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Abstract
In this paper, the authors discuss the oscillation of solutions of some generalized
nonlinear α-difference equation

�α(�)(p(k)�α(�)u(k)) + q(k)f (u(k – τ (k))) = 0, ()

k ∈ [a,∞), where the functions p, q, f and τ are defined in their domain of definition
and α > 1, � is a positive real. Further, uf (u) > 0 for u �= 0, p(k) > 0 and

limk→∞(k – τ (k)) =∞, where Rk =
∑[ k–�

�
]

r=0
1

αrp(r�) → ∞ as k → ∞ and u(k) is defined for
k ≥ mini≥0(i – τ (i)) for all k ∈ [a,∞) for some a ∈ [0,∞).
MSC: 39A12
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1 Introduction
The basic theory of difference equations is based on the operator � defined as �u(k) =
u(k + ) – u(k), k ∈N = {, , , , . . .}. Even though many authors [–] have suggested the
definition of � as

�u(k) = u(k + �) – u(k), k ∈ R,� ∈R – {}, ()

there was no significant progress in this area. But recently, [] considered the definition of
� as given in () and developed the theory of difference equations in a different direction.
For convenience, the operator � defined by () is labeled as ��, and by defining its inverse
�–

� , many interesting results and applications in number theory (see [–])were obtained.
By extending the study related to the sequences of complex numbers and � being real, some
new qualitative properties of the solutions like rotatory, expanding, shrinking, spiral and
weblike were obtained for difference equation involving ��. The results obtained using
�� can be found in [–]. Popenda and Szmanda [, ] defined � as

�αu(k) = u(k + ) – αu(k), ()

and based on this definition, they studied the qualitative properties of a particular differ-
ence equation, and no one else has handled this operator. Recently Manuel et al. [, ]

©2014 Manuel et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81062606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.advancesindifferenceequations.com/content/2014/1/109
mailto:akilic@upm.edu.my
http://creativecommons.org/licenses/by/2.0


Manuel et al. Advances in Difference Equations 2014, 2014:109 Page 2 of 8
http://www.advancesindifferenceequations.com/content/2014/1/109

considered the definition of�� as given in (), and by defining its inverse, some interesting
results on number theory were obtained.
In [], Szafranski and Szmanda obtained sufficient conditions for the oscillation of a

similar difference equation involving �. In this paper the theory is extended from � to
�α(�) for all real k ∈ [a,∞), and we discuss the oscillatory behavior of solutions of gener-
alized nonlinear α-difference equation ().
Throughout this paper, we make use of the following assumptions.
(a) N = {, , , , . . .}, N(a) = {a,a + ,a + , . . .};
(b) N�(a) = {a,a + �,a + �, . . .};
(c) �x� and [x] denote upper integer and integer part of x, respectively;
(d) j = k – ki – [ k–ki

�
]�, ki ∈ [,∞).

2 Preliminaries
In this section, we present some preliminaries which will be useful for future discussion.

Definition . [] The inverse of the generalized α-difference operator denoted by�–
α(�)

on u(k) is defined as follows. If �α(�)v(k) = u(k), then

�–
α(�)u(k) = v(k) – α[ k

�
]v(j), ()

where k ∈N�(j), j = k – [ k
�
]�.

Lemma. [] If the real-valued function u(k) is defined for all k ∈ [a,∞) and α > , then

�–
α(�)u(k) =

[ k–a–j–�
�

]∑
r=

u(a + j + r�)

α� a+j+�–k+r�
�

�
+ α� k–a

�
�u(a + j) ()

for all k ∈N�(j), j = k – a – [ k–a
�
]�.

Definition . [] The solution u(k) of () is called oscillatory if for any k ∈ [a,∞) there
exists k ∈ N�(k) such that u(k)u(k + �) ≤ . The difference equation itself is called os-
cillatory if all its solutions are oscillatory. If the solution u(k) is not oscillatory, then it is
said to be nonoscillatory (i.e., u(k)u(k + �) >  for all k ∈ [k,∞)).

3 Main results
In this section we present conditions for the oscillation of equation ().

Theorem . Assume that
(i) q(k)≥  and

∑∞
r= αrq(r�) =∞,

(ii) lim inf|u(k)|→∞ |f (u(k))| > .
Then every solution of Equation () is oscillatory.

Proof Assume that Equation () has a nonoscillatory solution u(k), and we assume that
u(k) is eventually positive. Then there is a positive integer k such that

u
(
k – τ (k)

)
>  for k ≥ k. ()

http://www.advancesindifferenceequations.com/content/2014/1/109
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From Equation () we have

�α(�)
(
p(k)�α(�)u(k)

)
= –q(k)f

(
u
(
k – τ (k)

))
, k ≥ k,

and so p(k)�α(�)u(k) is eventually nonincreasing. We first show that

p(k)�α(�)u(k)≥  for k ≥ k.

