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1 Introduction

S-duality is one of the most interesting discoveries of modern string theory [1–7]. It is a

far-going generalization of the E − B duality of Maxwell electrodynamics with magnetic

charges which states that the non-perturbative partition functions of different field theories

can coincide after a non-linear transformation of coupling constants. S-dual theories can

have different numbers of perturbative degrees of freedom and different gauge groups. A

significant class of S-dual models can be described by the M5-brane construction of [8–10],

where 6d theory on the brane is compactified on a 2d Riemann surface, which therefore

controls the structure of emerging perturbative 4d gauge theory, and thus provides a natural

explanation of the hidden integrable structure [11–14], the spectral surface of an integrable

system being just the covering of the original Riemann surface. In this picture S-dualities

get related to modular transformations of the Riemann surface. A quantitative realization

of this idea [10] led to the AGT conjecture [15–18], which identifies the LMNS instanton
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sums [19–22], expressed via Nekrasov functions [23, 24], with the conformal blocks of 2d

conformal theories [25, 26]. This identification opens a way to a quantitative study of

S-dualities, because constructing modular transformations of conformal blocks is a hard

but still solvable problem.

The problem is that the original definition provides conformal blocks in a form of

perturbative series in the variable x; in the case of the spherical 4-point conformal block,

AGT related to the ordinary SU(2) SYM theory with 4 hypermultiples, x is just a double

ratio of the four punctures, and the modular transformation relates the conformal blocks at

points x and 1−x. Normally one needs some non-perturbative completion of this definition

to even pose the problem.

There is a variety of such definitions: exploiting an SLq(2) counterpart of conformal

blocks in specific representations [27–29] or various equations that they can satisfy, from

Ward identities for extended blocks with additional insertions of degenerate fields [30–35]

to wonderful, still badly understood, relations to the Painlevé IV equation [36].

Remarkably, study of the AGT relations provides as a byproduct a kind of a more direct

approach. The conformal blocks possess a matrix model (β-ensemble) realization [37–

45], which is an advanced version of the old Dotsenko-Fateev trick [46] and the Felder

construction [47] (in particular, the integration contours for screening charges are actually

open, not always closed, but instead one suffices to use only one screening charge of two).

Then one can study the genus expansion in this theory, which is actually preserved by

S-duality. This can be also considered as studying S-duality for expansions at the point

gs = 0, where all terms are explicit “non-perturbative” functions in x.

In fact, one should be careful with the word “perturbative” in the present context.

In the above mentioned standard definition, the conformal block is a perturbative series

not only in x, but also in the dimensions of operators, i.e. in the string coupling constant

g2
s = ε1ε2. Non-perturbative corrections exist both in x and in gs, and they are actually

very different. In what follows we reserve the words “perturbative” and “non-perturbative”

for the g2
s -corrections, assuming that the x-behavior is completely fixed by switching to the

matrix model description. Thus, “the perturbative conformal block” refers to the genus

expansion of the β-ensemble controlled by the “topological recursion” formalism of [48–52]

and [55–59], while “the non-perturbative conformal block” refers to a more obscure quan-

tity, which still does not have a unique commonly accepted definition. Hopefully, all the

existing suggestions, [27, 28, 30, 31, 36] and the one described in the present paper, would

finally lead to the same outcome, but this still remains to be demonstrated and understood.

Anyhow, in what follows we concentrate on one particular definition, that of the

Dotsenko-Fateev β-ensemble of [42–45] and use it to study the S-dualities (modular trans-

formations) of both perturbative and non-perturbative conformal blocks.

Making use of this idea and calculational advances in AGT studies, we conjectured

recently [60, 61] that the S-duality is actually reduced to an ordinary Fourier transform in

all orders of perturbation expansion in string coupling constant. In [60] this was shown for

the central charge c = 1− 6(β − 1/β)2 = 1 (β = 1), and, after a more accurate analysis of

normalization factors in [61], this result was extended to an arbitrary β. This claim was

reconsidered and confirmed from a slightly different viewpoint in [62, 63]. These results
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are perturbative, and their exact relation to non-perturbative suggestions of [27, 28, 36]

still remained obscure, despite the latter formulas are also consistent with the pure Fourier

transform at the perturbative level.

Calculations of [60, 61] are quite tedious, what seems strange for such a simple out-

come. Clearly some very simple explanation should exist, which does not require long

calculations. It is the purpose of the present paper to provide such an explanation in

precise and quantitative form. This calls for begins an investigation of the far-reaching

corollaries of emerging formalism, which so far seemed to be just a funny technical tool in

advanced matrix model theory [53, 54].

An intuitive idea has already been formulated in [30]: to describe the duality, one can

treat dual conformal blocks as eigenfunctions of canonically conjugated quantum operators.

The question is what are the operators and how they act on the correlation functions, and

it is where the matrix model theory is of a great use. Namely, it puts the story into

the context of Seiberg-Witten (SW) theory, where the partition function is defined as a

function of flat moduli ~a by the equations(∮
~A
λ

)
Z(~a) = ~aZ(~a),(∮

~B
λ

)
Z(~a) =

∂

∂~a
Z(~a) (1.1)

which allows one to treat the periods of the SW differential as operators acting on functions

on the moduli space. In the genus expansion of matrix models the role of SW differential is

played by the one-point resolvent, which can be defined either in the usual style of [48–52]

or alternatively reformulated as produced by the so-called check-operators [53, 54] which

act on ramification points of the spectral curve. Accordingly,

i) the period integrals of the resolvent generating operators turn out to establish a set

of canonically conjugated observables [53, 54], and

ii) partition functions are their eigenfunctions.

