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Abstract: F-theory on appropriately fibered Spin(7) holonomy manifolds is defined to

arise as the dual of M-theory on the same space in the limit of a shrinking fiber. A

class of Spin(7) orbifolds can be constructed as quotients of elliptically fibered Calabi-

Yau fourfolds by an anti-holomorphic involution. The F-theory dual then exhibits one

macroscopic dimension that has the topology of an interval. In this work we study the

weak-coupling limit of a subclass of such constructions and identify the objects that arise

in this limit. On the Type IIB side we find space-time filling O7-planes as well as O5-

planes and orbifold five-planes with a (−1)FL factor localised on the interval boundaries.

These orbifold planes are referred to as X5-planes and are S-dual to a D5-O5 system.

For other involutions exotic O3-planes and X3-planes on top of a six-dimensional orbifold

singularity can appear. We show that the objects present preserve a mutual supersymmetry

of four supercharges in the bulk of the interval and two supercharges on the boundary. It

follows that in the infinite-interval and weak-coupling limit full four-dimensional N = 1

supersymmetry is restored, which on the Type IIA side corresponds to an enhancement of

supersymmetry by winding modes in the vanishing interval limit.
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1 Introduction

F-theory on elliptically fibered Calabi-Yau fourfolds has been studied intensively since it

was originally proposed as a description of Type IIB string theory with varying string

coupling [1]. Compactifications of F-theory on Calabi-Yau fourfolds preserve minimal su-

persymmetry in the non-compact four dimensions as a result of the SU(4) holonomy of

the internal geometry. However, Berger’s classification of the special holonomy groups of

eight-dimensional manifolds [2] shows that the largest possible special holonomy group is

actually Spin(7). Accessing F-theory compactifications on such Spin(7) holonomy man-

ifolds has been a long standing problem that was originally raised in [1], but has only

been addressed recently in [3]. Indeed a simple generalization of the usual F-theory setup

to backgrounds with four non-compact Minkowski directions times the internal Spin(7)

geometry leads to immediate difficulties.

In order to approach F-theory on Spin(7) manifolds one can, however, view F-theory

as a particular limit of M-theory. Compactifying M-theory on a suitably fibered Spin(7)

manifold one obtains an F-theory setup in the limit of vanishing fibre volume. Recall that

this duality requires one T-duality when interpreted within Type II string theory. This

procedure allows the four-dimensional effective theory to be determined by an appropriate

up-lift of the three-dimensional M-theory setup [3–5]. Therefore in order to study F-theory

on Spin(7) manifolds we must understand M-theory on these spaces and implement the

decompactification limit. In this paper we investigate these questions using the geometries
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introduced in [3]. Inspired by the work of [6], these are formed by quotienting a Calabi-

Yau fourfold by an anti-holomorphic and isometric involution σ. In particular, we choose

the underlying Calabi-Yau manifold to be elliptically fibered with base B3 and require the

action of σ to be compatible with the fibration. We introduce these geometries in more

detail in section 2. It was argued in [3] that the duality of M-theory to F-theory on such

Spin(7) manifolds suggests that the four macroscopically large directions have boundaries.

In fact, the additional dimension that grows in the M-theory to F-theory limit may be

considered to be an interval.

An important aspect of these compactifications is the amount of supersymmetry that

is preserved. Compactifying M-theory on a Spin(7) manifold preserves two real super-

charges in three dimensions [7], which could be heuristically interpreted as N = 1/2 four-

dimensional supersymmetry. One new advance presented in [3] is an understanding of

how to reach the four-dimensional limit from such compactifications, which involves an

interval on the F-theory side. For finite interval length the total space preserves two real

supercharges, but it is important to answer the more specific question: How much super-

symmetry is preserved in the bulk of the interval, how much on the boundary, and what

is the interplay between the two? Since the duality between M-theory and F-theory acts

fibre-wise and preserves supersymmetry, understanding these aspects can also shed light on

the significantly more complicated question of how the amount of supersymmetry preserved

may be modified on the M-theory side in the vanishing fibre limit.

We will attack this question by studying the weak-coupling limit of these models. This

is very interesting in itself. Indeed, one of the beautiful aspects of F-theory and M-theory

is that they are able to describe complicated string theory constructions from a purely

geometric perspective. The appearance of orientifold planes and D7-branes in the weak-

coupling limit of F-theory compactifications on Calabi-Yau manifolds is well understood

as the Sen limit of the geometry [8, 9]. We will show that the weak-coupling limits of

these Spin(7) constructions include more exotic string theory configurations, for example

where O7- and O5-planes are present simultaneously together with certain loci which we

term X5-planes. Such an X5-plane represents the six-dimensional fixed-point locus of an

orbifold action dressed with an additional factor of (−1)FL , where FL is the left-moving

space-time fermion number, as discussed in [10–15]. These configurations arise for Spin(7)

constructions based on involutions that have three-dimensional fixed loci in the base and

the elliptic fibers over these has fixed lines. We will also study the case where the fixed

locus in the base is one-dimensional. In this situation we encounter O3- and O7-planes

simultaneously and an interesting class of X3-planes and exotic O3-planes confined on a

six-dimensional orbifold singularity. However, yet more exotic possibilities exist [3] since

the fibers over a fixed point on the base could admit a fixed-point free action resulting in

a Klein bottle fibre. The analysis of this work will not cover these cases.

Using our results on the weak-coupling limit we are able to sharpen our understanding

of the supersymmetry properties of these setups. By analysing the weakly coupled planes,

their mutually preserved supersymmetries, as well as aspects such as tadpole cancellation,

we will show that in the infinite interval limit supersymmetry is enhanced to four super-

charges, or N = 1, on the F-theory side. This implies that a similar enhancement of
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supersymmetry must occur on the M-theory side in the vanishing fibre limit due to new

light winding states. In general this would be a highly non-trivial process since it would

involve strongly coupled M2-brane winding states becoming light at the singular locus of

the non-trivial fibration. However, we can avoid these complications by considering Sen’s

weak coupling limit of the underlying Calabi-Yau fourfold geometry. This allows us to

approach this problem within the framework of perturbative Type II string theory. The

relevant winding modes are then those of Type IIA string theory on an interval of finite

size. The resulting configurations can then be more systematically studied by using known

approaches to winding string states. One can then explicitly check that these states are

responsible for the enhancement of supersymmetry in the limit of vanishing interval size.

This work is structured as follows. In section 2 we introduce the relevant Spin(7)

geometries as Calabi-Yau fourfold quotients. We discuss their Sen weak-coupling limit and

deduce the set of quotients acting on the orientifolded Calabi-Yau threefold that emerges.

