
Complex Intell. Syst. (2016) 2:235–242
DOI 10.1007/s40747-016-0025-5

ORIGINAL ARTICLE

Centering ontologies in agent oriented software engineering
processes

Ghassan Beydoun1 · Graham Low2

Received: 6 March 2016 / Accepted: 14 September 2016 / Published online: 26 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract A plethora of Multi Agent Systems (MAS) devel-
opment methodologies exists and all compete for promi-
nence. This paper advocates unification of best of breed
activities from these methodologies and examines two exist-
ing approaches for unifying access to them. It proposes an
alternative approach that focusses on the use of domain
knowledge through ontologies as offering the best poten-
tial for unifying access to them. The reliance on ontologies
will provide flexibility in the process and workproducts use
within the methodology. The focus on domain knowledge
will reduce the number of mandatory methodological tasks
and at the same time create scope for reuse with respect to
both system designs and components. The paper will further
sketch and argue for a full software development lifecycle
for MAS where ontologies expressing domain knowledge
are the central artifacts.

Keywords Process elements · Design · Ontologies ·
Mutli agent systems · Distributed systems

Introduction

Increasing interest in engineering a class of distributed intel-
ligent systems, Multi Agent Systems, has led to growing
attention to higher level software engineering reuse issues.

B Ghassan Beydoun
ghassan.beydoun@uts.edu.au

Graham Low
g.low@unsw.edu.au

1 Faculty of Engineering and IT, University of Technology
Sydney, City Campus, Sydney, NSW, Australia

2 School of Information Systems, University of New South
Wales, Sydney, NSW 2052, Australia

This includes reuse of models, reuse of project development
know-how, as well as that of project management knowl-
edge [9]. As in any software development project, reuse
should be of concern also to Multi Agent Systems (MAS)
development. In other words, reuse of MAS models and
MAS developers’ skills should be facilitated. We argue in
this paper that both dimensions of reuse can be facilitated
with the use of ontologies as central constructs to drive the
whole of the SoftwareDevelopmentLifeCycle (SDLC). This
paper promotes ontology-basedMASdevelopment. Substan-
tial integration between ontologies and software engineering
has been achieved e.g. in ODE of [15] and Onto [19]. This
paper is part of an ongoing effort to (i) place ontologies at
the centre of the software development lifecycle (SDLC) for
MASs, (ii) enhance the reuse of MAS work-products and,
(iii) unify agent-based software engineering knowledge.

The unique characteristics of MAS have rendered most
standard systems development methodologies inapplicable,
giving rise to the development of Agent Oriented Software
Engineering (AOSE) methodologies. It should be said that,
however, the iterative nature of the process remains com-
mon to all those methodologies. This typical requirement
for the development of any knowledge based information
systems is maintained. In other words, all the new method-
ologies continue to iteratively observe the common develop-
ment phases of: requirement definition, analysis, design and
implementation [27]. However, systematic review of those
methodologies [1,29,30] have revealed that most still do not
consider longer term issues associated with the usage of a
MAS. They do not consider the reuse of the system by incor-
porating extensibility. They do not consider longevity of the
system by facilitating maintenance and/or interoperability.
Furthermore, they not protect the investment by ensuring that
the workproducts of the development project are sufficiently
reusable. This paper outlines a research agenda and amethod-

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81065152?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-016-0025-5&domain=pdf

236 Complex Intell. Syst. (2016) 2:235–242

ology creation path towards resolution of those long term
issues. Through the use of ontologies during the software
development lifecycle and at the same time the accommoda-
tion of iterative processmodels, the paper sketches a skeleton
of an ontology-based process.

