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Abstract
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1 Introduction
In this paper, we consider the classical variational inequality problem, which is to find a
vector x* ∈ K such that

〈
F
(
x*

)
,x – x*

〉 ≥ , ∀x ∈ K , (.)

where F is a continuous mapping from Rn into Rn, K is a nonempty closed convex subset
of Rn, and 〈·, ·〉 is the usual Euclidean inner product in Rn. We denote problem (.) by
VI(F ,K) and its solution set by K *. VI(F ,K) was first introduced by Hartman and Stam-
pacchia (see []) in , primarily with the goal of computing stationary points for non-
linear programs. It provides a broad unifying setting for the study of optimization and
equilibrium problems and servers as the main computational framework for the practical
solution of a host of continuumproblems in themathematical sciences. It has a wide range
of important applications in economics, engineering, operations research etc.; we will not
dwell further on this. The problem we are interested in is how to find the vector x* ∈ K *.
Recently, there have been many methods proposed in the literature to tackle this prob-

lem (see []), among which we think the projection method is one of the most excel-
lent ones. The projection method for solving problem (.) came originally from the
Goldstein (see []) and Levitin-Polyak (see []) gradient projection method for the box-
constrained minimization and was studied by many researchers such as Auslender (see
[]), Bakusinskii-Polyak (see []), Bruck (see []), Noor-Wang-Xiu (see []) andXiu-Wang-
Zhang (see []). Its original iterative scheme is finding an xk ∈ K such that

xk+ = PK
[
xk – αF

(
xk

)]
, k = , , , . . . , (.)
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where PK [·] is the orthogonal projection from Rn onto K , and α >  is a fixed number.
Korpelevich (see []) combined two neighboring iterations in (.) and then got a new
projection method:

⎧⎨
⎩x̄k = PK [xk – αF(xk)],

xk+ = PK [xk – αF(x̄k)].
(.)

That is the extragradient method which has R-linear convergence rate. The vector –F(x̄k)
in (.) is the descent direction of f (x) = 

‖x – x*‖ (x ∈ K , x* ∈ K *) at a point xk under
certain conditions, which is the key to the convergence of the algorithm. There are several
studies on the descent direction. To our knowledge, just five descent directions are found
so far (see [, –]). In this paper, we construct a novel descent direction and present
a new extragradient-like method based on the direction. Furthermore, we prove that the
new method has the same R-linear convergence rate as the extragradient method. Some
numerical experiments are given to prove our analysis.
The rest of this article is organized as follows. In Section , some preliminaries are stated

and an extragradient-like method is proposed. In Section , the global convergence and
the local convergence rate of the algorithm are proved. The results of some preliminary
experiments on a few test examples are reported in Section , and the conclusions are
given in Section .

2 Preliminaries and algorithm
We first provide some necessary conclusions from convex analysis and related papers.

Definition . K is a nonempty closed convex subset of Rn, x ∈ K is the projection of
y ∈ Rn onto K if

x = argmin
{‖z – y‖|z ∈ K

}
.

Then call x as PK [y].

Definition . C ⊂ Rn is a nonempty subset, F(x) is a mapping from C into Rn. F(x) is
pseudomonotone on C if for all x, y ∈ C, x 	= y, the following implication relation is estab-
lished:

(x – y)TF(y)≥  ⇒ (x – y)TF(x)≥ .

Lemma . The variational inequality (.) has a solution x* ∈ K * if and only if x* satisfies
the relation

x* = PK
[
x* – αF

(
x*

)]
,

where α >  is a constant and PK [·] is an orthogonal projection from Rn onto K .

This alternative equivalent formulation has played an important role in studying the ex-
istence of a solution and suggesting the projection-type algorithms for solving variational
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inequalities. To prove the convergence and convergence rate of our algorithm later, the
other two lemmas are presented here.

Lemma . (Property .. in []) Let PK [·] be the projection from Rn onto K , then for
y, z ∈ Rn,

∥∥PK [y] – PK [z]
∥∥ ≤ 〈

y – z,PK [y] – PK [z]
〉
.

Specially, it follows from the Cauchy-Schwarz inequality that

∥∥PK [y] – PK [z]
∥∥ ≤ ‖y – z‖.

