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1 Introduction

An explicit Lagrangian description of multiple M2-branes [1] has opened up a new window

to study M-theory or non-perturbative string theory. It was proposed that N multiple M2-

branes on C
4/Zk are described by N = 6 supersymmetric Chern-Simons-matter theory

with gauge group U(N) × U(N) and levels k and −k. Due to supersymmetry, partition

function and vacuum expectation values of BPS Wilson loops in this theory on S3 were

reduced to a matrix integration [2–5], which is called the ABJM matrix model. Here the

coupling constant of the matrix model is related to the level k inversely.

The ABJM matrix model has taught us much about M-theory or stringy non-

perturbative effects. Among others, we have learned [6] that it reproduces the N3/2 be-

havior of the degrees of freedom when N multiple M2-branes coincide, as predicted from

the gravity dual [7]. Also, as we see more carefully below, it was found in [8] that all the

divergences in the worldsheet instantons are cancelled exactly by the membrane instantons.

This reproduces the lesson we learned in the birth of M-theory or non-perturbative strings:
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string theory is not just a theory of strings. It is only after we include non-perturbative

branes that string theory becomes safe and sound.

After the pioneering paper [6] which reproduced the leading N3/2 behavior, the main

interest in the study of the ABJM matrix model was focused on the perturbative sum [9, 10]

and instanton effects [6, 11]. All of the computations in these papers were done in the ’t

Hooft limit, N → ∞ with the ’t Hooft coupling λ = N/k held fixed, though for approach-

ing to the M-theory regime with a fixed background, we have to take a different limit.

Namely, we have to consider the limit N → ∞ with the parameter k characterizing M-

theory background fixed [12, 13]. To overcome this problem, in [14] the matrix model was

rewritten, using the Cauchy determinant formula, into the partition function of a Fermi

gas system with N non-interacting particles, where the Planck scale is identified with the

level: ~ = 2πk. This expression separates the roles of k from N , which enables us to take

the M-theory limit. Note that the M-theory limit probes quite different regimes from the

’t Hooft limit. Especially, using the WKB expansion in the M-theory limit, we can study

the k expansion of the membrane instantons systematically.

Using the Fermi gas formalism, we can also compute several exact values of the parti-

tion function with finite N at some coupling constants [15, 16]. We can extrapolate these

exact values to the large N regime and read off the grand potential [8]. The grand poten-

tial reproduces perfectly the worldsheet instanton effects predicted by its dual topological

string theory on local P1 × P
1 when instanton number is smaller than k/2, though serious

discrepancies appear beyond it. Namely, the worldsheet instanton part of the grand poten-

tial is divergent at some values of the coupling constant, while the partition function of the

matrix model is perfectly finite in the whole region of the coupling constant. By requiring

the cancellation of the divergences and the conformance to the finite exact values of the

partition function at these coupling constants, we can write down a closed expression for

the first few membrane instantons for general coupling constants [8, 17], which also matches

with the WKB expansion. Furthermore, using the exact values, we can study the bound

states of the worldsheet instantons and the membrane instantons [18]. We also find that

the instanton effects consist only of the contributions from the worldsheet instantons, the

membrane instantons and their bound states, and no other contributions appear. Finally

in [19] we relate the membrane instanton to the quantization of the spectral curve of the

matrix model, which is further related to the refined topological strings on local P1×P
1 in

the Nekrasov-Shatashivili limit [20–22].

From the exact solvability viewpoints, we could say that the ABJM matrix model

belongs to a new class of solvable matrix models besides that of the Gaussian ones and

that of the original Chern-Simons ones. As we have seen, this class of matrix models can

be rewritten into a statistical mechanical model using the Cauchy determinant formula

and contains an interesting structure of pole cancellations between worldsheet instantons

and membrane instantons. The ABJM matrix model is the only example satisfying these

properties so far.

The most direct generalization of the ABJM theory is the ABJ theory [23] with the

inclusion of fractional branes. It was proposed that N = 6 supersymmetric Chern-Simons-

matter theory with gauge group U(N1)×U(N2) and the levels k,−k describes min(N1, N2)
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M2-branes with |N1 −N2| fractional M2-branes on C
4/Zk. The partition function and the

vacuum expectation values of the BPS Wilson loops in the ABJ theory are also reduced

to matrix models. Without loss of generality we can assume M = N2 − N1 ≥ 0 and

k ≥ 0 for expectation values of hermitian operators. The unitarity constraint requires M

to satisfy 0 ≤M ≤ k.

The integration measure of the ABJM matrix model preserves the super gauge group

U(N |N) while that of the ABJ matrix model preserves U(N1|N2) [24, 25]. In the language

of the topological string theory, the ABJM matrix model corresponds to the background

geometry local P1×P
1 with two identical Kahler parameters, while the ABJ matrix model

corresponds to a general non-diagonal case. Hence, the ABJ matrix model is a direct

generalization also from this group-theoretical or topological string viewpoint.

