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Abstract

Background: Osteoporosis and its main health outcome, fragility fractures, are large and escalating health
problems. Skeletal damage may be the critical result of low-level prolonged exposure to several xenobiotics in the
general population, but the mechanisms of their adverse effects are not clearly understood. The current study was
aimed to investigate the possible ability of simultaneous subchronic peroral administration of selenium (Se) and
diazinon (DZN) to induce changes in bone of adult male rats.
In our study, twenty 1-month-old male Wistar rats were randomly divided into two experimental groups. In the
first group, young males were exposed to 5 mg Na2SeO3/L and 40 mg of DZN/L in drinking water, for 90 days. Ten
1-month-old males without Se and DZN intoxication served as a control group. At the end of the experiment,
macroscopic and microscopic structures of the femurs were analysed using analytical scales, sliding instrument, and
polarized light microscopy.

Results: The body weight, femoral length and cortical bone thickness were significantly decreased in rats
simultaneously exposed to Se and DZN (P < 0.05). These rats also displayed different microstructure in the middle
part of the compact bone where vascular canals expanded into central area of substantia compacta. The canals
occurred only near endosteal surfaces in rats from the control group. Additionally, a smaller number of primary and
secondary osteons, as well as a few resorption lacunae were observed near endosteal surfaces in rats
simultaneously administered to Se and DZN. The resorption lacunae as typical structures of bone resorption
manifestation are connected with an early stage of osteoporosis. Histomorphometric analysis revealed that area,
perimeter, maximum and minimum diameters of primary osteons’ vascular canals were significantly increased
(P < 0.05) in the Se-DZN-exposed rats. On the other hand, all measured variables of Haversian canals and secondary
osteons were considerable reduced (P < 0.05) in these rats.

Conclusions: Simultaneous subchronic peroral exposure to Se and DZN induces changes in macroscopic and
microscopic structures of the femurs in adult male rats, and also it can be considered as possible risk factor for
osteoporosis. The current study contributes to the knowledge on damaging impact of several xenobiotics on the bone.
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Background
Bone is a dynamic mineralized connective tissue con-
stantly being remodelled. Bone growth, mineralization
and remodeling are regulated by a complex array of
feedback mechanisms depending on age, genetic, nutri-
tional and environmental factors [1-3]. Toxicological
studies have shown that bone metabolism is highly sensitive
to environmental pollutants (i.e., heavy metals, pesticides)
which can alter bone composition and mineralization,
producing specific bone pathologies [4-6]. However, these
environmental exposures have only been studied to a
limited extent.
Selenium (Se) is an essential trace element which oc-

curs in various concentrations in the soil, water leading
to variable Se contents in food [7]. Industry utilizes Se in
the manufacture of pigments used in variety of appli-
cations and pesticide/insecticide formulations. The im-
portance of this element for bone metabolism is still
unclear. Several reports are available for deficiency of Se
in relation to growth retardation [8,9] and Kashin-Beck
disease - a chronic endemic degenerative osteoarthritis
[10-12]. On the other hand, excess of Se induces apop-
tosis in mature osteoclasts [13], osteoblasts [14] and
osteoblast-like cells [15]. Furthermore, Se in higher con-
centration causes abnormal bone and cartilage develop-
ment and it is reported to be teratogenic [16].
Organophosphorus (OP) compounds are one of the

most common types of organic pollutants found in the
environment [17]. Residual amounts of OP pesticides
have been detected in the soil, water, vegetables, grains
and other food products [18]. Diazinon (DZN) is an or-
ganophosphate insecticide which acts by inhibiting
acetylcholinesterase (AChE) [19]. AChE is most com-
monly known for its role in terminating cholinergic sig-
nalling by the hydrolysis of acetylcholine to choline and
acetate. However, recent evidence suggests that AChE
may also have a functional role in the bone [4,20-22].
Several skeletal deformities, such as an undulatin noto-
chord and fused cervical rings induced by OP pesticides
including DZN have been observed in the study by
Misawa et al. [23]. Finally, Lari et al. [24] revealed highly
reduced bone density in rats after four-week treatment
by DZN (30 mg/kg per day in corn oil).
Human and animal exposures to several xenobiotics in

