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Numerical solution of nonlinear stochastic
differential equations using the block pulse
operational matrices
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Abstract

This article proposes an efficient numerical method for solving nonlinear stochastic differential equations. Using the
operational matrices of block pulse functions, stochastic differential equations can be reduced to a system of
algebraic equations. Computation of presented method is very simple and attractive. In addition, convergence
analysis and numerical examples that illustrate accuracy and efficiency of the method are presented.
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Introduction
Real problems are mathematically modeled by stochas-
tic differential equations (SDE) or, in more complicated
cases, by nonlinear stochastic differential equations of
the Itô type. Most of these equations do not have analyt-
ical solution, so it is important to find their approximate
solution. In recent years, some different numerical meth-
ods for solving stochastic differential or stochastic integral
equations have been presented [1-8]. The topic of our
study is the integral form of SDE as follows:

x(t) = x0+
∫ t

0
k1(t, s)b(s, x(s))ds+

∫ t

0
k2(t, s)σ(s, x(s))dB(s),

t ∈ [ 0, 1), (1)

where x0 is a random variable independent of B(t), B =
(B(t), t ≥ 0) is a Brownian motion, and stochastic process
x is a strong solution of Equation 1 which is adapted to
{�t , t ≥ 0} Furthermore, all Lebesgue’s and Itô’s integrals
in Equation 1 are well defined [9].
Block pulse functions (BPFs) have been studied by many

authors and applied for solving different problems [10-12].
In this paper, we used the stochastic operational matrix
of BPFs for reducing the nonlinear stochastic differential
equation to a set of algebraic equations.
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The paper is ordered as follows: In ‘BPFs and their
properties’ section, a brief review of the BPFs is presented.
The ‘Implementation in stochastic integral equation’
section is devoted to the formulation of nonlinear SDE.
In the ‘Error analysis’ section, convergence analysis of the
method is discussed. In the ‘Numerical examples’ section,
some numerical examples are provided. Finally, the
‘Conclusion’ section gives a brief conclusion.

BPFs and their properties
In this paper, BPFs are defined over [0,1). We considerm-
set of BPFs as

φi(t) =
{
1 (i − 1)h ≤ t < ih, i = 1, . . . ,m,

0 otherwise,

where h = 1
m . The BPFs have the following properties:

1. Disjointness

φi(t)φj(t) = δijφi(t),

where i, j = 1, 2, . . . ,m and δij is the Kronecker delta.
2. Orthogonality

∫ 1

0
φi(t)φj(t)dt = hδij, i, j = 1, 2, . . . ,m.
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3. Completeness
Ifm → ∞, then the BPF set is complete, i.e., for
every f ∈ L2([ 0, 1)), Parseval’s identity holds,∫ 1

0
f 2(t)dt =

∞∑
i=1

f 2i ‖φi(t)‖2,

where

fi = 1
h

∫ 1

0
f (t)φi(t)dt. (2)

Let

�(t) = (
φ1(t),φ2(t), . . . ,φm(t)

)T , t ∈[ 0, 1),
so

�(t)�T (t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

φ1(t) 0 · · · 0

0 φ2(t) · · · 0
...

...
. . .

...

0 0 · · · φm(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

m×m

,

�T (t)�(t) = 1,
and

�(t)�T (t)v = ṽ�(t),

where v is the m-vector, ṽ is the m × m matrix, and ṽ =
diag(v). It is easy to see that

�T (t)A�(t) = ÂT
�(t), (3)

where A is the m × mmatrix andÂT is the m-vector with
elements equal to the diagonal entries of matrix A.
An arbitrary real bounded function f (t), which is square

integrable in the interval t ∈[ 0, 1), can be expanded as

f (t) � f̂m(t) =
m∑
i=1

fiφi(t) = �T (t)F , (4)

where fi is the block pulse coefficient that is defined
by (2). Let k(t, s) be a function of two variables in
L2([ 0, 1)×[ 0, 1)). It can be similarly expanded with
respect to BPFs as

k(t, s) � �T (t)K�(s), (5)

where �(s) and �(t) are m1,m2-dimensional block pulse
vectors, respectively. Also, K is the m1 × m2 block pulse
coefficient matrix with

kij = m1m2

∫ 1

0

∫ 1

0
k(t, s)φi(t)ψj(s)dtds, i = 1, 2, . . . ,m1,

j = 1, 2, . . . ,m2.
For convenience, we putm1 = m2 = m.
Lebesgue and Itô integral can be approximated as∫ t