In fact, there are delicate points in this story. The genus expansion is the typical quasiclas-

sical expansion, thus, it actually suffers from the Stokes like phenomena, which requires

a careful interplay between different branches of the Seiberg-Witten differentials. Taking

this into account provides a natural non-perturbative completion of the genus expansion,

and can be used as yet another definition of the non-perturbative conformal blocks and

non-perturbative modular transformations. We demonstrate that in the simplest examples

the results seem consistent with the ansatz of [27–29]. An additional advantage of such

an approach is a clear relation to the theory of wall crossing a la [64–68], to the cluster

algebras [69–73] and to the Kontsevich-Soibelman formulas [74, 75]. We elaborate more on

these relations in a separate text.

2 Duality and eigenfunctions of dual operators

An archetypical example of duality is provided by the switch between coordinate and

momentum operators. Namely, consider the two operators Â = eiP̂ and B̂ = eiQ̂, with the
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commutation relation

ÂB̂ = ei~B̂Â (2.1)

Then, their eigenfunctions are related by the Fourier transform in the eigenvalue space:

ÂZa(Q) = eiaZa(Q)

B̂Z̃a′(Q) = eia
′
Z̃a′(Q)

(2.1)
=⇒ Za(Q) =

∫
e
iaa′
~ Z̃a′(Q)da′ (2.2)

This can be easily checked in this case by calculating the eigenfunctions explicitly:

Za(Q) = e
iaQ
~ , Z̃a′(Q) = δ(Q− a′) (2.3)

but this is not necessary in order to define what is the transformation kernel. Instead, one

can substitute the two operators by their representatives in the eigenvalue space, which

reproduce the right commutation relations:

Ǎ = eia, B̌ = e~
∂
∂a (2.4)

which we call check-operators, following [53, 54]. Then the transformation kernel M(a, a′) =

e
iaa′
~ is simply defined from the relation

Ǎ(a)M(a, a′) = B̌(a′)M(a, a′) (2.5)

Here a delicate point is the possibility to multiply the operator B in (2.4) by an arbitrary

function of a, which commutes with A, or conjugate it by a periodic function of a, which

does not change B. Both these ambiguities change the normalization of eigenfunctions,

this normalization factors require an attention, see more sophisticated examples below.

This is the approach to duality transformations, which we are going to apply in general.

That is, we will construct a pair of peculiar operators Â and B̂ such that the conformal

block, i.e. the matrix model (β-ensemble) partition function is an eigenfunction of Â,

while the modular transformed conformal block is an eigenfunction of B̂. Then, the AGT

correspondence guarantees the same relation between the S-dual N = 2 supersymmetric

gauge theories.

As we shall see, the only difference of the modular S-duality from the above ordinary

pq-duality is that the relevant operators Â and B̂ in the case of non-perturbative conformal

blocks commute in a little less trivial way, but perturbatively they satisfy exactly (2.1). This

explains the perturbative result of [60, 61] for the properly normalized conformal blocks

and straightforwardly provides its non-perturbative generalization, which is in accordance

with [27, 28].

3 Modular transformations: conformal blocks and β-ensembles

The infinite conformal symmetry in two dimensions allows one to expand any correlator in

CFT into the conformal blocks [25, 26]. We consider here the one-point correlator on torus.
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The corresponding conformal block is usually represented by a series in the torus modular

parameter q = eπiτ with coefficients depending on the external dimension ∆ext and on the

intermediate dimension ∆. Hereafter, we use the following useful parametrization of the

CFT quantities

∆ =
Q2

4
− a2, ∆ext = µ(Q− µ), c = 1 + 6Q2, Q = b+ b−1 (3.1)

We assume the conformal block to be normalized as follows

Ba(τ |µ) = 1 + q

(
∆ext(1−∆ext)

2∆
+ 1

)
+O(q2) (3.2)

Throughout the paper we rescale the conformal dimensions to include g2
s so that the per-

turbative series correspond to the large a expansions.

The 6j-symbols (the Racah coefficients) for the Virasoro algebra can be realized as

the fusion relation connecting the conformal blocks at modular transformed moduli of

the torus:

Ba(τ |µ) =

∫
dbM(a, b)Bb

(
−1

τ

∣∣∣µ) (3.3)

The conformal block can be related to the elliptic β-ensemble partition function [76, 77]

Za(τ |µ) = q−a
2

∫ π

0
dz1 . . .

∫ π

0
dzN

∏
i<j

θ(zi − zj)−2b2
∏
i

θ(zi)
−2bµe

−4ia

(∑
i bzi+µw

)
,(3.4)

with the number of integrals constrained by the condition µ+ bN = 0. Here w is the point

of the toric conformal block, where the operator is inserted, and, because of this condition,

the integral does not depend on it (it can be put just zero). The toric heat kernel here reads

θ(z) = 2q
1
8 sin z

∞∏
n=1

(1− qn)(1− 2qn cos 2z + q2n) =

∞∑
n=0

(−1)nqn(n+1)/2 sin(2n+ 1)z(3.5)

The concrete relation of this partition function and the conformal block is described by

the formula1

Za(τ |µ) =
Za(i∞|µ)

η(q)ν
Ba(τ |µ), ν = 3∆ext + 3N − 1 (3.6)

The claim of [60, 61] was that for any set of parameters

Za(τ |µ) =

∫
dbe2πiabZb

(
−τ−1|µ

)
(3.7)

at any perturbative order in µ/a. Here the conformal block Za(τ |µ) and its modular

transformed Zb
(
−τ−1|µ

)
play the role of Za(Q) and Z̃b(Q) of s.2 correspondingly.