the environment do not occur in isolation, and also
pharmacological agents, other toxins, and diet can in-
duce or supress their toxicity.
Protective effects of Se (due to antioxidant and metal-

chelating efficacy) against DZN-induced histopathological
changes in various organs have been noted in many stud-
ies [25-28], using different (including toxic) doses as well
as different types of Se administration. These studies have
raised new possibilities for the use of Se against the harm-
ful effects of DZN and potentially also other OP pesticides
in practice. However, there is still limited knowledge about
possible interactions between DZN and Se in many organs
including the bone. Generally, the bone is metabolically
very active organ, which accumulates various risk ele-
ments and usually is exposed to a relatively long time.
Based on known effects of DZN and Se on the bone and

other organs already mentioned above we focused on de-
tailed structural analysis of exposed bones in animal
model. Therefore, the aim of our study was to determine
in detail the effect of simultaneous subchronic peroral ad-
ministration of Se and DZN on macroscopic and micro-
scopic structure of femoral bone in adult male rats.

Methods
Animals
Twenty 1-month-old male Wistar rats were obtained
from the accredited experimental laboratory (number SK
PC 50004) of the Slovak University of Agriculture in
Nitra (Slovakia). These clinically healthy rats were ran-
domly divided into two experimental groups of 10 indi-
viduals. Male rats were used, as they are less susceptible
than females to xenobiotics’ toxicity [29-31].
The rats were housed individually in plastic cages in an

environment maintained at 20–24°C, 55 ± 10% humidity.
They had access to water and food (feed mixture M3,
Bonargo, Czech Republic) ad libitum. The first group
(n = 10 rats) was daily exposed to 5 mg Na2SeO3/L (98%
purity, Reachem, Slovakia) and 40 mg of DZN/L (99%
purity, Sigma-Aldrich, USA) in their drinking water for a
total of 90 days. The doses of Se and DZN were chosen
on the basis of studied literature [32-34] and our previous
experiments [35,36] with tested dose–response relation-
ships. The doses were high enough to reach toxicity but
also safe enough to prevent animal mortality (non-lethal
doses). The dose of Se might be potentially the minimum
lethal dose level for adolescent rats for the given route of
administration [37]. The second group (n = 10 rats), with-
out Se and DZN exposure, served as the control group.
This study was approved by the Animal Experimental
Committee of the Slovak Republic.

Procedures
At the end of 90 days, all the rats were euthanized,
weighed and their femurs were used for macroscopic and
microscopic analyses. The right femurs were weighed on
analytical scales with an accuracy of 0.01 g and the fem-
oral length was measured with a sliding instrument. For
histomorphometric analysis, the right femurs were sec-
tioned at the midshaft of the diaphysis and the segments
were fixed in HistoChoice fixative (Amresco, USA). The
segments were then dehydrated in increasing grades (40
to 100%) of ethanol and embedded in Biodur epoxy resin
(Günter von Hagens, Heidelberg, Germany) according
to the method described by Martiniaková et al. [38].
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Transverse thin sections (70–80 μm) were prepared with a
sawing microtome (Leitz 1600, Leica, Wetzlar, Germany)
and fixed onto glass slides by Eukitt (Merck, Darmstadt,
Germany) as previously described [39]. The qualitative
histological characteristics of the compact bone tissue were
determined according to the internationally accepted classi-
fication systems of Enlow and Brown [40] and Ricqlés et al.
[41], who classified bone tissue into three main categories:
primary vascular tissue, non-vascular tissue and Haversian
bone tissue. Various patterns of vascularization can occur
in primary vascular bone tissue: longitudinal, radial, reticu-
lar, plexiform, laminar, lepidosteoid, acellular, fibriform and
protohaversian. There are three subcategories indentified in
Haversian bone tissue: irregular, endosteal and dense. The
quantitative (histomorphometric) variables were assessed
using the software Motic Images Plus 2.0 ML (Motic China
Group Co., Ltd.). We measured area, perimeter and the
minimum and maximum diameters of 424 primary osteons’
vascular canals, 410 Haversian canals and 410 secondary
osteons in all views (i.e., anterior, posterior, medial and lat-
eral) of the thin sections in order to minimize inter-animal
differences. Diaphyseal cortical bone thickness was also
measured by Motic Images Plus 2.0 ML software. Twenty
random areas were selected, and average thickness was cal-
culated for each femur.

