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Abstract
In this paper, we consider the 2nth-order p-Laplacian differential equation with
singularity

(ϕp(x(t))
(n)

)
(n) + f (x(t))x′(t) + g(t, x(t – σ )) = e(t).

By applications of coincidence degree theory and some analysis techniques,
sufficient conditions for the existence of positive periodic solutions are established.
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1 Introduction
Generally speaking, differential equations with singularities have been considered from
the very beginning of the discipline. The main reason is that singular forces are ubiquitous
in applications, gravitational and electromagnetic forces being the most obvious examples.
In , Taliaferro [] discussed the model equation with singularity

y′′ +
q(t)
yα

= ,  < t < , (.)

subject to

y() =  = y(),

and obtained the existence of a solution for the problem. Here α > , q ∈ C(, ) with q > 
on (, ) and

∫ 
 t( – t)q(t) dt < ∞. We call it the equation with the strong force condition

if α ≥  and we call it the equation with the weak force condition if  < α < .
Ding’s work has attracted the attention of many specialists in differential equations.

More recently, topological degree theory [–], the Schauder fixed point theorem [, ],
the Krasnoselskii fixed point theorem in a cone [–], the Poincaré-Birkhoff twist theorem
[–], and the Leray-Schauder alternative principle [–] have been employed to in-
vestigate the existence of positive periodic solutions of singular second-order, third-order
and fourth-order differential equations. In , using coincidence degree theory, Zhang
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[] considered the existence of T-periodic solutions for the scalar Liénard equation

x′′(t) + f
(
x(t)

)
x′(t) + g

(
t, x(t)

)
= ,

when g becomes unbounded as x → +. The main emphasis was on the repulsive case,
i.e. when g(t, x) → +∞, as x → +. In , Torres [] studied singular forced semilinear
differential equation

x′′ + a(t)x′ = f (t, x) + e(t). (.)

By the Schauder fixed point theorem, the author has shown that the additional assumption
of a weak singularity enabled new criteria for the existence of periodic solutions. After-
wards, Wang [] investigated the existence and multiplicity of positive periodic solutions
of the singular systems (.) by the Krasnoselskii fixed point theorem. The conditions he
presented to guarantee the existence of positive periodic solutions are beautiful. Recently,
Cheng and Ren [] discussed a kind of fourth-order singular differential equation,

x()(t) + ax′′′(t) + bx′′(t) + cx′(t) + dx(t) = f
(
t, x(t)

)
+ e(t). (.)

By application of Green’s function and some fixed point theorems, i.e., the Leray-Schauder
alternative principle and Schauder’s fixed point theorem, the authors established two exis-
tence results of positive periodic solutions for nonlinear fourth-order singular differential
equation.

Motivated by [, , , ], in this paper, we consider the high-order p-Laplacian differ-
ential equation with singularity

(
ϕp

(
x(t)

)(n))(n) + f
(
x(t)

)
x′(t) + g

(
t, x(t – σ )

)
= e(t), (.)

where p ≥ , ϕp(x) = |x|p–x for x �= , and ϕp() = ; g is continuous function defined onR


and periodic in t with g(t, ·) = g(t + T , ·), g has a singularity at x = ; σ is a constant and  ≤
σ < T ; e : R →R are continuous periodic functions with e(t + T) ≡ e(t) and

∫ T
 e(t) dt = .

T is a positive constant; n is positive integer.
The paper is organized as follows. In Section , we introduce some technical tools and

present all the auxiliary results; in Section , by applying coincidence degree theory and
some new inequalities, we obtain sufficient conditions for the existence of positive peri-
odic solutions for (.), an example is also given to illustrate our results. Our new results
generalize in several aspects some recent results contained in [, , ].