0
�(s)ds � P�(t) (6)

and∫ t

0
�(s)dB(s) � Ps�(t), (7)

where operational matrices P and Ps are given in [6]. So
we can write∫ t

0
f (s)ds �

∫ t

0
FT�(s)ds � FTP�(t) (8)

and∫ t

0
f (s)dB(s) �

∫ t

0
FT�(s)dB(s) � FTPs�(t). (9)

Implementation in stochastic integral equation
Using the block pulse operational matrices, first, we find
the collocation approximation to the functions z1(t) and
z2(t) defined by

z1(t) = b (t, x(t)) , z2(t) = σ (t, x(t)) . (10)

From Equations 1 and 10, we get

x(t) = x0 +
∫ t

0
k1(t, s)z1(s)ds +

∫ t

0
k2(t, s)z2(s)dB(s),

(11)

and⎧⎨
⎩
z1(t)=b

(
t, x0+

∫ t
0 k1(t, s)z1(s)ds+

∫ t
0 k2(t, s)z2(s)dB(s)

)
,

z2(t)=σ
(
t, x0+

∫ t
0 k1(t, s)z1(s)ds+

∫ t
0 k2(t, s)z2(s)dB(s)

)
.

(12)

We approximate z1(t), z2(t), and ki(t, s), i = 1, 2, by block
pulse series as follows:

z1(t) � ẑ1(t) = ZT
1 �(t) = �T (t)Z1, (13)

z2(t) � ẑ2(t) = ZT
2 �(t) = �T (t)Z2, (14)

ki(t, s) � k̂i(t, s) = �T (t)Ki�(s), i = 1, 2, (15)

such thatm-vectors Z1, Z2, andm×mmatrix Ki are block
pulse coefficients of z1(t) and z2(t) and ki(t, s), respec-
tively. By substituting Equations 13 and 14 in Equation 11,
we get∫ t

0
k1(t, s)z1(s)ds �

∫ t

0
�T (t)K1�(s)�T (s)Z1ds

= �T (t)K1

∫ t

0
�(s)�T (s)Z1ds

� �T (t)K1

∫ t

0
Z̃1�(s)ds

� �T (t)K1Z̃1P�(t); (16)
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also, the Itô integral of Equation 11 can be written as∫ t

0
k2(t, s)z2(s)dB(s) �

∫ t

0
�T (t)K2�(s)�T (s)Z2dB(s)

= �T (t)K2

∫ t

0
�(s)�T (s)Z2dB(s)

� �T (t)K2

∫ t

0
Z̃2�(s)dB(s)

� �T (t)K2Z̃2Ps�(t), (17)

where Z̃1 = diag(Z1), Z̃2 = diag(Z2). By substituting (16)
and (17) into (12) and replacing � with =, we obtain⎧⎨
⎩
ZT
1 �(t)=b

(
t, x0+�T(t)K1Z̃1P�(t)+�T(t)K2Z̃2Ps�(t)

)
,

ZT
2 �(t)=σ

(
t, x0+�T(t)K1Z̃1P�(t)+�T(t)K2Z̃2Ps�(t)

)
.

(18)

Now, we collocate Equation 18 in m nodes tj = j
m+1 , j =

1, . . . ,m, as⎧⎨
⎩
ZT
1 �(tj)=b

(
tj, x0+�T (tj)K1Z̃1P�(tj)+�T (tj)K2Z̃2Ps�(tj)

)
,

ZT
2 �(tj)=σ

(
tj, x0+�T (tj)K1Z̃1P�(tj)+�T (tj)K2Z̃2Ps�(tj)

)
.

(19)

After solving nonlinear system (19), we obtain Z1 and Z2.
Then, we can approximate the solution of Equation 11 as
follows:

x(t) � xm(t) = x0+�T (t)K1Z̃1P�(t)+�T (t)K2Z̃2Ps�(t).
(20)

Error analysis
In the following theorems, suppose that the functions
b(x, y), σ(x, y) satisfy the Lipschitz and linear growth con-
ditions such that

|b(t, x1(t))−b(t, x2(t))|+|σ(t, x1(t))−σ(t, x2(t))|≤L|x1−x2|
(21)

and

|b(t, x(t))| + |σ(t, x(t))| ≤ L(1 + |x|). (22)

Theorem 1. Let f (t) be an arbitrary real bounded func-
tion, which is square integrable in the interval [ 0, 1), and
e(t) = f (t) − f̂m(t), t ∈[ 0, 1), where f̂m(t) = ∑m

i=1 fiφi(t),
is the block pulse series of f (t). Then,

‖e(t)‖2 ≤ O(h2).