Statistics
Statistical analysis was performed using SPSS 8.0 soft-
ware. All data were expressed as mean ± standard devi-
ation (SD). The unpaired Student’s t-test was used for
establishing statistical significance (P < 0.05) between
both experimental groups.

Results
Macroscopic differences
Body weight and femoral length were significantly de-
creased in rats simultaneously exposed to Se and DZN
(P < 0.05) in comparison with the control group. Also,
cortical bone thickness was significantly lower (P < 0.05)
in these rats. On the contrary, femoral weight did not
differ between the two groups (Table 1).

Microscopic differences
Endosteal borders of all femurs from the control rats
were formed by non-vascular bone tissue in all views of
Table 1 Body weight, femoral weight, femoral length and cor
exposed to 5 mg of Na2SeO3/L and 40 mg of DZN/L in drinkin

Group N Body weight (g) Femoral weight (g)

Control 10 405.0 ± 52.7 1.05 ± 0.17

Se-DZN 10 360.0 ± 17.2 0.93 ± 0.08

T-test P < 0.05 NS

N: Number of rats, NS: Non-significant changes.
the thin sections. The bone tissue contained cellular la-
mellae and osteocytes. Areas of primary vascular radial
bone tissue (formed by branching or non-branching vas-
cular canals radiating from the marrow cavity) were also
identified in anterior, posterior and lateral views. We
found some primary and secondary osteons (especially in
the anterior and posterior views) near the endosteal sur-
faces. In the middle part of the compact bone, primary
and secondary osteons were observed. The periosteal
border was again composed of non-vascular bone tissue,
mainly in the anterior and posterior views (Figure 1).
The rats simultaneously exposed to Se and DZN dis-

played a similar microarchitecture to that of the control
rats, except for the middle part of the compact bone in
the medial and lateral views. In these views, vascular ca-
nals were shown to have expanded into the central area
of the bone. The expansion in some cases was so enor-
mous that the canals also occurred near periosteal sur-
faces. Therefore, a smaller number of primary and
secondary osteons was identified in these rats. Moreover,
a few resorption lacunae were found near endosteal sur-
faces in rats co-administered by Se and DZN which indi-
cate the early stage of osteoporosis (Figure 2).
For the quantitative histological analysis, 424 vascular

canals of primary osteons, 410 Haversian canals and 410
secondary osteons were measured in total. The results
are summarized in Table 2. We found that all measured
variables (area, perimeter, maximum and minimum di-
ameters) of the primary osteons’ vascular canals were
higher in the Se-DZN-exposed rats than in the control
ones (P < 0.05). However, these rats displayed signifi-
cantly decreased levels of all variables of Haversian ca-
nals and secondary osteons (P < 0.05).

