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Abstract

This paper first introduces a paradox of stochastic finance theory that shows the real
stock price is impossible to follow any Ito’s stochastic differential equation. After a
survey on uncertainty theory, uncertain process, uncertain calculus, and uncertain
differential equation, this paper discusses some possible applications of uncertain
differential equations to financial markets. Finally, it is suggested that a new uncertain
finance theory should be developed based on uncertainty theory and uncertain
differential equation.
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Review
When no samples are available to estimate a probability distribution, we have to invite
some domain experts to evaluate their belief degree that each event will occur. Perhaps
some people think that personal belief degree is subjective probability or fuzzy concept.
However, Liu [1] declared that it is inappropriate because both probability theory and
fuzzy set theory may lead to counterintuitive results in this case. In order to rationally
deal with the belief degree, an uncertainty theory was founded by Liu [2] and subse-
quently studied by many scholars. Nowadays, uncertainty theory has become a branch of
axiomatic mathematics for modeling human uncertainty.
Based on uncertainty theory, the concept of uncertain process was given by Liu [3] as a

sequence of uncertain variables indexed by time. Besides, the concept of uncertain inte-
gral was also proposed by Liu [3] in order to integrate an uncertain process with respect
to a canonical process. Furthermore, Liu [4] recast his work via the fundamental theorem
of uncertain calculus and thus produced the techniques of chain rule, change of variables,
and integration by parts. Since then, the theory of uncertain calculus was well developed.
After uncertain differential equation was proposed by Liu [3] as a differential equation

involving uncertain process, an existence and uniqueness theorem of a solution of uncer-
tain differential equation was proved by Chen and Liu [5] under linear growth condition
and Lipschitz continuous condition. The theorem was verified again by Gao [6] under
local linear growth condition and local Lipschitz continuous condition. In order to solve
uncertain differential equations, Chen and Liu [5] obtained an analytic solution to lin-
ear uncertain differential equations. In addition, Liu [7] presented a spectrum of analytic
methods to solve some special classes of nonlinear uncertain differential equations. More
importantly, Yao and Chen [8] showed that the solution of an uncertain differential
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equation can be represented by a family of solutions of ordinary differential equations,
thus relating uncertain differential equations and ordinary differential equations. On the
basis of the Yao-Chen formula, a numerical method was also designed by Yao and Chen
[8] for solving general uncertain differential equations. Furthermore, Yao [9] presented
some formulas to calculate the extreme values, first hitting time and integral of solution
of uncertain differential equation.
Uncertain differential equations were first introduced into finance by Liu [4] in which

an uncertain stock model was proposed and European option price formulas were doc-
umented. Besides, Chen [10] derived American option price formulas for this type of
uncertain stock model. In addition, Peng and Yao [11] presented a different uncertain
stock model and obtained the corresponding option price formulas, and Yu [12] pro-
posed an uncertain stock model with jumps. Uncertain differential equations were also
employed to model uncertain currency markets by Liu and Chen [13] in which an uncer-
tain currencymodel was proposed. Uncertain differential equations were used to simulate
interest rate by Chen and Gao [14], and an uncertain interest rate model was presented.
On the basis of this model, the price of zero-coupon bond was also produced. Uncertain
differential equations were applied to optimal control by Zhu [15] in which Zhu’s equation
of optimality is proved to be a necessary condition for extremum of uncertain optimal
control model.
This paper first introduces a paradox of stochastic finance theory. After a survey

on uncertainty theory, uncertain process, uncertain calculus, and uncertain differential
equation, this paper shows some possible applications of uncertain differential equations
to financial markets. Finally, this paper suggests to develop an uncertain finance theory
by using uncertainty theory and uncertain differential equation.