In fact, if there is k ≥ k such that p(k)�α(�)u(k) = c <  and p(k)�α(�)u(k) ≤ c for k ≥ k,
that is,

�α(�)u(k) ≤ c
p(k)

,

hence by Lemma .,

u(k) = α� k–k
�

�u(k + j) + c

k–k–�–j
�∑

r=



α� k+j+�–k+r�
�

�p(k + j + � + r�)
→ –∞

as k → ∞,

which contradicts the fact that u(k) >  for k ≥ k. Hence, p(k)�α(�)u(k) ≥  for k ≥ k.
Therefore we obtain

u
(
k – τ (k)

)
> , �α(�)u(k) ≥ , �α(�)

(
p(k)�α(�)u(k)

) ≤  for k ≥ k.

Let L = limk→∞ u(k).
Then L >  is finite or infinite.
Case . L >  is finite.
From the function f (k) defined in its domain of definition, we have

lim
k→∞

f
(
u
(
k – τ (k)

))
= f (L) > .

Thus, we may choose a positive integer k (≥ k) such that

f
(
u
(
k – τ (k)

))
>


f (L), k ≥ k. ()

By substituting () in Equation () we obtain

�α(�)
(
p(k)�α(�)u(k)

)
+


f (L)q(k)≤ , k ≥ k. ()

By Lemma ., we obtain

p(k + �)�α(�)u(k + �) – α� k–k
�

�p(k + j)�α(�)u(k + j)

+


f (L)

k–k–�–j
�∑

r=

p(k + j + r�)

α� k+j+�–k+r�
�

�
≤ ,
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and so



f (L)

k–k–�–j
�∑

r=

p(k + j + r�)

α� k+j+�–k+r�
�

�
≤ α� k–k

�
�p(k + j)�α(�)u(k + j), k ≥ k,

which contradicts (i).
Case . L =∞. For this case, from condition (ii) we have

lim inf
k→∞

f
(
u
(
k – τ (k)

))
> ,

and so wemay choose a positive constant c and a positive integer k sufficiently large such
that

f
(
u
(
k – τ (k)

)) ≥ c for k ≥ k. ()

Substituting () into Equation () we have

�α(�)
(
p(k)�α(�)u(k)

)
+ cq(k)≤ , k ≤ k.

Using a similar argument as in Case , we obtain a contradiction to condition (i). This
completes the proof. �

Example . For the generalized α-difference equation

�α(�)

(

k
�α(�)u(k)

)
=

(
k + k� + �

(k + �)()�

)
(–α)�

k+�
�

�,

all the conditions of Theorem . hold and hence all the solutions are oscillatory. In fact
u(k) = (–α)�

k
�
�k is one such solution.

Theorem . Assume that
(iii) q(k)≥  and

∑∞
r= αrR(r�)q(r�) = ∞.

Then every bounded solution of () is oscillatory.

Proof Proceeding as in the proof of Theorem ., with the assumption that u(k) is a
bounded nonoscillatory solution of (), we get inequality (), and so we obtain

R(k)�α(�)
(
p(k)�α(�)u(k)

)
+


f (L)R(k)q(k)≤ , k ≥ k. ()

It is easy to see that

R(k)�α(�)
(
p(k)�α(�)u(k)

)
≥ �α(�)

(
R(k)p(k)�α(�)u(k)

)
– αp(k)�α(�)u(k)�α(�)R(k). ()
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Using () in (), () reduces to

R(k)p(k)�α(�)u(k) – α� k–k
�

�R(k + j)p(k + j)�α(�)u(k + j)

– α

k–k–j–�
�∑

r=

p(k + j + r�)

α� k–k+j+�+r�
�

�
�α(�)u(k + j + r�)�α(�)R(k + j + r�)

+


f (L)

k–k–j–�
�∑

r=

R(k + j + r�)

α� k–k+j+�+r�
�

�
q(k + j + r�) ≤ ,

which implies



f (L)

k–k–j–�
�∑

r=

R(k + j + r�)

α� k–k+j+�+r�
�

�
q(k + j + r�)

≤ u(k + �) + α� k–k
�

�R(k + j)p(k + j)�α(�)u(k + j + r�) – α� k–k
�

�u(k + j), k ≥ k.

Hence, there exists a constant c such that

k–k–j–�
�∑

r=

R(k + j + r�)

α� k–k+j+�+r�
�

�
q(k + j + r�)≤ c for all k ≥ k,

which is a contradiction to condition (iii) which completes the proof. �

Example . For the generalized α-difference equation

�α(�)
(
k�α(�)u(k)

)
=

(
(α� + )(αk + k + �)

k+�

)
(–)�

k+�
�

�,

all the conditions of Theorem . hold and hence all the solutions are oscillatory. In fact

u(k) = (–)�
k
�

�
k is one such solution.

