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We present a process of semantic meta-model development for data manage-
ment in an adaptable multiscale modeling framework. The main problems in
ontology design are discussed, and a solution achieved as a result of the re-
search is presented. The main concepts concerning the application and data
management background for multiscale modeling were derived from the AM3
approach—object-oriented Agile multiscale modeling methodology. The onto-
logical description of multiscale models enables validation of semantic cor-
rectness of data interchange between submodels. We also present a possibility
of using the ontological model as a supervisor in conjunction with a multiscale
model controller and a knowledge base system. Multiscale modeling formal
ontology (MMFO), designed for describing multiscale models’ data and
structures, is presented. A need for applying meta-ontology in the MMFO
development process is discussed. Examples of MMFO application in
describing thermo-mechanical treatment of metal alloys are discussed. Pre-
sent and future applications of MMFO are described.

INTRODUCTION

Modern material processing is aimed at improv-
ing the cost-effectiveness ratio in the metal indus-
try. A controlled development of microstructures
with multi-step processes can lead to achieving
desired combinations of properties. Nevertheless,
issues related to controlling microstructural pro-
cesses and related mechanical properties (e.g.,
impact toughness, yield stress, hardness, etc.) are
still challenging for manufacturers.! In advanced
technologies, all consecutive steps of the manufac-
turing process are tightly connected, and an effi-
cient way of achieving requested properties must
consider all mutual dependencies. Complex pro-
cesses cannot be developed without extensive use of
numerical modeling. The multiscale modeling
approach is the one which significantly increases
predictive capabilities of numerical models. Mul-
tiscale modeling has become a popular tool in many
areas of science, such as biology, physiology, mate-
rial science, chemistry and applied mathematics.

One of the current issues of multiscale modeling
is representation of material state. Various method-
ologies for the generation of microstructural
description have been developed.? Some are based
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on digitalization of microstructural images. This
approach requires a large number of images, cover-
ing the whole range of initial conditions for the
numerical model. The stochastic character of
microstructures, as well as uncertainty aspects,
must be considered, leading to costly and long-
lasting investigations before a reliable multiscale
model of a process can be used. Alternatively, an
initial microstructure description can be developed
with numerical methods (e.g., with Cellular Auto-
mata).® The latter approach is more flexible; how-
ever, a reliable projection of material history into a
computationally generated description is a demand-
ing task.

The most effective way of improving quality and
reliability of multiscale modeling is to keep a history
of material treatment from the very beginning. In
this approach, the microstructural description is not
generated for the particular process but inherited
from the previous stages. This approach is one of the
main postulates of Integrated Computational Mate-
rials Engineering (ICME). The current topic in the
ICME community is describing material data. In the
context of multiscale modeling, this need was
discussed by Yang and Marquardt.* More recently,
the need of a standardized description of material
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properties was emphasized, and a set of guidelines
for such a standard, as well as the main problems to
be solved, was presented.® The possible application
of a VTK-based format of material description,
HDF5, was introduced by Schmitz.®

Application of multiscale modeling and ICME
within the industry is also limited, due to compu-
tational demands. Application of detailed numerical
models for microstructural modeling everywhere
and every time in a macroscopic computational
domain leads to a very reliable multiscale model,
however, such application is useless due to the
required computational resources. Currently, the
balance between thoroughness and computational
costs of multiscale models is usually controlled by
the developers/researchers themselves. An alterna-
tive solution, based on Agile multiscale modeling
methodology (AM3), was introduced by Maciot
et al.”® In this approach, a knowledge-based system
(KBS) is applied for runtime control of a multiscale
model configuration. Applying AM3 to ICME
methodology will decrease necessary computational
resources, keeping the quality of results at a
sufficient level. However, it makes a transfer of
material state description between parts of models
even more complex. The specification of inputs and
outputs of parts of the integrated model is no longer
static but varies during computations. Therefore,
the adaptive modeling environment puts high
demands on the material description.

One of the postulates of the ICME community is
that a material description is sufficient to describe
material properties at coarser scales. These proper-
ties can be calculated “on-the-fly” with some models,
numerical or analytical. This approach is very
promising; however, some constraints cannot be
neglected. First, in the foreseeable future, it will not
be possible to describe engineering material starting
from an “ab initio” scale due to both the required
amount of data and the stochastic character of
materials. In addition, numerical models are very
sensitive to the “quality” of inputs. Each numerical
model is grounded on some assumptions concerning
input and output variables. These assumptions are
not always clear. Moreover, violation of these
assumptions usually leads to erroneous results.
The loss of a Mars Climate Orbiter spacecraft,
worth US$125 million, due to a trivial mistake in
Imperial/SI unit conversions is one such example.
The former constraint requires some generaliza-
tions of material data, while the latter tightly binds
the reliability of computations with these general-
izations. Furthermore, each numerical model
requires its own form of generalization. Therefore,
it is expected that the pure description of material
state could be insufficient in an adaptive multiscale
modeling framework. Schmitz et al.,” and Konter
et al.” emphasized the need for additional metadata
associated with material description. In this paper,

we assume that the common description for both
material state and numerical model should be used
together.