1We choose the Dedekind function to be η(q) = q
1
24

∏
n(1− qn).
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4 Modular transformation of β-ensemble: perturbative level

4.1 Loop equations and their symmetries

The key role in our consideration is played by the resolvent operator. A net definition for

the n-point resolvent for the β-ensemble on some generic Riemann surface can be given as

an average

Rn(ξ1, . . . , ξn) =

〈(∑
i1

E′(ξ1, zi1)

E(ξ1, zi1)

)
. . .

(∑
in

E′(ξn, zin)

E(ξn, zin)

)〉
(4.1)

over a β-ensemble like (3.4), with xi being integration variables in the β-ensemble and the

prime means differentiating with respect to the first argument. Here E(z, w) is the prime

form [78], its logarithm plays a role of Green function for the scalars; in our particular

toric case it is given by expression (3.5) (up to inessential constant which cancels out in

the ratio).

One can introduce (infinitely many) additional time variables, in order to generate the

multi-point disconnected resolvents by an operator acting on these times, [48–52] so that

Rn(ξ1, . . . , ξn) = Z−1∇̂(ξ1) . . . ∇̂(ξn)Z (4.2)

Similarly, one introduces a set of connected resolvents

ρn(ξ1, . . . , ξn) = ∇̂(ξ1) . . . ∇̂(ξn) logZ (4.3)

Following [79] an infinite set of Ward identities for the β-ensemble partition function

can be derived in a simple way by the shift of the integration variables

zi → zi + ε∂ξ log θ(ξ − zi) (4.4)

Thus at the first ε-order one derives an identity〈(∑
i

θ′(ξ − zi)
θ(ξ − zi)

)2

−
∑
i

θ′′(ξ − zi)
θ(ξ − zi)

+(−2b2µ∂ξ log θ(ξ − w) + 4ib2a)
∑
i

θ′(ξ − zi)
θ(ξ − zi)

+2µb
∑
i

θ′(ξ − zi)
θ(ξ − zi)

(∑
i

θ′(zi − w)

θ(zi − w)
−
∑
i

θ′(ξ − w)

θ(ξ − w)

)

−2b2
∑
i<j

θ′(zi − zj)
θ(zi − zj)

(∑
i

θ′(ξ − zi)
θ(ξ − zi)

−
∑
i

θ′(ξ − zj)
θ(ξ − zj)

)〉
= 0 (4.5)

Using the relation

θ′(x− y)θ′(x− z)
θ(x− y)θ(x− z)

+
θ′(y − x)θ′(y − z)
θ(y − x)θ(y − z)

+
θ′(z − x)θ′(z − y)

θ(z − x)θ(z − y)

=
1

2

(
θ′′(x− y)

θ(x− y)
+
θ′′(y − z)
θ(y − z)

+
θ′′(y − z)
θ(y − z)

)
+ 3η1
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where η1 = 4∂ log η
∂ log q , and after a little algebra one can derive the following loop equation

−b2〈R(ξ, ξ)〉 −Qb〈R′(ξ)〉+ (−2µ∂ξ log θ(z − w)− 4ia)b〈R(ξ)〉+ 3bµ(N + 1)η1

−θ
′(ξ − w)

θ(ξ − w)
∂w logZ − bNµθ

′′(ξ − w)

θ(ξ − w)
+ 4

∂ logZ

∂ log q
+ 4a2 − 4iaµ

θ′(ξ − w)

θ(ξ − w)
= 0

(4.6)

It is much more useful to apply slightly shifted definition of the resolvent operator

∇̂(ξ)Z =

〈
b
∑
i

∂ξ log θ(ξ − zi) + µ∂ξ log θ(ξ − w) + 2ia

〉
Z (4.7)

Then obviously, the partition function is an eigenfunction of the resolvent integral (we take

into account that µ+ bN = 0) ∫ π

0
dξ∇̂(ξ)Z = 2πiaZ (4.8)

Reformulating the loop equation in these terms, one derives[
∇̂2(z) +Q∂z(∇̂(z)− µ∂z log θ(z − w))

− (ζ(z − w)∂w − µ2℘(z)) + 4q∂q − 3µ(b− µ)η1

]
Z = 0 (4.9)

where we used the standard elliptic functions [80]

ζ(z) = −∂z log θ(z)

℘(z) = ∂2
z log θ(z) (4.10)

The loop equation possesses a symmetry

∇̂(ξ) −→− ∇̂(ξ)−Q∂ξ log ∇̂(ξ)− Q2

2
∂ξ

(
∇̂′(ξ)
∇̂2(ξ)

)

− Q3

4
∂ξ

(
−5

2

(∇̂′(ξ))2

∇̂4(ξ)
+
∇̂′′(ξ)
∇̂3(ξ)

)
+O(Q4) (4.11)

Thus, there are two solution branches2∮
A
dz ∇̂(+)(z)Z(+)

a = aZ(+)
a ,

∮
A
dz ∇̂(−)(z)Z(−)

a = −aZ(−)
a (4.13)

where the integrals run over the A-period of the spectral surface and the gauge-invariant

quantities like the conformal block may depend only on the invariant ∆(a) = Q2

4 − a
2.