A paradox of stochastic finance theory

The origin of stochastic finance theory can be traced to Louis Bachelier’s doctoral disser-
tation Théorie de la Speculation in 1900. However, Bachelier’s work had little impact for
more than a half century. After Kiyosi Ito invented stochastic calculus [16] and stochastic
differential equation [17], stochastic finance theory was well developed among others by
Samuelson [18], Black and Scholes [19], and Merton [20] during the 1960s and 1970s.
Traditionally, stochastic finance theory presumes that the stock price (including cur-

rency exchange rate and interest rate) follows an Ito’s stochastic differential equation. Is it
really reasonable? In fact, this widely accepted presumption was continuously challenged
by many scholars. Let us assume that the stock price Xt follows the stochastic differential
equation

dXt = eXtdt + σXtdWt (1)

where e is the log-drift, σ is the log-diffusion, andWt is a Wiener process. Let us see what
will happen with such an assumption. It follows from the stochastic differential equation
(1) that Xt is a geometric Wiener process, i.e.,

Xt = X0 exp((e − σ 2/2)t + σWt) (2)

from which we derive

Wt = lnXt − lnX0 − (e − σ 2/2)t
σ

(3)
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whose increment is

�Wt = lnXt+�t − lnXt − (e − σ 2/2)�t
σ

. (4)

Write

A = − (e − σ 2/2)�t
σ

. (5)

Note that the real stock price Xt is actually a step function of time with a finite number
of jumps although it looks like a curve. During a fixed period, without loss of generality,
we assume that Xt is observed to have 100 jumps. Now we divide the period into 10,000
equal intervals. Then we may observe 10,000 samples of Xt . It follows from Equation 4
that �Wt has 10,000 samples that consist of 9,900 A’s and 100 other numbers:

A, A, · · · ,A︸ ︷︷ ︸, B, C, · · · ,Z.︸ ︷︷ ︸
9, 900 100

(6)

Nobody can believe that those 10,000 samples follow a normal probability distribution
with expected value 0 and variance �t. See Figure 1. This fact is in contradiction with
the property of Wiener process that the increment �Wt is a normal random variable
with expected value 0 and variance �t. Therefore, the stock price Xt does not follow the
stochastic differential equation.
Perhaps some people think that the stock price does behave like a geometric Wiener

process (or Ornstein-Uhlenbeck process) in macroscopy although they recognize the
paradox in microscopy. However, as the very core of stochastic finance theory, Ito’s calcu-
lus is just built on the microscopic structure (i.e., the differential dWt) of Wiener process
rather than macroscopic structure. More precisely, Ito’s calculus is dependent on the pre-
sumption that dWt is a normal random variable with expected value 0 and variance dt.
This unreasonable presumption is what causes the second order term in Ito’s formula,

dXt = ∂h
∂t

(t,Wt)dt + ∂h
∂w

(t,Wt)dWt + 1
2

∂2h
∂w2 (t,Wt)dt. (7)

In fact, the increment of stock price is impossible to follow any continuous probability
distribution. On the basis of the above paradox, personally, I do not think Ito’s calculus
can play the essential tool of finance theory because Ito’s stochastic differential equation
is impossible to model real stock price.

Figure 1 Normal distribution vs real frequency.
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What is uncertainty theory?

Let � be a nonempty set, and L a σ -algebra over �. Each element � in L is called an
event. A set function M from L to [ 0, 1] is called an uncertain measure if it satisfies the
following axioms [2]:

Axiom 1. (Normality axiom)M{�} = 1 for the universal set �;
Axiom 2. (Duality axiom)M{�} + M{�c} = 1 for any event �;
Axiom 3. (Subadditivity axiom) For every countable sequence of events �1,�2, · · · , we
have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i}. (8)

The triplet (�,L,M) is called an uncertainty space. In order to obtain an uncertain
measure of compound event, a product uncertain measure was defined by Liu [4], thus
producing the fourth axiom of uncertainty theory:
Axiom 4. (Product axiom) Let (�k ,Lk ,Mk) be uncertainty spaces for k = 1, 2, · · · The
product uncertain measureM is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k} (9)

where �k are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.
An uncertain variable is defined by Liu [2] as a measurable function ξ from an uncer-

tainty space (�,L,M) to the set of real numbers, i.e., for any Borel set B of real numbers,
the set

{ξ ∈ B} = {γ ∈ �
∣∣ ξ(γ ) ∈ B} (10)

is an event. In order to describe an uncertain variable in practice, the concept of
uncertainty distribution is defined by Liu [2] as

