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Abstract The MHC class I chain-related molecule A (MICA)
is a ligand for the activating natural killer (NK) cell receptor
NKG2D. A polymorphism causing a valine to methionine
exchange at position 129 affects binding to NKG2D, cytotox-
icity, interferon-y release by NK cells and activation of CD8"
T cells. It is known that tumors can escape NKG2D-mediated
immune surveillance by proteolytic shedding of MICA.
Therefore, we investigated whether this polymorphism affects
plasma membrane expression (pmMICA) and shedding of
MICA. Expression of pmMICA was higher in a panel of tu-
mor (n=16, P=0.0699) and melanoma cell lines (n=13, P=
0.0429) carrying the MICA-129Val/Val genotype. MICA-
129Val homozygous melanoma cell lines released more solu-
ble MICA (sMICA) by shedding (P=0.0015). MICA-129Met
or MICA-129Val isoforms differing only in this amino acid
were expressed in the MICA-negative melanoma cell line
Malme, and clones with similar pmMICA expression intensity
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were selected. The MICA-129Met clones released more
sMICA (P=0.0006), and a higher proportion of the MICA-
129Met than the MICA-129Val variant was retained in intra-
cellular compartments (P=0.0199). The MICA-129Met
clones also expressed more M/CA messenger RNA (P=
0.0047). The latter phenotype was also observed in mouse L
cells transfected with the MICA expression constructs (P=
0.0212). In conclusion, the MICA-129Met/Val dimorphism
affects the expression density of MICA on the plasma mem-
brane. More of the MICA-129Met variants were retained in-
tracellularly. If expressed at the cell surface, the MICA-
129Met isoform was more susceptible to shedding. Both pro-
cesses appear to limit the cell surface expression of MICA-
129Met variants that have a high binding avidity to NKG2D.

Keywords Single nucleotide polymorphism - Major
histocompatibility complex (MHC) class I chain-related
molecules A (MICA) - Plasma membrane expression -
Proteolytic shedding - Tumor cells

Introduction

The activity of natural killer (NK) cells is controlled by acti-
vating and inhibitory natural killer receptors. NKG2D (NK
group 2, member D) is an activating receptor, which is
expressed mainly on NK cells and CD8" «BT cells
(Champsaur and Lanier 2010; Raulet et al. 2013). NKG2D
signaling triggers cytotoxicity (Billadeau et al. 2003) and cy-
tokine secretion of NK cells (Andre et al. 2004), whereas it
functions as a co-stimulatory molecule on CD8" BT cells
(Groh et al. 2001). NKG2D-mediated pathways are important
for the elimination of malignant cells (Guerra et al. 2008) and
for defense against some pathogens (Fang et al. 2008;
Wesselkamper et al. 2008). The NKG2D receptor recognizes
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several ligands on target cells, which include the major histo-
compatibility complex (MHC) class I chain-related molecules
A (MICA) and B (MICB) and the six members of the UL16-
binding proteins (ULBP1-6) (Chitadze et al. 2013; Choy and
Phipps 2010).

MICA and MICB are encoded in the HLA complex
(Bahram et al. 1994; Choy and Phipps 2010; Leelayuwat
et al. 1994), and MICA is the most polymorphic non-
classical class I gene (http://www.ebi.ac.uk/imgt/hla/). The
domain structure of MICA is similar to classical class I
molecules with three extracellular domains (x1, o2, and «3)
, a transmembrane segment, and a carboxy-terminal cytoplas-
mic tail. However, MICA is not associated with [32-
microglobulin and does not present peptides. MICA is consti-
tutively expressed on a few cell types, including gastrointes-
tinal epithelium (Groh et al. 1996); however, following cellu-
lar or genotoxic stress (Gasser et al. 2005; Groh et al. 1996), it
can be induced on malignant or virus-infected cells
(Champsaur and Lanier 2010; Raulet et al. 2013).

Proteolytic shedding of MICA can result in a tumor im-
mune escape mediated by immunosuppressive soluble MICA
(sMICA) (Chitadze et al. 2013; Groh et al. 2002; Salih et al.
2002). Soluble MICA can induce NKG2D downregulation by
rapid endocytosis and partial lysosomal degradation resulting
in the impairment of NK cell cytotoxicity (Roda-Navarro and
Reyburn 2009) and co-stimulation of CD8" T cells via
NKG2D. MICA is cleaved at the cell surface by members of
the family of matrix metalloproteases (MMPs) and the “a
disintegrin and metalloproteinase” (ADAM) family, including
ADAMI10 and ADAM17 (Groh et al. 2002; Kaiser et al. 2007;
Salih et al. 2002; Waldhauer et al. 2008). The «3 domain of
MICA forms a complex with the disulphide isomerase/
chaperon endoplasmic reticulum protein 5 (ERp5) on the sur-
face of tumor cells, which induces a conformational change
enabling the proteolytic cleavage of MICA. Shedding of
NKG2D ligands has been reported for many cancers and some
hematopoietic malignancies (Chitadze et al. 2013). Not only
SMICA but also tumor-derived exosomes, which contain MI-
CA (Clayton et al. 2008), may contribute to a downregulation
of NKG2D. A number of clinical studies showed an associa-
tion between tumor-associated or soluble NKG2D ligands and
disease progression and poor prognosis in different malignant
diseases (El-Gazzar et al. 2013). Taken together, these tumor-
mediated counter-regulation mechanisms appear to contribute
to tumor evasion from NK cell and CD8" T cell-mediated
immunity.