2For the toric block all the higher terms are exact so do not contribute thus giving the symmetry∮
γ
dz ∇̂(z)↔ −

∮
γ
dz ∇̂(z).

Notice that for the 4-punctured sphere the second term in the expansion gives a non-vanishing contribu-

tion so the symmetry is
∮
γ
dz ∇̂(z) ↔ Q −

∮
γ
dz ∇̂(z) and the symmetric function (invariant) in terms of

eigenvalues is the conformal dimension ∆(α) = α(Q− α), since in this case∮
A

dz∇̂(z)Z = αZ (4.12)

As usual we switch to a symmetric notation assuming α = Q/2 + a.
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A B

Figure 1. Cycles on the spectral curve

4.2 Resolvents via check-operators [53, 54]

The operator ∇̂(z) acting on the matrix model partition function on sphere inserts
∑

i
1

z−zi
inside the correlators (similarly, it inserts

∑
i
θ′(ξ−zi)
θ(ξ−zi) when acting on the partition function

on torus), and therefore is realized as acting on the infinite set of time variables in the

partition function entering exponentially the measure, e
∑
i,k tkz

k
i :

∇̂(z) =
∑
k

1

zk+1

∂

∂tk
(4.14)

These operators are very convenient in study of the Ward identities in the form of Virasoro

constraints a la [48–52]. However, in the formalism of loop equations, one usually considers

the partition function with most time variables vanishing, and only a few left, tk = Tk 6= 0

for k ≤ N (N is an arbitrary integer parameterizing the class of solutions), the solution

to the Ward identities being parameterized by an arbitrary function of these remaining

variables. Hence, in the formalism of [53, 54] the operator ∇̌(z) can be interpreted as

acting in the moduli space of solutions. Remarkably, the result of the action of ∇̂(z) (the

average of the resolvent) can be represented as an action of the other operator ∇̌(z), acting

only on the moduli space. This is a somewhat difficult formalism, but it was developed

rather far in [53, 54] and we can now use the results. For our purposes the main point is

that while

∇̂(z|t)Z(t)
∣∣∣
t=T

= ∇̌(z|T )Z(T ) (4.15)

this is not true for repeated action of the resolvent operators:

∇̂(z1|t)∇̂(z2|t)Z(t)
∣∣∣
t=T
6= ∇̌(z1|T )∇̌(z2|T )Z(T ) (4.16)

Moreover, while ∇̂(z) operators at different points z commute,

[∇̂(z1), ∇̂(z2)] = 0 (4.17)

this is not true for the check-operators:

[∇̌(z1), ∇̌(z2)] 6= 0 (4.18)

The most spectacular result of [53, 54] is that[∮
AI

∇̌(z),

∮
BJ
∇̌(z)

]
= 2πiδJI (4.19)
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Actually, [53, 54] presented some evidence in favor of this conjecture by study of the first

terms of the genus expansion only, however, hereafter we assume that this is true.

To clarify this relation, consider the 4-point conformal block on sphere (i.e. the ma-

trix model on sphere, see e.g. [60, 35]) with operators inserted at points (0, 1, q,∞) and

notice first that in the course of calculating the B-cycle integral one has to change the

branch. Thus, it is more safe to consider “half-cycles” instead. According to [53, 54] the

commutation relation for the check-resolvents reads

[∇̌(x), ∇̌(y)] = − 1

∇̌(x)∇̌(y)
(∂x − ∂y)

∇̌(x)2 − ∇̌(y)2

x− y
+ higher orders (4.20)

In the case of zero external dimensions in the conformal block, the expectation value

of the check-resolvents gives a good spherical approximation

〈∇̌(z)〉 =
(q(q − 1)∂q logZ)

1
2√

z(z − q)(z − 1)
(4.21)

where the average is taken in the matrix model on the sphere. Then, the commutator reads

[∇̌(x), ∇̌(y)] = − 1

g(x)g(y)
(∂x − ∂y)

g(x)2 − g(y)2

x− y
+ higher orders (4.22)

where g(z) = [z(z − q)(z − 1)]−
1
2 . We introduce notations A1/2 and B1/2 for the half-cycles∫

A1/2

dz =

∫ q

0
dz,

∫
B1/2

dz =

∫ 1

q
dz (4.23)

Thus the corresponding integral reads

−
∫ q

0
dx

∫ 1

q

1

g(x)g(y)
(∂x − ∂y)

g(x)2 − g(y)2

x− y
=
πi

2
(4.24)

This simple calculation appeals only to the spherical limit in a simple model, nevertheless,

we assume on general grounds (see also [53, 54]) a non-perturabative relation[∫
A1/2

dz ∇̌(±)(z),

∫
B1/2

dz ∇̌(±)(z)

]
=
πi

2
(4.25)

A discussion of the relation between integrals over half-cycles and full cycles we post-

pone until the consideration of gauge invariant operators in s. 5.4.

Thus, we have constructed the operators manifestly realizing the pq-duality. They

allow us to construct a dual pair of the operators A and B, the conformal block and the

modular transformation like it was done in section 2.