	(x) = M {ξ ≤ x} , ∀x ∈ R. (11)

Peng and Iwamura [21] proved that a function 	 : R →[ 0, 1] is an uncertainty dis-
tribution if and only if it is a monotone increasing function except 	(x) ≡ 0 and
	(x) ≡ 1.
An uncertainty distribution 	(x) is said to be regular if it is a continuous and strictly

increasing function with respect to x at which 0 < 	(x) < 1, and

lim
x→−∞ 	(x) = 0, lim

x→+∞ 	(x) = 1. (12)

Let ξ be an uncertain variable with regular uncertainty distribution 	(x). Then the
inverse function 	−1(α) is called the inverse uncertainty distribution of ξ [22].
It is easy to verify that 	−1(α) is a continuous and strictly increasing function with

respect to α ∈ (0, 1). Conversely, suppose 	−1(α) is a continuous and strictly increasing
function on (0, 1). Define

	(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if x ≤ lim
α↓0 	−1(α)

α, if x = 	−1(α)

1, if x ≥ lim
α↑1 	−1(α).
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It follows that 	(x) is an uncertainty distribution of some uncertain variable ξ . Then
for each α ∈ (0, 1), we have

M{ξ ≤ 	−1(α)} = 	(	−1(α)) = α.

Thus, 	−1(α) is just the inverse uncertainty distribution of the uncertain variable ξ .
Hence, we have a sufficient and necessary condition of inverse uncertainty distribution:
A function 	−1(α) : (0, 1) → R is an inverse uncertainty distribution if and only if it is a
continuous and strictly increasing function with respect to α.
The expected value of an uncertain variable ξ is defined by Liu [2] as an average value

of the uncertain variable in the sense of uncertain measure, i.e.,

E[ ξ ]=
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr (13)

provided that at least one of the two integrals is finite. If ξ has an uncertainty distribution
	, then the expected value may be calculated by

E[ ξ ]=
∫ +∞

0
(1 − 	(x))dx −

∫ 0

−∞
	(x)dx. (14)

Independence is an extremely important concept in uncertainty theory. The uncertain
variables ξ1, ξ2, · · · , ξn are said to be independent [4] if

M

{ n⋂
i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M {ξi ∈ Bi} (15)

for any Borel sets B1,B2, · · · ,Bn of real numbers. Equivalently, those uncertain variables
are independent if and only if

M

{ n⋃
i=1

(ξi ∈ Bi)

}
=

n∨
i=1

M {ξi ∈ Bi} . (16)

Let ξ1, ξ2, · · · , ξn be independent uncertain variables with uncertainty distributions
	1,	2, · · · ,	n, respectively. If the function f (x1, x2, · · · , xn) is strictly increasing with
respect to x1, x2, · · · , xm and strictly decreasing with respect to xm+1, xm+2, · · · , xn, then
ξ = f (ξ1, ξ2, · · · , ξn) is an uncertain variable with inverse uncertainty distribution

�−1(α) = f (	−1
1 (α), · · · ,	−1

m (α),	−1
m+1(1 − α), · · · ,	−1

n (1 − α)). (17)

Then Liu and Ha [23] proved that the uncertain variable ξ = f (ξ1, ξ2, · · · , ξn) has an
expected value

E[ ξ ]=
∫ 1

0
f (	−1

1 (α), · · · ,	−1
m (α),	−1

m+1(1 − α), · · · ,	−1
n (1 − α))dα. (18)

For exploring the details of uncertainty theory, the readers may consult Liu [24].