In this paper we would like to study how the nice structures found in [8, 14, 15, 18, 19]

are generalized to the ABJ matrix model. We start our project by presenting a Fermi gas

formalism for the ABJ matrix model. Our formalism shares the same density matrix as

that of the ABJM matrix model and hence the same spectral problem [26]. The effects of

fractional branes are encoded in a determinant factor which takes almost the same form

as that of the half-BPS Wilson loops in the ABJM matrix model [27].

Another interesting Fermi-gas formalism was proposed previously by the authors

of [28].1 Compared with their formulation, our formalism has an advantage in the nu-

merical analysis since the density matrix is the same and all the techniques used previously

can be applied here directly.

In the formalism of [28], they found that the formula with integration along the real

axis is only literally valid for 0 ≤M ≤ k/2. For k/2 < M ≤ k, additional poles get across

the real axis and we need to deform the integration contour to avoid these poles. Here

we find that the same deformation is necessary in our formalism. Besides, we have pinned

down the origin of this deformation in the change of variables in the Fourier transformation.

We believe that our Fermi gas formalism has also cast a new viewpoint to the fractional

branes. In string theory, it was known that graviton sometimes puffs up into a higher-

dimensional object, which is called giant graviton [30]. In the gauge theory picture, this

object is often described as a determinant operator. Our Fermi gas formalism might suggest

an interpretation of the fractional branes in the ABJ theory as these kinds of composite

objects, though the precise identification needs to be elaborated. Later we will see that the

derivation of our Fermi gas formalism relies on a modification of the Frobenius symbol (see

figure 1). Since the hook representation has a natural interpretation as fermion excitations,

this modification can be regarded as shifting the sea level of the Dirac sea. This observation

may be useful for giving a better interpretation of our formula.

Using our new formalism we can embark on studying the instanton effects. First of all,

we compute first several exact or numerical values of the partition function. From these

studies, we find that the phase part of the partition function has a quite simple expression.

1There were some points in [28] which need justification. This is another motivation for our current

proposal. After we finished establishing this new formalism and proceeded to studying the grand potential,

we were informed by M. Honda of his interesting work [29].
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The grand potential defined by the partition function after dropping the phase factors

Jk,M (µ) = log

( ∞∑

N=0

eµN |Zk(N,N +M)|
)
, (1.1)

can be found by fitting the coefficients of the expected instanton expressions using these

exact values. We have found that they match well with a natural generalization of the

expression for the perturbative sum, the worldsheet instantons and the bound states of the

worldsheet instantons and the membrane instantons in the ABJM matrix model. However,

the membrane instanton part contains a new kind of contribution.

Finally, we conjecture that the large chemical potential expansion of the grand poten-

tial is given by

Jk,M (µ) =
Ck

3
µ3eff +Bk,Mµeff +Ak +

∞∑

m=1

d
(m)
k,Me

−4mµeff/k

+

∞∑

ℓ=1

(−1)Mℓ

(
b̃
(ℓ)
k µeff + c̃

(ℓ)
k − M

2Ck
e
(ℓ)
k

)
e−2ℓµeff . (1.2)

Here the perturbative coefficients are

Ck =
2

π2k
, Bk,M =

1

3k
+

k

24
− M

2
+
M2

2k
,

Ak = −1

6
log

k

4π
+ 2ζ ′(−1)− ζ(3)

8π2
k2 +

1

3

∫
dx

ekx − 1

(
3

x sinh2 x
− 3

x3
+

1

x

)
, (1.3)

while the worldsheet instanton coefficients are

d
(m)
k,M =

∞∑

g=0

∑

d|m

∑

d1+d2=d

(−β−1)d1m/d(−β)d2m/dngd1,d2
m/d

(
2 sin

2πm

kd

)2g−2

, (1.4)

with ngd1,d2 being the Gopakumar-Vafa invariants of local P1×P
1 and β = e−2πiM/k. Aside

from the sign factor (−1)Mℓ, the membrane instanton coefficients are the same as in the

ABJM case [18, 19]

b̃
(ℓ)
k = − ℓ

2π

∞∑

g=0

∑

d|ℓ

∑

d1+d2=d

eiπkℓ(d1−d2)/2d(−1)gn̂gd1,d2
(ℓ/d)2

(2 sinπkℓ/4d)2g

sinπkℓ/2d
,

c̃
(ℓ)
k = −k2 d

dk

b̃
(ℓ)
k

2ℓk
, (1.5)

and the bound states are incorporated by

µeff = µ+
1

Ck

∞∑

ℓ=1

(−1)Mℓa
(ℓ)
k e−2ℓµ. (1.6)

Note that n̂gd1,d2 in (1.5) is different from ngd1,d2 in (1.4). In terms of the refined topological

string invariant ngL,gRd1,d2
, both of them are given as follows [19]:

ngd1,d2 = ng,0d1,d2
, n̂gd1,d2 =

∑

gL+gR=g

(−1)gngL,gRd1,d2
. (1.7)
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It should be noticed that, compared with the ABJM result, our formula (1.2) has a non-

trivial term multiplied by e
(ℓ)
k , which is related to a

(ℓ)
k by

∞∑

ℓ=1

(−1)Mℓa
(ℓ)
k e−2ℓµ = −

∞∑

ℓ=1

(−1)Mℓe
(ℓ)
k e−2ℓµeff . (1.8)

The coefficients a
(ℓ)
k and e

(ℓ)
k are determined from the quantum mirror map and their explicit

form is given in [19]. If we restrict ourselves to the case of integral k, a
(ℓ)
k can be read from

the following explicit relation between µeff and µ:

µeff =




µ− (−1)k/2−M2e−2µ

4F3

(
1, 1, 32 ,

3
2 ; 2, 2, 2; (−1)k/2−M16e−2µ

)
, for even k,

µ+ e−4µ
4F3

(
1, 1, 32 ,

3
2 ; 2, 2, 2;−16e−4µ

)
, for odd k.