4.3 The pair of dual check-operators

In order to construct the dual pair note that the action of the resolvent (or check-resolvent)

operator on the partition function (conformal block) mimics inserting to the conformal
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block the field degenerate at the second level, which can be described in terms of the

β-ensemble partition function as

Zr.op.(ξ) = η3µ(b−µ)eb
∫ ξ du∇̌(u)Z = η3µ(b−µ)

〈∏
i

θ(ξ − zi)b
2
θ(ξ − w)µbe2iabξ

〉
Z . (4.26)

Indeed, the corresponding loop equation can be presented in the form of elliptic Calogero

Schrödinger equation and coincides with the two-point conformal block on torus with one

field degenerated at the second level, [35, eq. (34)][
4q∂q + b2∂2

z −
(
ζ(z − w)∂w + ∆µ℘(z − w)−

( 3

2b2
+ 1
)
η1

)]
Z̃r.op.(z) = 0 (4.27)

In other words the insertion of an external degenerate field into the conformal block can

be, indeed, mimicked literally by the proper exponential of the check-resolvent. This gives

us an operator expressing the monodromy of a degenerate field along the closed contour γ:

Lγ ∼ eb
∮
γ dz ∇̌(z) (4.28)

It is supposed to represent a “quantum” version of the abelianization map discussed

in [64–68].

Now, (4.19) implies that LA and LB form a pair of dual operators explicitly realized

in pq-variables, much similar to the example of s.2. Hence, the corresponding modular

transformation is nothing but the Fourier transform, in accordance with [60, 61].

5 Non-perturbative modular transformation

5.1 Phase ambiguity

As we mentioned in our basic example in s.2, to restore the integral kernel, one has to fix

the normalization, which is otherwise is not essential. Therefore, it is important to specify

the normalization constant N(a) relating the partition functions and the conformal blocks

Za(τ |µ) = N(a|µ)Ba(τ |µ) (5.1)

is essential to determine the modular kernel. Now we consider these normalization con-

stants in details.

Toric normalization constant. The normalization constant in the toric case can be

simply determined from the partition function integral at q = 0

N(a) =

∫
dz1 . . .

∫
dzN

∏
i<j

(sin zij)
−2b2

∏
i

(sin zi)
−2bµ

∏
i

e−4ibazi (5.2)

After changing the variables zi = − i
2 log ti, the integral reduces (up to an inessential

factor) to

N(a) =

∫
dt1 . . .

∫
dtN

∏
i<j

t−2b2

ij

∏
i

t
−2b(a+Q

2 )
i (ti − 1)−2bµ (5.3)
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This expression is the Selberg integral which we discuss in appendix B

N(a) = Ñ

(
Q

2
+ a, µ,

Q

2
+ a

)

=

(
b2b

2−bµ+1/Γ(−b2)
)−µ

b

Γb(0)Γb(Q− 2µ)

Γb(−2a+ µ)Γb(−2a+Q− µ)

Γb(−2a)Γb(−2a+Q)
(5.4)

where Γb(x) is the Barnes double gamma function (see appendix A.1).

4-punctured sphere normalization constant. Here we have an ambiguity in the

definition. Indeed consider two β-ensembles

Z(1)
a =

∫ x

0
dz1 . . .

∫ x

0
dzN1 ×

×
∫ 1

0
dz1 . . .

∫ 1

0
dzN1

∏
i<j

z−2b2

ij

∏
i

z−2bα0
i (zi − x)−2bαx(zi − 1)−2bα1

Z(2)
a =

∫ x

0
dz1 . . .

∫ x

0
dzN1 ×

×
∫ ∞

1
dz1 . . .

∫ ∞
1

dzN1

∏
i<j

z−2b2

ij

∏
i

z−2bα0
i (zi − x)−2bαx(zi − 1)−2bα1 (5.5)

They both give the same expressions for the conformal blocks, though the normalization

constants are different

Z(1)
a = Ñ(α, αx, α0)Ñ(Q− α∞, α1, α)Ba (5.6)

Z(2)
a = Ñ(α, αx, α0)Ñ(Q− α, α∞, α1)Ba

Modular kernels are going to be different for these two choices. In fact, there is even a

larger ambiguity due to the possibility of using various combinations of the two screening

charges (so far we used only one of them, see [42–45]) and there is no a priori way to choose

between them. One can just say that the modular kernel is defined up to conjugation with

these normalization factors.

5.2 Non-perturbative dual monodromies from the check-resolvent:

toric example

In fact, the problem with expression (4.28) is that it is not gauge-invariant. One could

make it gauge-invariant by taking a trace: a sum of the both branches

Lγ ∼ eb
∮
γ dz ∇̌

(+)(z) + eb
∮
γ dz ∇̌

(−)(z) (5.7)

However, the partition functions are different at different branches, thus, one has to switch

to the conformal block which is a gauge-invariant object

Ba(τ |µ) =
Za(τ |µ)

N(a)
(5.8)
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This means one has to twist the exponentials of the check operator by the corresponding

normalization constants

eb
∮
dz ∇̌(z) −→ 1

N(a)
eb

∮
dz ∇̌(z)N(a) (5.9)

The branches differ by the sign of the check operator, thus, ultimately the relation between

the monodromy operator and the exponential of the check-resolvent reads

Ltor
γ =

[
1

N(a)
eb

∮
γ dz ∇̌(z)N(a) +

1

N(−a)
e−b

∮
γ dz ∇̌(z)N(−a)

]
(5.10)

This operator is well-defined on the whole moduli space and the conformal blocks are

eigenvectors of its A-periods.