Section 3 is devoted to a more detailed analysis of these weak-coupling setups. We identify

the localized objects and study their supersymmetry properties. This allows us to comment

on supersymmetry restoration in the large interval limit.

2 Spin(7) holonomy manifolds as quotients

In this section we introduce the class of manifolds with special holonomy group Spin(7)

(which we will refer to Spin(7) manifolds for short) that will be studied in this work.

Recall that a Spin(7) manifold preserves only one covariantly constant nowhere vanishing

Majorana-Weyl spinor η. In contrast, a Calabi-Yau fourfold, i.e. a Kähler manifold with

SU(4) holonomy, has two covariantly constant spinors η1, η2. We describe in the following

how one can construct a Spin(7) manifold starting with a Calabi-Yau fourfold and will

examine this construction for elliptically fibered Calabi-Yau fourfolds. The discussion ex-

tends the results already presented in [3], and highlights certain important local properties

that we will need later.

2.1 Generalities on the quotient construction

Let us start with a Calabi-Yau fourfold Y4 that later on is allowed to have certain singular-

ities. We demand that it admits an anti-holomorphic and isometric involution σ : Y4 → Y4,

thus satisfying

σ2 = 1l , σ∗(g) = g , σ∗(I) = −I , (2.1)

where g and I are the metric and complex structure on Y4. Note that this implies that the

Kähler form J and (4,0)-form Ω of Y4 transform as

σ∗J = −J , σ∗Ω = e2iθΩ̄ , (2.2)

for some constant θ. The Spin(7) manifolds under consideration are then constructed as

quotients

Z8 = Y4/σ . (2.3)
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It is important to stress that in general the manifolds Z8 are singular, with a singularity

set of even real dimension. Discussing these singularities in more detail will be one of the

tasks of the remainder of this section.

Let us next impose that Y4 is an elliptic fibration with base B3. This implies that

there exists a projection map π : Y4 → B3 that we demand to be compatible with σ and

lead to a well-defined action σB = σ|B3
on B3. The elliptic fiber over B3 can be described

by a Weierstrass equation

y2 = x3 + f(ui)x z
4 + g(ui) z

6 , (2.4)

where x, y, z are projective coordinates in P
2
2,3,1 and f(ui), g(ui) are functions of base

coordinates ui. The base B3 might also be defined by additional polynomial constraints.

At points of vanishing discriminant

∆ = 4f3 + 27g2 , (2.5)

the elliptic fiber becomes singular. ∆ = 0 then defines a complex two-dimensional subspace

in B3 and determines the location of the space-time filling seven-branes on B3.

Let us denote by L̂σ the fixed-point space of σ in Y4. Its projection to B3 is denoted by

LB
σ = π(L̂σ) and can equally be obtained as the fixed-point space of σB. In this work we

will consider situations in which the dimension of LB
σ is either one or three. The simpler

case, which we will call case (a), is when LB
σ is three-dimensional, since in this case the

base B3 can be non-singular. In a given local patch U on B3 containing a fixed point of

σB we can describe the action of σB in local complex coordinates (z1, z2, z3) as

(a) (z1, z2, z3) → (z̄1, z̄2, z̄3) , ⇒ LB
σ (U) is three-dimensional. (2.6)

A possible alternative that we refer to as case (b) is when LB
σ is one-dimensional. In this

situation B3 cannot be smooth and instead is replaced by an orbifold with singularities

associated with a discrete group G that contains Z2. For simplicity we will focus here

on the case where G = Z2 but the extension to more general orbifold singularities may

be easily performed. A patch U of B3 near such a singularity takes locally the form

C
3/Z2 and may be described locally by the complex coordinates (z1, z2, z3) identified by

ρU : (z1, z2, z3) → (−z1,−z2, z3). The action of σB on these coordinates is given by

(b) (z1, z2, z3) → (z̄2,−z̄1, z̄3) , ⇒ LB
σ (U) is one-dimensional, (2.7)

which is an involution on the patch U as σB squares to the identification ρU .

Let us point out two special cases where such a situation occurs. Firstly, one could start

with a non-singular threefold admitting a global Z2 and quotient by this symmetry to find

the base B3. In fact, this sort of situation naturally arises in toroidal orbifolds. Secondly,

one may consider the case that B3 is described as a hypersurface or complete intersection

in a higher-dimensional ambient space exhibiting orbifold singularities as a result of scaling

identifications. This allows σB to act as an involution on B3 if it is induced by a symmetry

of the ambient space that squares to the identity upon using the scalings. Both types of

constructions appear in [6]1 and alternative Spin(7) constructions also appear in [17, 18].

1For a stringy analysis of the Hodge numbers of these geometries, see also [16].
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2.2 Quotients in the weak-coupling limit

The weak-coupling limit of F-theory compactifications was originally discussed in [8, 9]. In

this limit the Weierstrass coefficients f and g appearing in (2.4) can be expanded as

f = Cη − 3h2 , g = h(Cη − 2h2) + C2χ . (2.8)

The limit is then given by taking C → 0 and results in a setup that describes O7-planes,

which lie at h = 0 and D7 branes, which lie at η2 = −12hχ.

In this weak-coupling limit a quotient associated with the O7-action emerges and this

quotient must then be combined with the action of σ in order to determine the full group

of symmetries which act on the Calabi-Yau threefold that emerges in the weak-coupling

limit. In what follows we will briefly review how this O7-quotient emerges in this limit.

First let us use the P231 identification to rescale the torus z coordinate, in (2.4), to 1.

Then we note that in the limit as C → 0 the equation of the torus may then be rewritten

in terms of the new coordinates x̃ and ỹ, where x = hx̃, y = h
3

2 ỹ, as

ỹ2 = x̃3 − 3x̃− 2 , (2.9)

which is manifestly independent of the base coordinates. The harmonic one form of the

torus Ω1 = dx
y is given in terms of these rescaled coordinates by Ω1 = h−

1

2
dx̃
ỹ . The O7-

action may then be seen by moving once around h = 0 and noting that Ω1 → −Ω1.

The Calabi-Yau threefold which is present in the weak-coupling limit is then the double

cover of the base such that Ω1 becomes single valued. To see this we follow the standard

Sen construction by adding an additional coordinate ξ along with the polynomial constraint

ξ2 = h(ui) , (2.10)

defining the Calabi-Yau threefold Y3. The holomorphic orientifold involution is given by

σh : Y3 → Y3 , ξ → −ξ , (2.11)

and has O7-planes at the fixed points given by h = 0. Formally lifting Ω1 from the base

to its double cover Y3 we may then write Ω1 = dx̃
ξỹ and see the consistency of the O7-

monodromy action Ω1 → −Ω1 with the map ξ → −ξ.