The approaches of material representation pre-
sented above can be used for detailed descriptions
of the material state; however, their semantic
expressivity is limited. The ambiguity of such
descriptions requires additional specifications,
which cannot be used directly by computer algo-
rithms. Since it is crucial that the structure of the
model is variable, the adaptable structure of an
AMS3/ICME model provides a sufficient solution.
Our goal is to provide a tool for joint semantic
descriptions of material state and multiscale mod-
els for thermo-mechanical processing (TMP) of
metal alloys. With this description, it would be
possible to (1) provide a wunified, formal and
unambiguous description of materials and models
that could be shared with other users (re-
searchers), (2) define input and output variables
for models, (3) solve problems associated with
synonymy (multitude of names for the same des-
ignates) and polysemy (usage of identical terms for
different values), and ultimately (4) provide a basis
for future automatic classification of models and
validation of compatibility of data and models.

Adaptive Multiscale Modeling

Numerical models of material processing can be
considered from various perspectives. From the
point of view of material science, a theoretical
description of physical and chemical phenomena
inside the material is used. Then, a mathematical
description of the phenomena is utilized. Eventu-
ally, the model must be described with the use of
numerical methods and finally implemented in a
code using a programming language. Each of these
points of view involves its own knowledge content.
In a conventional, single-scale model, material
science knowledge is not directly connected with
its numerical description. As an example, during
modeling of a material deformation process, the
relationship between strains and stresses must be
provided. Single-scale models use equations or
tabularized data for this purpose. The latter are
evaluated on the basis of experimental results, and
lack any explicit “knowledge.” Equations can be
partially based on such knowledge, but some
empirically fitted parameters are still required.
Multiscale modeling introduces stronger linkages
between material science and numerical methods.
Instead of wutilizing equation/data, a fine-scale
submodel is involved. Since such a model is
believed to reproduce particular phenomena inside
a material, material science knowledge is directly
involved, at least on a single spatial/temporal
scale.
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ONTOLOGIES
Ontologies in Computer Science

An ontology is a model representing a fragment of
domain knowledge, comprising a set of concepts and
a set of predicates: properties of concepts being
unary predicates and a set of relationships between
concepts being binary predicates. An ontology must
describe reality on different levels of granularity,
maintaining a description of relationships between
layers in the hierarchy. Because the levels consid-
ered range from the microphysical up to the cosmo-
logical, it should be noted that an ontolo§y created
in this way is not universal in its range.'” Ontology
should provide knowledge interoperability and
reusability. An ontology is not a database schema,
but one could say that the ontology serves the same
purpose in the case of knowledge repositories as
entity diagrams in the case of databases; it is a
schema, a model describing a certain field of knowl-
edge, understandable by both computers and peo-
ple. Creating a unified, formal language of related-
concepts definitions and its consequent sharing with
a number of users is the first and foremost purpose
of ontologies.!! Issues related to data integration
and data interchange among heterogeneous pro-
gramming artifacts are very common today, due to
their importance in complex and distributed sys-
tems.'? Ontologies are capable of solving problems
related to the integration of knowledge. Moreover,
they could help in classification when available
knowledge is incomplete and/or inconsistent. Such
tasks have been described in previous authors’
publications.'?

Ontologies in Material Modeling Science

Modeling of processes in material science entails
the necessity of developing complex systems involv-
ing various submodels. If submodels of a model are
focused on different length/time scales, the model is a
multiscale one. There are two possible ways of
coupling submodels. They can be incorporated into
a consistent set of equations and solved concurrently
or split into relatively independent submodels, com-
municating with others by passing some variables. A
detailed discussion is available.'* E introduced
heterogeneous multiscale models (HMM), describing
the second of the model families mentioned above.
This paper is focused on such heterogeneous models.
In such a case, a model can be represented by a set of
relationships and variables, which describe depen-
dencies between material properties and its process-
ing. The need to use a unified language to describe
individual components of the modeled system—on-
tologies—has been repeatedly mentioned in several
publications, for example,'® in the fields of chem-
istry,* biology'®'” and geography.'®

Currently, a variety of simulation models is
known in the field of material science. These models
are written using various languages and are
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designed for a wide range of computational envi-
ronments. Unfortunately, these models are usually
neither interoperable nor annotated in a sufficiently
consistent manner to support intelligent searching
or integration of available models. Usually, simula-
tion models contain no explicit information on what
they represent—they are only systems of mathe-
matical equations encoded in a programming lan-
guage. Knowledge about a system (process,
phenomenon) is implicit in the code; it is an abstract
representation of the system utilizing mathematical
variables and eqluations which must be interpreted
by a researcher.'?