Towards this, Beydoun et al. [5–8] proposed development
of agents in a way to decouple domain knowledge from prob-
lem solving knowledge. This is to enhance reuse in agent
systems development. The domain knowledge would be
sourcedvia the use of reusabledomain-dependent ontologies.
The problem solving/domain processes knowledge would
be sourced via the use of reusable problem-solving methods
(PSMs). E.g. these correspond to business process units in a
set of similar application domains. They are in essence high-
level structures that describe a reasoning process employed to
solve similar problems encountered across different domains
[3,10,31].Both components, domainontologies andproblem
solving methods would then be reused through deploy-
ment of a library of modular components. This would assist
the domain-independent development of agent-oriented sys-
tems, reducing development costs and speeding up the
development process. The work described in this paper
continues on from [7,12]. The roles of the reusable com-
ponents interfaces are analysed in the design of a library
of reusable components specifically oriented towards agent-
oriented software engineering. During the design phase and
selection of reusable components, agents are interactions are
analysed to provide pointers to identify of the most suit-
able reusable component. As such, interaction-dependencies
specifications extend the library of components to guide
developers towards the design of solutionswhere is necessary
for problem-solving, with interaction arising both in cooper-
ation and negotiation of agents.

The rest of the paper is organised as follows: Section “An
ontology-centric MAS software engineering scheme” pro-
vides the conceptual underpinning for placing ontologies at
the heart of the Software Development Lifecyle (SDLC) in
developing multi agent systems. Section “Ontology-based
methodological development of MAS” develops this into
a sketch of an iterative ontology-based methodology and
describes how this can be adapted to a given specific context.
Finally, Section “Conclusion” with a summary and discus-
sion of future work.

An ontology-centric MAS software engineering
scheme

Conceptual modelling within knowledge engineering seeks
to define the key concepts and relationships that constitute
knowledge in any given context [22,28]. The expression of
such models in the form of ontologies provides the basis
for re-use of these concepts and relationships in the form

of software in conjunction with complementary organiza-
tional processes [17]. The complexity of knowledge makes
the development of a single and complete corpus impractical
[28] which has, in turn, led to the proliferation of ontolo-
gies to account for differing contexts. Even within the same
development context, it is common that a number of ontolo-
gies are relevant. The availability of multiple ontologies is
considered here as a potentially useful resource for MAS
development. To exploit this resource, MAS methodologies
need to incorporate ontology oriented analysis and design
tasks. Those tasks require a varying degree of abstractions
and provide workproducts of varying degree of formality
as reflected by the SDLC that they support. In essence, the
work here supports a particular architecture design of dis-
tributed system, MAS. Within this architecture, ontologies
in combination with the proposed tasks form a set of soft-
ware patterns that facilitate reuse and development of aMAS.
Various abstractions within the same ontology or multiple
ontologies can support the analysis and design tasks within
the various phases of the development of a MAS. The tasks
that can be supported by ontologies will be identified in this
paper.

A MAS is composed of a heterogeneous collection
of agents with distinct knowledge-bases and capabilities.
Coordination and cooperation between agents facilitate the
achievement of collective goals which cannot be otherwise
achieved by a single agent working in isolation [33]. Only
a small number of existing MAS methodologies include
ontologies in their work products and processes. This support
is generally confined to the early phases of the develop-
ment, to support the internal consistency ofmodels during the
analysis phase.Although, the agentmethodologyMOBMAS
suggests that ontologies could be used to verify the structure
of models, to support interoperability and reuse [29,30], no
explicit process towards that end is defined. Towards such a
process, two significant innovations are required in support
of Agent Oriented SE (i) an ontology-based methodological
framework that can be used to build new ontology-centric
AOSE methodologies from scratch, and (ii) a repository of
add-on methodological elements that can be added to an
existing AOSE methodology.

With all the reuse advantages stipulated for such a process,
it would also address a broader concern of reuse- that of
reusing SE knowledge itself. As earlier discussed, there is a
growing realization that some innovative form of consolida-
tion is needed. To produce a more effective methodological
approach from the existing body of agent-oriented software
engineering knowledge, it is important to first weight the pros
and cons of the roadmap forward.

Two key issues are crucial to consider: (i) how easy it is
for software developers to actually apply the unified outcome
(ii) how feasible is the merging approach in the first place.