Next we can write Ω1 as Ω1 = dZ where Z is the complex coordinate of the torus which

may be expanded in terms of the A and B cycle coordinates xA and xB as Z = xA + τxB.

This shows that the action of the holomorphic involution (2.11) induces a reflection RAB

of the coordinates of the A and B cycles given by (xA, xB) → (−xA,−xB). This formal

geometric action on the the torus coordinates encodes the intrinsic parities of the Type IIB

fields under the orientifold involution.

As a further step we study these effects in a setups in which the Calabi-Yau fourfold

is also quotiented by an anti-holomorphic involution σ. By considering the action of the

different involutions on the ambient space of the fiber and demanding the invariance of

the polynomial which defines the Calabi-Yau fourfold we can deduce the action of σ on
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the Weierstrass coefficients and the functions which appear in the weak-coupling limit. To

carry this out explicitly we assume that σ acts as

σ(f, g, h, η, χ) = (f̄ , ḡ, h̄, η̄, χ̄) . (2.12)

We have found this to be the case in all examples we have constructed using simple invo-

lutions on hyper-surfaces in toric ambient spaces. Then by using that

j(τ) =
4(24f)3

4f3 + 27g2
, (2.13)

where j(τ) is the familiar modular invariant j-function, we find that τ(σB(ui)) = −τ̄(ui) [3].

We now introduce an anti-holomorphic involution

σah : Y3 → Y3 , (2.14)

induced by σ. However, we must note that the action of σB on h does not uniquely

determine the action of σah on ξ which can either be ξ → ξ̄ or ξ → −ξ̄. Both choices

are related by σh given in (2.11) and without loss of generality we can choose σah to act

as ξ → ξ̄. As a consequence the action of σah on the uplift of Ω1 is given by Ω1 → Ω̄1.

Writing Ω1 in terms of xA and xB and combining the action of the two involutions σh and

σah on Ω1 and τ we find the corresponding actions RAB, RA, and RB on the coordinates

(xA, xB) of the A and B cycles. The set of combined quotients in the weak limit may then

be summarised by

σh : (ui, ξ) → (ui,−ξ) , RAB : (xA, xB) → (−xA,−xB),

σah : (ui, ξ) → (σB(ui), ξ̄) , RB : (xA, xB) → (xA,−xB),

σhσah : (ui, ξ) → (σB(ui),−ξ̄) , RA : (xA, xB) → (−xA, xB), (2.15)

where each line lists the action on Y3 along with the formally induced reflection on an

auxiliary T 2. By considering the form of these quotients we see that σh and σah always

commute on bosons and that the dimension of the fixed space of σah in Y3 is always the

same as the dimension of the fixed space of the product σhσah. We note that in the case

(b), in which σB has a one-dimensional fixed space, the orbifold singularities of B3 must

also be up-lifted to the double cover Y3. One can analyze these singularities in local patches

analogously to the description given in section 2.1.

Let us close the section by commenting on the M-theory background that corresponds

to the weak-coupling limit we have described. Clearly one could compactify M-theory on

Z8 directly and should recover the above weak-coupling setup as a specific limit in the

geometric moduli space. However one may instead follow the prescription above by first

going to the Sen limit of Y4 and then considering the additional quotient by σ. Having

done this we will then take a further limit in which the M-theory circle becomes small and

may then consider the set of effective quotients in Type IIA. The local geometry near the

fixed points of the various involutions can then be analysed separately.
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The holomorphic involution σh has a four-dimensional fixed space on Y3. Cutting out

a patch of the two-dimensional space normal to this fixed locus and considering the T 2

fibers over it we obtain a four-dimensional space that is locally of the form

(S1
A × S1

B × R
2)/Z2 , (2.16)

where R
2 represents the normal space on Y3 and S1

A, S
1
B are independent cycles of the

elliptic fiber such that S1
A is the M-theory circle and S1

B is the circle along which one

applies T-duality to go to F-theory. Let us recall that the geometry of the normal space of

a lifted O6-plane in M-theory is asymptotically given by (S1
A × R

3)/Z2, where Z2 inverts

all coordinates simultaneously. We may then infer that (2.16) signals the presence of an

O6-plane localised at a point along the circle S1
B. This result is well known and is consistent

with the fact that in Type IIB the holomorphic action is associated with the presence of

O7-planes in the geometry.

Similarly we can consider the fixed-point sets of the anti-holomorphic involution. In

doing this we will focus on case (a) where the fixed space of σB is three-dimensional. It

is then convenient to combine the actions σah and σhσah with the induced reflections RB

and RA to form the products σahRA and σhσahRB. The normal space to the fixed-point

sets of these total actions is locally given by

(S1
B × R

3)/Z2 , and (S1
A × R

3)/Z2 , (2.17)

respectively. The corresponding Type IIA objects are then given by a six-dimensional

orbifold plane Orb5 and a O6-plane that wraps the S1
B cycle. We will comment on this

setup in more detail in the next section. One can also perform this analysis for the case in

which σB has a one-dimensional fixed space. The objects that arise in this situation will

be discussed in section 3.3.

3 Weak-coupling setups

In this section we introduce Type IIB and Type IIA string theory setups that can arise

in the weak-coupling limit of the geometries introduced in section 2. In subsection 3.1 we

first discuss the case in which the fixed-point locus of σB is three-dimensional, i.e. the case

(a) in (2.6). We find that the Type IIB setup contains O5-planes and exotic orbifold five-

planes. The case of a one-dimensional fixed-point set of σB, case (b) in (2.7), is discussed

in section 3.2. This yields exotic orientifold three-planes and orbifold three-planes that

we describe in detail on a torus background. In both setups our strategy is to start with

a proposed Type IIB setting and then stepwise translate the objects which appear into

the T-dual Type IIA setting and finally to the geometry of a Spin(7) manifold. That the

unusual objects that we have identified preserve mutual supersymmetry in both setups can

be checked explicitly in torus examples as shown in section 3.3. Collecting these insights we

then comment on the supersymmetry restoration in the large interval limit in section 3.4.
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3.1 Weak-coupling setup with five-planes

The first setting under consideration is obtained by examining Type IIB on the background

MIIB
10 = (M2,1 × S1 × Y3)/G , (3.1)

where M2,1 is three-dimensional flat space, Y3 is a Calabi-Yau threefold, and the symmetry

group G is generated by the transformations [3]2

O1 = Ωp σh (−1)FL , O2 = R3 σah (−1)FL . (3.2)

The operations Ωp and FL are the world-sheet parity and the left-moving space-time

fermion number and hence are intrinsically stringy symmetries. We denote by R3 the

reflection of the circle to form an interval I = S1/Z2. The geometric maps σh and σah are

holomorphic and anti-holomorphic involutions of a Calabi-Yau threefold Y3, respectively.