Uncertain process

Let T be a totally ordered set (that is usually “time”), and let (�,L,M) be an uncer-
tainty space. An uncertain process is defined by Liu [3] as a measurable function from
T × (�,L,M) to the set of real numbers, i.e., for each t ∈ T and any Borel set B of real
numbers, the set

{Xt ∈ B} = {γ ∈ �
∣∣ Xt(γ ) ∈ B} (19)

is an event. In other words, an uncertain process is a sequence of uncertain variables
indexed by time.
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Note that if the index set T becomes a partially ordered set (e.g., time× space, or a
surface), then Xt is called an uncertain field provided that Xt is an uncertain variable at
each point t. That is, an uncertain field is a generalization of an uncertain process.
An uncertain process Xt is said to have an uncertainty distribution 	t(x) if at each time

t, the uncertain variable Xt has the uncertainty distribution 	t(x). It is easy to prove that
	t(x) is a monotone increasing function with respect to x and 	t(x) �≡ 0, 	t(x) �≡ 1.
Conversely, if at each time t, 	t(x) is a monotone increasing function except 	t(x) ≡ 0
and 	t(x) ≡ 1, it follows that there exists an uncertain variable ξt whose uncertainty
distribution is just 	t(x). Define

Xt = ξt , ∀t ∈ T .

Then Xt is an uncertain process and has the uncertainty distribution 	t(x). Thus, a func-
tion 	t(x) : T ×R →[ 0, 1] is an uncertainty distribution of uncertain process if and only
if at each time t, it is a monotone increasing function except 	t(x) ≡ 0 and 	t(x) ≡ 1.
An uncertainty distribution	t(x) is said to be regular if at each time t, it is a continuous

and strictly increasing function with respect to x at which 0 < 	t(x) < 1, and

lim
x→−∞ 	t(x) = 0, lim

x→+∞ 	t(x) = 1. (20)

Let Xt be an uncertain process with regular uncertainty distribution 	t(x). Then the
inverse function 	−1

t (α) is called the inverse uncertainty distribution of Xt . It is easy
to prove that 	−1

t (α) is a continuous and strictly increasing function with respect to
α ∈ (0, 1). Conversely, if 	−1

t (α) is a continuous and strictly increasing function with
respect to α ∈ (0, 1), it follows that there exists an uncertain variable ξt whose inverse
uncertainty distribution is just 	−1

t (α). Define

Xt = ξt , ∀t ∈ T .

Then Xt is an uncertain process and has the inverse uncertainty distribution 	−1
t (α).

Hence, a function 	−1
t (α) : T × (0, 1) → R is an inverse uncertainty distribution of

uncertain process if and only if at each time t, it is a continuous and strictly increasing
function with respect to α.
An uncertain process Xt is said to have independent increments if

Xt0 , Xt1 − Xt0 , Xt2 − Xt1 , · · · , Xtk − Xtk−1 (21)

are independent uncertain variables where t0 is the initial time and t1, t2, · · ·, tk are any
times with t0 < t1 < · · · < tk . That is, an independent increment process means that its
increments are independent uncertain variables whenever the time intervals do not over-
lap. Let Xt be a sample-continuous independent increment process with an uncertainty
distribution	t(x) at each time t. When f is a strictly increasing function, Liu [25] proved
that the supremum

sup
0≤t≤s

f (Xt) (22)

has an uncertainty distribution

�(x) = inf
0≤t≤s

	t(f −1(x)). (23)

This result is called the extreme value theorem of uncertain process.
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An uncertain process Xt is said to have stationary increments if its increments are iden-
tically distributed uncertain variables whenever the time intervals have the same length,
i.e., for any given t > 0, the increments Xs+t − Xs are identically distributed uncertain
variables for all s > 0.
Let Xt be a stationary independent increment process with a crisp initial value X0. Liu

[22] showed that there exist two real numbers a and b such that the expected value

E[Xt]= a + bt (24)

for any time t ≥ 0. Furthermore, Chen [26] verified that there exists a real number c such
that the variance

V [Xt]= ct2 (25)

for any time t ≥ 0.
As an important type of uncertain process, a canonical process is a stationary indepen-

dent increment processwhose increments are normal uncertain variables.More precisely,
an uncertain process Ct is called a canonical process by Liu [4] if (1) C0 = 0 and almost
all sample paths are Lipschitz continuous, (2) Ct has stationary and independent incre-
ments, and (3) every increment Cs+t − Cs is a normal uncertain variable with expected
value 0 and variance t2.
It is easy to verify that the canonical process Ct is a normal uncertain variable with

expected value 0 and variance t2 and has an uncertainty distribution

	(x) =
(
1 + exp

(
− πx√

3t

))−1
(26)

at each time t > 0. In addition, for each time t > 0, the ratio Ct/t is a normal uncertain
variable with expected value 0 and variance 1. That is,