2 Lemmas
For the sake of convenience, throughout this paper we will adopt the following notation:

|u|∞ = max
t∈[,T]

∣
∣u(t)

∣
∣, |u| = min

t∈[,T]

∣
∣u(t)

∣
∣,

|u|p =
(∫ T


|u|p dt

) 
p

, h̄ =

T

∫ T


h(t) dt.
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Let X and Y be real Banach spaces and L : D(L) ⊂ X → Y be a Fredholm operator with
index zero, here D(L) denotes the domain of L. This means that Im L is closed in Y and
dim Ker L = dim(Y / Im L) < +∞. Consider supplementary subspaces X, Y of X, Y , respec-
tively, such that X = Ker L⊕X, Y = Im L⊕Y. Let P : X → Ker L and Q : Y → Y denote the
natural projections. Clearly, Ker L ∩ (D(L) ∩ X) = {} and so the restriction LP := L|D(L)∩X

is invertible. Let K denote the inverse of LP .
Let � be an open bounded subset of X with D(L) ∩ � �= ∅. A map N : � → Y is said to

be L-compact in � if QN(�) is bounded and the operator K(I – Q)N : � → X is compact.

Lemma . (Gaines and Mawhin []) Suppose that X and Y are two Banach spaces, and
L : D(L) ⊂ X → Y is a Fredholm operator with index zero. Let � ⊂ X be an open bounded
set and N : � → Y be L-compact on �. Assume that the following conditions hold:

() Lx �= λNx, ∀x ∈ ∂� ∩ D(L), λ ∈ (, );
() Nx /∈ Im L, ∀x ∈ ∂� ∩ Ker L;
() deg{JQN ,� ∩ Ker L, } �= , where J : Im Q → Ker L is an isomorphism.

Then the equation Lx = Nx has a solution in � ∩ D(L).

Lemma . ([]) If ω ∈ C(R,R) and ω() = ω(T) = , then

∫ T



∣
∣ω(t)

∣
∣p dt ≤

(
T
πp

)p ∫ T



∣
∣ω′(t)

∣
∣p dt,

where  ≤ p < ∞, πp = 
∫ (p–)/p


ds

(– sp
p– )/p = π (p–)/p

p sin(π/p) .

Lemma . If x(t) ∈ Cn(R,R) and x(j)(t + T) = x(j)(t), j = , , , . . . , n – , then

∫ T



∣
∣x(i)(t)

∣
∣p dt ≤

(
T
πp

)p(n–i) ∫ T



∣
∣x(n)(t)

∣
∣p dt, i = , , . . . , n – ,

where 
p + 

q = , p ≥ .

Proof From x(i–)() = x(i–)(T), there is a point ti ∈ [, T] such that x(i)(ti) = . Let ωi(t) =
x(i)(t +ti), and then ωi() = ωi(T) = . From x(i)() = x(i)(T), there is a point ti+ ∈ [, T] such
that x(i+)(ti+) = . Let ωi+(t) = x(i+)(t + ti+), and then ωi+() = ωi+(T) = . Continuing
this way we get from x(n–i)() = x(n–i)(T) a point tn–i+ ∈ [, T] such that x(n)(tn–i+) = . Let
ωn–i(t) = x(n–i+)(t + tn–i+), and then ωn–i() = ωn–i(T) = . From Lemma ., we have

∫ T



∣
∣x(i)(t)

∣
∣p dt =

∫ T



∣
∣ωi(t)

∣
∣p dt

≤
(

T
πp

)p ∫ T



∣
∣ω′

i(t)
∣
∣p dt

=
(

T
πp

)p ∫ T



∣
∣x(i+)(t)

∣
∣p dt

=
(

T
πp

)p ∫ T



∣
∣ωi+(t)

∣
∣p dt

≤
(

T
πp

)p ∫ T



∣
∣ω′

i+(t)
∣
∣p dt
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· · ·

≤
(

T
πp

)p(n–i) ∫ T



∣
∣ω′

n–i–(t)
∣
∣p dt

=
(

T
πp

)p(n–i) ∫ T



∣
∣x(n)(t)

∣
∣p dt. (.)

�

In order to apply coincidence degree theorem, we rewrite (.) in the form
⎧
⎨

⎩

x(n)
 (t) = ϕq(x(t)),

x(n)
 (t) = –f (x(t))x′

(t) – g(t, x(t – σ )) + e(t),
(.)

where 
p + 

q = . Clearly, if x(t) = (x(t), x(t))� is a T-periodic solution to (.), then x(t)
must be a T-periodic solution to (.). Thus, the problem of finding a T-periodic solution
for (.) reduces to finding one for (.).