Both are demanded to be isometries and required to commute on bosons, as we discuss

in more detail below. In other words, we consider two maps σh/ah : Y3 → Y3, σ
2
h/ah = 1l

satisfying

σh/ah(ĝ) = ĝ , σh(Î) = Î , σah(Î) = −Î , (3.3)

where ĝ is the metric on Y3, and Î is its complex structure. The geometric actions σh and

σah will be identified with the actions introduced in (2.11) and (2.14). The complete form

of O1 and O2 was proposed in [3] and will be confirmed in the following.

Since σh is holomorphic its fixed-point set Hσh
is holomorphically embedded in Y3. In

order to connect to an F-theory setup we will demand in the following that Hσh
of σh is

complex two-dimensional. This ensures that the fixed points of O1 are O7-planes extending

along M
2,1×I and wrapping Hσh

. To cancel the tadpoles induced by these negative tension

objects the setup should also contain D7-branes filling M
2,1 × I. The setting obtained by

O1 is known to arise as the weak-coupling limit of F-theory compactified on a Calabi-Yau

fourfold [8, 9], as we already recalled in section 2.2.

The action of O2 is more unusual as it represents a geometric orbifold action combined

with a (−1)FL action. These sorts of exotic orbifolds have been studied in [10–15]. Let

us note also that the presence of the reflection R3 is necessary in the O2 action, since an

anti-holomorphic involution σah alone is a Pin-odd transformation and hence would not

be a symmetry of the chiral Type IIB string theory. In the following we demand that σah
has a real three-dimensional fixed-point set Lσah

. The space Lσah
is a special Lagrangian

sub-manifold due to the properties of σah. This implies that the fixed-point set of O2 is real

six-dimensional including the non-compact three-dimensional space-time M
2,1. The fixed

points of O2 are located at the ends of the interval I. We call the resulting fixed planes

X5-planes and will describe their properties in more detail below.

The geometric actions σh and σah are required to satisfy the properties

σhR3 = R3 σh , σahR3 = (−1)FL+FR R3 σah , σhσah = (−1)FL+FR σahσh , (3.4)

2We follow the conventions of [19].
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symmetry fixed object location tadpoles

O1 O7 M
2,1 × I ×Hσh

add D7

O2 X5 M
2,1 × Lσah

no tadpole

O3 O5 M
2,1 × Lσhσah

add D5

Table 1. Summary of the symmetry transformations acting on the Type IIB setup (3.1), together

with the objects appearing at the associated fixed-point loci, and their location.

where the factor (−1)FL+FR signals commutation on bosons and anti-commutation on

ten-dimensional fermions. Under these assumptions one easily computes the algebra of

operators O1, O2 to be

O2
1 = O2

2 = 1l , O1O2 = O2O1 . (3.5)

Consistently quotienting out by O1 and O2 implies that one has to also consider the fixed

points of the combined action

O3 ≡ O1O2 = ΩpR3 σh σah , (3.6)

in addition to the O7- and X5-planes introduced above. The fixed-point loci of this action

O3 are O5-planes that fill M2,1 and wrap the three-dimensional special Lagrangian fixed-

point set Lσhσah
of σh σah in Y3. As with the O7-planes, these O5-planes also induce a

non-trivial tadpole that has to be cancelled. This requires us to include D5-branes into

the setup that fill M2,1, localize on I and wrap a three-cycle in Y3 homologous to Lσhσah
.

In the following, we will consider only D5-branes directly wrapping Lσhσah
. A summary of

the objects that occur in this setup can be found in table 1.

This implies that the Type IIB weak-coupling limit contains the familiar orientifold

planes as well as X5-planes. The latter planes have been studied in detail in the litera-

ture [10–15] within a different context and given their prominent role it is worthwhile to

recall their main features. The X5-planes can be seen to be the S-dual of an O5-plane with

a single D5-brane on top of it; since S-duality maps (−1)FL ↔ Ω in Type IIB we see that

the orbifold action maps to that of an O5-plane. The presence of the D5-brane on top of it

can be inferred from tadpole cancellation and the presence of a U(1) symmetry supported

on the X5-plane which is the S-dual of the gauge symmetry on the D5-brane. The U(1) is

part of the twisted sector, which is most easily identified in the Type IIA dual that is just a

simple orbifold as we discuss in more detail below. In fact the local orbifold singularity was

studied in a global compact setting which is the orbifold limit of a K3 (which is in turn dual

to heterotic on T 4). In this global completion, the U(1) is one of the 16 U(1)s arising from

the twisted sector of the K3 orbifold limit, or in the geometric regime from dimensionally

reducing C3 on one of the blow-up cycles and sits in a six-dimensional vector multiplet.

Having identified the weak-coupling objects in table 1 we now note that they can

preserve three-dimensional N = 1 supersymmetry along M
2,1. Indeed, compactification

on the setup (3.1) before performing the quotient with respect to G yields a theory with
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symmetry fixed object location tadpoles

Õ1 O6 M
2,1 ×Hσh

add D6

Õ2 Orb5 M
2,1 × Lσah

no tadpole

Õ3 O6 M
2,1 × Ĩ × Lσhσah

add D6

Table 2. Summary of the symmetry transformations acting on the T-dual Type IIA setup (3.7),

together with the objects appearing at the associated fixed-point loci, and their location.

eight supercharges. This is reduced to two supercharges by the presence of O7-planes,

D7-branes, and X5-planes. The O7-D7 system does not break supersymmetry completely

because, in the simple case in which the D7-branes sit on top of the O7-planes, all these

object wrap the holomorphic cycleHσh
in Y3. In a similar fashion, the X5-plane and the O5-

D5 system do not break supersymmetry completely because they wrap special Lagrangian

sub-manifolds Lσah
, Lσhσah

. Finally, mutual supersymmetry among these objects can be

inferred by noting that the calibration of the special Lagrangian sub-manifolds is adapted

by construction to the complex structure with respect to which Hσh
is holomorphic. We

will check mutual supersymmetry explicitly in the case of toroidal models in section 3.3.