Lemma . (Property .. in []) Let PK [·] be the projection from Rn onto K , take x ∈ K
and d ∈ Rn arbitrarily, then
() ‖x–PK [x–αd]‖

α
is monotonic nonincreasing on the variable α > .

() ‖x – PK [x – αd]‖ is monotonic nondecreasing on the variable α > .

Lemma . For any α >  and x ∈ Rn,

min{,α}∥∥e(x, )∥∥ ≤ ∥∥e(x,α)∥∥ ≤ max{,α}∥∥e(x, )∥∥,
where e(x,α) = x – PK [x – αF(x)].

Proof If α ≤ , from Lemma ., we know that ‖e(x,α)‖ is monotonic nondecreasing and
‖e(x,α)‖

α
is monotonic nonincreasing on the variable α > . Then we have

∥∥e(x,α)∥∥ ≤ ∥∥e(x, )∥∥ =max{,α}∥∥e(x, )∥∥
and

‖e(x,α)‖
min{,α} =

‖e(x,α)‖
α

≥ ‖e(x, )‖


=
∥∥e(x, )∥∥.

Combining the above two inequalities, we can easily get the result.
From the same argument, we can get the result if α > . Summing up the two cases

completes the proof. �

Now, we begin to establish the following iterative method for solving problem (.).

Algorithm . (A new extragradient-like method)
Step  (Initialization) Choose the initial values x ∈ Rn, l ∈ (, ), μ ∈ (, ) and θ ∈ (, ],

take the stopping criterion ε > . Set k := .
Step  (The predictor step) Compute the predictor

x̄k = PK
[
xk – αkF

(
xk

)]
, (.)

where αk = lmk andmk is the smallest nonnegative integer m such that

∥∥F(
xk

)
– F

(
x̄k

)∥∥ ≤ μ
‖xk – x̄k‖

αk
. (.)
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Step  (The corrector step) Computing the corrector

xk+ = PK
[
xk – βkdk], (.)

where

dk = αk
[
( – θ )F

(
xk

)
+ θF

(
x̄k

)]
, (.)

βk = θ ( –μ)
‖xk – x̄k‖

‖dk‖ . (.)

Step  If ‖xk+ – xk‖ ≤ ε, then stop; otherwise, set k := k +  go to Step .

Remark . To our knowledge, the search direction dk in Algorithm . is new;moreover,
–dk is a descent direction of f (x) = 

‖x – x*‖ (x ∈ K , x* ∈ K *) at a point xk under certain
conditions. We will prove it in the next section.

Remark . If F(xk) = , then 〈F(xk),x – x*〉 = , ∀x ∈ K , namely xk ∈ K *, so the algo-
rithm will be stopped. Therefore, F(xk) 	=  when the algorithm is running, by (.) and
Lemma ., we have

∥∥( – θ )F
(
xk

)
+ θF

(
x̄k

)∥∥ =
∥∥F(

xk
)
– θ

(
F
(
xk

)
– F

(
x̄k

))∥∥
≥ ∥∥F(

xk
)∥∥ – θ

∥∥F(
xk

)
– F

(
x̄k

)∥∥
≥ ∥∥F(

xk
)∥∥ –

θμ

αk

∥∥xk – x̄k
∥∥

≥ ∥∥F(
xk

)∥∥ – θμ
∥∥F(

xk
)∥∥

= ( – θμ)
∥∥F(

xk
)∥∥ > .

Thus by (.) we get ‖dk‖ >  in the algorithm, that is, Step  of Algorithm . is well
posed.

3 Convergence analysis
In this section, we discuss the convergence and convergence rate of Algorithm .. Firstly,
we prove an important lemma.

Lemma . Assume that F(x) is pseudomonotone on K and K * is nonempty. If xk ∈ K is
not a solution to problem (.), then for any x* ∈ K *,

〈
dk ,xk – x*

〉 ≥ θ ( –μ)
∥∥xk – x̄k

∥∥. (.)

Proof Take x* ∈ K * arbitrarily. As x* ∈ K *, we have

〈
F
(
x*

)
,x – x*

〉 ≥ , ∀x ∈ K .