123

Complex Intell. Syst. (2016) 2:235–242 237

Two approaches that have been previously used to are now
discussed from the these two perspectives.

The ad-hoc approach effectively merges existing
methodologies one at a time, with an arbitrary methodol-
ogy as a starting point, and without guidance on attaching
methodologies. This approach is not feasible. An ad hoc
approach can lead to repetition and to an unnecessarily large
and cumbersome methodology. This should not come as a
surprise as any givenmethodology targets a specific concern.
We find that they greatly overlap in modelling and steps. An
excessively largemethodologywould lead software develop-
ers subsequently struggle to deal with and they would most
likely abandon the corresponding development (Cossentino
et al. 2004).

The second is a metamodeling approach relying on a
formally unifying formal language (a metamodel) to express
various methodology fragments from different sources (per-
haps using a metamodel such as FAML (FAME1 Agent-
oriented Modelling Language) as described in [7]. This
approach requires a collection of versatile methods to cre-
ate a repository of method fragments. A project manager
subsequently uses the unifying language and decides the con-
cern and the flavour required. This approach places excessive
burden to develop the repository and on the project man-
ager. Despite avoiding inconsistencies or repetitions between
methodologies, only selected subset of rewritten components
of methodologies can be integrated at any one time, and this
is very time-consuming. Furthermore, the emerging area of
AOSE, the development experience is limited and the project
criteria of selection may not be known a priori.

The discussions of Sections “Introduction” and “An
ontology-centric MAS software engineering scheme” advo-
cate the support of libraries of components to support a
unification end. But there is a need to balance the trade-
off between reproducing the method fragments required by
the unified language (in the metamodeling approach) and
the cumbersome outcome of the ad hoc approach. This
paper presents an alternative, and potentially complemen-
tary, approach using the domain ontology as a modelling
artefact. Ontology techniques developed here can be used to
enhance the metamodeling approach.

To avoid the cumbersome re-writing of existing method-
ologies using a common formal language (metamodel), a less
formal feature-identification step is proposed. The approach
requires much less effort and it is realizable without requir-
ing any collaboration of the creators of the ontologies. This
approach can also rid developers of the highly specialised and
difficult task of the merging of methodology components on
a per project basis. This is because the approach relies on
using explicit ontologies as a focal point during the devel-

1 FAME is the project name under which FAML has been developed.

opment, and in this way facilitates combining features from
different AOSE methodologies, using ontologies as a means
for semantic mappings to convert software work products
to suit various development steps. Substantially supporting
integration of processes and products, this can productively
support its inter-operation with other systems, and can be
considered as a significantly beneficial benefit.

Using off-the-shelf domain ontologies as a starting point
of the system development phase will become the focus of
our efforts on the applied use of ontologies in agent soft-
ware engineering. In addressing interoperability and work
product reuse, the issue is not simply that an ontology-based
AOSE methodology should be complete and consistent and
produce systems that can easily be evolved to new contexts.
The deeper issue is that it should have a highly developed
maintenance phase and guide developers in reusing existing
systems and components previously developed. Reuse is a
central aim of using ontologies in general. Ontologies are
in essence reusable encapsulation of knowledge [11,32,34].
In deploying them in MAS development processes, poten-
tially lowers the long term cost of deployment of agent-based
systems.

Two significant contributions to the state-of-the-art in
agent based software engineering are identified as follows:

First, designers will have a tested and verified framework
to handle interoperability issues at design time. This facili-
tated by creating themutli agent system from loosely coupled
components connected through ontological mappings. Being
inherently flexible with its actual design and architecture
reusable across applications and in different settings, this
ontology-driven approach is expected to be highly effective.