Let us now follow the various objects to Type IIA string theory and lift them to a

geometric Spin(7) setup of F-theory. Firstly, we T-dualize along the x3 direction, i.e. the

direction associated to the interval I = S1/Z2. The resulting Type IIA background is

MIIA
10 = (M2,1 × S̃1 × Y3)/G̃ , (3.7)

where S̃1 is the T-dual circle and the symmetry group G̃ is generated by the T-duals of

O1 and O2, given by

Õ1 = ΩpR3 σh(−1)FL , Õ2 = R3 σah , (3.8)

respectively. We also record the T-dual of the combined action O3

Õ3 = Ωp σh σah (−1)FL . (3.9)

These expressions for the T-dual actions will be tested in the explicit toroidal model dis-

cussed below.

We realize that both Õ1 and Õ3 are Type IIA orientifold involutions that admit O6-

planes along their fixed-point loci. On the one hand, the O6-planes associated to Õ1 span

M
2,1 and wrap the four-cycle Hσh

in Y3. On the other hand, the O6-planes arising from Õ3

span M
2,1 × Ĩ, where Ĩ = S̃1/Z2 is the T-dual interval, and wrap the three-cycle Lσah

and

Lσhσah
. In contrast Õ2 is simply an orbifold action on the compact part of (3.7). Its fixed

loci are six-dimensional orbifold planes denoted by Orb5. The fixed-point objects which

appear in Type IIA are summarised in table 2.

In order to lift these quotients to M-theory we begin by noting that the parts of the

quotients which do not act on the IIA geometry arise from the reduction of quotients in
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symmetry fixed object x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

O1 O7 × × × × × × × ×

O2 X5 × × × × × ×

O3 = O1O2 O5 × × × × × ×

Table 3. The location of the fixed-point sets of the Type IIB involutions (3.13) are displayed in

coordinates xm for the toroidal model on M
2,1 × S1 × T 6. The symbol × indicates that the object

fills this dimension. In all other directions the objects are at fixed points.

M-theory as

R11 → Ωp(−1)FL , C → Ωp , (3.10)

where C maps the M-theory three-form as C3 → −C3. This then implies that the quo-

tients (3.8) are descended from M-theory quotients which act as

ÕM
1 = R3R11 σh , ÕM

2 = R3 σah , ÕM
3 = R11 σhσah . (3.11)

Identifying the 11 and 3 directions with the A and B cycles of the elliptic fiber respectively,

these quotients can then be matched to the quotients appearing in (2.15).

For many applications, such as checking the supersymmetry properties of the setup

in section 3.3, it turns out to be convenient to introduce the configurations on a six-torus

T 6 instead of Y3. Real coordinates on the ten-dimensional background M
2,1 × S1 × T 6

are denoted by xm, m = 0, . . . , 9. In the internal space T 6 they combine into complex

coordinates zi, i = 1, 2, 3 as z1 = x4 + ix5, z2 = x6 + ix7, z3 = x8 + ix9. We implement the

holomorphic involution σh and the anti-holomorphic involution σah as

σh : (z1, z2, z3) → (z1, z2,−z3) , σah : (z1, z2, z3) → (z̄1, z̄2, z̄3) . (3.12)

Hence the actions (3.2) take the form

O1 = ΩpR89 (−1)FL , O2 = R3579 (−1)FL , O3 = ΩpR3578 , (3.13)

where Rm denotes the reflection of the real coordinate xm, and Rm1...mN
= Rm1

. . . RmN
.

This implies that the extended fixed-point objects of O1, O2, and O3 = O1O2 are extended

along the xm-directions as listed in table 3.

We can now study the dual Type IIA picture obtained by T-duality along x3. The

background is M2,1 × S̃1 × T 6, and the actions on this background read

Õ1 = ΩpR389 (−1)FL , Õ2 = R3579 , Õ3 = ΩpR578 (−1)FL . (3.14)

In this toroidal model one can evaluate explicitly Õi = T3OiT
−1
3 , with T3 being the op-

erator that implements T-duality along the x3 coordinate, using the rules collected in

appendix A. The fixed-point loci of Õ1, Õ2, and Õ3 extend along the real coordinates

x0, x1, x2,x̃3,x4, . . . , x9 as shown in table 4.

The M-theory lift of this toroidal Type IIA background is completely analogous to

the general case discussed in (3.11). For the convenience of the reader we summarize the

quotients and objects that lie at the fixed spaces in table 5.
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symmetry fixed object x0 x1 x2 x̃3 x4 x5 x6 x7 x8 x9

Õ1 O6 × × × × × × ×

Õ2 Orb5 × × × × × ×

Õ3 = Õ1 Õ2 O6 × × × × × × ×

Table 4. The location of the fixed-point sets of the Type IIA involutions (3.14) are displayed in

coordinates xm for the toroidal model on M
2,1 × S1 × T 6. The symbol × indicates that the object

fills this dimension. In all other directions the objects are at fixed points.

Type IIB quotient Type IIA quotient M-theory quotient

O1 = ΩpR89(−1)FL O7 Õ1 = ΩpR389(−1)FL O6 σhRAB = R38911

O2 = R3579(−1)FL X5 Õ2 = R3579 Orb5 σahRB = R3579

O1O2 = ΩpR3578 O5 Õ1 Õ2 = ΩpR578(−1)FL O6 σhσahRA = R57811

Table 5. Summary of the symmetry transformations modded out in Type IIB, Type IIA and

M-theory in the case that σB has a three-dimensional fixed space. The individual geometric actions

have been introduced in section 2.2.

3.2 Weak-coupling setups with three-planes

This section is devoted to the situation in which the fixed-point locus of the anti-

holomorphic involution on the base manifold is one-dimensional. This is described by

case (b) as shown in (2.7). In this case the fixed locus of σah sits on top of a Z2 orbifold

singularity of Y3. In the following we refrain from a description of such setups for a gen-

eral Calabi-Yau threefold, and rather discuss directly the toroidal model. This allows us

to identify the localized objects that appear in the weak-coupling limit and to study in

section 3.3 their mutual supersymmetry properties in a controlled way.

The Type IIB background we analyse is obtained starting from M
2,1×S1×T 6/Z2 and

taking the quotient with respect to the symmetry group generated by the transformation

O1 defined in (3.13) and by the new transformation Ô2, where

O1 = ΩpR89 (−1)FL , Ô2 = R3579H (−1)FL , (3.15)

and where H denotes the holomorphic action

H : (z1, z2, z3) → (z2,−z1, z3) . (3.16)

In this toroidal model the patch U described in (2.7) is extended to cover the whole of

the internal space so that the (z1, z2, z3) coordinates that we describe are identified by

ρ : (z1, z2, z3) → (−z1,−z2, z3).