Ct
t

∼ N(0, 1) (27)

for any t > 0.
What is the difference between canonical process and theWiener process? First, canon-

ical process is an uncertain process while the Wiener process is a stochastic process.
Second, almost all sample paths of canonical process are Lipschitz continuous functions
while almost all sample paths of the Wiener process are continuous but non-Lipschitz
functions. Third, canonical process has a variance t2 while the Wiener process has a
variance t at each time t.

Uncertain calculus

Uncertain calculus is a branch of mathematics that deals with differentiation and inte-
gration of uncertain processes. The key concept in uncertain calculus is the uncertain
integral that allows us to integrate an uncertain process (the integrand) with respect to
the canonical process (the integrator). The result of the uncertain integral is another
uncertain process.
Let Xt be an uncertain process and let Ct be a canonical process. For any partition of

closed interval [ a, b] with a = t1 < t2 < · · · < tk+1 = b, the mesh is written as

� = max
1≤i≤k

|ti+1 − ti|. (28)
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Then the uncertain integral of Xt with respect to Ct is defined by Liu [4] as∫ b

a
XtdCt = lim

�→0

k∑
i=1

Xti · (Cti+1 − Cti) (29)

provided that the limit exists almost surely and is finite. Since Xt and Ct are uncertain
variables at each time t, the limit in Equation 29 is also an uncertain variable.
Let Zt be an uncertain process. If there exist two uncertain processes μt and σt such

that

Zt = Z0 +
∫ t

0
μsds +

∫ t

0
σsdCs (30)

for any t ≥ 0, then we say Zt has an uncertain differential

dZt = μtdt + σtdCt . (31)

In this case, Zt is called an uncertain process with drift μt and diffusion σt . It is clear that
uncertain integral and differential are mutually inverse operations. Please also note that
an uncertain differential of an uncertain process has two parts, the “dt” part and the “dCt”
part.
Let h(t, c) be a continuously differentiable function. Liu [4] showed that the uncertain

process Zt = h(t,Ct) has an uncertain differential

dZt = ∂h
∂t

(t,Ct)dt + ∂h
∂c

(t,Ct)dCt . (32)

This result is called the fundamental theorem of uncertain calculus.
Example 1. Let us calculate the uncertain differential of tCt . In this case, we have h(t, c) =
tc whose partial derivatives are

∂h
∂t

(t, c) = c,
∂h
∂c

(t, c) = t.

It follows from the fundamental theorem of uncertain calculus that

d(tCt) = Ctdt + tdCt . (33)

Example 2. Let us calculate the uncertain differential ofC2
t . In this case, we have h(t, c) =

c2 whose partial derivatives are
∂h
∂t

(t, c) = 0,
∂h
∂c

(t, c) = 2c.

It follows from the fundamental theorem of uncertain calculus that

dC2
t = 2CtdCt . (34)

Example 3. Let f (c) be a continuously differentiable function. Then we have
∂ f
∂t

(c) = 0,
∂ f
∂c

(c) = f ′(c).

It follows from the fundamental theorem of uncertain calculus that the uncertain process
f (Ct) has an uncertain differential

df (Ct) = f ′(Ct)dCt . (35)

This formula is also called the chain rule of uncertain calculus.
As supplements to uncertain integral, Liu and Yao [27] suggested an uncertain inte-

gral with respect to multiple canonical processes. More generally, Chen and Ralescu [28]
presented an uncertain integral with respect to the general Liu process.
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Uncertain differential equation

The study of uncertain differential equation was pioneered by Liu [3]. Nowadays, uncer-
tain differential equation has achieved fruitful results in both theory and practice. Let
f and g be two functions. Then

dXt = f (t,Xt)dt + g(t,Xt)dCt (36)

is called an uncertain differential equation. A solution is an uncertain process Xt that
satisfies Equation 36 identically in t.
Some analytic methods have been proposed for solving uncertain differential equations.