Second, ontological commitments related to the design of
the multi agent system will be explicitly made during its
actual design and development. In exploring the currently
overlooked ontology-related interactions between the analy-
sis and design phases of software development for MAS,
iterative verification during the design and development of
the system becomes also possible. A validation approach to
complement this ontology-based view was recently devel-
oped in [20] to precisely use ontologies during the creation
of the MAS requirement models. With respect to improving
the process of creating intermediate software work prod-
ucts, using an ontology-based development methodology is
impossible without the appropriate process elements that can
harness domainknowledgewithin ontologies. In otherwords,
the presence of problem solving methods is couple with par-
tial usage of any ontology for any single agent. Thus, process
elements are required to identify the “bits” within an ontol-
ogy that are required at any single time. That is why the next
section focuses on identifying the process elements required
to create an ontology-driven methodology.

123

238 Complex Intell. Syst. (2016) 2:235–242

Ontology-based methodological development
of MAS

An “ontology driven information system” is a system in
which the ontology is an integral component of the system.
For “an ontology driven” multi-agent system, an ontology is
an integral part of each agent in the system and the sys-
tem itself. In other words, we assume an ontology-based
view of agents, in which every agent is assumed to have a
local ontology reflecting their knowledge base and their point
of view the overall systems requirements. Under this view,
an agent within a multi agent system is an individual prob-
lem solver that requires knowledge of its operating domain
and problem solving knowledge to enable appropriate com-
munication with other agents and appropriate manipulation
of its data environment. In this view, we categorize the
knowledge of an agent into domain knowledge and into prob-
lem solving knowledge. The problem solving knowledge
equates to techniques necessary to use an ontology and to
turn it into a working system. Specific techniques for dif-
ferent kinds of problems are necessary to build relatively
complete and competent systems.We pursue ontology-based
processes to leverage the use of ontologies. This will also
lead to identification of identifying and reusing concomitant
problem-solving methods (PSM). Thus, supporting ontol-
ogy based development also requires providing guidance to
developers to identify PSM for individual agents and inte-
grating these appropriately within a MAS, operationalising
individual agents in concordance with requirement analysis
models.

One major appeal of ontology-based development activ-
ities is that the reliance on analysis and design is reduced
where the re-engineering of ontology is coupled with a suit-
able choice of problem solving methods [3]. Unlike many
knowledge based development methodologies, this lacks the
support ofMASdevelopment community. As a consequence,
we generalize the early efforts of knowledge based systems
researchers e.g. [21,24] and view a knowledge-based system
(KBS) as comprising problem solvingmethods and a suitable
sets of ontologies.

In our ontology-centric view of agents, each agent has its
own view on the domain ontology, and the individual agents
work to achieve their set of goals, determined by the systems
requirements analysis, with the coordination between agents
playing a key role in the system. The systemoverall possesses
diverse knowledge and problem-solving capabilities embod-
ied in the constituent agents. A MAS architecture as such
addresses an answer to a number of well-known shortcom-
ings of general problem solving methods [26]: incomplete
knowledge requirement specification, incomplete problem
solving requirement and limited computational resources.
Those problems, however, may still apply at an individual
agent level and their implications to the pursuit of an ontol-

ogy centric development process are instructive indeed. To
individuals agents within a MAS they translate as follows:

(i) some agent views of the domain may be incomplete;
that is, their individual ontologies may be incomplete.

(ii) individual problem solving knowledge for some individ-
ual agents may be insufficient for their own local goals
and required behavior within the multi agent system.

(iii) The multi agent system may still have limited execu-
tion resources despite the fact that multiple and parallel
processing may be easier to achieve.

In other words, the above three issues can complicate the
usage of ontologies at the individual agent level. A new prob-
lem/issue should also be thrown in that mix; agents need
to share their results and communicate, whilst at the same
time they have different ontologies. In other words, a com-
mon terminology/ontology of sorts is required to stitch the
behavior of all the agents. Without careful design, this can
be made even more difficult if the output of the local prob-
lem solvers described of individual agents operate at varying
levels of abstraction. This may be simple to resolve if the out-
puts are complementary, but more challenging to resolve if
they have varying degrees of prescription to the domain. Var-
ious degrees of adjustment to suit the domain would then be
required. In otherwords, the level of specificity they exhibit to
a given domain may greatly vary. For instance in the Belief-
Desire-Intention (BDI) [23,25] architecture of agents, the
use of knowledge (in encoding beliefs) was never intended
to simultaneously accommodate various knowledge abstrac-
tions for the same domain. Considering those differences
in abstractions between various ontologies when developing
MAS, three ontology centric constraints/tasks are required
in the development process. These are as follows.