Specially, for xk ∈ K and x̄k ∈ K , we can get

〈
F
(
x*

)
,xk – x*

〉 ≥ 

http://www.fixedpointtheoryandapplications.com/content/2012/1/223
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and

〈
F
(
x*

)
, x̄k – x*

〉 ≥ .

From the pseudomonotonicity of F(x), we have

〈
F
(
xk

)
,xk – x*

〉 ≥  (.)

and

〈
F
(
x̄k

)
, x̄k – x*

〉 ≥ . (.)

From Lemma . we get

∥∥xk – x̄k
∥∥ ≤ 〈

xk –
(
xk – αkF

(
xk

))
,xk – x̄k

〉
=

〈
αkF

(
xk

)
,xk – x̄k

〉
= αk

〈
F
(
xk

)
,xk – x̄k

〉
,

namely

〈
F
(
xk

)
,xk – x̄k

〉 ≥ ‖xk – x̄k‖
αk

. (.)

By the Cauchy-Schwarz inequality and (.), we get

〈
F
(
xk

)
– F

(
x̄k

)
,xk – x̄k

〉 ≤ ∥∥F(
xk

)
– F

(
x̄k

)∥∥ · ∥∥xk – x̄k
∥∥

≤ μ
‖xk – x̄k‖

αk
. (.)

Combining (.), (.) and (.) yields

〈
F
(
x̄k

)
,xk – x*

〉 ≥ 〈
F
(
x̄k

)
,xk – x̄k

〉
=

〈
F
(
xk

)
,xk – x̄k

〉
–

〈
F
(
xk

)
– F

(
x̄k

)
,xk – x̄k

〉
≥ ‖xk – x̄k‖

αk
–μ

‖xk – x̄k‖
αk

= ( –μ)
‖xk – x̄k‖

αk
. (.)

Thus, from (.), (.), (.) and θ ∈ (, ], we obtain

〈
dk ,xk – x*

〉
= αk

〈
( – θ )F

(
xk

)
+ θF

(
x̄k

)
,xk – x*

〉
= ( – θ )αk

〈
F
(
xk

)
,xk – x*

〉
+ θαk

〈
F
(
x̄k

)
,xk – x*

〉
≥ θ ( –μ)

∥∥xk – x̄k
∥∥,

which completes the proof. �

http://www.fixedpointtheoryandapplications.com/content/2012/1/223
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By using Lemma . and the proof technique usual in projection-typemethods, we easily
conclude the global convergence of Algorithm ..

Theorem . Assume that F(x) is continuous and pseudomonotone on K and K * is
nonempty. If {xk} and {x̄k} are two infinite sequences produced by Algorithm ., then

lim
k→∞

∥∥xk – x̄k
∥∥ = , (.)

and {xk} converges to a solution of problem (.).

Proof For any x* ∈ K *, it follows from (.), (.), Lemma . and Lemma . that for all k,

∥∥xk+ – x*
∥∥ ≤ ∥∥xk – βkdk – x*

∥∥

=
∥∥xk – x*

∥∥ – βk
〈
dk ,xk – x*

〉
+ β

k
∥∥dk∥∥

≤ ∥∥xk – x*
∥∥ – θ ( –μ)βk

∥∥xk – x̄k
∥∥ + β

k
∥∥dk∥∥

=
∥∥xk – x*

∥∥ – θ( –μ)
‖xk – x̄k‖

‖dk‖ . (.)

Thus, the sequence {xk} generated by Algorithm . is bounded, and

θ( –μ)
∞∑
k=

‖xk – x̄k‖
‖dk‖ ≤

∞∑
k=

(∥∥xk – x*
∥∥ –

∥∥xk+ – x*
∥∥) < ∞.

So ‖xk–x̄k‖
‖dk‖ →  as k → ∞. Notice that F(x) is continuous on K , PK [·] is continuous on

Rn and {xk} ⊆ K is bounded, the sequence {x̄k} is bounded, thereby the sequence {dk} is
bounded. Then we have

∥∥xk – x̄k
∥∥ =

‖xk – x̄k‖
‖dk‖ · ∥∥dk∥∥ → , k → ∞,

and then we get the (.). Suppose limki→∞ xki = x∞, we will prove that x∞ ∈ K *.
If αki ≥ αmin > , from Lemma . we can get

∥∥e(x∞, 
)∥∥ = lim

ki→∞
∥∥e(xki , )∥∥ ≤ lim

ki→∞
‖xki – x̄ki‖
min{,αmin} = .