Discussion
Simultaneous subchronic peroral exposure to 5 mg
Na2SeO3/L and 40 mg of DZN/L in drinking water for
90 days resulted in a significant decrease in body weight
and femoral length in adult male rats. Thorlacius-Ussing
et al. [42] observed growth retardation in rats receiving
15 mg/L Na2SeO3 in their drinking water which is asso-
ciated with reduced production of growth hormone
(GH) and insulin-like growth factor I (IGF-I). The
results by Gronbaek et al. [43] also documented a signifi-
cantly shorter tibia in rats exposed to 3.3 mg Na2SeO3/L
tical bone thickness in adult male rats subchronic
g water for 90 days (Se-DZN group) and the control rats

Femoral length (cm) Cortical bone thickness (mm)

3.94 ± 0.09 0.572 ± 0.054

3.75 ± 0.07 0.507 ± 0.049

P < 0.05 P < 0.05



Figure 1 Microscopic structure of compact bone tissue in rat
from the control group (antero-lateral view). 1. Non-vascular
bone tissue. 2. Vascular canals radiating from marrow cavity.
3. Primary and secondary osteons in middle part of compact bone.
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in drinking water for 35 days related to Se-induced signifi-
cant reduction in circulating IGF-I. In our previous study
[36], the decreased body weight and femoral length in rats
after application of 5 mg Na2SeO3/L in their drinking
water for 90 days was also observed. DZN is known to
show its toxic effects by inhibiting cholinesterase activity.
According to Kalender et al. [44] and Razavi et al. [45] the
reduced body weight of rats after DZN supplementation
could be caused by less food consumption and/or fluid
and electrolyte loss as the result of a reduction in cholin-
esterase activity. In the study by Ogutcu et al. [46], de-
creased body weight in rats after peroral DZN treatment
via gavage was identified. DZN-induced inhibition in
Figure 2 Microscopic structure of compact bone tissue in rat
from the Se and DZN group (antero-lateral view). 1. Enormous
vascular canals radiating from marrow cavity. 2. Smaller number of
primary and secondary osteons in middle part of compact bone.
3. Resorption lacunae.
growth of some skeletal elements, such as femur, tibia,
metatarsi and digits of the leg in chick embryos was also
demonstrated [23].
The thickness of cortical bone is generally accepted as

an important parameter in the evaluation of cortical bone
quality and strength. The values of cortical bone thickness
in rats from the control group differed from those re-
ported by Comelekoglu et al. [47] and Chovancová et al.
[48], who analysed animals of different age. Statistical
analysis has shown significantly decreased cortical bone
thickness in rats simultaneously exposed to Se and
DZN. The same situation was also observed in rats ad-
ministered with single dose of 5 mg Na2SeO3/L in their
drinking water for 90 days [31]. Moreover, recalculating
and comparing our results with the ones of Martiniaková
et al. [36], demonstrable differences in cortical bone
thickness between the rats exposed to Se in a single dose
and those simultaneously intoxicated with Se and DZN
were revealed. The Se-DZN-treated rats namely disposed
decreased thickness of cortical bone (P < 0.05). This fact
suggests a possible synergistic effect of both Se and DZN
on bone turnover in rats. Synergistic effect of two (or
more) xenobiotics means a combined toxicity that is
greater than the simple additive effect of two (or more)
compounds [49].
According to Szarek et al. [50], Se is able to either in-

crease or decrease toxicity of various xenobiotics (in-
cluding pesticides) depending on its amounts introduced
into an organism. Besides other effects, toxicity of Se oc-
curs due to its prooxidant ability to catalyze the oxida-
tion of thiols and simultaneously generates superoxide
[51-53]. Thus, Se is probably able to affect the atom of
sulfur (S) in the DZN molecule, and amplifies its toxicity
[54]. According to many authors [55-58], Se can substi-
tute S in numerous organic compounds causing their
higher reactivity [59]. Similarly to our study, co-
administration to Se and DZN induced more significant
changes in hepatocyte ultrastructure of rats in compari-
son with rats administered by Se in single dose [50].
The results of the qualitative histological analysis of

the control rats corresponded to those of previous
works [60-63]. We identified non-vascular and primary
vascular radial tissues and also irregular Haversian
bone tissue. However, there was no evidence of true
Haversian intracortical bone remodelling. It is generally
known that aged rats and mice lack true Haversian cor-
tical bone remodelling but not cancellous bone remod-
elling [62,64]. Therefore, some secondary osteons can
be observed in long bones near the endosteal border. In
our study, the newly formed remodelling units within
compact bone originated from the endocortical surface
and extended deep into the underlying compact bone.
The same findings have also been documented in
13 month-old male rats [62].