We need only the a-dependent part of the normalization constant:

N(a) =
Γb(2a+ µ)Γb(2a+Q− µ)

Γb(2a)Γb(2a+Q)
(5.11)

Substituting the a-representation for the check operator,∮
A
dz ∇̌(z) = 2πia,

∮
B
dz ∇̌(z) =

1

2
∂a (5.12)

one derives

LA = 2 cos 2πba (5.13)

LB =
Γ(2ab)Γ(bQ+ 2ab)

Γ(bµ+ 2ab)Γ(b(Q− µ) + 2ab)
e
b
2
∂a +

Γ(−2ab)Γ(bQ− 2ab)

Γ(bµ− 2ab)Γ(b(Q− µ)− 2ab)
e−

b
2
∂a

Thus, we have constructed the two operators, LA and LB from the check operators with

the canonical commutation relations. They provide the exchange relation in the CFT, that

is, the modular transformation. Hence, the modular invariance is a transformation induced

by the pq-duality. Moreover, in the perturbative regime (i.e. at large a) these operators

contain only one of the two exponentials associated with one of the two branches, i.e. the

modular transformation in this regime, indeed, reduces to the Fourier transformation [60,

61] as we discussed in the previous section (the pre-exponential factor in (5.10) in this

case, when only one of the exponentials survives is absorbed into the normalization of the

conformal block).

5.3 Check and surface operators

The dual operators LA,B possess also an interpretation as line operators [30, 31]. The

explicit expressions for them were already obtained in [30, 31] by some heuristic ar-

guments, and they coincide with the result of our straightforward calculation in the

previous subsection.

More concretely, the two fields degenerate at the second level of the Virasoro algebra

have the following OPE:

Φ(2,1) ⊗ Φ(2,1) = Φ(1,1) ⊕ Φ(3,1) (5.14)
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And the field Φ(1,1) has dimension 0 and can be thought as an operator acting in the space

of conformal blocks. In other words one can perform the following operation C mapping

n-point conformal blocks CBn to the degenerate n+ 2-point blocks constructing a solution

to the equation

C : CBn −→ CBn|2 (5.15)

(b2L2
−1 − L−2)

〈
Vb/2(z)Vb/2(w)O

〉
= 0,

〈
Vb/2(z)Vb/2(w)O

〉
∼ (z − w)

b2

2 〈O〉 (5.16)

Using the same differential equation, one can generate a monodromy transformation making

a parallel transport of one of the degenerate fields along some contour γ:

Mγ : CBn|2 −→ CBn|2 (5.17)

In this way, one constructs the Verlinde (surface) [30, 31, 81, 82] operator

Lγ = C−1MγC : CBn −→ CBn (5.18)

It is important to show that this operator can be formulated as a differential operator acting

on the conformal block, at least in some abstract form. This makes the Verlinde operator

quite similar to the check operator constructed within the matrix model framework and

means that the Verlinde operator is a kind of exponential of the check operator. This

should be compared with what we did in [35] considering a slightly different operator

Lγ = (C ′x)−1MγC
′
x

C ′x : CBn −→ CBn|1 (5.19)

and constructing it as a solution to the following equation[
b2z(z − 1)∂2

z − (2z − 1)∂z −
x(x− 1)

z − x
∂x + ∆1/2b

+
∆0

z
− ∆1

z − 1
−∆∞ +

x2 − (2x− 1)z

(z − x)2
∆x

]
B4|1(z|x) = 0,

B4|1(z|x) = B4(x)(z − x)
Q
2
−
√
Q2

4
−∆ (1 +O ((z − x))) (5.20)

This is the equation for the 5-point conformal block with one field degenerate at the second

level and with the corresponding intermediate dimension fixed, see [35, eqs. (26) and (30)]

for details.

An explicit expression for those operators can be found in terms of CFT [30, 31], not

only for the one-point toric but also for the four-point spherical conformal blocks:

• Toric:

LA = 2 cos 2πba (5.21)

LB =
Γ(2ab)Γ(bQ+ 2ab)

Γ(bµ+ 2ab)Γ(b(Q− µ) + 2ab)
e
b
2
∂a +

Γ(−2ab)Γ(bQ− 2ab)

Γ(bµ− 2ab)Γ(b(Q− µ)− 2ab)
e−

b
2
∂a
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• 4-punctured sphere:

LA = cos 2πba, (5.22)

LB = H+(a)eb∂a +H0(a) +H−(a)e−b∂a ,

where

H±(a) = 4π2 Γ (b(Q/2± 2a+ b)) Γ (b(Q/2± 2a)Γ (b(±2a+ b)) Γ (b(±2a)))∏
si=± Γ (b(Q/2± a+ s1µ1 + s2µ2)) Γ (b(Q/2± a+ s3µ3 + s4µ4))

(5.23)

H0(a) =
cosπb2

cos 4πba− cos 2πb2
(cos 2πbµ2 cos 2πbµ3 + cos 2πbµ1 cos 2πbµ4)

+
cos 2πba

cos 4πba− cos 2πb2
(cos 2πbµ1 cos 2πbµ3 + cos 2πbµ2 cos 2πbµ4) (5.24)

and the variables µi are related to the conformal dimensions in the 4-point spherical confor-

mal block case as ∆i = µi(Q− µi). Notice that our normalization for H± differs from [30]

by 2π.

The result for the toric case coincides with formula (5.13) obtained in the previous

subsection.