If αki → , for all sufficiently large ki, it follows from (.) and Lemma .() that

μ
∥∥e(xki , )∥∥ ≤ μ

‖e(xki , αki
l )‖

αki
l

<
∥∥∥∥F(

xki
)
– F

(
xki

(
αki
l

))∥∥∥∥,

where xki ( αki
l ) = PK [xki –

αki
l F(x

ki )], so

∥∥e(x∞, 
)∥∥ = lim

ki→∞
∥∥e(xki , )∥∥ ≤ lim

ki→∞
‖F(xki ) – F(xki ( αki

l ))‖
μ

= .

http://www.fixedpointtheoryandapplications.com/content/2012/1/223
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In both cases, we have ‖e(x∞, )‖ = . From Lemma . we have x∞ ∈ K *. Combining it
with (.), we obtain

∥∥xk+ – x∞∥∥ ≤ ∥∥xk – x∞∥∥ – θ( –μ)
‖xk – x̄k‖

‖dk‖ ≤ ∥∥xk – x∞∥∥.

Then ∀k = , , . . . , choose kij ∈ {ki} satisfying kij ≤ k, we can get

∥∥xk+ – x∞∥∥ ≤ ∥∥xk – x∞∥∥ ≤ · · · ≤ ∥∥xkij – x∞∥∥,
thus, {xk} converges to a solution of problem (.). �

From Theorem ., we can easily get the following result.

Corollary . Assume that F(x) is continuous and pseudomonotone on K and K * is
nonempty. If {xk} is an infinite sequence produced by Algorithm ., then

lim
k→∞

∥∥xk+ – xk
∥∥ = .

Proof From (.), (.) and Lemma ., we have

∥∥xk+ – xk
∥∥ =

∥∥PK
[
xk – βkdk] – xk

∥∥ ≤ βk
∥∥dk∥∥

= θ ( –μ)
‖xk – x̄k‖

‖dk‖ .

From the proving process of Theorem ., we have

lim
k→∞

‖xk – x̄k‖
‖dk‖ = ,

which implies that

lim
k→∞

‖xk – x̄k‖
‖dk‖ = .

That is, ‖xk+ – xk‖ →  as k → +∞. �

The above corollary shows that Algorithm . is terminable. The following theorem im-
plies that Algorithm . has R-linear convergence rate.

Theorem . Assume that variational inequality problem VI(F ,K) meets the following
conditions:
(a) F(x) is pseudomonotone on K and K * is nonempty;
(b) F(x) is Lipschitz continuous on K with Lip-constant L > ;
(c) the local error bound holds, that is, there exist constants τ >  and δ >  such that

dist
(
x,K *) ≤ τ

∥∥e(x, )∥∥, ∀x ∈ K , with
∥∥e(x, )∥∥ ≤ δ. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/223
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If {xk} is an infinite sequence produced by Algorithm ., then it converges to a solution of
(.) R-linearly.

Proof From the condition (b) and (.), we can easily get

μ
‖xk – xk( αk

l )‖
αk
l

<
∥∥∥∥F(

xk
)
– F

(
xk

(
αk

l

))∥∥∥∥
≤ L

∥∥∥∥xk – xk
(

αk

l

)∥∥∥∥.
After appropriate simplification, we get

αk ≥ lμ
L

:= α, ∀k = , , , . . . .

Then by Lemma . and Theorem ., we have

∥∥e(xk , )∥∥ ≤ ‖xk – x̄k‖
min{,αk} ≤ ‖xk – x̄k‖

min{,α} → . (.)

So, there exists sufficiently large k such that

∥∥e(xk , )∥∥ ≤ δ, ∀k ≥ k.

Thus, from the condition (c), we get

dist
(
xk ,K *) ≤ τ

∥∥e(xk , )∥∥, ∀k ≥ k. (.)