Now, set X = {x = (x(t), x(t)) ∈ C(R,R) : x(t + T) ≡ x(t)} with the norm |x|∞ =
max{|x|∞, |x|∞}; Y = {x = (x(t), x(t)) ∈ C(R,R) : x(t + T) ≡ x(t)} with the norm ‖x‖ =
max{|x|∞, |x′|∞}. Clearly, X and Y are both Banach spaces. Meanwhile, define

L : D(L) =
{

x ∈ Cn(
R,R) : x(t + T) = x(t), t ∈ R

} ⊂ X → Y

by

(Lx)(t) =

(
x(n)

 (t)
x(n)

 (t)

)

and N : X → Y by

(Nx)(t) =

(
ϕq(x(t))

–f (x)x′
(t) – g(t, x(t – σ )) + e(t)

)

. (.)

Then (.) can be converted into the abstract equation Lx = Nx. From the definition of L,
one can easily see that

Ker L ∼= R
, Im L =

{

y ∈ Y :
∫ T



(
y(s)
y(s)

)

ds =

(



)}

.

So L is a Fredholm operator with index zero. Let P : X → Ker L and Q : Y → Im Q ⊂R
 be

defined by

Px =

(
x()
x()

)

; Qy =

T

∫ T



(
y(s)
y(s)

)

ds,

then Im P = Ker L, Ker Q = Im L. Setting LP = L|D(L)∩Ker P and L–
P : Im L → D(L) denoting

the inverse of LP , then

[
L–

P y
]
(t) =

(
(Gy)(t)
(Gy)(t)

)

,
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[Gy](t) =
n–∑

i=


i!

x(i)
 ()ti +


(n – )!

∫ t


(t – s)n–y(s) ds, (.)

[Gy](t) =
n–∑

i=


i!

x(i)
 ()ti +


(n – )!

∫ t


(t – s)n–y(s) ds,

where x(i)
j (), i = , , . . . , n –  and j = , , are defined by the following:

EZ = B, where E =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

   · · ·  
c   · · ·  
c c  · · ·  
· · ·

cn– cn– cn– · · ·  
cn– cn– cn– · · · c 

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(n–)×(n–)

.

Z = (x(n–)
 (), . . . , x′′

 (), x′
())�, B = (b, b, . . . , bn–)�, bi = – 

i!T
∫ T

 (T – s)iy(s) ds, and ck =
Tk

(k+)! , k = , , . . . , n – .
From (.) and (.), it is clearly that QN and K(I – Q)N are continuous, QN(�) is

bounded and then K(I – Q)N(�) is compact for any open bounded � ⊂ X, which means
N is L-compact on �̄.

3 Existence of positive periodic solutions for (1.1)
Assume that

ψ(t) = lim
x→+∞ sup

g(t, x)
xp– , (.)

exists uniformly a.e. t ∈ [, T], i.e., for any ε >  there is gε ∈ L(, T) such that

g(t, x) ≤ (
ψ(t) + ε

)
xp– + gε(t) (.)

for all x >  and a.e. t ∈ [, T]. Moreover, ψ ∈ C(R,R) and ψ(t + T) = ψ(t).
For the sake of convenience, we list the following assumptions which will be used re-

peatedly in the sequel:
(H) There exist constants  < D < D such that if x is a positive continuous T-periodic

function satisfying

∫ T


g
(
t, x(t)

)
dt = ,

then

D ≤ x(τ ) ≤ D

for some τ ∈ [, T].
(H) ḡ(x) <  for all x ∈ (, D), and ḡ(x) >  for all x > D.
(H) g(t, x) = g(x) + g(t, x), where g ∈ C((,∞);R) and g : [, T] × [,∞) → R is an

L-Carathéodory function, i.e. it is measurable in the first variable and continuous in the
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second variable, and for any b >  there is hb ∈ L(, T ;R+) such that

∣
∣g(t, x)

∣
∣ ≤ hb(t), a.e. t ∈ [, T],∀ ≤ x ≤ b.

(H)
∫ 

 g(x) dx = –∞.

Theorem . Assume that conditions (H)-(H) hold. If |ψ |∞ T
p
q +

p– ( T
πp

)p(n–) < , then (.)
has at least a positive T-periodic solution.

Proof Consider the equation

Lx = λNx, λ ∈ (, ).