Several MICA polymorphisms have been reported to affect
MICA shedding including a single nucleotide polymorphism
(SNP) in the promoter region, a microsatellite in exon 5
encoding the transmembrane region, and the MICA-129Met/
Val dimorphism in &2 domain of the MICA protein.

The SNP at -1878 (1s2596542) in the promoter region of
the MICA gene was found to be associated with the risks of
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hepatitis C (Kumar et al. 2011) and hepatitis B virus-induced
hepatocellular carcinoma (Kumar et al. 2012; Tong et al.
2013). In all three studies, an association of higher sMICA
serum levels with the G allele was observed. The G allele
was found to have a higher transcriptional activity (Lo et al.
2013), which might explain the effects on sMICA serum
levels indirectly by higher MICA expression intensities.

The transmembrane region of MICA, encoded in exon 5,
contains a polymorphic microsatellite, which varies in the
number (4 to 9) of alanine encoding GCT repeats (Fodil
et al. 1996; Mizuki et al. 1997; Ota et al. 1997). The MICA-
A5.1 polymorphism contains five triplet repeats plus one ad-
ditional insertion (GGCT/AGCC) causing a frame shift,
which results in a premature stop codon in the transmembrane
region. MICA alleles containing the MICA-AS5.1 variant, such
as MICA*008, have a number of unique features including
recruitment of the protein to exosomes, which might be ex-
plained by acquisition of a GPI (glycosylphosphatidylinositol)
anchor by this modification that replaces the transmembrane
domain (Ashiru et al. 2013). The MICA-A5.1 polymorphism
has been associated with autoimmune diseases (Fojtikova
et al. 2011; Li et al. 2009; Novota et al. 2005; Triolo et al.
2009), the risk of cytomegalovirus reactivation in HIV-1-
infected patients (Moenkemeyer et al. 2009), and several ma-
lignancies (Chen et al. 2013; Jiang et al. 2011; Lavado-
Valenzuela et al. 2009; Luo et al. 2011; Tamaki et al. 2007,
Tian et al. 2006; Tong et al. 2013). Moreover, donor MICA
A5.1 genotype and anti-MICA sensitization was identified as a
risk factor for kidney transplant survival (Tonnerre et al.
2013). In patients with oral squamous cancer (Tamaki et al.
2009) and in patients with hepatocellular carcinoma (Jiang
et al. 2011), the 45.1 genotype was associated with higher
sMICA serum levels, and Raji cells constructed to express
the MICA AS5.1 allele produced more sMICA than cells
transfected to express a full-length MICA A5 allele (Lii
et al. 2009).

The SNP (rs1051792) at nucleotide position 454 (G/A) of
the MICA gene, which leads to an amino acid substitution
from valine (Val) to methionine (Met) at position 129 in the
«2 domain of the MICA protein, has been described to affect
NKG2D binding avidity (Steinle et al. 2001). This SNP has
been associated with the risk of nasopharyngeal carcinoma
(Douik et al. 2009), hepatitis B virus-induced hepatocellular
carcinoma (Tong et al. 2013), chronic (Boukouaci et al. 2009)
and acute graft versus host disease (Isernhagen et al. 2015),
the risk of ventricular systolic dysfunction in chronic Chargas
heart disease (Ayo et al. 2015), and a number of autoimmune
diseases, including ankylosing spondylitis (Amroun et al.
2005), rheumatoid arthritis (Kirsten et al. 2009), inflammatory
bowel disease (Lopez-Hernandez et al. 2010; Zhao et al.
2011), lupus erythematosus (Yoshida et al. 2011), type I dia-
betes (Raache et al. 2012), and psoriatic disease (Pollock et al.
2013). In patients with ulcerative colitis, the MICA-129Val/Val
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genotype was associated with higher sMICA serum levels
(Zhao et al. 2011) and the MICA-129Met allele was associated
with lower sMICA serum levels in hepatitis B virus-induced
hepatocellular carcinoma patients and healthy controls (Tong
etal. 2013).

Tong and colleagues correlated 10 MICA polymorphisms
with sMICA serum levels in hepatitis B virus-induced hepa-
tocellular carcinoma patients (Tong et al. 2013). In addition to
associations mentioned before, they found significantly higher
SMICA serum levels associated with the coding variants MI-
CA-175Ser and MICA-251Arg and the microsatellite variants
A4 and A9 (Tong et al. 2013).

We recently described that the high-avidity MICA-129Met
variant is characterized by stronger and faster NKG2D signal-
ing, triggering of more NK cell cytotoxicity and interferon-y
release, a rapid co-stimulation of CD8" T cells but also a rapid
downregulation of NKG2D (Isernhagen et al. 2015). There-
fore, we compared herein the MICA-129Met and MICA-
129Val variants also with respect to MICA expression and
shedding.