Theorem . Assume that
(iv) (k – τ (k)) is nondecreasing, where τ (k) ∈ [,∞),
(v) there exists p(kn) such that p(kn) ≤  for kn ∈ [,∞),
(vi)

∑∞
r= αrq(r�) = ∞,

(vii) f is nondecreasing and there is a nonnegative constant M such that

lim sup
s→

s
f (s)

=M. ()

Then the difference �α(�)u(k) of every solution u(k) of Equation () oscillates.

Proof If not, then Equation () has a solution u(k) such that its difference �α(�)u(k) is
nonoscillatory. Assume first that the sequence�α(�)u(k) is eventually negative. Then there
is a positive integer k such that

�α(�)u(k) < , k > k,

http://www.advancesindifferenceequations.com/content/2014/1/109
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and so u(k) is decreasing for k ≥ k, which implies that u(k) is also nonoscillatory. Set

w(k) =
p(k)�α(�)u(k)
f (u(k – τ (k)))

k ≥ k ≥ k. ()

Then

�α(�)w(k) =
p(k + �)�α(�)u(k + �)
f (u(k + � – τ (k + �)))

– α
p(k)�α(�)u(k)
f (u(k – τ (k)))

=
�α(�)(p(k)�α(�)u(k))

f (u(k – τ (k)))

+ p(k + �)�α(�)u(k + �)
f (u(k – τ (k))) – f (u(k + � – τ (k + �)))
f (u(k + � – τ (k + �)))f (u(k – τ (k)))

≤ �α(�)(p(k)�α(�)u(k))
f (u(k – τ (k)))

= –q(k), k ≥ k. ()

By Lemma ., we have

w(k + �) – α� k–k
�

�w(k + j) ≤ –

k–k–j
�∑

r=

q(k + j + r�)

α� k+j–k+r�
�

�
,

and by (vi) we get

lim
k→∞

w(k) = –∞, ()

which implies that eventually

f
(
u
(
k – τ (k)

))
>  and therefore k – τ (k) > . ()

By (), we can choose k (≥ k) such that

w(k) ≤ –(M + �), k ≥ k.

That is,

p(k)�α(�)u(k) + (M + �)f
(
u
(
k – τ (k)

)) ≤ , k ≥ k. ()

Set limk→∞ u(k) = L. Then L≥ . Now we prove that L = . If L > , then we have

lim
k→∞

f
(
u
(
k – τ (k)

))
= f (L) > 

since f (k) is defined in its domain of definition. Choosing k sufficiently large such that

f
(
u
(
k – τ (k)

))
>


f (L), k ≥ k, ()

and substituting () into (), we obtain

�α(�)u(k) +


p(k)
(M + �)f (L)≤ , k ≥ k. ()

http://www.advancesindifferenceequations.com/content/2014/1/109
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From Lemma ., we have

u(k + �) – α� k–k
�

�u(k + j) +


(M + �)f (L)

k–k–�–j
�∑

r=



α� k–k+j+r�
�

�p(k – k + j + r�)
≤ ,

which implies that limk→∞ u(k) = –∞.
This contradicts (). Hence limk→∞ u(k) = .
By the assumptions we have

lim sup
k→∞

u(k – τ (k))
f (u(k – τ (k)))

≤M.

From this we can choose k such that

u(k – τ (k))
f (u(k – τ (k)))

<M + �, k ≥ k.

That is, u(k – τ (k)) < (M + �)f (u(k – τ (k))), k ≥ k, and so from () we get

p(k)�α(�)u(k) + u
(
k – τ (k)

)
< , k ≥ k.

In particular, for a function p(kn) satisfying condition (v), we have

u(kn + l) – αu(kn) + xkn – τ (kn) ≤ p(kn)
(
u(kn + l) – αu(kn)

)
+ u

(
kn – τ (kn)

)
< 

for k sufficiently large, which implies that

 < u(kn + l) +
(
u
(
kn – τ (kn)

)
– αu(kn)

)
< 

for all large k. This is a contradiction. The case that �α(�)u(k) is eventually positive can be
treated in a similar fashion and this completes the proof of the theorem. �

Example . For the generalized α-difference equation

�α(�)

(

k
�α(�)u(k)

)
=

(
(� + )((� + )k + �)

(k + �)()�

)
(–α)�

k+�
�

�k ,

all the conditions of Theorem . hold and hence all the solutions are oscillatory. In fact
u(k) = (–α)�

k
�
�k is one such solution.
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