MULTISCALE MODELING FORMAL
ONTOLOGY CREATION

As mentioned above, a relatively new trend in
multiscale modeling concerns adaptiveness of the
actual model structure to present conditions. It
urges the usage of a large number of submodels,
which constitute a base for momentary configura-
tions of the model. A structure of the model is
floating; however, each configuration must be “bal-
anced”—each input variable to any active submodel
must be provided by at least one other submodel as
an output. The above makes model management
complex. One adaptive framework was introduced
by Maciot et al.”®; however, the object-oriented
description of the model within the framework lacks
the desired expressivity. Hence, multiscale model-
ing formal ontology (MMFO) has been developed.?°

The general concepts of MMFO are based on the
core ontology for material processing science,?! but
the application background for multiscale modeling
of TMP was created according to AM3. Aside from
being a tool for AM3, MMFO should be also treated
as a more generic tool—a platform for linking
material science knowledge, numerical (multiscale)
modeling knowledge, and implementation details.

Objectives

One of the core concepts of AM3 is a multiscale
model run-time reorganization based on the mate-
rial state, the required reliability of computations,
and the available computing power. Hence, three
aspects must be taken into consideration: (1) com-
patibility and completeness of the model structure,
including material state variables; (2) reliability of
submodels in dependence on the material state; and
(3) the computational requirements.

Meta-ontology

Describing an adaptive multiscale model structure
within the framework is a complex task. The structure
can be described on two abstraction levels. The more
general one includes abstract classes like SubModel,
Phenomena or Property. The respective concretized
entities are CellularAutomataDynamicRecrystal-
1zation submodel, DynamicRecrystalization



Development of Semantic Description for Multiscale Models of Thermo-Mechanical Treatment 2085

of Metal Alloys

hasSubclass Computational
Complexity

hasSubclas

isConvertible

considerPhenomena

Phenomena

isDescribedWith

isTimeDerivative

Property

Fig. 1. The meta-ontology of MMFO, including relationships.

phenomenon, and GrainSize property. Similarly, two
levels of ontology are considered. The more general one
(meta-ontology) involves abstract classes and abstract
object properties. Meta-ontology, as an abstract root of
the case-specific detailed ontology, can be perceived as
an intermediate stage of ontologg creation. This
approach is comes from philosophy.?? In MMFO, the
meta-ontology describes fundamental concepts and
relationships between the abstract classes (Fig. 1).

The meta-ontology is very coarse and has no real
descriptive value for AM3-based models. However,
the meta-ontology is a guideline for development of
concretized classes and relationships between them.

There is a practically unlimited number of con-
figurations, phenomena, properties, and submodels.
From the modeling framework perspective, entities
(objects) can be incorporated into a single class if all
their relationships are equal. Each of the sub-
classes, as well as the object “subproperties,” are
derived from the meta-ontology entities. Subclasses
derive from abstract classes of the meta-ontology,
and subproperties derive from object properties
linking abstract classes of the meta-ontology. These
subclasses and subproperties are components of the
ontology. All hierarchies of classes are briefly
described below.

Hierarchies of Classes

Property is a root for measurement of some
physical or chemical states, for example tempera-
ture, pressure, stress, etc. The properties are quan-
titated with the data property Unit. A given
property can be represented using various units.
In this case, a generalized Property has subclasses
for each unit (e.g., Fahrenheit, Kelvin, Celsius
degrees). The subclasses are disjoint-with the other
subclasses. Since conversions between all tempera-
ture representations are direct, a family of object
subproperties is defined, where all members are
inheriting from the Convertible object property
(Fig. 2).

hasSubclass hasSubclass

Temperature
Celsius

hasSubclass

Temperature
Fahrenheit

<} — — -isConvertible — —

Fig. 2. The hierarchy of Temperature property’s subclasses.

Each subclass of the Property* hierarchy has a
Representation data property, being a scalar, a
vector, or a tensor. For example, the class Temper-
ature is a scalar (as well as the deriving subclasses)
and the class Velocity is a vector.