Proof. See [8].

Theorem 2. Suppose that f (t, s) ∈[ 0, 1)×[ 0, 1), and
e(t, s) = f (t, s) − f̂m(t, s), (t, s) ∈ J , where f̂m(t, s) =

∑m
i=1

∑m
j=1 fijψi(t)φj(s), is the block pulse series of f (t, s)

Then,

‖e(t, s)‖2 ≤ O(h2).

Proof. See [8].

Theorem 3. Let x(t) and xm(t) be the exact solution and
approximate solution of (1), respectively; furthermore, let
conditions (21), (22), and
(i) ‖x(t)‖ ≤ M, t ∈ I =[ 0, 1),
(ii) ‖ki(t, s)‖ ≤ Mi, (t, s) ∈ I × I, i=1,2,
hold; then,

‖x(t) − xm(t)‖ → 0,

where

‖x(t)‖2 = E|x(t)|2.

Proof. Let ei(t) = zi(t) − ẑi(t) be the error function,
where zi(t) is defined in (10) and ẑi(t), i = 1, 2 is the
approximated form of zi(t) by BPFs, i.e.,

ẑ1(s) = b̂ (s, xm(s)) , ẑ2(s) = σ̂ (s, xm(s)) ,

and

zm1 (s) = b (s, xm(s)) , zm2 (s) = σ (s, xm(s)) .

From Lipschitz condition and Theorem 2, we get

‖zi(t) − ẑi(t)‖ ≤ ‖zi(t) − zmi (t)‖ + ‖ẑi(t) − zmi (t)‖
≤ L‖x(t) − xm(t)‖ + cih, (23)

where i = 1, 2. Let em(t) = x(t) − xm(t). We can write

‖em(t)‖ ≤ ‖I1‖ + ‖I2‖, (24)

where

I1 =
∫ t

0
[ k1(t, s)z1(s) − k̂1(t, s)ẑ1(s)] ds,

I2 =
∫ t

0
[ k2(t, s)z2(s) − k̂2(t, s)ẑ2(s)] dB(s). (25)

For I1, we get

‖I1‖ ≤
∫ t

0
(‖k1(t, s)‖‖z1(s)−ẑ1(s)‖)ds+

∫ t

0
(‖ẑ1(s)‖‖k1(t, s)

− k̂1(t, s)‖)ds,

≤ M1

(
L

∫ t

0
‖em(s)‖ds + c1h

)
+ c3h

(∫ t

0
‖z1(s)

− ẑ1(s)‖ds +
∫ t

0
‖z1(s)‖ds

)

≤ L(M1 + c3h)
∫ t

0
‖em(s)‖ds + O(h). (26)
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From Itô isometry, we can write

‖I2‖ ≤ ‖
∫ t

0
[ k2(t, s)z2(s) − k̂2(t, s)ẑ2(s)] dB(s)‖

≤
∫ t

0
‖k2(t, s)z2(s) − k̂2(t, s)ẑ2(s)‖ds

≤
∫ t

0
(‖k2(t, s)‖‖z2(s)−ẑ2(s)‖)ds+

∫ t

0
(‖ẑ2(s)‖‖k2(t, s)

− k̂2(t, s)‖)ds,

≤ M2

(
L

∫ t

0
‖em(s)‖ds + c2h

)
+ c4h

(∫ t

0
‖z2(s)

− ẑ2(s)‖ds +
∫ t

0
‖z2(s)‖ds

)

≤ L(M2 + c4h)
∫ t

0
‖em(s)‖ds + O(h). (27)

Equations 26, 27, and 24 conclude that

‖em(t)‖ ≤ α

∫ t

0
‖em(s)‖ds + O(h), (28)

where α = L(M1 + c3h) + L(M2 + c4h). Hence, from (28)
and Gronwall inequality, we get

‖em(t)‖ ≤ O(h)(1 + α

∫ t

0
eα(t−s)ds), t ∈[ 0, 1)

and then we get h = 1
m ; by increasing m, it implies

‖em(t)‖ → 0 asm → ∞.

Numerical examples
To illustrate efficiency and accuracy of presented method,
we solve some real-world problems.