1. Ontology mappings are required to allow individual
agents to interact and to share the results of their local
problem solving capabilities. In other words, a common
domain conceptualization is required.

2. We need to ensure that the problem solving meth-
ods of individual agents have access sufficient domain
knowledge to undertake its roles within the system. i.e.
the verification of individual agents knowledge require-
ments against allocated ontologies is required at design
time.

3. Knowledge extensibility is required at the agent level to
accommodate anynewontological units added to the sys-
tem about the domain. The individual agents view of the
domain ontology is not necessarily complete. Despite
the fact that this can create inconsistencies, it may be
useful for monitoring purposes. However, a structured
and understood knowledge representation is required

123

Complex Intell. Syst. (2016) 2:235–242 239

to resolve existing inconsistencies. For example, using
incremental approaches based on interactions between
an expert and a data stream input can be used [4,10].

In the next section, we elaborate the above four analysis and
design activities required to create an ontology-based devel-
opment process.

Proposed ontology-driven methodology

We present the outline of our proposed ontology driven-
methodology in Fig. 1. We have made the following two
assumptions in developing our approach:

1. The choice of a problem solvingmechanism can bemade
independently of domain analysis.

2. A domain ontology describing domain concepts and their
relationhips is available. For instance, certain accounting
practices being the same acrossmany domains and indus-
tries. Such practices, if well documented and prescribed,
can provide processes for problem solving methods and
can be adapted using a domain ontology.

Indeed, the second assumption is not highly restrictive, as
currently there are many repositories for domain ontolo-
gies. If required, this assumption can be weakened further
by including a domain analysis phase first. This could be a
first of developing the system to identify concepts and their
relationships (e.g. as proposed in [13]). Some industries, e.g.

Fig. 1 A proposed interaction
among ontology, models,
communication languages and
domain specific processes

123

240 Complex Intell. Syst. (2016) 2:235–242

banking and finance, may also be inclined to provide such
ontologies. Given a domain ontology, the four process tasks
discussed in the previous section and constraints earlier iden-
tified, we sketch features of the analysis and design activities
for an ontology-based development process.

An inter-play between the various facets of reuse facil-
itated by the ontology-based approach is expected. For
example, the role of the ontology in providing interoper-
ability at run-time requires careful consideration of run-time
temporal requirements. An ontology’s role in reasoning at
run-time is based on fulfilling the problem solving require-
ments of agents at design time. This requires scoping the
domain analysis for each individual agent at design time.
However, a preliminary step is identifying the relevant
domain ontology (ies) for the whole development lifecycle
of the MAS. In recent work [9], we developed a retrieval
mechanism based on requirement models identified using
goal analysis. In other words, given an ontologies repository
it becomes a matter of providing the goal models to identify
the required ontologies. In some domains, it may be possible
to source multiple domain ontologies and the analyst can be
given an opportunity to select a more appropriate ontology.
An ontology evaluation mechanism that uses the structure of
the ontology can then be integrated. An example of such a
mechanism is detailed in [11].

Goal models are the usual way used to express require-
ments models for agent based systems (e.g. [16,33]). Sup-
ported by the domain ontology, an early requirement phase
can generate a high level description of system goals (and
roles) and a high level conceptual description of the sys-
tem (shown as conceptual models in Fig. 1). This description
includes contextual description of the environment of the sys-
tem (typical agent oriented models that would be included
here may include organizational models and environmental
models).