Set � = {x : Lx = λNx,λ ∈ (, )}. If x(t) = (x(t), x(t))� ∈ �, then
⎧
⎨

⎩

x(n)
 (t) = λϕq(x(t)),

x(n)
 (t) = –λf (x(t))x′

(t) – λg(t, x(t – σ )) + λe(t).
(.)

Substituting x(t) = λ–pϕp[x(n)
 (t)] into the second equation of (.)

(
ϕp

(
x(n)

 (t)
))(n) + λpf

(
x(t)

)
x′

(t) + λpg
(
t, x(t – σ )

)
= λpe(t). (.)

Integrating both sides of (.) from  to T , we have

∫ T


g
(
t, x(t – σ )

)
dt = . (.)

In view of (H), there exist positive constants D, D, and ξ ∈ [, T] such that

D ≤ ∣
∣x(ξ )

∣
∣ ≤ D.

Then we have

∣
∣x(t)

∣
∣ =

∣
∣
∣
∣x(ξ ) +

∫ t

ξ

x′
(s) ds

∣
∣
∣
∣ ≤ D +

∫ t

ξ

∣
∣x′

(s)
∣
∣ds, t ∈ [ξ , ξ + T],

and

∣
∣x(t)

∣
∣ =

∣
∣x(t – T)

∣
∣ =

∣
∣
∣
∣x(ξ ) –

∫ ξ

t–T
x′

(s) ds
∣
∣
∣
∣ ≤ D +

∫ ξ

t–T

∣
∣x′

(s)
∣
∣ds, t ∈ [ξ , ξ + T].

Combing the above two inequalities, we obtain

|x|∞ = max
t∈[,T]

∣
∣x(t)

∣
∣ = max

t∈[ξ ,ξ+T]

∣
∣x(t)

∣
∣

≤ max
t∈[ξ ,ξ+T]

{

D +



(∫ t

ξ

∣
∣x′

(s)
∣
∣ds +

∫ ξ

t–T

∣
∣x′

(s)
∣
∣ds

)}

≤ D +



∫ T



∣
∣x′

(s)
∣
∣ds. (.)
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Multiplying both sides of (.) by x(t) and integrating over interval [, T], we get

∫ T



(
ϕp

(
x(n)

 (t)
))(n)x(t) dt + λp

∫ T


f
(
x(t)

)
x′

(t)x(t) dt + λp
∫ T


g
(
t, x(t – σ )

)
x(t) dt

= λp
∫ T


e(t)x(t) dt. (.)

Substituting
∫ T

 (ϕp(x(n)
 (t)))(n)x(t) dt = (–)n ∫ T

 |x(n)
 (t)|p dt,

∫ T
 f (x(t))x′

(t)x(t) dt =  into
(.), we have

(–)n
∫ T



∣
∣x(n)

 (t)
∣
∣p dt = –λp

∫ T


g
(
t, x(t – σ )

)
x(t) dt + λp

∫ T


e(t)x(t) dt.

Namely,

∫ T



∣
∣x(n)

 (t)
∣
∣p dt ≤

∫ T



∣
∣g

(
t, x(t – σ )

)∣∣
∣
∣x(t)

∣
∣dt +

∫ T



∣
∣e(t)

∣
∣
∣
∣x(t)

∣
∣dt

≤ |x|∞
∫ T



∣
∣g

(
t, x(t – σ )

)∣
∣dt + |x|∞|e|∞T . (.)

Write

I+ =
{

t ∈ [, T] : g
(
t, x(t – σ )

) ≥ 
}

; I– =
{

t ∈ [, T] : g
(
t, x(t – σ )

) ≤ 
}

.

Then we get from (.) and (.)

∫ T



∣
∣g

(
t, x(t – σ )

)∣∣dt =
∫

I+

g
(
t, x(t – σ )

)
dt –

∫

I–

g
(
t, x(t – σ )

)
dt

= 
∫

I+

g
(
t, x(t – σ )

)
dt

≤ 
∫

I+

((
ψ(t) + ε

)
xp–

 (t – σ ) + gε(t)
)

dt

≤ 
(|ψ |∞ + ε

)
∫ T



∣
∣x(t)

∣
∣p– dt + 

∫ T



∣
∣gε(t)

∣
∣dt. (.)