From the proving process of Theorem ., we know that {dk} is bounded, so there exists a
constantM >  such that ‖dk‖ ≤ M. Choosing x* ∈ K * closest to xk , from (.), (.) and
(.), we obtain for all k ≥ k,

[
dist

(
xk+,K *)] ≤ ∥∥xk+ – x*

∥∥

≤ ∥∥xk – x*
∥∥ – θ( –μ)

‖xk – x̄k‖
‖dk‖

≤ [
dist

(
xk ,K *)] – θ( –μ)

(min{,α})
τ 

[dist(xk ,K *)]

‖dk‖

≤
[
 – θ( –μ)

(min{,α})
τ 

[dist(xk ,K *)]

M

][
dist

(
xk ,K *)].

Thus, {dist(xk ,K *)} converge to zero at a Q-linear rate, then the desired result follows.
�

4 Numerical examples
In this section, we present some examples to illustrate the efficiency and performance of
the newly developed method (Algorithm .) (denoted by HMM). This new method was
compared with the classical extragradient method (denoted by EGM) in the number of

http://www.fixedpointtheoryandapplications.com/content/2012/1/223
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iterations (Iter.), CPU time (CPU) and residual error (Err.). All computations were done
using the PC with Intel(R) Core(TM)i CPU M @ . GHz. All the programming is
implemented in MATLAB Rb.
Throughout the computational experiments, unless otherwise stated, the parameters

in Algorithm . were set as l = . and μ = .. As the descent direction dk changes
with the parameter θ , we use different θ in different experiments and then find something
interesting.

Example . This test problem is from Ahn (see []). Let F(x) =Mx + q, where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 –
  –

 
. . .

. . . . . . . . .
. . .  –

 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–
–
...
...
...
–

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We test this problem by using x = (, , . . . , )T as a starting point and set the parameter
θ = . for different dimensions n. The test results are listed in Table .

Example . This problem was tested by Kanzow (see []) with five variables defined by

Fi(x) = (xi – i + ) exp

{ ∑
j=

(xj – j + )
}
,  ≤ i≤ .

This example has one degenerate solution x* = (, , , , )T . The numerical results are
given in Table  using different start points (SP). The parameter θ = . in this example as
well.

Table 1 Numerical results for Example 4.1

DIM EGM HMM
Iter. Err. CPU Iter. Err. CPU

256 131 9.96e–007 1.3014 20 6.30e–007 0.2013
512 136 9.08e–007 6.2570 20 6.41e–007 0.9330
1024 139 9.86e–007 24.6350 20 6.71e–007 3.5909
2048 143 9.47e–007 99.7605 20 6.81e–007 14.2013
4096 146 9.80e–007 406.0588 20 7.20e–007 56.4115

Table 2 Numerical results for Example 4.2

SP EGM HMM
Iter. Err. CPU Iter. Err. CPU

(1, 0, 1, 3, 5)T 63 7.60e–007 0.0282 27 9.33e–007 0.0058
(1, 2, 3, 1, 2)T 66 9.32e–007 0.0230 17 9.17e–007 0.0043
(1, 2, 3, 4, 5)T >1000 5.74e+001 0.4057 45 8.49e–007 0.0068
(2, 2, 2, 2, 2)T 70 8.43e–007 0.0224 18 4.56e–007 0.0037
(10, 9, 8, 7, 6)T >1000 6.21e+001 0.4176 45 8.49e–007 0.0068

http://www.fixedpointtheoryandapplications.com/content/2012/1/223


Huang et al. Fixed Point Theory and Applications 2012, 2012:223 Page 10 of 14
http://www.fixedpointtheoryandapplications.com/content/2012/1/223

Table 3 Numerical results for Example 4.3

SP EGM HMM
Iter. Err. CPU Iter. Err. CPU

(1) 493 9.97e–007 0.1262 70 8.72e–007 0.0141
(2) 512 9.86e–007 0.1164 72 9.39e–007 0.0142
(3) 514 9.03e–007 0.1162 70 7.53e–007 0.0143
(4) 512 8.59e–007 0.1251 72 7.48e–007 0.0146
(5) 490 9.99e–007 0.1216 69 8.68e–007 0.0138
(6) 480 9.93e–007 0.1180 71 9.78e–007 0.0142