Table 2 Data of the primary osteons’ vascular canals, Haversian canals and secondary osteons in adult male rats
subchronic exposed to 5 mg of Na2SeO3/L and 40 mg of DZN/L in drinking water for 90 days (Se-DZN group) and
control rats

Group N Area Perimeter Max. diameter Min. diameter

(μm2) (μm) (μm) (μm)

Primary osteons’ vascular canals Control 218 397.3 ± 98.1 72.29 ± 8.95 12.89 ± 2.08 9.83 ± 1.58

Se-DZN 206 466.0 ± 107.0 78.96 ± 10.31 14.26 ± 2.64 10.46 ± 1.47

T-test P < 0.05 P < 0.05 P < 0.05 P < 0.05

Haversian canals Control 208 426.9 ± 119.2 74.47 ± 10.25 13.21 ± 2.16 10.24 ± 1.73

Se-DZN 202 351.2 ± 69.3 67.54 ± 7.03 11.89 ± 1.69 9.44 ± 1.12

T-test P < 0.05 P < 0.05 P < 0.05 P < 0.05

Secondary osteons Control 208 6541.0 ± 2012.6 291.79 ± 43.09 52.21 ± 8.61 39.38 ± 7.52

Se-DZN 202 5623.8 ± 1772.8 268.23 ± 42.00 47.03 ± 8.61 37.49 ± 6.52

T-test P < 0.05 P < 0.05 P < 0.05 P < 0.05

N: Number of measured structures.
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Simultaneous subchronic exposure to Se and DZN
induced changes in the middle part of compact bone
where primary vascular radial bone tissue was observed.
We proposed that the formation of this type of bone
tissue could be explained as an adaptive response to
Se and DZN toxicity to protect bone tissue against
cell death and subsequent necrosis. The study by Turan
et al. [65] demonstrates osteocyte loss due to destruction
of the bone tissue in rabbits fed excess Se (10 mg
Na2SeO3/kg of diet for a period of 12 weeks). Also, it is
known that Se at high doses induces apoptosis in mature
osteoclasts [13], osteoblasts [14], and osteoblast-like cells
[15]. In respect to osteotoxic effect of DZN, Lari et al.
[24] reported highly reduced bone density in femoral
head, lesser trochanter, greater trochanter and shaft in
DZN-exposed rats. In addition, Rangoonwala et al. [66]
observed a progressive hypocalcemia in rats treated by
sublethal dose of DZN. It is generally known that hypo-
calcemia inhibits calcitonin release. In the absence of
this hormone, osteoclast activity is unregulated and bone
resorption is accelerated [67]. In our study, accelerated
bone resorption was manifested by the presence of re-
sorption lacunae near endosteal surfaces in Se-DZN-
exposed rats. These structures are connected with an
early stage of osteoporosis. Therefore, intoxication with
this mixture of xenobiotics might be one of the reasons
for worldwide increasing prevalence of osteoporosis.
Data obtained from the histomorphometric analysis