Hence, we envisage the ontology-based development
process to incorporate support for goals models co-evolution
via the iterative nature of the early requirements identi-
fication and validation. As Fig. 1 shows, this can occur
between the domain ontology model and the requirements
models, and there can be other iterative processes in deriv-
ing the system goals and roles from the requirements models
(e.g. using other available conceptual models as shown in
Fig. 1).

The requirement models can also provide for further val-
idation of the domain ontology, with any inconsistencies
noted causing another iteration of requirements models iden-
tification. With each iteration, the ontology itself may also
be improved. Any incompleteness of the domain ontology
can trigger further domain expert advice by the requirement
engineers. The role models and goal models for instance are
further refined to provide a clear association between agent
roles and lower level goals to permit associating problem

solving capabilities (using PSM libraries) and system goals
in the early stages of the system design.

Chosen problem solving capabilities for different agents
in a given multi agent system do not necessarily have the
same required degree of domain dependence. That is, for
a particular chosen agent capability, the domain ontology
requiredmayneed to be adapted. For this purpose, the domain
ontology is again construed as the first reference point.
Ontology mapping between portions of the domain ontol-
ogy and the local agent’s knowledge is required to ensure
that all agent capabilities have their knowledge requirement
available to their reasoning format. For inter agents commu-
nication, a global communication language derived directly
from the domain ontology would suffice [14]. The communi-
cation language, as shown in Fig. 1, enables messages to be
exchanged between agents and it is a low level design con-
struct rather than an analysis construct (as is the case with
the domain ontology).

In addition, an agent’s problem solving capability can-
not be assumed to be sufficiently powerful to respond to
all events it encounters during its lifetime. Current practices
often assume that functional goal analysis is sufficient to
specify the knowledge requirement for agents [16], and any
deficiencies in its later problem-solving capacity are assumed
to be offset by cooperation. However, in our view, without
consideration of its actual problem solving capacity (and oth-
ers availablewithin the system), there is no guarantee that this
cooperation would ultimately work. This suggests that itera-
tion between the problem solving mechanism design and the
requirements analysis is required to ensure that the chosen
problem solver for a given agent is capable of meeting its
specified goals.

In summary, as shown in Fig. 1, The Agent Defini-
tion shows three models (acquaintance, communications and
resource) that are updated as the domain ontology is updated.
The acquaintance model stores information about collabo-
rating agents and would be developed to support the agent
requirements in MAS analysis. Changes in the acquaintance
model resulting from changes in MAS requirements would
need to be reflected in the domain ontology as indicated
by the two-way interaction. In addition specific local agent
The Resource Model is developed from the domain ontol-
ogy to show which ontologies conceptualize each resource
used by the multi-agent system, while the communications
language would need to be appropriate for the domain
ontology.

Conclusion

The paper presented an agent oriented software engineering
approach that facilitates combining features from differ-
ent agent oriented methodologies. It employs ontologies as

123

Complex Intell. Syst. (2016) 2:235–242 241

a means for semantic mappings and effectively converts
software work products to outfit a variety of develop-
mental steps. Substantially supporting the integration of
processes and products, the proposed approach can also
effectively support its inter-operation with the interacting
systems.

The approach presented supports the selection of a MAS
architecture. In the broader context of software engineering,
architectures facilitate the design of the system and the tran-
sition from requirement models to design models and can
reduce the cost of development. The choice of MAS archi-
tecture changes the requirement analysis process and how
the requirement models are first synthesized. Whilst MAS
architectures can also contribute to cost management of a
project [2], they are often pursued as a complexity man-
agement/problem solving tool which may in some cases
allow tackling new problems [18]. Implementing a MAS
architecture can benefit from a specific requirement analysis
approaches to transform the requirements into appropriate
models that can then be used to derive a MAS. In this
paper, we advocate the use of ontologies to facilitate this
transformation of the requirement models into design and
implementation (models).