Table 4 Numerical results for Example 4.4

SP EGM HMM
Iter. Err. CPU Iter. Err. CPU

(0, 0, 0, 0)T 193 9.64e–007 0.0230 180 9.85e–007 0.0197
(1, 1, 1, 1)T 206 9.59e–007 0.0309 190 9.54e–007 0.0177
(2, 2, 2, 2)T 92* 9.45e–007 0.0109 37* 7.52e–007 0.0055
(3, 1, 2, 6)T 95* 7.70e–007 0.0134 47* 8.22e–007 0.0065
(6, 1, 6, 6)T 99* 9.14e–007 0.0121 47* 8.30e–007 0.0080
(10, 10, 10, 10)T 214 9.50e–007 0.0284 181 9.89e–007 0.0188

Example . The Nash problem. This is a Nash equilibrium model with ten variables.
The test function F(x) = (F(x), . . . ,F(x))T is defined by

Fi(x) = ci + (Lixi)

βi –

[
∑
k= xk

] 
γ

+
xi

γ
∑

k= xk

[
∑
k= xk

] 
γ

,  ≤ i ≤ ,

where γ = ., c = (., ., ., ., ., ., ., ., ., .)T , Li =  ( ≤ i ≤ ) and
β = (., ., ., ., ., ., ., ., ., .)T . The test results for Example . are sum-
marized in Table  using the following standard starting points: () e; () e; () e; () e;
() (., ., ., ., ., ., ., ., ., .)T ; () (, , , , , , , , , )T . This time we set
θ = ..

Example. TheKojshin problem.This examplewas used by Pang andGabriel (see []),
and Kanzow (see []) with four variables. Let

F(x) =

⎛
⎜⎜⎜⎝
x + xx + x + x + x – 
x + x + x + x + x – 

x + xx + x + x + x – 
x + x + x + x – 

⎞
⎟⎟⎟⎠ .

This problem has one degenerate solution (
√

 , , ,  )

T and one nondegenerate solu-
tion (, , , )T . The numerical results are listed in Table  using different initial points.
The asterisk (*) denotes that the limit point generated by the algorithms is the degenerate
solution; otherwise, it is the nondegenerate solution. We also set θ = . in this example.

Example . This is a box-constrained variational inequality VI(F ,K) with four variables,
and the constraint set K = [ai,bi]n, i = , . . . ,n is a box region. The function is given as

http://www.fixedpointtheoryandapplications.com/content/2012/1/223
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Table 5 Numerical results for Example 4.5 with K = [0, 5]4

SP EGM HMM
Iter. Err. CPU Iter. Err. CPU

(1, 1, 1, 1)T 155 9.92e–007 0.0490 25 7.38e–007 0.0032
(–2, –2, –2, –2)T 137 9.47e–007 0.0445 15 4.72e–007 0.0029
(10, 10, 10, 10)T 174 9.58e–007 0.0469 32 2.26e–007 0.0044
(–2, –2, 6, 6)T 172 9.47e–007 0.0567 27 9.74e–007 0.0043
(8, 3, –1, –3)T 159 9.81e–007 0.0519 15 3.77e–007 0.0032
(10, –10, –10, 10)T 183 9.32e–007 0.0580 26 4.57e–007 0.0037

Table 6 Numerical results for Example 4.5 with K = [–1, 1]4

SP EGM HMM
Iter. Err. CPU Iter. Err. CPU

(0.5, 0.5, 0.5, 0.5)T 70 8.73e–007 0.0217 18 4.67e–007 0.0028
(–2, –2, –2, –2)T 59 8.94e–007 0.0138 16 8.04e–007 0.0024
(10, 10, 10, 10)T 76 9.72e–007 0.0283 19 4.84e–007 0.0026
(–2, –2, 6, 6)T 63 7.73e–007 0.0141 13 6.97e–007 0.0032
(8, 3, –1, –3)T 76 9.97e–007 0.0254 18 7.42e–007 0.0031
(10, –10, –10, 10)T 59 8.94e–007 0.0150 18 4.96e–007 0.0030

follows:

F(x) =

⎛
⎜⎜⎜⎝

x – 
x – x + x + 
x + x + x – 

x + x

⎞
⎟⎟⎟⎠ .