Methods
Cell culture and transfection

The human tumor cell lines H1339, EPLC-272H, A549
(lung), FaDu, SAS, Cal33, BHY, UT15 (squamous cell carci-
noma of the head and neck), CX2, HCT116 (colon), Panc-1
(pancreas), MCF-7, T47D, MDA-MB-231 (breast), and Hela
(cervix) were cultured in Roswell Park Memorial Institute
(RPMI) 1640 medium (Sigma-Aldrich, Taufkirchen,
Germany) supplemented with 10 % fetal calf serum (FCS)
(Sigma-Aldrich), 2 mM L-glutamine, | mM sodium pyruvate
100 TU/ml penicillin, and 100 pg/ml streptomycin. Human
melanoma cell lines (Dressel et al. 1998) and mouse fibroblast
L cells were maintained in NaHCOs-buffered Dulbecco’s
modified Eagle medium (DMEM) supplemented with 10 %
FCS (Biochrom, Berlin, Germany), 2 mM L-glutamine, ] mM
sodium pyruvate, 50 uM 2-mercaptoethanol, 100 U/ml peni-
cillin, and 100 pg/ml streptomycin. Cell culture plastic mate-
rials were from Greiner (Frickenhausen, Germany) or Sarstedt
(Niimbrecht, Germany). To induce MICA expression, the
melanoma cells were cultured in DMEM with 10 uM of the
histone deacetylase (HDAC) inhibitor suberoylanilide
hydroxyamic acid (SAHA) (Qbiogene-Alexis, Griinberg,
Germany) 20 h before being used for experiments. The
pCMV6-AC-MICA-129Met or pPCMV6-AC-MICA-129Val
expression constructs and the L-MICA-129Met and L-
MICA-129Val cells have been described previously
(Isernhagen et al. 2015). Malme cells were transfected with
50 pg of Pvul-linearized constructs by electroporation. After
selection (I mg/ml G418, Biochrom, Berlin, Germany),

clones (Malme-MICA-129Met and Malme-MICA-129Val)
were obtained by limiting dilution.

Genotyping

One to five million cells were harvested, washed with
phosphate-buffered saline (PBS), resuspended in 500 pl lysis
buffer (100 mM NaCl, 50 mM EDTA (pH 8.0), 10 mM Tris—
HCI (pH 8.0), 0.5 % sodium dodecyl sulfate, 0.1 mg/ml pro-
teinase K, 20 p1g/ml RNase A), and incubated at 50 °C shaking
at 500 rounds per minute (rpm) overnight. Cell lysis was
followed by phenol-chloroform extraction and alcohol precip-
itation using 2 volumes 100 % ethanol and 1/10 volume 5 M
lithium chloride. Genomic DNA was dissolved in dH,O or
8 mM NaOH and stored at 4 °C. The SNP rs1051792 (G/A)
leading to a substitution of Val (G) by Met (4) at position 129
of MICA was genotyped by a TagMan assay (Applied
Biosystems, Foster City, CA, USA) containing the forward
primer 5'-GCTCTTCCTCTCCCAAAACCT-3' and the re-
verse primer 5-CGTTCATGGCCAAGGTCTGA-3' and the
two allele-specific dye-labeled probes FAM-5'-
AATGGACAGTGCCCC-3" and VIC-5'"-
AATGGACAATGCCCC-3'. Results were confirmed by
Sanger sequencing, if required.

Flow cytometry

Flow cytometry was performed with a FACSCalibur™ flow
cytometer and CellQuestPro™ software (BD Biosciences,
Heidelberg, Germany). Cell surface expression of MICA on
propidium iodide negative melanoma and mouse L cells was
examined using the anti-MICA monoclonal antibody (mAb)
AMOI1 (Bamomab, Grifelfing, Germany); 10° cells were in-
cubated with 1 pg mAb in 100 ul PBS for 45 min. After
washing with PBS, 1 ul of the fluorescein isothiocyanate
(FITC)-conjugated goat anti-mouse IgG Ab (155-095-062,
Jackson Laboratories, via Dianova, Hamburg, Germany)
was applied in 100 pul PBS for 30 min as secondary reagent.
MICA expression on all other human tumor cells was deter-
mined with an allophycocyanin (APC)-conjugated MICA an-
tibody (clone 159227, mouse IgG,, R&D Systems, Wiesba-
den, Germany) compared to an isotype-matched control anti-
body. All stainings were done at 4 °C in the dark.

Confocal microscopy

Confocal microscopy was performed with Malme cells that
were grown to sub-confluence (70 to 80 %) on acid-washed
glass coverslips. After washing with PBS, cells were fixed and
permeabilized with ice-cold methanol acetone solution (7:3)
for 15 min at =20 °C. Cells were air dried and subsequently
incubated with a blocking solution (0.5 % bovine serum albu-
min in PBS) for 1 h at room temperature. Subsequently, the
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cells were covered with 50 pl of the primary antibody anti-
MICA (AMO1; 1 mg/ml) diluted in 1:50 blocking solution,
and incubated overnight at 4 °C in a humidified atmosphere.
After washing five times with PBS, 1 ul of the secondary
Cy2-conjugated goat anti-mouse antibody (115-225-062,
Jackson Laboratories, via Dianova, Hamburg, Germany) di-
luted in 100 pl blocking solution plus 1 ul of Hoechst 33342
(10 mg/ml) was added to the cells before incubation for 1 hour
at room temperature. The coverslips were washed five times
with PBS before they were mounted on microscope slides
using fluorescence mounting medium (Dako, Hamburg, Ger-
many). Microscopy was performed with the Zeiss LSM 510
Axioplan 2 confocal microscope.

Enzyme-linked immunosorbent assay (ELISA)

Concentrations of SMICA in the supernatants of cells (10°
cells, 10 ml medium, 24 h) and of intracytoplasmic (ic) MICA
in cell lysates in relation to the total protein content were
determined using the human MICA DuoSet (R&D Systems).
These assays were performed according to the manufacturer’s
protocols. All samples were analyzed in duplicate in compar-
ison to a standard curve of MICA.

Sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and immunoblotting

For Western blot analysis, the cells were lysed in 25 ul
Nonidet P-40 buffer (1 %) before 25 pl reducing loading
buffer was added. After incubation for 4 min at 95 °C, the
lysates were loaded on 10 % SDS gels for electrophoresis at
40 to 100 V for approximately 3 h. Then the proteins were
blotted onto a nitrocellulose membrane (Roth, Karlsruhe, Ger-
many) for 1 h using a semi-dry blotting technique (1 mA/
cm?). The membrane was blocked in Tris-buffered saline with
0.1 % Tween-20 (TBS-T) with 5 % (w/v) non-fat dry milk for
1 h, washed, and then incubated with a biotinylated anti-
MICA Ab (0.4 pg/ml, polyclonal goat IgG, BAF1300, R&D
Systems) and an anti-3-actin mAb (1:10,000, mouse 1gGy,
clone AC-15, Sigma-Aldrich) in TBS-T together with
5 % (w/v) non-fat dry milk overnight at 4 °C. After
being washed three times for 10 min in TBS-T, the
membrane was incubated with horseradish peroxidase
(HRP)-conjugated streptavidin (1:2000, BioLegend, Fell,
Germany) and HRP-labeled goat-anti-mouse IgG sec-
ondary Ab (1:10,000, 115-035-003, Jackson Laborato-
ries, via Dianova, Hamburg, Germany). Detection was
done using an enhanced chemiluminescence (ECL) kit
(GE Healthcare), and chemiluminescence was measured
using a digital image acquisition system (Intas Chemilux
Entry, Intas, Gottingen, Germany).
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Quantitative polymerase chain reaction (qPCR)

Total RNA extraction and complementary DNA (cDNA) syn-
thesis were carried out as described previously (Dressel et al.
2009). For MICA, the following forward and reverse primers
were generated (5'- ACT TGA CAG GGA ACG GAA AGG
A -3"and 5'- CCATCG TAG TAG AAATGC TGG GA -3').
The messenger RNA (mRNA) expression of the housekeep-
ing gene glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (5'- ACG AAT TTG GCT ACA GCA ACA GGG
-3"and 5'- TCT ACATGG CAA CTG TGA GGA GG -3') for
human cell lines or hypoxanthine guanine phosphoribosyl
transferase 1 (Hprtl) (5'- GTC CTG TGG CCA TCT GCC
TA- 3’ and 5'- GGG ACG CAG CAA CTG ACATT- 3') for
mouse L cells were always monitored as internal control. Am-
plification reactions were carried out in 96-well plates in 25 ul
reaction volumes with the Power SYBR® green PCR master
mix (Applied Biosystems, Foster City, USA). The PCR reac-
tion plates were preheated for 2 min at 50 °C and for 10 min at
95 °C followed by 40 cycles of denaturation (15 s at 95 °C)
and amplification (1 min at 60 °C). All reactions were per-
formed in technical triplicates using an ABI 7500 Real-Time
PCR System. For the data analysis, the ABI 7500 SDS soft-
ware (Applied Biosystems) was used. The variations in cDNA
concentration in different samples were normalized to the
housekeeping genes GAPDH or Hprtl. The cycle threshold
(ct) values obtained for the target gene (tg), i.e., MICA, were
corrected by the ct value obtained for the housekeeping gene
(hkg) in the same sample. The relative amount of transcripts
was then expressed as Act value (ct for hkg minus ct for tg).

Statistics

The data were evaluated with SPSS (IBM, Ehningen, Germa-
ny) or WinStat software (R. Fitch Software, Bad Krozingen,
Germany). Pearson correlation and ¢ tests were employed after
confirming normal distribution of the data.

Results

Correlation of MICA expression and shedding in various
tumor and melanoma cell lines with the MICA-129

genotype

We analyzed the expression of MICA on the plasma mem-
brane (pmMICA) in a panel of 16 human tumor cell lines of
different entities (Fig. 1a). Whereas only one cell line was
homozygous for MICA-129Met, nine cell lines were hetero-
zygous and six cell lines homozygous for the MICA-129Val
allele. Cell lines carrying the MICA-129Val/Val genotype
showed a trend to have higher pmMICA expression intensities
than those carrying one or two MICA-129Met alleles (P=
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Fig.1 MICA expression on the plasma membrane and release of SMICA
in human tumor cell lines with different MICA-129 genotypes. a The
expression of pmMICA on human tumor cell lines carrying the
different MICA-129 genotypes (Met/Met, Met/Val, and Val/Val) was
analyzed by flow cytometry. The mean fluorescence intensities (MF1)
of pmMICA are displayed as means plus standard deviation (SD) (n>
5). b In parallel, the amounts of soluble MICA (sMICA) in the
supernatants were determined by ELISA and are shown as means plus