The presence of the factor R3 inside Ô2 gives rise to the interval I = S1/Z2 exactly as

in the previous sections. However in this case the action of Ô2 is not directly an involution

on the (z1, z2, z3) coordinates. Rather the algebra satisfied by O1, Ô2 is given by

O2
1 = 1l , Ô4

2 = 1l , O1 Ô2 = Ô2O1 , (3.17)
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symmetry fixed object x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

O1 O7 × × × × × × × ×

O1 Ô
2
2 O3 × × × ×

Ô2
2 Orb5 × × × × × ×

Ô2 & Ô3
2 X3 × × × ×

O1 Ô2 & O1 Ô
3
2 XO3 × × × ×

Table 6. Localized objects in the Type IIB setup with involutions O1 and Ô2 are displayed in

coordinates xm for the toroidal model on M
2,1 × S1 × T 6. The symbol × indicates that the object

fills this dimension. In all other directions the objects are at fixed points.

where the operation Ô2
2 reproduces the identification ρ = R4567.

The full symmetry group acting on the (z1, z2, z3) coordinates of the covering T 6 then

contains the set of transformations given by {1l,O1, Ô2, Ô2
2, Ô

3
2,O1 Ô2,O1 Ô2

2,O1 Ô3
2} with

actions summarized, for convenience, in table 7. To each non-trivial element we can asso-

ciate a localized object, as follows.

• O1: this involution is associated to O7-planes exactly as discussed in the previous

section.

• Ô2: this transformation contains the factor (−1)FL and admits a fixed-point locus

that is real four-dimensional, fills M2,1, and is localized at the endpoints of the inter-

val. We call the associated objects X3-planes.

• Ô2
2: as mentioned above, this is a standard Z2 orbifold action. Its fixed-point locus

is six-dimensional, fills M2,1 and the interval, and will be denoted by Orb5.

• Ô3
2: this transformation gives another X3-plane that lies on top of the X3-plane

associated to Ô2. These two X3-planes are identified under ρ.

• O1 Ô2: this action contains a factor Ωp but its geometric part squares to the identity

only up to the Z2 orbifold action. The associated fixed-point locus is four-dimensional,

fills M2,1, and is localized at the endpoints of the interval. We refer to the associated

objects as XO3-planes.

• O1 Ô2
2: in this case we have a factor Ωp (−1)FL and the geometric action squares to

one without invoking the Z2 orbifold. We thus find standard O3-planes.

• O1 Ô3
2: this action gives another XO3-plane that is located on to of the XO3-plane

at the fixed points of O1Ô2. These two XO3-planes are identified under ρ.

The fixed spaces of these quotients and the objects that lie at them are summarized in

table 6.

– 13 –



J
H
E
P
0
2
(
2
0
1
4
)
0
7
6

Type IIB quotient Type IIA quotient M-theory quotient

O1 = ΩpR89(−1)FL O7 Õ1 = ΩpR389(−1)FL O6 σhRAB = R38911

Ô2
2 = R4567 Orb5 ̂̃O2

2 = R4567 Orb5 ρ = R4567

O1 Ô
2
2 = ΩpR456789(−1)FL O3 Õ1

̂̃O2
2 = ΩpR3456789(−1)FL O2 σhρRAB = R345678911

Ô2 = R3579H(−1)FL X3 ̂̃O2 = R3579H Orb3 σahRB = R3579H

Ô3
2 = R3469H(−1)FL X3 ̂̃O3

2 = R3469H Orb3 σahρRB = R3469H

O1 Ô2 = ΩpR3578H XO3 Õ1
̂̃O2 = ΩpR578H(−1)FL XO4 σhσahRA = R57811H

O1 Ô3
2 = ΩpR3468H XO3 Õ1

̂̃O3
2 = ΩpR468H(−1)FL XO4 σhσahρRA = R46811H

Table 7. Summary of the symmetry transformations modded out in Type IIB, Type IIA and

M-theory in the case that σB has a one-dimensional fixed space. The individual geometric actions

have been introduced in section 2.2.

Let us note that the X3-planes encountered here are the analogs of the X5-planes of

section 3.1, since they arise from an orbifold action dressed with an additional (−1)FL-

factor. However, the X3-planes can only exist if they are confined to lie within the Orb5

locus of the Ô2
2-action. A natural conjecture for the S-dual of an X3-plane appears to be a

system of XO3-planes, as introduced above, with suitable localized three-branes to cancel

the tadpole. It would be desirable to study these configurations in more detail.

Having described the Type IIB setup we can apply the rules of appendix A to de-

termine the T-duals of all actions listed above. The M-theory up-lifts are then inferred

by using (3.10). The resulting Type IIA actions and the objects that lie at their fixed

points together with M-theory symmetries are summarized in table 7. One can then make

contact with the discussion of section 2.2 by matching the A and B cycles with the 11 and

3 directions, respectively.

3.3 Mutual supersymmetry in toroidal setups

This section is devoted to the study of the mutual supersymmetry properties of the local-

ized objects introduced in the above sections 3.1 and 3.2. Our analysis will be simplified

by considering the torus setups of table 3 and table 6. As a result, we do not perform any

additional orbifold quotient and we rather let Y3 be a simple six-torus, even though this

implies a bulk sector with 32 real supercharges. These arguments therefore do not prove

the supersymmetry of the setups with more complicated geometries. However, they do

demonstrate that the unusual objects that we describe do not automatically break super-

symmetry completely either on their own or when combined with the other sorts of fixed

objects we consider.

Let us first study the setup of section 3.1 with weak-coupling objects listed in table 3.

We also expect that these localized objects do not break supersymmetry completely, since

the for any pair of them the number of different Dirichlet/Neumann directions is a multiple
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of four. As a warm-up for the more involved case of section 3.2, we discuss a more explicit

way to infer that this setup preserves a finite amount of supersymmetry. To this end,

it is useful to combine the two ten-dimensional supersymmetry parameters into an R-

symmetry doublet ǫ = (ǫL, ǫR)
T, where the subscripts L, R refer to their world-sheet

origin. Operators Oi are represented as elements of the tensor product of the R-symmetry

group with Spin(1,9). One has

O1 = iσ2 ⊗ Λ(R89) , O2 = −σ3 ⊗ Λ(R3579) , O3 = iσ2 ⊗ Λ(R3578) , (3.18)

where the σ’s are Pauli matrices, and Λ(M) denotes the Spin(1,9) element associated

to M ∈ SO(1, 9). Note that Ωp is realized as σ1, while (−1)FL corresponds to −σ3.