We consider the following two cases:
() K = [, ]. The solution x* = (, , , )T , F(x*) = (, , , )T is degenerate but not

R-regular.
() K = [–, ]. The solution x* = (, –, , )T , F(x*) = (–, ,–, )T is also degenerate

but not R-regular.
In the example, the parameter θ in Algorithm . is chosen as θ = .. The test results are

listed in Table  and Table  using different starting points for K = [, ] and K = [–, ],
respectively.

Example . This is a box-constrained affine variational inequality VI(F ,K) with four
variables, and the constraint set K = [ai,bi]n, i = , . . . ,n is a box region. The function is
given as follows:

F(x) =Mx + q,

where

M =

⎛
⎜⎜⎜⎝

   
   
   
– – – 

⎞
⎟⎟⎟⎠ , q =

⎛
⎜⎜⎜⎝
–
–
–


⎞
⎟⎟⎟⎠ .
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Table 7 Numerical results for Example 4.6 with K = [–1, 1]4

SP EGM HMM
Iter. Err. CPU Iter. Err. CPU

(0.5, 0.5, 0.5, 0.5)T 53 8.45e–007 0.0213 30 5.76e–007 0.0059
(–2, –2, –2, –2)T 66 8.30e–007 0.0247 40 4.25e–007 0.0070
(10, 10, 10, 10)T 54 8.73e–007 0.0200 39 2.93e–007 0.0080
(–6, –6, 6, 6)T 62 8.00e–007 0.0249 41 6.95e–007 0.0084
(8, 3, –3, –8)T 57 8.31e–007 0.0223 35 9.39e–007 0.0060
(10, –10, –10, 10)T 60 8.22e–007 0.0211 38 4.04e–007 0.0064

Table 8 Numerical results for Example 4.6 with K = [–5, 5]4

SP EGM HMM
Iter. Err. CPU Iter. Err. CPU

(2, 2, 2, 2)T 119 9.30e–007 0.0316 77 3.62e–007 0.0104
(–2, –2, –2, –2)T 137 8.52e–007 0.0434 77 6.80e–007 0.0109
(10, 10, 10, 10)T 141 9.78e–007 0.0418 78 9.73e–007 0.0107
(–8, –8, –8, –8)T 143 8.37e–007 0.0411 81 9.33e–007 0.0122
(9, 4, –4, –9)T 129 9.87e–007 0.0393 77 8.28e–007 0.0106
(10, –10, –10, 10)T 127 8.09e–007 0.0387 79 5.58e–007 0.0112

We consider the following two cases:
() K = [–, ]. The solution x* = (, /, /, /)T , F(x*) = (–/, , , )T ;
() K = [–, ]. The solution x* = (/, /, /, /)T , F(x*) = (, , , )T .
In the example, the parameter θ in Algorithm . is chosen as θ = .. The test results

are listed in Table  and Table  using different starting points for K = [–, ] and K =
[–, ], respectively.

From the above experiments, we find that the newly developed method (Algorithm .)
enjoys obvious advantages in the number of iterations and CPU time. In Example .,
the iterations of our algorithm always keep  with the increasing of dimension, but the
extragradient method is growing. What is more, in this example, the CPU time for the
extragradient method is seven times than our algorithm. In Example ., although our
algorithm’s error is sometimes larger than that of the extragradientmethod (when the start
point is (, , , , )), our algorithm ismore steady obviously (whenwe choose (, , , , )T

and (, , , , )T as start points, the extragradientmethod does not work).Moreover, the
CPU time for our algorithm is just about one sixth of that for the extragradient method.
The last two examples are box-constrained variational inequality problems. In these two
examples, our algorithm is also obviously advantageous. In addition, the parameter θ is
very small, which implies the importance of F(xk) in the descent direction dk . In some
examples we set parameter θ small enough, however, Algorithm . even works less well
than the extragradient method. In a word, our algorithm is promising.

5 Conclusion
In this work, we present a new extragradient-like method for the classical variational in-
equality problem based on a novel descent direction that we constructed. The numerical
results show the perfect performance of our algorithm. In the paper, we request  < θ ≤ ,
but sometimes Algorithm . also performs perfectly when the constant θ = , which
makes sense for our further studying. In addition, the βk in Algorithm . is not perfect
enough, and the convergence rate is not enough as well. Maybe they can be modified to
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some extent. The progress yet needs to be made in the numerical methods of the varia-
tional inequality problem.
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