metabolite inositol-1-phosphate (IP1),
although this is a more downstream product. Also Ca2+

concentration, by dyes generating fluorescence upon
binding of free Ca2+, can be determined to assess Gαq/11
activation, although these probes can influence calcium
levels and kinetics. Moreover, Ca2+-sensitive photoproteins,
as aequorin, can detect calcium in specific cell compart-
ments by fusion with targeting sequences. This approach
is not so sensitive and consists of laborious procedures,
such as fusion protein production, transfection and assay
calibration.
Gα12/13 activation can be assessed by determining Rho

guanine nucleotide exchange factors (RhoGEFs) by im-
munoblotting, a not highly sensitive technique. Moreover,
since RhoGEFs are activated also by Gαq/11, there are
crosstalk problems that can be partially overcome by small
interfering RNA (siRNA) knockdown.
To directly and quantitatively assess the Gα protein

activation, [35S]GTPγS binding assay is employed. Upon
Gα subunit activation, it binds the mimic substrate, so
remaining blocked in the active form as it cannot hydrolyze
this substrate. The blocked Gα can be measured after
isolation and it can be immunoprecipitated to identify
the specific Gα subunit. However, this approach is mainly
suitable to evaluate Gαi/o-coupled receptor activation.
This assay can be effectively combined with the use of
drugs stimulating or inhibiting specific G-proteins, for
example, Pertussis toxin (PTX), Mastoparan, Mastoparan-
S, Cholera toxin, Suramin, Pasteurella multocida toxin
(PMT). Alternatively, it is possible to use G-protein-
deficient mice or gene silencing by siRNA, although
studies have to take into account the cellular compensa-
tory mechanisms that alter the expression level of other
G-proteins. An exhaustive review of these and other
techniques was made by Denis et al. [16].
Moreover, cause of GTPase-accelerating proteins (GAPs)

that accelerate GTPase activity of Gα-protein subunits,
the measuring of GTPase activity in vivo and in vitro
differ. In addition, for in vivo studies, methods having a
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subsecond time resolution for GTP hydrolysis must be
adopted [86,87].

Heterotrimers activation effects
It would be important to consider the synergic effects
of the entire activated heterotrimer in order to evaluate
ligand effects, drug efficacy and side effects such as hal-
lucination onset. For this reason, we annotated also the
second messengers during literature revision. Unfortu-
nately, as can be seen in Table 2, few studies assessed
the coupling of all the heterotrimer subunits and few of
them assessed the second messengers. Regarding these
cases, only Gβ1γ2 were present, so it was not possible
to verify if and how different Gβγ combinations can
affect Gα induced pathways. In general, the physiological
significance of the different Gβγ pairs is unclear, since
they participate in complex interactions with receptors,
Gα subunits and effectors [6].
A more detailed description of the pathway downstream

G-proteins was performed by Millan et al. [88], however it
should be taken into account that the signalling down-
stream a receptor is ligand-dependent. For example, some
agonists of 5-HT2A can induce hallucinations but other
structurally related ones do not [89].

Expression analysis in human brain tissues
We believe that our collected data can be used for
guiding experiments which seek new couplings. How-
ever, we verified if it was possible to reduce the number
of combinations by filtering out those not allowed in a
particular neural tissue due to one or more components
that are not expressed. In Additional file 2, we report
the expression profiles of Gα, Gβ, Gγ and the serotonin
receptor by using three proteomic databases according to
a previous work [90]: Human Protein Reference Database
(www.hprd.org); Human Proteinpedia (www.humanpro-
teinpedia.org) and Human Protein Atlas (www.proteina-
tlas.org). We also used expression data obtained from
three transcriptomic databases: Human Transcriptome
Map (http://bioinfo.amc.uva.nl/HTMseq), Cancer Gene
Anatomy Project database (http://cgap.nci.nih.gov) and
Allen Brain Atlas database (www.brain-map.org). An
issue that arose in the course of this investigation was
the partial conflict between microarray and RNA-Seq
data retrieved from Allen Brain Atlas and, to a lesser
extent, protein and transcript expression data. Generally,
these discrepancies could be resolved by relying on prote-
omic data, which, if present, are usually more dependable
than transcriptomic data. For example, regarding GNG1,
it seems to be absent in all tissues and their sub-tissues
assessed by Allen Brain Atlas RNA-seq. Instead, according
to Allen Brain Atlas microarray data, GNG1 expression
results as being very variable among sub-tissues of each
tissue. Since in the cerebellar cortex also Protein Atlas
data are available, they solve this contradiction claiming
GNG1 absence. According to our expression data, most
G-proteins are expressed in the majority of brain tissues,
thus confirming the possible existence of a big number of
heterotrimer combinations in nearly all neural tissues. Of
course, co-expression of a receptor and G-proteins in a
brain tissue does not imply that they are functionally
coupled to each other. However, the available databases,
being manually annotated, do not contain the all expres-
sion data reported in the literature, so the Additional file 2
may be incomplete.

Conclusion
The large number of human G-proteins that our searches
found demonstrates that a very large amount of possible
heterotrimers can be formed but unfortunately only a few
have been assessed. Naturally, a limitation of the studies
carried out in vitro is that the reported couplings do
not always match to the couplings found in vivo [91].
However, knowledge of all the G-proteins that bind to
each receptor would allow linking each receptor to all
the possible activated pathways. Association of a receptor
with multiple G-proteins would also highlight activation
of different pathways in different tissues. This is import-
ant, because G-protein gene mutations or polymorphisms
could alter transduction efficacy, thus explaining the
non-activation of a pathway despite the presence of the
right ligand and the absence of nucleotide variation in
the receptor. Therefore precise knowledge of the role
and distribution of G-proteins would greatly contribute
to the evaluation of G-protein gene polymorphisms and to
the development of drugs targeting specific G-proteins.
Finally, since receptor binding to a G-protein consid-

erably modifies receptor behaviour, it could be that the
G-proteins define many receptor subtypes. For this reason
it is more appropriate to consider a receptor not indivi-
dually but in association to each permitted heterotrimer.
This also suggests that a number of experiments should
be performed again, like the biochemical studies exploring
the affinity constants between ligands and a receptor not
considering if, and which, G-proteins were associated.

Additional files

Additional file 1: Detailed information about G-protein isoforms.
In this table all G-protein isoforms along with annotations extracted from
UniProt and EntrezGene are shown.

Additional file 2: G-protein and serotonin receptor expression data
in brain subtissues. In this table G-protein and serotonin receptor
expression data extracted from different transcriptomic and proteomic
databases are shown.
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