Met/Val

Val/Val

SD of sMICA (pg/ 10° cells). ¢ The intracellular MICA (icMICA) was
determined by ELISA and is shown as means plus SD. d—f The data were
grouped according to the MICA-129 genotype, and cell lines carrying one
or two MICA-129Met alleles (Met/X, i.e., Met/Met and Met/Val) were
compared to cell lines which were homozygous for the MICA-129Val
allele. The data are shown as means plus standard error of the mean
(SEM) and they were analyzed by ¢ tests
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0.0699, t test) (Fig. 1d). To determine the effect of the MICA-
129 dimorphism on shedding of MICA, the amount of sMICA
in the supernatant of the cell lines cultured for 24 h was de-
termined in parallel (Fig. 1b). The expression of pmMICA and
release of SMICA did not strictly correlate. Hela cells, having
on average the highest amounts of pmMICA, hardly released
any sMICA. However, overall MICA-129Val homozygous
cell lines appeared to release more SMICA although this trend
was not statistically significant (P=0.1986, ¢ test) (Fig. le).
Cell lines carrying the MICA-129Val/Val genotype appeared
to have higher amounts of intracellular MICA (icMICA) as
determined by ELISA (Fig. 1c) than those carrying one or two
MICA-129Met alleles (Fig. 1f, borderline significant P=
0.0777, t test).
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Fig.2 MICA expression on the plasma membrane and release of SMICA
in human melanoma cell lines with different MICA-129 genotypes. a The
pmMICA expression of human melanoma cell lines carrying the different
MICA-129 genotypes (Met/Met, Met/Val, and Val/Val) was analyzed by
flow cytometry in control cells (—S4HA) and cells treated with the HDAC
inhibitor SAHA (10 uM) for 20 h before analysis (+ S4HA). The MFI of
pmMICA is shown as means plus SD (n>3). b In parallel, the amounts of
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Since the variations in MICA expression and release were
high in this panel of tumor cell lines of different entities, we
next investigated the MICA expression in a collection of 13
melanoma cell lines. One melanoma cell line was homozy-
gous for MICA-129Met, nine were heterozygous, and three
were homozygous for the MICA-129Val allele (Fig. 2a). The
MICA plasma membrane expression intensity was on average
significantly higher in the melanoma cell lines carrying a MI-
CA-129Val/Val genotype than in those which carried one or
two MICA-129Met alleles (P=0.0429, ¢ test) (Fig. 2c). Since
the MICA expression was in general low on the melanoma
cell lines, we induced MICA expression by adding the HDAC
inhibitor SAHA for 20 h to the cell culture medium (Elsner
et al. 2010; Elsner et al. 2007; Skov et al. 2005) (Fig. 2a). The
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carrying one or two MICA-129Met alleles (Met/X, i.e., Met/Met and
Met/Val) were compared to cell lines which were homozygous for the
MICA-129Val allele. The data are displayed as means plus SEM, and they
were analyzed by 7 tests
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cell surface expression of MICA increased in all melanoma
cell lines except Malme, which remained negative for
pmMICA even after treatment with SAHA (Fig. 2a). The

density of pmMICA was again significantly higher on the
MICA-129Val homozygous melanoma cell lines than on those
which carried one or two MICA-129Met alleles (P=0.0115, ¢
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Fig. 3 MICA shedding in Malme cells expressing the MICA-129Met or
MICA-129Val variants. a The pmMICA expression intensity was
determined by flow cytometry as exemplified for a Malme-MICA-
129Met and a Malme-MICA-129Val clone and compared to parental
Malme cells. The white histograms indicate cells stained with the
secondary Ab only; the black histograms show the staining with anti-
MICA plus secondary Ab. b A summary of pmMICA expression
intensity (mean+SD) on Malme-MICA-129Met (n=22) and Malme-

MICA-129Val clones (n=25) is displayed. ¢ In parallel, the amount of
SMICA in the supernatant was determined by ELISA (pg/10° cells). d
The ratios of sSMICA/pmMICA were calculated. The data in b, ¢, and d
were compared by a ¢ test. e The linear regressions of sMICA and
pmMICA were determined for the Malme-MICA-129Met and f Malme-
MICA-129Val clones. The coefficient of determination (R?), the regres-
sion coefficient (reg. coeff"), which is slope of the regression line, and the
P value (for the Pearson correlation) are indicated for both MICA variants
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test) (Fig. 2¢). The spontaneous release of sSMICA was low in
all melanoma cell lines but increased after treatment with
SAHA (Fig. 2b). Melanoma cell lines carrying a MICA-
129Val/Val genotype released significantly more sSMICA than
those which carried one or two MICA-129Met alleles (P=
0.0015, ¢ test) (Fig. 2d). However, after SAHA treatment,
the difference in the amounts of sSMICA did not reach statisti-
cal significance (P=0.1861, ¢ test) (Fig. 2d).

Expression of the MICA-129Met/Val isoforms
in the MICA-deficient human melanoma cell line Malme

To clarify whether MICA shedding is directly affected by the
MICA-129 genotype, the pmMICA-deficient melanoma cell
line Malme was selected for further experiments. We had pre-
viously cloned the MICA*00701 allele, which contains a me-
thionine (Met) at amino acid position 129 (pCMV6-AC-MI-
CA-129Met), and generated the MICA-129Val variant of the
MICA*00701 allele, which contains a valine (Val) at this po-
sition (pCMV6-AC-MICA-129Val) by site-directed mutagen-
esis (Isernhagen et al. 2015). Malme cells were transfected
with these expression constructs and several clones expressing
the MICA-129Met or MICA-129Val variants obtained by lim-
iting dilution. Representative flow cytometry histograms for
Malme wild-type cells and clones expressing the MICA-
129Met and MICA-129Val variant are displayed in Fig. 3a.
A broad range of pmMICA expression intensities were ob-
served within (Fig. 3a) and between different clones
(Fig. 3b) but on average, the expression was similar on
Malme-MICA-129Met and Malme-MICA-129Val clones
(P=0.9760, t test).