Example 1. A simplemodel for the size x of a population
at time t is the model of exponential growth

dx(t) = ax(t)dt, (29)

where a is the growth coefficient. An appropriate mod-
ification of Equation 29 is given as a linear quadratic
Verhulst equation:

dx(t) = x(t)(λ − x(t))dt, (30)

where the population growth a is replaced by λ − x. By
randomizing the parameter λ in Equation 30 to λ + σξ(t),
where ξ(t) = dB(t)

dt is a white noise of zero mean, we have
the usual stochastic Verhulst equation describing more
precisely the population dynamics

dx(t) = x(t)(λ − x(t))dt + σx(t)dB(t), (31)

in which λ and σ are positive constants [13-15]. The exact
solution of Equation 31 is given as follows [1]:

x(t) = x0e(λ− 1
2 σ 2)t+σB(t)

1 + x0
∫ t
0 e

(λ− 1
2 σ 2)s+σB(s)ds

.

Let Xi denote the block pulse coefficient of exact solu-
tion and Yi be the block pulse coefficient of computed
solutions by the presented method. The error is defined as

‖E‖∞ = max1≤i≤m|Xi − Yi|.
In Table 1, xE is the error mean and sE is the standard
deviation of errors in k iteration. In addition, we consider
x0 = 0.5, λ = 1, and σ = 0.25.

Example 2. In finance, the Vasicekmodel is amathemat-
ical model describing the evolution of interest rates. This
model can be used for interest rate derivative valuation
and also adapted for credit market. Vasicek’s pioneering
work (1977), which is based on the Ornstein-Uhlenbeck
process, is the first account of a bond pricing model that
incorporates stochastic interest rate and can be also seen
as a stochastic investment model. The short-term interest
rate process (r(t))t∈R+ solves the equation

dr(t) = a(b − r(t))dt + σdB(t), (32)

where B(t), t ≥ 0 is a standard Brownian motion, dr(t)
is the change in the short-term interest rate, a is the
speed of mean reversion, b is the average interest rate,
and σ is the volatility of the short rate. The main disad-
vantage is that, under Vasicek’s model, it is theoretically
possible for the interest rate to become negative, which
is an undesirable feature. This shortcoming was fixed in
the Cox-Ingersoll-Ross (CIR) model. The CIR process is

Table 1 Mean, standard deviation, and confidence interval
for error mean (m = 32, k = 500)

ti xE sE 0.95 Confidence interval

Lower bound Upper bound

0 1.04 × 10−3 1.10 × 10−4 1.03 × 10−3 1.04 × 10−3

0.1 4.13 × 10−3 4.50 × 10−3 3.73 × 10−3 4.52 × 10−3

0.2 9.35 × 10−3 8.67 × 10−3 8.59 × 10−3 1.01 × 10−2

0.3 1.07 × 10−2 9.10 × 10−3 9.90 × 10−3 1.14 × 10−2

0.4 3.30 × 10−2 5.61 × 10−2 3.25 × 10−2 3.34 × 10−2

0.5 7.65 × 10−2 7.10 × 10−2 7.04 × 10−2 8.29 × 10−2

0.6 9.07 × 10−2 8.81 × 10−2 8.29 × 10−2 9.84 × 10−2

0.7 1.12 × 10−1 9.66 × 10−2 1.03 × 10−1 1.20 × 10−1

0.8 5.77 × 10−1 1.33 × 10−1 5.65 × 10−1 5.88 × 10−1

0.9 8.01 × 10−1 6.00 × 10−1 7.48 × 10−1 8.53 × 10−1
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Figure 1 Numerical results for β = 0.05,α = 0.3, σ = 0.002, and
r(0) = 0.03.

a Markov process with continuous paths defined by the
following SDE:

dr(t) = β(α − r(t))dt + σ
√
r(t)dB(t). (33)

The parameter β corresponds to the speed of adjustment,
α to the mean and σ to volatility. Equation 33 has no ana-
lytical solution. This process is widely used in finance to
model short-term interest rate. The approximated solu-
tion by the presented method is shown in Figure 1.

Conclusion
The aim of the presented paper is to apply a method for
solving nonlinear stochastic differential equations. The
properties of the BPFs with the collocation method are
used to reduce the problem to a system of nonlinear alge-
braic equations. The advantage of this method is the low
cost of setting up the equations due to the properties of
BPFs. For showing efficiency, the method is applied to
some practical problems. The results show accuracy of
the method.
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