Substituting (.) into (.), we have

∫ T



∣
∣x(n)

 (t)
∣
∣p dt ≤ |x|∞

(|ψ |∞ + ε
)
∫ T



∣
∣x(t)

∣
∣p– dt

+ |x|∞
(


∫ T



∣
∣gε(t)

∣
∣dt + |e|∞T

)

≤ 
(|ψ |∞ + ε

)
T |x|p∞ + |x|∞

(

T



(∫ T



∣
∣gε(t)

∣
∣ dt

) 


+ |e|∞T
)

= 
(|ψ |∞ + ε

)
T |x|p∞ + |x|∞

(
T


 |gε| + |e|∞T

)
. (.)
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From (.) and Lemma ., we have

|x|∞ ≤ D +



∫ T



∣
∣x′

(t)
∣
∣dt ≤ D +

T

q



(∫ T



∣
∣x′

(t)
∣
∣p dt

) 
p

≤ D +
T


q



(
T
πp

)n–(∫ T



∣
∣x(n)

 (t)
∣
∣p dt

) 
p

. (.)

Substituting (.) into (.), we have

∫ T



∣
∣x(n)

 (t)
∣
∣p dt

≤ 
(|ψ |∞ + ε

)
T

(

D +
T


q



(
T
πp

)n–(∫ T



∣
∣x(n)

 (t)
∣
∣p dt

) 
p
)p

+
(

D +
T


q



(
T
πp

)n–(∫ T



∣
∣x(n)

 (t)
∣
∣p dt

) 
p
)

(
T


 |gε| + |e|∞T

)

= 
(|ψ |∞ + ε

)
T

(
T

p
q

p

(
T
πp

)p(n–) ∫ T



∣
∣x(n)

 (t)
∣
∣p dt + pD

T
p–

q

p–

(
T
πp

)(p–)(n–)

·
(∫ T



∣
∣x(n)

 (t)
∣
∣dt

) p–
p

+ · · · + pDp–


T

q



(
T
πp

)n–(∫ T



∣
∣x′

(t)
∣
∣p dt

) 
p

+ Dp


)

+
(

D +
T


q



(
T
πp

)n–(∫ T



∣
∣x(n)

 (t)
∣
∣p dt

) 
p
)

(
T


 |gε| + |e|∞T

)

=
(|ψ |∞ + ε

)T
p
q +

p–

(
T
πp

)p(n–) ∫ T



∣
∣x(n)


∣
∣p dt

+
(|ψ |∞ + ε

)
pD

T
p–

q +

p–

(
T
πp

)(p–)(n–)(∫ T



∣
∣x(n)

 (t)
∣
∣p dt

) p–
p

+ · · ·

+
(

(|ψ |∞ + ε

)
TpDp–

 + T

 |gε| + |e|∞T

)T

q



(
T
πp

)n–

·
(∫ T



∣
∣x(n)

 (t)
∣
∣p dt

) 
p

+ 
(|ψ |∞ + ε

)
TDp

 + D
(
T


 |gε| + |e|∞T

)
.

Since ε sufficiently small, we know that |ψ |∞ T
p
q +

p– ( T
πp

)p(n–) < . So, it is easy to see that
there exists a positive constant M′

 such that

∫ T



∣
∣x(n)

 (t)
∣
∣p dt ≤ M′

.

From (.), we have

|x|∞ ≤ D +
T


q



(
T
πp

)n–(∫ T



∣
∣x(n)

 (t)
∣
∣p dt

) 
p

≤ D +
T


q



(
T
πp

)n–(
M′


) 

p := M. (.)
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Since x() = x(T), there exists a point η ∈ [, T] such that x′
(η) = . From Lemma .,

we can easily get

∣
∣x′


∣
∣∞ ≤ 



∫ T



∣
∣x′′

 (t)
∣
∣dt

≤ T

q



(∫ T



∣
∣x′′

 (t)
∣
∣p dt

) 
p

≤ T

q



(
T
πp

)(n–)(∫ T



∣
∣x(n)


∣
∣p

) 
p

≤ T

q



(
T
πp

)(n–)(
M′


) 

p := M. (.)