5.4 Towards the four-punctured sphere example

In the case of a punctured sphere our approach of s.5.2 becomes more subtle. The problem is

that one has to switch branches while going along the B-cycle (see figure 1). However, hav-

ing constructed the gauge-invariant operator, we expect a natural relation Lγ ∼ Lγ1/2Lγ1/2 ,

where γ1/2 denotes a “half” of the contour going just along one branch (either solid or

dashed line on figure 1), though one can not exclude appearance of trace terms in this

expression. Hence, generally this operator expansion reads

Lγ = c1Lγ1/2Lγ1/2 + c2 (5.25)

The unknown coefficients c1 and c2 can be easily read off from the relation for monodromies

along the A-cycle (5.13). Indeed, both the operator and the “half-operator” are well-defined

LA = 2 cos 2πba, L(0,x) = 2 cosπba (5.26)

Implementing a simple trigonometric identity cos 2x = 2 cos2 x−1, one states the realization

of the monodromy operator as a check operator

L4−pun
γ =

[
1

N(a)
e
b
∫
γ1/2

dz ∇̌(z)
N(a) +

1

N(−a)
e
−b

∫
γ1/2

dz ∇̌(z)
N(−a)

]2

− 2 (5.27)

This expression allows one to compute the shifting coefficients explicitly

Lγ = H+(a)eb∂a +H0(a) +H−(a)e−b∂a , (5.28)

H±(a) =
N(±a+ b)

N(±a)
,

H0(a) =
N(a+ b/2)

N(a)

N(−a)

N(−a− b/2)
+
N(−a+ b/2)

N(−a)

N(a)

N(a− b/2)
− 2 (5.29)
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Now one suffices to substitute explicit expressions for N(a) in order to obtain the final

answer. However, as we already emphasized in s.5.1, there is an ambiguity in the normal-

ization factor in this case. Hence, at the moment we just read off N(a) from the known

surface operator (5.23), leaving a discussion of this subtle point for a separate publication.

If one chooses

N(a) =

∏
si=± Γb(Q/2 + a+ s1µ1 + s2µ2)Γb(Q/2 + a+ s3µ3 + s4µ4)

Γb(2a+Q)Γb(2a)
(5.30)

this gives the value of H± coinciding with (5.23). Then, the real challenge is to reproduce

the magnetic term contribution H0. Formula (5.30) can not be appropriate for this purpose,

since it is symmetric under permutation of µ1 and µ2, and formula (5.24) is not. Note,

however, that (5.30) can be multiplied by any periodic function of a with period b, which

does not effect H±, while changing H0.

Note also that at particular values µ1 = µ4 = b
4 , the correct answer for H0 is obtained

directly from (5.30). Indeed, in this case

Γb(x+ µ1 + b/2)Γb(x− µ1 + b/2)

Γb(x+ µ1)Γb(x− µ1)
=

√
2πbb(x−b/4−1/2)

Γ(bx− b2/4)
(5.31)

Applying this relation one finds the ratio

F (a) =
N(a+ b/2)

N(a)

N(−a)

N(−a− b/2)

= −4

∏
si=± cos

(
πb
(
a+ b

4 + s2µ2

))
cos
(
πb
(
a+ b

4 + s3µ3

))
sin(2πab) sin(πb(2a+ b))

(5.32)

and, after a simple algebra, one indeed obtains

F (a) + F (−a)− 2 = H0

(
a, µ1 =

b

4
, µ2, µ3, µ4 =

b

4

)
(5.33)

6 Modular kernel non-perturbatively

In this section we demonstrate that the modular kernel can be straightforwardly read off

from the equation

LB(a)M(a, a′) = LA(a′)M(a, a′) (6.1)

much similar to eq. (2.5) of section 2. Let us consider the toric one-point conformal

block, i.e. formulas (5.13). Note that the source of complexity of the modular kernel is a

complicated structure of the conformal block asymptotic series N(a) 6= N(−a). Let us be

more specific in this place: divide the normalization factor in symmetric and non-symmetric

parts N(a) = Nn(a)Ns(a), where Ns(−a) = Ns(a). Then, the monodromy operators can

be simplified

Lγ =
1

Nn(a)Ns(a)
eb

∮
γ dz∇̌(z)Nn(a)Ns(a)

+
1

Nn(−a)Ns(−a)
e−b

∮
γ dz∇̌(z)Nn(−a)Ns(−a) = Ns(a)−1L′γNs(a),

L′γ = Nn(a)−1eb
∮
γ dz∇̌(z)Nn(a) +Nn(−a)−1e−b

∮
γ dz∇̌(z)Nn(−a) (6.2)
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since Ns(a) being Weyl symmetric coincides on different branches. Let us split the nor-

malization factor

N(a) =
Γb(2a+ µ)Γb(2a+Q− µ)

Γb(2a)Γb(2a+Q)

=
Γb(2a+ µ)Γb(Q− 2a)

Γb(2a)Γb(Q− 2a− µ)

Γb(2a+Q− µ)Γb(−2a+Q− µ)

Γb(2a+Q)Γb(−2a+Q)

=
Sb(2a+ µ)

Sb(2a)

[
Γb(2a+Q− µ)Γb(−2a+Q− µ)

Γb(2a+Q)Γb(−2a+Q)

] (6.3)

where Sb(x) is the double sine function (see appendix A.2), and we throw away the last

symmetric multiplier in the brackets.3 Then, we obtain (cf. with [31, eq. (5.25)])

Na(a) =
Sb(2a+ µ)

Sb(2a)
, (6.4)

L′A = cos 2πba, L′B =
1

2

(
sin 2πb(a− µ/2)

sin 2πba
e−

1
2
b∂a +

sin 2πb(a+ µ/2)

sin 2πba
e

1
2
b∂a

)
(6.5)