Effect of the MICA-129 dimorphism on shedding
of MICA

The shedding of MICA was then analyzed in parallel to
pmMICA expression intensity of MICA in these clones. No-
tably, the amount of sMICA in the supernatant of these cells
(Fig. 3c) was higher for cells transfected with the MICA-
129Met variant (P=0.0006, ¢ test). Accordingly, also the ratio
of sSMICA and pmMICA expressions (Fig. 3d) was higher for
the Malme-MICA-129Met than Malme-MICA-129Val clones
(P=0.046, t test). Moreover, the amount of SMICA in the
supernatant was partly dependent on pmMICA expression
intensity for Malme-MICA-129Met cells as indicated by the
coefficient of determination (R*=0.16) (Fig. 3¢) but even less
for Malme-MICA-129Val cells (R*=0.09) (Fig. 3f). These
results suggested that the MICA-129Met/Val dimorphism di-
rectly influences MICA shedding and that the MICA-129Met
variant is more susceptible to shedding than the MICA-129Val
isoform. This result was not expected in view of the data
obtained from non-transgenic tumor cell lines, in which we
observed a higher pmMICA expression and a higher release of
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SsMICA in cell lines with the MICA-129Val/Val genotype.
Therefore, we speculated that the polymorphism could also
directly affect pmMICA expression intensity and thereby con-
trol the release of SMICA.

The MICA-129 dimorphism affects the MICA expression
at the plasma membrane

Immunofluorescence staining of MICA was performed to
compare the subcellular expression pattern of the MICA-
129Met and the MICA-129Val isoforms in the Malme clones.
Both MICA variants were found on the plasma membrane but
also in intracellular compartments. A larger proportion of the
MICA-129Met than the MICA-129Val variant appeared to be
localized intracellularly (Fig. 4a—d). To quantify this distribu-
tion, we measured in parallel pmMICA by flow cytometry
(Fig. 4e) and icMICA in cellular lysates by ELISA (Fig. 4f)
and Western blot (Fig. 4j) in 11 clones of each genotype.
Again, the expression of pmMICA was overall similar in
Malme-129Met and Malme-129Val clones (P=0.3844, ¢ test)
(Fig. 4e). However, significantly more icMICA was found in
the Malme-129Met than in Malme-129Val clones by ELISA
(P=0.0199, ¢ test) (Fig. 4f). Notably, the amount of icMICA
increased with the pmMICA expression intensity for Malme-
MICA-129Met clones (regression coefficient=0.09, R*=
0.24) (Fig. 4g) but not for Malme-MICA-129Val clones (re-
gression coefficient=—0.01, R*=0.05) (Fig. 4h). Furthermore,
cellular lysates of these clones were tested by Western blot for
MICA expression as illustrated in Fig. 4i. Densitometry of
MICA in comparison to [3-actin (Fig. 4j) indicated a higher

Fig. 4 MICA expression on the plasma membrane and in intracellular P>
compartments of Malme cells expressing the MICA-129Met or MICA-
129Val isoform. a Confocal microscopy images show pmMICA and
icMICA in a Malme-MICA-129Met clone after staining with an anti-
MICA plus secondary Ab (green). Nuclei are stained with Hoechst
33342 (blue). The scale bar represents 10 um. b The control illustrates
the staining with the secondary Ab only. ¢ A Malme-MICA-129Val clone
is displayed after staining with an anti-MICA plus secondary Ab (green).
d The control illustrates the staining with the secondary Ab only. e The
pmMICA expression intensity on Malme-MICA-129Met (n=11) and
Malme-MICA-129Val clones (n=11) is summarized as mean plus SD.
The data were compared by a ¢ test. f In parallel, the amounts of
intracellular MICA (icMICA) were determined by ELISA and are
shown as means plus SD. The data were compared by a ¢ test. The
linear regressions of icMICA and pmMICA are displayed for the g
Malme-MICA-129Met and h Malme-MICA-129Val clones. The
coefficient of determination (R?), the regression coefficient (reg. coeff),
and the P value (for the Pearson correlation) are indicated for both MICA
variants. i An immunoblot is shown on which lysates of five Malme-
MICA-129Met clones, five Malme-MICA-129Val clones, and parental
Malme cells were probed with anti-MICA and, as loading control, anti-[3-
actin Abs. The bands of a protein size marker are indicated at the /efi side.
MICA bands are broad due to variations of glycosylation. j Immunoblots
were analyzed by densitometry, and a summary of MICA/[3-actin ratios
of Malme-MICA-129Met (n=11) and Malme-MICA-129Val (n=11)
clones is displayed as means plus SD. The data were compared by a 7 test
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Malme-129Val clones (P=0.0047, ¢ test) as indicated by lower
Act values (Fig. 5b). In both Malme-MICA-129Met and
Malme-MICA-129Val clones, the MICA mRNA expression
intensity correlated with the pmMICA expression intensity
(R*=0.43 for Malme-MICA-129Met and R*=0.36 for
Malme-MICA-129Val clones) (Fig. 5c, d). Overall, the MICA
mRNA expression correlated also with total MICA protein
expression as determined by MICA/[3-actin ratio in Western
blot (R*=0.25). However, since the clones had been selected
for similar pmMICA expression intensities, both MICA
mRNA and protein expression was higher for Malme-
MICA-129Met than Malme-MICA-129Val clones (Fig. Se).