On the other hand, form x(n–)
 () = x(n–)

 (T), there exists a point η ∈ [, T] such that
x(n–)

 (η) = , from the second equation of (.) and (.), we have

∣
∣x(n–)


∣
∣∞ ≤ 


max

∣
∣
∣
∣

∫ T


x(n)

 (t) dt
∣
∣
∣
∣

≤ λ



∫ T



∣
∣–f

(
x(t)

)
x′

(t) – g(t, x
(
t, x(t – σ )

)
+ e(t)

∣
∣dt

≤ λ


(|f |M TM + 

(|ψ |∞ + ε
)
TMp–

 + 
√

T |gε| + T |e|∞
)

:= λMn–,

where |f |M = max
<x(t)≤M

|f (x(t))|. Since x() = x(T), there exists a point η ∈ [, T] such

that x′
(η) = . From the Wirtinger inequality (see [], Lemma .), we can easily get

∣
∣x′


∣
∣∞ ≤ 



∫ T



∣
∣x′′

(t)
∣
∣dt ≤ T 





(∫ T



∣
∣x′′

(t)
∣
∣ dt

) 


≤ T


(
T

π

)(n–)∣
∣x(n–)


∣
∣∞

≤ T


(
T

π

)(n–)

(λMn–) := λM. (.)

By the first equation of (.), we have

∫ T



∣
∣x(t)

∣
∣q–x(t) dt = ,

which implies that there is a constant η ∈ [, T] such that x(η) = , so

|x|∞ ≤ 


∫ T



∣
∣x′

(t)
∣
∣dt ≤ T


∣
∣x′


∣
∣∞ ≤ λT


M := λM. (.)

Next, it follows from (.) that

(
ϕp

(
x(n)

 (t + σ )
))(n) + λp(f

(
x(t + σ )

)
x′

(t + σ ) + g
(
t + σ , x(t)

))
= λpe(t + σ ). (.)
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Namely,

(
ϕp

(
x(n)

 (t + σ )
))(n) + λpf

(
x(t + σ )

)
x′

(t + σ ) + λp(g
(
x(t)

)
+ g

(
t + σ , x(t)

)

= λpe(t + σ ). (.)

Multiplying both sides of (.) by x′
(t), we get

(
ϕp

(
x(n)

 (t + σ )
))(n)x′

(t) + λpf
(
x(t + σ )

)
x′

(t + σ )x′
(t)

+ λpg
(
x(t)

)
x′

(t) + λpg
(
t + σ , x(t)

)
x′

(t)

= λpe(t + σ )x′
(t). (.)

Let τ ∈ [, T], for any τ ≤ t ≤ T , we integrate (.) on [τ , t] and get

λp
∫ x(t)

x(τ )
g(u) du

= λp
∫ t

τ

g
(
x(s)

)
x′

(s) ds

= –
∫ t

τ

(
ϕp

(
x(n)

 (s + σ )
))(n)x′

(s) ds – λp
∫ t

τ

f
(
x(s + σ )

)
x′

(s + σ )x′
(s) ds

– λp
∫ t

τ

g
(
s + σ , x(s)

)
x′

(s) ds + λp
∫ t

τ

e(s + σ )x′
(s) ds. (.)

By (.), (.), and (.), we have

∣
∣
∣
∣

∫ t

τ

(
ϕp

(
x(n)

 (s + σ )
))(n)x′

(s) ds
∣
∣
∣
∣

≤
∫ t

τ

∣
∣
(
ϕp

(
x(n)

 (s + σ )
))(n)∣∣

∣
∣x′

(s)
∣
∣ds

≤ ∣
∣x′


∣
∣∞

∫ T



∣
∣
(
ϕp

(
x(n)

 (t + σ )
))(n)∣∣dt

≤ λp∣∣x′

∣
∣∞

(∫ T



∣
∣f

(
x(t)

)∣∣
∣
∣x′

(t)
∣
∣dt +

∫ T



∣
∣g

(
t, x(t – σ )

)∣∣dt +
∫ T



∣
∣e(t)

∣
∣dt

)

≤ λpM
(|f |M M + 

(|ψ |∞ + ε
)
TMp–

 + T


∣
∣g+

ε

∣
∣
 + T |e|∞

)
.