The subclasses of Phenomena represent physical
or chemical processes. This is the closest hierarchy
to material science—Phenomena’s subclasses are
linked to concepts from the material science
domain. Some Phenomena subclasses are branches;
for example, DynamicRecrystallization is a subclass
of Recrystallization. Each Phenomena class must be
isDescribedWith at least one Property. In other
words, the subclasses of Property (e.g., HeatGener-
ation) are measures of Phenomena’s subclasses (e.g.,
PlasticWork). isDescribedWith is a many-to-many
relationship. Although the instances of these con-
cepts represent the quantity value units, the using
of an ontology or approach that more closely con-
forms to ISO 80000 such as QUDT could therefore
be justified; these same concepts, however, are
derived from phenomena that are not easily
described with the use of existing models.

The SubModel hierarchy classes represent par-
ticular implementations of numerical models, cap-
able of modeling particular Phenomenas. Subclasses
of SubModel are related to the areas of numerical
methods and software development. The SubModel
subclasses can be simple equations, tabularized
data, single- or multiscale numerical models, exter-
nal numerical software, etc.

A single SubModel subclass may serve more than
one Phenomena subclass. For example, a complex
model of recrystallization can be used for computing
both static and dynamic recrystallization processes.
It is defined with relationships constituting sub-
properties of considerPhenomena object property
(e.g., PrecipitationsEquation considerPhenomena
Time). Each SubModel is characterized by its
computational complexity.

*“Subclass of Property” is used interchangeably with “one of
Properties”; the same applies to the other classes of the meta-
ontology.
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SubModels have their input and output sets of
properties defined (hasInputs and hasOutputs
object properties). The input sets can be eventually
empty (e.g., constant value of Young coefficient in
ConstantYoungModulus submodel). The output set
must contain at least one Property subclass. From
the perspective of an overall model correctness,
balancing of required inputs and provided outputs is
essential. Since a given SubModel can become
“active” at any time, availability of input variables
cannot be checked during the design stage. The
validation must be carried out at the same time as
changes are made to the SubModels configuration.

Optimization of computational resources usage is
one of the main tasks of AM3. Hence, description of
computational complexities of submodels is included
in MMFO; however, it is not considered in this paper,
due to a lack of direct connection to material data.

The ultimate goal of MMFO is to describe avail-
able configurations of submodels. Such a configura-
tion includes a set of SubModels, interconnected
with subproperties deriving from configurationln-
cludesSubModels. Since most of the configurations
will be very similar, varying by only a few Sub-
Models, subclasses of Configuration are organized
in hierarchies. An example is shown in Fig. 3.
During computations, an AM3 multiscale model
must be consistent with one of the pre-defined
Configurations. Any change in model conditions
(material state, available computational resources)
may move the model from the current to any other
Configuration. Since particular numerical models
are individuals, more than one real numerical
model can be used in the same Configuration, hence
not every change in the numerical models involved
affects the present Configurations of the multiscale
model. The allowed Configurations of the model are
the leaves of the hierarchy, while abstract classes
are the root and branches.

The classes and relationships introduced above
may be extended. There are many relationships in
material science and numerical methods. If more of
them are to be considered, the description of Sub-
Models configurations would become more sophisti-
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cated. One of the simplest exemplary possibilities is
the introduction of the isTimeDerivative object prop-
erty. For example, the Velocity property isDerivative
of Coordinates with respect to Time. By introduction
of this knowledge, the system would be able to
provide Velocity automatically, not only if it is
available directly but also when Coordinates and
Time are available for the current and previous steps.

Examples

Two real multiscale models were described with
MMFO: the model of aluminum alloy thermo-me-
chanical treatment, based on the Sherstnyev three-
internal-variable model (3IV)?*** and the model of
aluminum alloy deformation with precipitation
kinetics considered.’

The IV3 model allowable configurations are the
leaves of the Dislocations3IVModel branch (Fig. 4a).
The common part of all configurations is defined
using Dislocations3IVModellncludes and con-
tains Deform2DTMC, ShearModulusConst, and
StressDislocationsSubgrainEquation  submodels.
Depending on the existence of deformation (the
existence is defined as a threshold value of Effec-
tiveStrainRate property), two alternative Configu-
ration subclasses (dynamic and static) are available.
Both inherit also the submodels included with
dislocations3IVModellncludes object property.

There are two possible Configurations of precip-
itation kinetic models (Fig. 4b). The difference lies
in solving the precipitation kinetic problem with the
external MatCalc software or the simplified, equa-
tion-based submodel. In this case the common part
includes AthermalStressWithDislocations, Defor-

m2DTMC, FlowStressThermalAthermal, Shear-
ModulusInTemperature,  StressStrainRateCurve,
ThermalStressEquation, DislocationsRandom-

Equation, and DislocationsWallEquation. The alter-
native introduces one of the precipitation kinetic
submodels: (1) PrecipitationModelMatCalc, includ-

ing PrecipitationsMatCalc and (2) Precipita-
tionModelEquation, including  Precipitations-
Equation.