Supersymmetry is preserved if a non-vanishing solution ǫ is found to the equations

O1 ǫ = ǫ , O2 ǫ = ǫ . (3.19)

The analogous condition with O3 is not independent. These equations can be studied

explicitly recalling that Λ(Rm) = iΓΓm in the light-cone formalism. One indeed finds that

the operator

λ1(O1 − 1l) + λ2(O2 − 1l) (3.20)

has a non-trivial kernel of relative dimension 1/4 for λ1, λ2 ∈ C. Taking into account that

ǫL, ǫR are Majorana spinors, we have proved that the toroidal setup under examination

preserves 8 real supercharges. This may then be further broken if the torus is replaced

by a Calabi-Yau threefold. We will see another application of the toroidal formalism

next where the familiar rule about Dirichlet/Neumann directions fails. Note also that the

representation (3.18) can be used to check explicitly the algebra (3.5) on fermionic fields.

With this preparation we can now also analyse the setup introduced in section 3.2. The

mutual supersymmetry properties of the localized objects listed in table 6 can be studied

explicitly by representing the actions of O1 and Ô2 on the ten-dimensional supersymmetry

parameters. We do not need to consider all other symmetries since they are generated by

O1 and Ô2. The action of O1 was given in (3.18). The action of Ô2 reads

Ô2 = −σ3 ⊗ Λ(R3579) Λ(H) , (3.21)

where

Λ(R3579) = Γ3579 , Λ(H) =
1

2
(1l− Γ46)(1l− Γ57) . (3.22)

We can thus study the operator

λ1(O1 − 1l) + λ2(Ô2 − 1l) (3.23)

and show straightforwardly that, for λ1, λ2 ∈ C, it has non-trivial kernel of relative di-

mension 1/8, thus proving that our toroidal setup preserves four real supercharges. Note

that in this setup the Dirichlet/Neumann direction rule is not applicable, since we have an

orbifold action and the geometric transformations under examination do not just consist of

reflections. Let us stress again that the amount of preserved supersymmetry will decrease

further when replacing the torus by a Calabi-Yau manifold. It would be interesting to

investigate the rules for this breaking in this more general situation.
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3.4 Large-interval limit and supersymmetry restoration

In this section we discuss some properties of the Type IIB setup described above in the

limit in which the size of the interval I is sent to infinity. More precisely, we focus on the

resulting four-dimensional low-energy effective action and we argue that, for any observer in

the bulk of I, such a theory is indistinguishable from the four-dimensional N = 1 effective

theory obtained by quotienting Type IIB with respect to O1 only.

In order to simplify the discussion we suppose that the quotient under the action of

G generated by O1 and O2 is performed in two steps. In particular, we consider first the

quotient under O2 and later implement O1, since the later does not affect the following

arguments. We are interested in the dynamics of excitations with wavelength much larger

than the typical size of the internal space parametrized by coordinates x4, . . . , x9. This

size, in turn, is supposed to be large compared to the string scale. As a result, the only

states that become light as the interval I decompactifies are states with no winding and

with non-vanishing Kaluza-Klein mode along x3 only.

Such states are conveniently packaged into four-dimensional fields depending on x0,

. . . , x3 and satisfying Dirichlet or Neumann boundary conditions at the endpoints of the

interval. More precisely, invariance under O2 implies that expansion of the massless fields

of Type IIB supergravity onto positive and negative cohomologies of Y3 under σah yields

four-dimensional fields with definite parity under reflection of x3. Fields with negative

parity satisfy Dirichlet boundary conditions at the endpoints of the interval and for finite

interval size cannot be accessed in the low-energy theory, because they always carry at

least one unit of Kaluza-Klein momentum along x3.

When the size of the interval becomes much larger than the typical wavelength of

the excitations we want to study, however, the states associated to four-dimensional fields

with Dirichlet boundary conditions become accessible again to the low-energy dynamics.

This implies that we can excite fluctuations of all four-dimensional fields, irrespectively of

their parity under reflection of x3.3 We are thus led to argue that in the limit of infinite

interval I the low-energy four-dimensional effective action is the same as the one that would

be obtained without performing the quotient with respect to O2. Thus, in this limit the

group G effectively reduces to O1 only, and we have a Calabi-Yau orientifold that yields a

four-dimensional N = 1 effective action.

We conclude this section with a short remark about the Type IIA interpretation. The

Kaluza-Klein states that become light in the limit on the Type IIB side correspond to

winding states on the the Type IIA side. Kaluza-Klein states of a four-dimensional field

with Neumann or Dirichlet boundary conditions at the endpoint of the interval have the

schematic form

|ψ, n3 = N,w3 = 0〉 ± |ψ, n3 = −N,w3 = 0〉 , (3.24)

respectively. In this expression n3, w3 are the Kaluza-Klein level and winding in the x3

direction, N ∈ Z, and ψ is a shorthand notation for the oscillator structure of the state.

3 Only Neumann fields can have a constant V.E.V., strictly speaking. For a Dirichlet field the allowed

profile with the minimum energy is of the form sin(x3/r), where πr is the length of the interval, and can

be considered approximately as a constant V.E.V. in a sufficiently small region in the bulk of the interval.
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T-duality along x3 maps such a state to

|ψ, ñ3 = 0, w̃3 = N〉 ± |ψ, ñ3 = 0, w̃3 = −N〉 , (3.25)

where ñ3, w̃3 denote Kaluza-Klein level and winding along the T-dual coordinate x̃3.

In the uplift to M-theory it is natural to presume that one finds a linear superposition

of M2-brane states with opposite winding on the two-torus spanned by x̃3 and the M-theory

circle x11. The presence of such M2-brane states might help to explain how the moduli

space of the Spin(7) manifold with vanishing fiber can be enhanced to the moduli space of

the Calabi-Yau fourfold with vanishing fiber. In particular, this requires a complexification

of the real Spin(7) moduli space to form a Kähler manifold.

4 Summary

In this work we studied the weak-coupling limit of compactifications of F-theory on Spin(7)

manifolds that are anti-holomorphic quotients of elliptically fibered Calabi-Yau fourfolds

using their M-theory duals. This limit is the natural first step towards understanding the

physics associated to this class of compactifications. We discussed in detail the following

two cases. In case (a) the fixed-point loci of the anti-holomorphic involution are real

three-dimensional subspaces of the base B3 and are one-dimensional subspaces of the fibre.

Alternatively, in case (b) the fixed-point loci in the base are only one-dimensional. In both

cases one of the four macroscopic dimensions in F-theory is an interval. We found that

the weak-coupling limit of case (a) corresponds to a Type IIB compactification with space-

time filling O7-planes as well as O5-planes and X5-planes localized at the boundary of the

interval. The X5-planes are objects that have been identified in perturbative string theory

in the past [10–15] and correspond to the S-duals of an O5-D5 system. In case (b) we found

a more complex system of objects consisting of space-time filling O7- and O3-planes as well

as exotic O3-planes and X3-planes localised on the boundary of the interval and confined

to a six-dimensional orbifold singularity.