showed a significant increase in area, perimeter, max-
imum and minimum diameters of the primary osteons’
vascular canals and on the other hand, a significant de-
crease of the Haversian canals’ variables in the Se-DZN-
exposed rats. In general, the vascular system is a critical
target for toxic substances and their effects on the vas-
cular system may play an important role in mediating
the pathophysiological effects of these substances in
specific target organs [68]. Blood vessels readily adapt
structurally in response to sustained functional changes,
particularly those related to chronic pressure alterations
or changes in the nutritional demands of the tissue
[69,70]. Results obtained by Cabaj et al. [26] demon-
strate that the blood vessels of testes in rats co-
administered by Se and DZN (at the same levels as were
used in our study) were damaged and significantly di-
lated. Additionally, Ruseva et al. [71] showed that rats
exposed to increased amount of dietary Se had higher
glutathione peroxidase 1 (GPx-1) activity and a lower
level of anti-elastin antibodies (AEABs) than those of the
control group, and the aortic wall histology showed de-
generative changes associated with reduced thickness of
the wall of the left coronary artery. We also suppose that
altered sizes of the primary osteons’ vascular canals and
Haversian canals in Se-DZN-intoxicated rats are associ-
ated with pathological changes of blood vessels (due to
adverse impact of Se and DZN) which are present in
both canals. Furthermore, our results indicate that an
excess of Se and DZN had a different impact on the pri-
mary osteons’ vascular canals and Haversian canals. The
main difference between these structures is the presence
of a cement line in Haversian canals (cement line de-
limits the canals) and its absence in primary osteons.
We surmise in accordance with our previous study [36]
that the cement line could be the main reason for the
different results in the histomorphometry of both canals.
We found significantly lower values of all variables of

secondary osteons in rats simultaneously exposed to Se
and DZN. According to Jowsey [72], the values of sec-
ondary osteons are higher in individuals with longer
bones. Our results correspond with those found by
Jowsey [72], as the femurs were longer in the control
rats, which also displayed higher values for osteons.
Moreover, we propose that the differences in the size of
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secondary osteons between Se-DZN-exposed rats and
those of control group could be associated with changes
in bone remodelling which is mediated by osteoblasts and
osteoclasts, and subsequent calcification of bone tissue.
Our hypothesis is supported by the results of Chung et al.
[13] who found that apoptosis in mature osteoclasts could
be mediated by Se intoxication. According to Abbott et al.
[73], decreased osteoclast activity is associated with
smaller osteon size. Moreover, Boyar [74] showed that an
excess of Se increased the amount of carbonate content in
bones of rats injected intraperitoneally with 5 μmol
Na2SeO3/kg for 4 weeks. The incorporation of carbonate
ions into the crystal structure of hydroxyapatite (HA) re-
sults in changes in the physical and chemical properties of
HA [75]. HA crystals, as a major mineral component of
bones, are aligned with their long axis parallel to the
collagen fibre axis [76] creating concentric lamellae of
secondary osteons. Also, it is widely accepted that OP
pesticides produce abnormalities in connective tissue
[77] through inhibition of the enzyme lysyl oxidase
resulting in incomplete post-translational modification
of collagen. Secondary osteons contain collagen fibers
and therefore, destruction of the collagen could also
have an impact on their size.
Our study demonstrates that simultaneous sub-

chronic exposure to Se and DZN had a significant im-
pact on bone structure and causes early stage of
osteoporosis in rats. The obtained results can support
the better understanding of osteoporosis mechanisms
induced by environmental pollutants. However, pos-
sible extrapolation of the results to humans may be an
interesting topic for discussion. The laboratory rat is
preferred animal for most researchers. Its skeleton has
been studied extensively, and although there are several
limitations to its similarity to the human condition,
these can be overcome through detailed knowledge of
its specific traits or with certain techniques. The simi-
larities in pathophysiologic responses between the hu-
man and rat skeleton, combined with the husbandry
and financial advantages, have made the rat a valuable
model in osteoporosis research.

Conclusions
This study demonstrates that simultaneous subchronic
peroral administration of 5 mg Na2SeO3/L and 40 mg
DZN/L in drinking water for 90 days affects the body
weight, femoral length, cortical bone thickness, and both
the qualitative and quantitative histological characteris-
tics of femoral bone tissue in adult male rats. In
addition, it induces early stage of osteoporosis. The re-
sults can be applied in experimental studies focusing on
the effects of various xenobiotics on bone structure, es-
pecially when they are considered as possible risk factor
for osteoporosis.
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