To confirm the results obtained with the Malme clones, we
also analyzed mouse fibroblast L cells, which previously had
been transfected with the pPCMV6-AC-MICA-129Met/Val ex-
pression constructs (Isernhagen et al. 2015). Murine cells do
not have a MICA gene and from these L cells MICA was not
released by shedding (Isernhagen et al. 2015). The MICA cell
membrane expression of the L cell clones was on average sim-
ilar between L-MICA-129Met and L-MICA-129Val clones
(Fig. 6a) (P=0.1848, ¢ test). In line with the results obtained
with Malme clones, the MIC4 mRNA expression (Fig. 6b) was
also significantly higher (indicated by lower Act values) in L
cell clones expressing the MICA-129Met than the MICA-
129Val variant (P=0.0212, ¢ test). The pmMICA expression
intensity was weakly dependent on the mRNA expression in-
tensity in clones transfected with the MICA-129Met variant as
indicated by the coefficient of determination (R*=0.18)
(Fig. 6¢). However, for L cells expressing the MICA-129Val
variant, the M/IC4A mRNA and pmMICA expression intensities
correlated tightly (R*=0.69) (Fig. 6d).

Taken together, the MICA-129Met/Val dimorphism ap-
pears to affect MICA plasma membrane expression intensity
and shedding, and both processes together determine the ex-
tent of SMICA release.

Discussion

Numerous studies have identified MICA polymorphisms to be
associated with various malignant and autoimmune diseases.
In view of the biological function of MICA as a NKG2D
ligand, these data suggest that MICA variants themselves
could be causative for at least some of these associations de-
spite linkage disequilibrium in the HLA region. The SNP
(rs1051792) of the MICA gene resulting in the MICA-
129Met/Val dimorphism was the first MI/CA polymorphism
for which a functional consequence was described. Steinle
and colleagues identified the MICA-129Met variants as high
and MICA-129Val variants as low avidity NKG2D ligands
(Steinle et al. 2001). Recently, we investigated the functional
consequences of this polymorphism in more detail
(Isernhagen et al. 2015). Engagement of NKG2D on NK cells
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by the high-avidity MICA-129Met variant was characterized
by stronger and faster NKG2D signaling resulting in more NK
cell cytotoxicity and interferon-y release. On CD8" T cells,
the MICA-129Met variant mediated a faster co-stimulation
and activated the cells in combination with limited CD3-
mediated signals. Notably, on both cell types, the MICA-
129Met variant induced also a rapid NKG2D downregulation.
Therefore, the effects elicited by the MICA-129Met variant
were not sustained and at high MICA expression intensities,
the MICA-129Val variant elicited even more NKG2D-
mediated responses, such as NK cell cytotoxicity, than the
MICA-129Met variant.

Two recent studies suggested that the MICA-129Val/Val
genotype was associated with higher SMICA serum levels in
patients with ulcerative colitis (Zhao et al. 2011) as well as in
patients with hepatitis B virus-induced hepatocellular carcino-
ma and healthy controls (Tong et al. 2013). It was unclear,
however, whether the MICA-129 dimorphism has a direct ef-
fect on the generation of SMICA or is linked to other polymor-
phisms affecting MICA shedding. We were therefore interested
to clarify whether the MICA-129Met/Val dimorphism not only
directly affects NKG2D signaling but also MICA shedding.

We investigated pmMICA expression in parallel to release
of SMICA in 16 tumor cell lines of various entities and 13
melanoma cell lines. The MICA plasma membrane expression
intensities on the melanoma cell lines were higher on cell
lines, which were homozygous for the MICA-129Val allele
than on those which carried either one or two MICA-129Met
alleles. Similarly, the amount of SMICA released from the
melanoma cell lines carrying two MICA-129Val alleles was
higher than from those which carried one or two MICA-
129Met alleles. The panel of various tumor cell lines
displayed the same trends. The two cell lines, which were
homozygous for the MICA-129Met variant (Malme, melano-
ma and T47D, breast cancer), were both negative for
pmMICA expression and released very little SMICA into the
cell culture supernatant. The plasma membrane expression was
not (Malme) or only slightly (T47D, data not shown) inducible
by treatment with the HDAC inhibitor SAHA. Although these
results suggested that the expression of MICA-129Met variants
at the plasma membrane is lower and that MICA-129Met var-
iants are less released by shedding than MICA-129Val variants,
the number especially of MICA-129Met homozygous cell lines
has been too low to draw definitive conclusions since MICA
alleles can vary with respect to mRNA expression intensity
(Shafi et al. 2011). Notably, some MICA alleles such as
MICA*008 can have various promoter variants (Cox et al.
2014), which might alter expression intensities.

Therefore, we transfected the MICA-negative melanoma
cell line Malme with expression constructs for MICA which
differed only at position 129 and obtained cell clones express-
ing both MICA variants at similar intensities. Malme-MICA-
129Met clones released more sMICA than Malme-MICA-
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Fig. 5 Correlation of MICA mRNA and pmMICA expression intensity
in Malme cells expressing the MICA-129Met and MICA-129Val
variants. a The MFI of pmMICA expression was determined by flow
cytometry on Malme-MICA-129Met (n=17) and Malme-MICA-129Val
(n=17) clones. The data are summarized as means plus SD and were
compared by a ¢ test. b In parallel, the MIC4 mRNA expression (ACt,
~hkg) Was determined by qPCR. Expression values of the target gene (tg)
MICA were calculated from means of technical triplicates after
normalization to the housekeeping gene (hkg) GAPDH. The data are
summarized as means plus SD and were compared by a ¢ test. It should