We analysed the supersymmetry properties of these configurations and showed that

the objects present can be mutually supersymmetric in a toroidal setup. For case (a) we

have also argued that the mutual supersymmetry is possible if the torus is replaced by a

Calabi-Yau threefold. It would be desirable to establish similar arguments for case (b).

Using our results we were able to argue that for these configurations, on the Type IIB side,

the bulk preserves four real supercharges while the boundary preserves only two. Effective

theories with these properties have been studied in [20–22]. We therefore conclude that in

the infinite interval limit supersymmetry is enhanced to N = 1 in four dimensions. We

argued that this effect can also be understood on the Type IIA side in terms of string

winding modes which become light in the vanishing interval limit. The picture that arises

in the weak-coupling limit leads to the expectation that, in the absence of additional branes

or fluxes, this effect persists at strong coupling and supersymmetry is enhanced in general

by M2-brane winding states becoming light on the M-theory side. This generalisation is

a highly non-trivial process of supersymmetry enhancement to four supercharges in the

singular limit of certain Spin(7) manifolds.
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Our work is only part of an initial exploration of F-theory dual of M-theory on suit-

ably fibered Spin(7) manifolds. This is in principle a rich arena of new string vacua, and

we showed that even in the simplest weak-coupling limits the resulting constructions are

rather unusual supporting, for instance, O7-, O5- and X5-planes simultaneously or exotic

O3-planes and X3-planes. There are many directions to explore. One of the more imme-

diate open problems is to find an understanding of the case where the anti-holomorphic

involution acts freely on the fibre rendering it a Klein-bottle. It would be interesting to

study the objects present in such a vacuum by using, for example, the results of [23]. A

more mathematical direction would be to construct explicit examples of Spin(7) manifolds

that support the different cases of fixed-point loci we have studied. The constructions of

Joyce only admit fixed points in the geometry that are resolved to obtain a smooth Spin(7)

manifold. However, the method of of quotienting by an involution is more generally appli-

cable and it would be an interesting challenge to construct the resolved geometries of the

different cases. A possible guiding principle to achieve this is provided by our identifica-

tion of the weak-coupling objects, such as O6-planes, located at the fixed points and their

known up-lift into smooth M-theory geometries in the spirit of [24].

From a more phenomenological perspective the fact that these constructions are based

on compactifications that, at a general point in moduli space, preserve only two super-

charges means they potentially could be useful for understanding vacua with high-scale

supersymmetry breaking in string theory. Although we argued that supersymmetry is re-

stored in the simplest cases it is likely that more general constructions can be found where

the four-dimensional limit preserves no supersymmetry. Indeed if supersymmetry were

completely broken on the boundary of the interval on the M-theory side, for example by

fractional branes, it could lead to a scenario where the size of the interval on the F-theory

side would interpolate between N = 0 and N = 1 four-dimensional supersymmetry. The

non-supersymmetric non-compact limit could be phenomenologically appealing.

There are a number of further effects that are worth studying within a non-

supersymmetric setup. For example, an interesting aspect of the X5-planes is that they

support non-BPS but stable states [12–14]. The stability of the state is guaranteed as it is

the lightest state charged under the U(1) arising from the twisted sector of the X5-plane.

It is a particle in Type IIB, similar to a D0-brane in Type IIA, which is confined to lie on

the X5-plane. Such a state can be thought of as the S-dual to an open string stretching

between the D5-brane and its orientifold image across the O5-plane. The ground state of

this string is projected out once the D5-brane sits on top of the O5-plane, and so the light-

est state is an excited oscillator.4 It is interesting that such a stable non-supersymmetric

state arises naturally in such setups. In our setups these non-BPS states are localised at

the boundaries of the interval, and therefore there phenomenological impact is diluted by

the interval length. However, it is conceivable that in alternative constructions one finds

these non-BPS states in the bulk such that this dilution does not occur.

More generally Spin(7) compactifications are also interesting from a purely three-

dimensional perspective in the context of geometric engineering of field theories from M-

4It can also be seen through the tachyonic mode of a D1−D1 state [13].
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theory [3, 25–30].5 Indeed, the vacua studied in this work are part of a relatively unexplored

region of string theory, and the potential applications of these constructions are therefore

as yet not sharply defined. Also much work remains to understand the objects that appear

in these geometries and to make progress in the even more challenging task of constructing

the different geometries explicitly and resolving them. Our work provides evidence that

F-theory on Spin(7) manifolds can be defined and suggests an intriguing decompactifica-

tion limit. Its possible relevance to supersymmetry breaking in string theory, makes this

an interesting field to explore.
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A Symmetry algebras and T-duality

In this work we have described several quotients which are built from a set of fundamental

symmetry actions. These include Ωp which is the world-sheet parity inversion, FL which is

the left-moving fermion number and Rmnrs = RmRnRrRs where Rm describes the parity

inversion xm → −xm. These satisfy the algebra

Ω2
p = 1 , R2

m = 1 , ((−1)FL)2 = 1 ,

Ωp(−1)FL = (−1)FRΩp , ΩpRm = RmΩp , Rm(−1)FL = (−1)FLRm ,

RmRn = (−1)FL+FRRnRm if n 6= m . (A.1)

Defining Rm as a parity inversion implies a definition of the action of Rm on fermions

that is only unique up to a phase. Here we have made a choice to discuss R2
m = 1. This

convention is appropriate for the way we describe Op-planes and is consistent with the

conventions of [19].6

Under T-duality these transformations have the following properties

Tm(−1)FLT−1
m = (−1)FL , TmΩpT

−1
m = ΩpRm ,

TmRmT
−1
m = Rm , TmRnT

−1
m = Rn(−1)FL if n 6= m, (A.2)

where Tm represents T-duality in the m direction.

5Note that in the presence of fluxes the manifolds would be deformed to Spin(7)-structure manifolds as

first studied in this context in [31]. However the lack of an explicit handle on the geometry and possible

involutions would make this challenging to study in detail without further progress on explicit construction

of such manifolds.
6Other conventions can lead to R2

m = (−1)FL+FR .
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These actions can then be lifted to symmetries of M-theory as

Rm → Rm , (−1)FL → R11C , (−1)FR → R11C , Ω → C , (A.3)

where R11 is the inversion of the M-theory circle and C acts on the M-theory three-form

as C3 → −C3.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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