Based on a sketched methodology provided, we also
showed that our approach can be enhanced in at least three
different directions. First, localised agent ontologies (to sup-
port their capabilities) and a global agents communication
ontology can be derived to support the system’s develop-
ment. Second, for further efficiency, a facilitating ontology
mapping can be enforced between localised ontologies and
the communication ontology. Based on the corresponding
domain ontology, the same adaptation between the reason-
ing and domain ontology can be used to map the result
of reasoning back to a common communication ontology.
Further schematic schemes can be provided to further dis-
cuss the directions in which the preferred approach can be
enhanced.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Argente E et al (2011) Modelling with agents. In: Gleizes M-
P, Gomez-Sanz J (eds) Agent-oriented software engineering X.
Springer, Berlin, pp 157–168

2. Benfield SS, Hendrickson J, Galanti D (2006) Making a strong
business case for multiagent technology. In: Proceedings of the 5th

international joint conference on autonomous agents and multia-
gent systems, Hakodate, Japan

3. Benjamins VR, Plaza E, Motta E, Fensel D, Studer R, Wielinga B,
Schreiber G, Zdrahal Z (1998) IBROW3: an intelligent brokering
service for knowledge-component reuse on the world wide web.
Banff Knowledge Acquisition Workshop (KAW98). Canada

4. Beydoun G, Hoffmann A (2013) Dynamic evaluation of the devel-
opment process of knowledge-based information systems. Knowl
Infor Syst 35(1):233–247

5. Beydoun G, Tran N, Low G, Henderson-Sellers B (2006a) Foun-
dations of ontology-based methodologies for multi-agent systems.
In: Kolp M, Bresciani P, Henderson-Sellers B, Winikoff M (eds),
Procs. AOIS2005 LNAI 3529, Springer, Berlin, pp 111–123

6. Beydoun G, Gonzalez-Perez C, Henderson-Sellers B, Low GC
(2006b) Developing and evaluating a generic metamodel for MAS
work products. In: Garcia A et al. (ed.) Software engineering for
multi-agent systems IV: research issues and practical applications,
vol.LNCS 3914, Springer, Berlin, pp 126–142

7. Beydoun G, Krishna AK, Ghose A, Low GC (2009) Towards
ontology-based MAS methodologies: ontology based early
requirements. In: Barry C, Lang M, Wojtkowski W, Wojtkowski
G, Wrycza S, Zupancic J (eds) The inter-networked world: ISD
theory, practice, and education. Springer, New York, pp 923–935

8. BeydounG, LowG,Henderson-Sellers B,Mouraditis H, Sanz JJG,
Pavon J, Gonzales-Perez C (2009b) FAML: a generic metamodel
for MAS development. IEEE Trans Softw Eng 35(6):841–863

9. Beydoun G, Low G, García-Sánchez F, Valencia-García R,
Martínez-Béjar R (2014) Identification of ontologies to support
information systems development, information systems. Elsevier,
Amsterdam 46:45–60

10. Beydoun G, Hoffmann A (1998) Simultaneous modelling and
knowledge acquisition using NRDR. In: 5th Pacific rim confer-
ence on artificial intelligence (PRICAI98), Springer, Singapore

11. Beydoun G, Lopez-Lorca A, Garcia-Sanchez F, Martinez-Béjar R
(2011) How do we measure and improve the quality of a hierarchi-
cal ontology? J Syst Softw 84(12):2363–2373

12. Brown R, Beydoun G, Low G, Tibben W, Zamani R, García-
Sánchez F, Martinez-Bejar R (2016) Computationally efficient
ontology selection in software requirement planning. Inf Syst Front
Springer 18(2):349–358

13. Cordi V, Mascardi V, Martelli M, Sterling L (2004) Developing an
ontology for the retrieval of XML documents: a comparative evalu-
ation of existing methodologies. In: Proceedings of agent oriented
information systems workshop (AOIS2004), Riga, Latvia

14. EstevaM,DeLaCruzD,SierraC (2002) ISLANDER: an electronic
institutions editor. In: International conference on autonomous
agents and multiagent systems (AAMAS02), Italy, pp 1045–1052