Now one can solve the eigenvalue problem using expressions (6.4) in (6.1):

1

2

(
sin 2πb(a− µ/2)

sin 2πba
e−

b
2
∂a +

sin 2πb(a+ µ/2)

sin 2πba
e
b
2
∂a

)
M(a, a′) = cos 2πba′ M(a, a′) (6.6)

It is simpler to solve this equation after performing the Fourier transform

M(a, a′) =

∫ ∞
−∞

dξe4πiaξfa′(ξ) (6.7)

This leads to the substitution

e2πiba −→ e−
b
2
∂ξ , e

b
2
∂a −→ e2πibξ (6.8)

and we use the following variables

η = eπib
2
, y = eπibµ, z = e2πibξ, s = e2πiba′ , X̂f(ξ) = e

b
2
∂ξf(ξ) (6.9)

Then, the eigenvalue problem reduces to the following algebraic equation[(
X̂y − X̂−1y−1

)
z−1 +

(
X̂y−1 − X̂−1y

)
z
]
fa′(ξ) =

(
X̂ − X̂−1

)(
s+

1

s

)
fa′(ξ)⇒

⇒ X̂2fa′(ξ) = η2 (s− yz)(1− zys)
(sy − η2z)(y − η2sz)

fa′(ξ) (6.10)

or, equivalently, to

fa′(ξ + b) =
sinπb

(
ξ + µ

2 − a
′) sinπb

(
ξ + µ

2 + a′
)

sinπb
(
ξ + b− µ

2 − a′
)

sinπb
(
ξ + b− µ

2 + a′
)fa′(ξ) (6.11)

3In fact, the expressions for the surface operators in [31] and [30] differ exactly by this symmetric factor.
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The solution reads

fa′(ξ) = C̃1(ξ)C2(a′)
Sb
(
ξ + µ

2 − a
′)Sb (ξ + µ

2 + a′
)

Sb
(
ξ + b− µ

2 − a′
)
Sb
(
ξ + b− µ

2 + a′
)

= C1(ξ)C2(a′)
Sb
(
ξ + µ

2 − a
′)Sb (ξ + µ

2 + a′
)

Sb
(
ξ +Q− µ

2 − a′
)
Sb
(
ξ +Q− µ

2 + a′
)

where C1(ξ) is an arbitrary periodic function with period b, C2(a′) is an arbitrary function

and we used the fact that the function G(x) = eπix/b
Sb(x+ 1/b)

Sb(x)
is periodic with period b.

Thus, finally,

M(a, a′) =

∫
dξ C1(ξ)C2(a′)

Sb
(
ξ + µ

2 − a
′)Sb (ξ + µ

2 + a′
)

Sb
(
ξ +Q− µ

2 − a′
)
Sb
(
ξ +Q− µ

2 + a′
)e4πiaξ

and there is a freedom in this answer related with the choice of normalization of the

conformal block. This result is consistent4 with [29, (4.41)], and here it is obtained by

solving directly the simple and explicit equation (6.1).
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A Useful quantum functions

In this appendix we list some useful definitions of the Barnes functions. We follow conven-

tions of [31].

A.1 The double gamma function Γb(x)

This function satisfies the functional equation

Γb(x+ b) =

√
2πbbx−

1
2

Γ(bx)
Γb(x) (A.1)

with the ordinary Γ-function in the denominator, and possesses the integral representation

log Γb(x) =

∫ ∞
0

dt

t

(
e−xt − e−Qt/2

(1− ebt)
(
1− et/b

) − (Q− 2x)2

8et
− Q− 2x

t

)
(A.2)

which immediately implies

Γb(x) = Γ1/b(x) (A.3)

4In order to compare the two answers, one has to use property (A.6).
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A.2 The double sine function Sb(x)

This function is defined as

Sb(x) =
Γb(x)

Γb(Q− x)
(A.4)

satisfies the difference equation

Sb(x+ b) = 2 sinπbx Sb(x) (A.5)

and enjoys the evident property

Sb(x)Sb(Q− x) = 1 (A.6)

B Normalization of the matrix model partition function

The “holomorphic” three-point correlation function Ñ is defined through the Selberg

integral

Ñ(α3, α2, α1) =
1

(2π)NN !

N∏
i=1

∫ 1

0
dzi

∏
i<j

z−2b2

ij

N∏
i=1

z−2bα1
i (1− zi)−2bα2 ,

α1 + α2 + bN = α3 (B.1)

For any integer N this integral can be calculated explicitly

Ñ(α3, α2, α1) =
N∏
j=1

Γ
(
−2bα1 + 1− b2(j − 1)

)
Γ
(
−2bα2 + 1− b2(j − 1)

)
Γ(1− b2j)

Γ (−2bα1 − 2bα2 + 2− b2(N + j − 2)) Γ(1− b2)
(B.2)

Using the functional relation

Γ(bx) =
√

2πbbx−
1
2

Γb(x)

Γb(x+ b)
(B.3)

one can derive its analytic continuation to arbitrary N [41]

Ñ(α1, α2, α3) =

(
b(N+2)b2+1

Γ(−b2)

)N
×Γb(2Q−α1−α2−α3)Γb(Q−α1+α2−α3)Γb(Q−α1−α2+α3)Γb(−α1+α2+α3)

Γb(2Q− 2α1)Γb(Q− 2α2)Γb(Q− 2α3)Γb(0)
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