Also we have
∣
∣
∣
∣

∫ t

τ

f
(
x(s + σ )

)
x′

(s + σ )x′
(s) ds

∣
∣
∣
∣ ≤ |f |M M

T ,

∣
∣
∣
∣

∫ t

τ

g
(
s + σ , x(s)

)
x′

(s) ds
∣
∣
∣
∣ ≤ ∣

∣x′

∣
∣∞

∫ T



∣
∣g(t, x(t – σ )

∣
∣dt ≤ M

√
T |gM |,

where gM = max
≤x≤M

|g(t, x)| ∈ L(, T) is as in (H).

∣
∣
∣
∣

∫ t

τ

e(t + σ )x′
(t) dt

∣
∣
∣
∣ ≤ MT |e|∞.
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From these inequalities we can derive form (.) that

∣
∣
∣
∣

∫ x(t)

x(τ )
g(u) du

∣
∣
∣
∣ ≤ M′

, (.)

for some constant M′
 which is independent on λ, x, and t. In view of the strong force

condition (H), we know that there exists a constant M >  such that

x(t) ≥ M, ∀t ∈ [τ , T]. (.)

The case t ∈ [, τ ] can be treated similarly.
From (.), (.), (.), (.), and (.), we get

� =
{

x = (x, x)� : E ≤ |x|∞ ≤ E,
∣
∣x′


∣
∣∞ ≤ E, |x|∞ ≤ E and

∣
∣x′


∣
∣∞ ≤ E,∀t ∈ [, T]

}
,

where  < E < min(M, D), E > max(M, D), E > M, E > M, and E > M. � = {x :
x ∈ ∂� ∩ Ker L}, then ∀x ∈ ∂� ∩ Ker L

QNx =

T

∫ T



(
ϕq(x(t))

–f (x(t))x′
(t) – g(t, x(t – σ )) + e(t)

)

dt.

If QNx = , then x(t) = , x = E or –E. But if x(t) = E, we know

 =
∫ T



{
g(t, E) – e(t)

}
dt.

From assumption (H), we have x(t) ≤ D ≤ E, which yields a contradiction. Similarly if
x = –E. We also have QNx �= , i.e., ∀x ∈ ∂�∩ Ker L, x /∈ Im L, so conditions () and () of
Lemma . are both satisfied. Define the isomorphism J : Im Q → Ker L as follows:

J(x, x)� = (x, –x)�.

Let H(μ, x) = –μx + ( – μ)JQNx, (μ, x) ∈ [, ] × �, then ∀(μ, x) ∈ (, ) × (∂� ∩ Ker L),

H(μ, x) =

(
–μx – –μ

T
∫ T

 [g(t, x) – e(t)] dt
–μx – ( – μ)|x|q–x

)

.

We have
∫ T

 e(t) dt = . So, we can get

H(μ, x) =

(
–μx – –μ

T
∫ T

 g(t, x) dt
–μx – ( – μ)|x|q–x

)

, ∀(μ, x) ∈ (, ) × (∂� ∩ Ker L).

From (H), it is obvious that x�H(μ, x) < , ∀(μ, x) ∈ (, ) × (∂� ∩ Ker L). Hence

deg{JQN ,� ∩ Ker L, } = deg
{

H(, x),� ∩ Ker L, 
}

= deg
{

H(, x),� ∩ Ker L, 
}

= deg{I,� ∩ Ker L, } �= .
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So condition () of Lemma . is satisfied. By applying Lemma ., we conclude that the
equation Lx = Nx has a solution x = (x, x)� on �̄ ∩ D(L), i.e., (.) has a positive T-
periodic solution x(t). �

Example . Consider the high-order p-Laplacian differential equation with singularity

(
ϕp

(
x(t)′′′

))′′′′ + f
(
x(t)

)
x′(t) +




(sin t + )x(t – σ ) –


xκ (t – σ )
= cos t, (.)

where κ ≥  and p = , f is continuous function, σ is a constant, and  ≤ σ < T .
It is clear that T = π , n = , g(t, x) = 

 (sin t + )x(t – σ ) – 
xκ (t–σ ) , ψ(t) = 

 (sin t + ),
|ψ |∞ = 

 . It is obvious that (H)-(H) hold. Now we consider the assumption condition

|ψ |∞ T
p
q +

p–

(
T
πp

)p(n–)

= |ψ |∞ T
p
q +

p–

(
T

π (p–)/p

p sin(π/p)

)p(n–)

=



· π





(
π

π (–)/

 sinπ/

)

=
π





< .