For example, Chen and Liu [5] showed that the linear uncertain differential equation

dXt = (u1tXt + u2t)dt + (v1tXt + v2t)dCt (37)

has a solution

Xt = Ut

(
X0 +

∫ t

0

u2s
Us

ds +
∫ t

0

v2s
Us

dCs

)
(38)

where

Ut = exp
(∫ t

0
u1sds +

∫ t

0
v1sdCs

)
. (39)

In addition, Liu [7] verified that the nonlinear uncertain differential equation like

dXt = f (t,Xt)dt + σtXtdCt (40)

has a solution

Xt = Y−1
t Zt (41)

where

Yt = exp
(

−
∫ t

0
σsdCs

)
(42)

and Zt is the solution of uncertain differential equation

dZt = Ytf (t,Y−1
t Zt)dt (43)

with initial value Z0 = X0.
An important contribution to uncertain differential equation is the existence and

uniqueness theorem by Chen and Liu [5]. An uncertain differential equation has a unique
solution if the coefficients f (t, x) and g(t, x) satisfy linear growth condition

|f (t, x)| + |g(t, x)| ≤ L(1 + |x|), ∀x ∈ R, t ≥ 0 (44)

and Lipschitz condition

|f (t, x) − f (t, y)| + |g(t, x) − g(t, y)| ≤ L|x − y|, ∀x, y ∈ R, t ≥ 0 (45)

for some constant L. Moreover, the solution is sample-continuous.
The concept of stability was given by Liu [4]. An uncertain differential equation is said

to be stable if for any two solutions Xt and Yt , we have

lim|X0−Y0|→0
M{|Xt − Yt| > ε} = 0, ∀t > 0 (46)
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for any given number ε > 0. Yao et al. [29] proved that the uncertain differential equation
is stable if the coefficients f (t, x) and g(t, x) satisfy linear growth condition

|f (t, x)| + |g(t, x)| ≤ K(1 + |x|), ∀x ∈ R, t ≥ 0 (47)

for some constant K and strong Lipschitz condition

|f (t, x) − f (t, y)| + |g(t, x) − g(t, y)| ≤ L(t)|x − y|, ∀x, y ∈ R, t ≥ 0 (48)

for some bounded and integrable function L(t) on [ 0,+∞).
Uncertain differential equation has been extended by many scholars. For example,

uncertain delay differential equation was studied among others by Barbacioru [30], Ge
and Zhu [31], and Liu and Fei [32]. In addition, uncertain differential equation with jumps
was suggested by Yao [33], and backward uncertain differential equation was discussed
by Ge and Zhu [34].

Numerical method

Let α be a number with 0 < α < 1. An uncertain differential equation

dXt = f (t,Xt)dt + g(t,Xt)dCt (49)

is said to have an α-path Xα
t if it solves the corresponding ordinary differential equation

dXα
t = f (t,Xα

t )dt + |g(t,Xα
t )|	−1(α)dt (50)

where 	−1(α) is the inverse uncertainty distribution of standard normal uncertain
variable, i.e.,

	−1(α) =
√
3

π
ln

α

1 − α
. (51)

Then

M{Xt ≤ Xα
t , ∀t} = α, (52)

M{Xt > Xα
t , ∀t} = 1 − α. (53)

This result is called the Yao-Chen formula [8]. In addition, at each time t, the solution Xt

has an inverse uncertainty distribution

�−1
t (α) = Xα

t . (54)

Furthermore, for any monotone (increasing or decreasing) function J, we have

E[ J(Xt)]=
∫ 1

0
J(Xα

t )dα. (55)

The Yao-Chen formula relates uncertain differential equations and ordinary differential
equations, just like that Feynman-Kac formula relates stochastic differential equations
and partial differential equations.
It is almost impossible to find analytic solutions for general uncertain differential

equations. This fact provides a motivation to design a numerical method to solve general
uncertain differential equation

dXt = f (t,Xt)dt + g(t,Xt)dCt . (56)
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In order to do so, a key point is to obtain an inverse uncertainty distribution �−1
t (α)

of its solution Xt at any given time t. For this purpose, Yao and Chen [8] designed the
following algorithm:

Step 1. Fix α on (0, 1).
Step 2. Solve dXα

t = f (t,Xα
t )dt + |g(t,Xα

t )|	−1(α)dt by any method of ordinary differ-
ential equation and obtain the α-path Xα

t , for example, by using the recursion formula

Xα
i+1 = Xα

i + f (ti,Xα
i )h + |g(ti,Xα

i )|	−1(α)h (57)

where 	 is the standard normal uncertainty distribution and h is the step length.
Step 3. The inverse uncertainty distribution of the solution Xt is determined by

�−1
t (α) = Xα

t . (58)

Uncertain stock model

Uncertain differential equations were first introduced into finance by Liu [4] in which an
uncertain stock model was proposed,⎧⎨

⎩
dXt = rXtdt

dYt = eYtdt + σYtdCt
(59)

where Xt is the bond price, Yt is the stock price, r is the riskless interest rate, e is the
log-drift, σ is the log-diffusion, and Ct is a canonical process.
A European call option is a contract that gives the holder the right to buy a stock at an

expiration time s for a strike price K. The payoff from a European call option is (Ys −K)+

since the option is rationally exercised if and only if Ys > K . Considering the time value
of money resulted from the bond, the present value of this payoff is exp(−rs)(Ys − K)+.
Hence, the European call option price should be the expected present value of the payoff,
i.e.,

fc = exp(−rs)E[ (Ys − K)+] . (60)

Liu [4] proved that

fc = exp(−rs)Y0
∫ +∞

K/Y0

(
1 + exp

(
π(ln y − es)√

3σ s

))−1
dy. (61)

A European put option is a contract that gives the holder the right to sell a stock at an
expiration time s for a strike price K. The payoff from a European put option is (K − Ys)+

since the option is rationally exercised if and only if Ys < K . Considering the time value
of money resulted from the bond, the present value of this payoff is exp(−rs)(K − Ys)+.
Hence, the European put option price should be the expected present value of the payoff,
i.e.,

fp = exp(−rs)E[ (K − Ys)+] . (62)

Liu [4] proved that

fp = exp(−rs)Y0
∫ K/Y0

0

(
1 + exp

(
π(es − ln y)√

3σ s

))−1
dy. (63)

An American call option is a contract that gives the holder the right to buy a stock
at any time prior to an expiration time s for a strike price K. It is clear that the payoff
from an American call option is the supremum of (Yt − K)+ over the time interval [ 0, s].
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Considering the time value of money resulted from the bond, the present value of this
payoff is

sup
0≤t≤s

exp(−rt)(Yt − K)+. (64)

Hence, the American call option price should be the expected present value of the payoff,
i.e.,

fc = E

[
sup
0≤t≤s

exp(−rt)(Yt − K)+
]
. (65)

Chen [10] proved that

fc = exp(−rs)Y0
∫ +∞

K/Y0

(
1 + exp

(
π(ln y − es)√

3σ s

))−1
dy. (66)

An American put option is a contract that gives the holder the right to sell a stock at any
time prior to an expiration time s for a strike price K. It is clear that the payoff from an
American put option is the supremum of (K − Yt)+ over the time interval [ 0, s]. Consid-
ering the time value of money resulted from the bond, the present value of this payoff is

sup
0≤t≤s

exp(−rt)(K − Yt)+. (67)

Hence, the American put option price should be the expected present value of the payoff,
i.e.,

fp = E

[
sup
0≤t≤s

exp(−rt)(K − Yt)+
]
. (68)

Chen [10] proved that

fp =
∫ K exp(−rs)

0
sup
0≤t≤s

(
1 + exp

(
e√
3σ

+ π√
3σ t

ln
Y0

K − y exp(rt)

))−1
dy.

It is emphasized that other stockmodels were also actively investigated by Peng and Yao
[11], Yu [12], and Chen et al. [35], among others.