15. Falbo RA, Arantes DO, Natali ACC (2004) Integrating knowledge
management and groupware in a software development environ-
ment. In: 5th International conference on practical aspects of
knowledge management, Vienna, Austria, Springer, Berlin

16. Giunchiglia F, Mylopoulos J, Perini A (2003) The tropos software
development methodology: processes, models and diagrams. In:
Giunchiglia F, Odell J,Weiß G (eds) Agent-oriented software engi-
neering III: 3rd internationalworkshop,AOSE2002.Springer,New
York, pp 162–173

17. Guizzardi G (2007) On ontologies, conceptualizations, modelling
languages and (meta) models. In: Vasilecas O, Elder J, Caplinskas
A (eds) Databases and information systems IV. IOS Press, Ams-
terdam, pp 18–39

18. Lamparter S, Becher S, Fischer J (2010) An agent-based market
platform for smart grids. In: Autonomous agents and multi agent
systems conference (AAMAS2010), Toronto

19. Leppänen A (2007) A context-based enterprise ontology. Lecture
notes in computer science, 4439, Springer, New York, pp 273–286

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

242 Complex Intell. Syst. (2016) 2:235–242

20. Lopez-Lorca A, Beydoun G, Valencia-Garcia R, Martinez-Bejar R
(2016)Supporting agent oriented requirement analysiswith ontolo-
gies. Int J Hum Comput Stud 87:20–37

21. Motta E, Zdrahal Z (1996) Parametric design problem solving.
In: 10th Banff knowledge acquisition for knowledge based system
workshop, Canada

22. Othman SH, Beydoun G, Sugumaran V (2014) Development and
validation of a disastermanagementmetamodel. Inf ProcessManag
50(2):235–271

23. Padgham L, Lambrix P (2000) Agent capabilities: extending BDI
theory. 17th National conference on artificial intelligence (AAAI-
2000). Austin, Texas USA, pp 68–73

24. Puppe F (1993) Systematic introduction to expert systems: knowl-
edge representation and problem-solvingmethods. Springer, Berlin

25. Rao AS, Georgeff MP (1995) BDI agents: from theory to practice.
In: Proceedings of the 1st international conference on multi-agent
systems, pp 312–319. San Francisco, CA

26. Russell S, Norvig P (2009) Artificial intelligence, a modern
approach, the intelligent agent book, 3rd edn. Prentice Hall,
Berkley

27. Sadrei E,AurumA,BeydounG, PaechB (2007)Afield study of the
requirements engineering practice in Australian software industry.
Requirements Eng 12(3):145–162

28. Shreiber G, Akkermans H, Anjewierden A, Hoog R, Shadbolt N,
De Velde WV, Wielinga B (2001) Knowledge engineering and
management: the CommonKADS methodology. The MIT Press,
London

29. TranQNN,LowGC(2006)Amethodological framework for ontol-
ogy centric agent oriented software engineering. Int J Comput Syst
Sci Eng 21:117–132

30. Tran QNN, Beydoun G, Low G (2007) Design of a peer-to-
peer information sharingMAS usingMOBMAS (ontology-centric
agent oriented methodology. Advances in information systems
development. Springer, New York, pp 63–76

31. Trokanas N, Cecelja F (2016) Ontology evaluation for reuse in
the domain of process systems engineering. Comput Chem Eng
85:177–187

32. Wang H, Wang S (2016) Application of ontology modularization
to human-web interface design for knowledge sharing. Exp Syst
Appl 46:122–128

33. Wooldridge M (2002) An introduction to multi agent systems.
Wiley, Chichester

34. Xu D, Wijesooriya C, Wang X-G, Beydoun G (2011) Outbound
logistics exception monitoring: a multi-perspective ontologies’
approach with intelligent agents. Exp Syst Appl 38(11):13604–
13611

123

	Centering ontologies in agent oriented software engineering processes
	Abstract
	Introduction
	An ontology-centric MAS software engineering scheme
	Ontology-based methodological development of MAS
	Proposed ontology-driven methodology

	Conclusion
	References