So by Theorem ., we know (.) has at least one positive π-periodic solution.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YX and SZ worked together in the derivation of the mathematical results. Both authors read and approved the final
manuscript.

Acknowledgements
YX and SZ would like to thank the referee for invaluable comments and insightful suggestions. This work was supported
by Natural Science Foundation of China (No. 11326124) and the Fundamental Research Funds for the Universities of
Henan Province (NSFRF140142).

Received: 18 September 2015 Accepted: 20 November 2015

References
1. Taliaferro, S: A nonlinear singular boundary value problem. Nonlinear Anal. TMA 3, 897-904 (1979)
2. Zhang, MR: Periodic solutions of linear and quasilinear neutral functional differential equations. J. Math. Anal. Appl.

189, 378-392 (1995)
3. Wang, ZH: Periodic solutions of Liénard equation with a singularity and a deviating argument. Nonlinear Anal., Real

World Appl. 16, 227-234 (2014)
4. Cheng, ZB: Existence of positive periodic solutions for third-order differential equation with strong singularity. Adv.

Differ. Equ. 2014, 162 (2014)
5. Torres, P: Weak singularities may help periodic solutions to exist. J. Differ. Equ. 232, 277-284 (2007)
6. Li, X, Zhang, ZH: Periodic solutions for damped differential equations with a weak repulsive singularity. Nonlinear

Anal. TMA 70, 2395-2399 (2009)
7. Chu, JF, Torres, P, Zhang, MR: Periodic solution of second order non-autonomous singular dynamical systems. J. Differ.

Equ. 239, 196-212 (2007)
8. Wang, HY: Positive periodic solutions of singular systems with a parameter. J. Differ. Equ. 249, 2986-3002 (2010)
9. Chu, JF, Zhou, ZC: Positive solutions for singular non-linear third-order periodic boundary value problems. Nonlinear

Anal. TMA 64, 1528-1542 (2006)
10. Cheng, ZB, Ren, JL: Periodic and subharmonic solutions for Duffing equation with singularity. Discrete Contin. Dyn.

Syst., Ser. A 32, 1557-1574 (2012)



Xin and Zhao Advances in Difference Equations  (2016) 2016:26 Page 13 of 13

11. Fonda, A, Manásevich, R: Subharmonics solutions for some second order differential equations with singularities.
SIAM J. Math. Anal. 24, 1294-1311 (1993)

12. Xia, J, Wang, ZH: Existence and multiplicity of periodic solutions for the Duffing equation with singularity. Proc. R. Soc.
Edinb., Sect. A 137, 625-645 (2007)

13. Cheng, ZB, Ren, JL: Studies on a damped differential equation with repulsive singularity. Math. Methods Appl. Sci. 36,
983-992 (2013)

14. Cheng, ZB, Ren, JL: Multiplicity results of positive solutions for four-order nonlinear differential equation with
singularity. Math. Methods Appl. Sci. (2015). doi:10.1002/mma.3481

15. Ren, JL, Cheng, ZB, Chen, YL: Existence results of periodic solutions for third-order nonlinear singular differential
equation. Math. Nachr. 286, 1022-1042 (2013)

16. Gaines, RE, Mawhin, JL: Coincidence Degree and Nonlinear Differential Equation. Springer, Berlin (1977)
17. Zhang, MR: Nonuniform nonresonance at the first eigenvalue of the p-Laplacian. Nonlinear Anal. TMA 29, 41-51

(1996)
18. Torres, P, Cheng, ZB, Ren, JL: Non-degeneracy and uniqueness of periodic solutions for 2n-order differential

equations. Discrete Contin. Dyn. Syst. 33, 2155-2168 (2013)

http://dx.doi.org/10.1002/mma.3481

	Studies on a 2nth-order p-Laplacian differential equation with singularity
	Abstract
	MSC
	Keywords

	Introduction
	Lemmas
	Existence of positive periodic solutions for (1.1)
	Competing interests
	Authors' contributions
	Acknowledgements
	References