Precipitations
Model

.}

Precipitations
ModelMatCalc

Precipitations
ModelEquation

Fig. 3. An exemplary hierarchy of Configuration subclasses.

Configurations

Dislocations3IV
Model

Dislocations3IV
ModelStatic

Dislocations3IV
ModelDynamic
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(a)

Configurations

hasSubclass hasSubclass

Precipitations
Model

includes

hasSubclass  hasSubclass

Dislocations3IV
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ShearModulusC
onst
include

include

StressDisloc...
SubgrainEq..

ModelDynamic

B Y
Deform2DTMC
[Dislocationsmvj

Dislocations3IV
ModelStatic

/\_/

\
includes
L

includes

\
includes includes

N N
Dislocations GrainsDynamic Dislocations GrainsDynamic
Dynamic Equation Static Static

(b)

DislocationsWall
Equation

Dislocations
RandomEquation

includes
FlowStress
ThermalAtherm

includes

includes,
AthermalStress

Precipitations

WithDislocations includ

includes

ThermalStress
includes

hasSubclass hasSubclass

Configurations

hasSubclass hasSubclass

Dislocations3IV

Model Model

includes

Equation

Y

ShearModulus

includes Precipitations
ModelEquation

inTemperature

includes

r N
Precipitations
ModelMatCalc
I

Deform2DTMC

includes

StressStrain
RateCurve

V V
Precipitations Precipitations
ModelEquation ModelMatCalc

Fig. 4. Configurations of exemplary model: the three-internal-variable (a) and precipitation kinetic model (b).

As mentioned before, some SubModel subclasses
may be represented by more than one individual.
For example, there are two PrecipitationsMatCalc
individuals: AA6082AsCast and AA6082Prepared,
as well as three Deform2DTMC individuals:
AA6082FullProcessingModel, AA6082coldRolling,
AA6082coldSpike. Since switching between alter-
native individuals does not affect the Configuration,
it is valid for each of six possible processes (three
Deform2DTMC processes multiplied by two Precip-
itationsMatCalc initial states).

PRESENT AND FUTURE APPLICATIONS

The main reason why MMFO has been developed
is to support researchers in the design of multiscale
models, mainly the ones based on the AMS3

framework. A flexible, run-time-adjustable structure
of a model makes data management difficult. From
this point of view, the main objective of MMFO is to
support the compatibility assurance of all simulta-
neously active submodels. The compatibility of
submodels is defined as a ‘balance’ between
requested outputs and provided inputs. A configu-
ration is deemed valid if each input that may be
requested by any submodel is provided as an output
by at least one other submodel. There is an addi-
tional requirement that there are no closed loops
(i.e. when a submodel A requests data from a
submodel B, the latter cannot request the data back
from the former) leading to deadlocks. Presently,
that problem is solved on a programming level
within the AM3 framework. This solution works
reliably, but the validation is conducted during the
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compilation phase and cannot be configured during
the design stage. Moreover, it is extremely non-
user-friendly. MMFO is expected to solve this
problem. Definition of submodels using ontology-
dedicated tools is much easier than plain program-
ming. Unfortunately, the ontology tools are not able
to validate the model structure; they can only
describe it. Hence, the next research objective is to
design tools capable of automatic analysis of the
model structure and converting the ontology based
model into a C ++ source code. Further works will
also involve the development of a tool for automatic
validation of configurations’ completeness.

CONCLUSION

Application of MMFO makes possible the seman-
tic description enhancement of the material descrip-
tion and multiscale model. It allows for validating
the model in terms of completeness of input vari-
ables passed between submodels. It also introduces
a convenient tool for communication between mate-
rial scientists, numerical modelers, and program-
mers. It is also useful in the management of large
knowledge bases, which are required to describe
transitions between various configurations of AMS3-
based multiscale models.

Another issue addressed during MMFO develop-
ment for the AMS3 framework is the need for
continuous enhancement of the ontology. Since the
set of modeled phenomena and submodels is not
restricted, MMFO has been split into two levels:
meta-ontology as a guideline for continuous exten-
sion of the ontology itself.

The future works, aimed at the development of
additional tools for linking MMFO with a program-
ming language (automatic code generation for the
backbone of multiscale model), automation of input/
output sets balancing and supporting rules creation
for the knowledge-based system will significantly
increase the present capabilities of MMFO.
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