Uncertain currency model

Liu and Chen [13] assumed that the exchange rate follows an uncertain differential
equation and then proposed an uncertain currency model,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dXt = uXtdt (Domestic currency)

dYt = vYtdt (Foreign currency)

dZt = eZtdt + σZtdCt (Exchange rate)

(69)

where Xt represents the domestic currency with domestic interest rate u, Yt represents
the foreign currency with foreign interest rate v, and Zt represents the exchange rate, that
is, the domestic currency price of one unit of foreign currency at time t.
A currency option is a contract that gives the holder the right to exchange one unit of

foreign currency at an expiration time s for K units of domestic currency. Suppose that
the price of this contract is f in domestic currency. Then the investor pays f for buying
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the contract at time 0 and receives (Zs −K)+ in domestic currency at the expiration time
s. Thus, the expected return of the investor is

−f + exp(−us)E[ (Zs − K)+] . (70)

On the other hand, the bank receives f for selling the contract at time 0 and pays
(1−K/Zs)+ in foreign currency at the expiration time s. Thus, the expected return of the
bank is

f − Z0 exp(−vs)E[ (1 − K/Zs)
+] . (71)

The fair price of this contract should make the investor and the bank have an identical
expected return, i.e.,

−f + exp(−us)E[ (Zs − K)+]= f − Z0 exp(−vs)E[ (1 − K/Zs)
+] . (72)

Thus, the currency option price is

f = 1
2
exp(−us)E[ (Zs − K)+]+1

2
exp(−vs)Z0E[ (1 − K/Zs)

+] . (73)

Liu and Chen [13] proved that

f = 1
2
exp(−us)Z0

∫ +∞

K/Z0

(
1 + exp

(
π(ln y − es)√

3σ s

))−1
dy

+ 1
2
exp(−vs)Z0

∫ 1

0

(
1 + exp

(
π(ln(K/Z0) − ln y − es)√

3σ s

))−1
dy.

Uncertain interest rate model

Real interest rates do not remain unchanged. Chen and Gao [14] assumed that the interest
rate Xt follows an uncertain differential equation,

dXt = (m − aXt)dt + σdCt (74)

wherem, a, and σ are positive numbers, and Ct is a canonical process.
A zero-coupon bond is a bond bought at a price lower than its face value, that is, the

amount it promises to pay at the maturity date. For simplicity, we assume that the face
value is always US$1. Then the price of a zero-coupon bond with a maturity date s is

f = E
[
exp

(
−

∫ s

0
Xtdt

)]
. (75)

Chen and Gao [14] proved that

f =
√
3σ
a

(s − g) exp
(
−ms
2a

−
(
r0 − m

a

)
g
)
csc

(√
3σ
a

(s − g)

)
(76)

where

g = 1
a

(1 − exp(−as)) . (77)

Uncertain finance theory

At the beginning of this paper, a paradox was proposed to show that the real stock price is
impossible to follow an Ito’s stochastic differential equation. It follows from Figure 1 that
the increments behave like an uncertain variable rather than a random variable. This fact
motives us to model stock prices by uncertain differential equations. Personally, I think
uncertain calculus may play a potential mathematical foundation of finance theory.
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If we say that the classical finance theory is a methodology dealing with financial mar-
kets by using probability theory, then uncertain finance theory is a methodology dealing
with financial markets by using uncertainty theory. In addition to the uncertain stock
models shown above, we may also accept other uncertain differential equations, for
example,

dXt = (m − aXt)dt + σXtdCt , (78)

dXt = (m − aXt)dt + σ
√
XtdCt , (79)

dXt = (m − aXt)dt + σ
√
b + XtdCt . (80)

Conclusions
At first, a paradox of stochastic finance theorywas introduced in this paper. After a survey
on uncertainty theory, uncertain process, uncertain calculus, and uncertain differential
equation, this paper summarized uncertain stock model, uncertain currency model, and
uncertain interest model by using the tool of uncertain differential equation. Finally, it
was suggested that an uncertain finance theory should be developed based on uncertainty
theory.
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