be noted that lower ACt, o Values indicate higher mRNA expression
levels. The linear regressions of MICA mRNA expression and pmMICA
expression are displayed for ¢ Malme-MICA-129Met and d Malme-
MICA-129Val clones. The coefficient of determination (R?), the
regression coefficient (reg. coeff.), and the P value (for the Pearson
correlation) are indicated for both MICA variants. e The linear
regression of MICA mRNA expression and total MICA expression as
determined by Western blot is shown for Malme-MICA-129Met and
Malme-MICA-129Val clones, in which mRNA and protein expression
had been measured in parallel
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Fig. 6 Correlation of MICA mRNA and pmMICA expression intensity
in L cells expressing the MICA-129Met and MICA-129Val variants. a
The MFI of pmMICA expression was determined by flow cytometry on
L-MICA-129Met (n=14) and L-MICA-129Val (n=12) clones. The data
are summarized as means plus SD and were compared by a ¢ test. b In
parallel, the MICA mRNA expression (ACty, i) Was determined by
qPCR. Expression values of the target gene (tg) MICA were calculated
from mean of technical triplicates after normalization to the housekeeping

129Val clones. This finding indicates that the MICA-129Met/
Val dimorphism does affect MICA shedding. The MICA-
129Met/Val dimorphism is localized in the ®2 domain, which
is far away from the cleaving site in the stalk region. There-
fore, it influences shedding likely indirectly by a conforma-
tional change affecting the accessibility of MICA for ADAM
family proteases or the chaperone ERpS.

In contrast to this result, we found more sMICA in the
supernatant of tumor and melanoma cell lines carrying a MI-
CA-129Val/Val genotype. Notably, these cell lines expressed
also more MICA on their plasma membrane. Therefore, we
compared the expression pattern of MICA in the Malme
transfectants. Both MICA variants were found at the plasma
membrane in similar amounts, but in intracellular
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gene (hkg) Hprt. The data are summarized as means plus SD and were
compared by a ¢ test. It should be noted that lower ACty, 1, values
indicate higher mRNA expression levels. The linear regressions of
MICA mRNA expression and pmMICA expression are displayed for ¢
L-MICA-129Met and d L-MICA-129Val clones. The coefficient of
determination (R?), the regression coefficient (reg. coeff’), and the P value
(for the Pearson correlation) are indicated for both MICA variants

compartments, more MICA was found in Malme cells ex-
pressing the MICA-129Met than the MICA-129Val variant.
This result suggests that the MICA-129Met and MICA-
129Val variants either differ in the efficacy of transport to
the cell surface, in recycling into intracellular compartment
after expression at the plasma membrane, or in degradation
after internalization. An alteration of the intracellular transport
has been described previously for MICA-A5.1 variants
(Ashiru et al. 2013). Moreover, it has been recently reported
that the N glycosylation of asparagine 8 in MICAOQ18 is im-
portant for cell surface expression of this variant (Mellergaard
et al. 2014), but the MICA-129Met/Val dimorphism has pre-
viously not been implicated in the regulation of cell surface
expression.
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As mentioned before, the cell clones were selected to have
on average a similar pmMICA expression intensity. Nonethe-
less, the selected Malme-MICA-129Met clones expressed
more MICA mRNA than Malme-MICA-129Val clones. Sim-
ilarly, in mouse L cells which were transfected with the same
constructs, more MICA-129Met than MICA-129Val mRNA
was expressed in clones which had similar pmMICA expres-
sion intensities. The correlation of M/C4A mRNA and
pmMICA expression appeared to be partly better for mouse
L cells than for human MALME cells. This could be due to the
failure of L cells to shed MICA (Isernhagen et al. 2015).
Proteins involved in shedding of NKG2D ligands might not
be expressed in L cells or fail to interact with human MICA.
Moreover, other proteins which retain MICA-129Met variants
in human cells could not be present or fail to interact with
MICA in mouse cells.

Taken together, these results show that the MICA-129Met
variant was less efficiently expressed at the plasma membrane
than the MICA-129Val variant. A larger proportion of the
MICA-129Met variant was in intracellular compartments.
Whether this was due to alteration of transport, recycling or
degradation remains to be elucidated. In Malme and L cells, more
mRNA of the MICA-129Met than the MICA-129Val variant
was required to obtain a similar pmMICA expression intensity.

The generation of sMICA can be affected by polymor-
phisms, which regulate cell surface expression, and polymor-
phisms, which alter the efficacy of cleavage by shedding pro-
teases. Our results demonstrate that the MICA-129 dimor-
phism affects both processes leading to a reduced cell surface
expression and an increased shedding of MICA-129Met var-
iants. Both processes limit the cell surface expression of the
high-avidity MICA-129Met variant, which causes a strong
NKG2D counter-regulation, if present at high density and
for prolonged time (Isernhagen et al. 2015). On the other hand,
even low amounts of MICA-129Met signals can activate a
strong and fast NKG2D signaling (Isernhagen et al. 2015).
Therefore, both MICA-129 variants may confer advantages
and disadvantages in certain situations, such as virus infec-
tions, suggesting balancing evolution of MICA alleles. The
mechanisms by which the MICA-129 dimorphism affects
plasma membrane expression and shedding need to be inves-
tigated further. Although the MICA-129Val variant was ap-
parently less efficiently cleaved to produce sMICA, the higher
plasma membrane expression intensity of MICA-129Val var-
iants could explain the association of this variant with higher
sMICA concentration in tumor cell culture supernatants as
shown here or in patient sera as described previously by others
(Tong et al. 2013; Zhao et al. 2011).

In conclusion, we have shown that the MICA-129 dimor-
phism directly affects plasma membrane expression and shed-
ding and these functional effects might contribute to the nu-
merous disease associations, which have been reported for this
polymorphism.
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