(1.9)

The organization of this paper is as follows. In the next section, we shall first present

our Fermi gas formalism for the partition function and the vacuum expectation values of the

half-BPS Wilson operator. After giving a consistency check for the conjecture in section 3,

we shall proceed to the study of exact and numerical values of partition function and

large chemical potential expansion of the grand potential using our Fermi gas formalism in

sections 4 and 5. Finally we conclude this paper by discussing future problems in section 6.

We present two lemmas in the appendices to support the proof of our formalism in section 2.

2 ABJ fractional brane as ABJM Wilson loop

Let us embark on studying the ABJ matrix model, whose partition function is given by

Zk(N1, N2) =
(−1)

1

2
N1(N1−1)+ 1

2
N2(N2−1)

N1!N2!

∫
dN1µ

(2π)N1

dN2ν

(2π)N2

×
(∏

i<j 2 sinh
µi−µj

2

∏
a<b 2 sinh

νa−νb
2∏

i,a 2 cosh
µi−νa

2

)2

e
ik
4π

(
∑

i µ
2
i−

∑
a ν2a). (2.1)

We shall first summarize the main results and prove them in this section.

If we define the grand partition function by

Ξk,M (z) =
∞∑

N=0

zNZk(N,N +M), (2.2)

it can be expressed in a form very similar to the vacuum expectation values of the half-BPS

Wilson loops in the ABJM matrix model [27] (see also [31–33]),

Ξk,M (z)

Ξk,0(z)
= det

(
HM−p,−M+q−1(z)

)
1≤p≤M
1≤q≤M

, (2.3)

with Hp,q(z) defined by

Hp,q(z) = Ep(ν) ◦
[
1 + zQ(ν, µ) ◦ P (µ, ν) ◦

]−1
Eq(ν). (2.4)
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Here various quantities

P (µ, ν) =
1

2 cosh µ−ν
2

, Q(ν, µ) =
1

2 cosh ν−µ
2

, Ej(ν) = e(j+
1

2
)ν , (2.5)

are regarded respectively as matrices or vectors with the indices µ, ν and multiplication ◦
between them is performed with the measure

∫
dµ

2π
e

ik
4π

µ2

,

∫
dν

2π
e−

ik
4π

ν2 , (2.6)

as in [27].

For the vacuum expectation values of the half-BPS Wilson loops in the ABJ matrix

model, we can combine the results of the ABJ partition function (2.3) and the ABJM half-

BPS Wilson loop [27] in a natural way. As in the ABJM case, the half-BPS Wilson loop in

the ABJ matrix model is characterized by the representation of the supergroup U(N1|N2)

whose character is given by the supersymmetric Schur polynomial

sλ((e
µ1 , . . . , eµN1 )/(eν1 , . . . , eνN2 )). (2.7)

Here λ is a partition and we assume that λN1+1 ≤ N2 (otherwise, sλ(x/y) = 0). The

vacuum expectation values are defined by inserting this character into the partition function

〈sλ〉k(N1, N2) =
(−1)

1

2
N1(N1−1)+

1

2
N2(N2−1)

N1!N2!

∫
dN1µ

(2π)N1

dN2ν

(2π)N2
sλ((e

µ1 ,. . ., eµN1 )/(eν1 ,. . ., eνN2 ))

×
(∏

i<j 2 sinh
µi−µj

2

∏
a<b 2 sinh

νa−νb
2∏

i,a 2 cosh
µi−νa

2

)2

e
ik
4π

(
∑

i µ
2
i−

∑
a ν2a). (2.8)

Our analysis shows that the grand partition function defined by

〈sλ〉GC
k,M (z) =

∞∑

N=0

zN 〈sλ〉k(N,N +M), (2.9)

is given by

〈sλ〉GC
k,M (z)

Ξk,0(z)
= det

((
Hlp,−M+q−1(z)

)
1≤p≤M+r
1≤q≤M

∣∣ (H̃lp,aq(z)
)
1≤p≤M+r
1≤q≤r

)
, (2.10)

where Hp,q(z) is the same as that defined in (2.4) while H̃p,q(z) is defined by

H̃p,q(z) = zEp(ν) ◦
[
1 + zQ(ν, µ) ◦ P (µ, ν)◦

]−1
Q(ν, µ) ◦ Eq(µ). (2.11)

In (2.10), the arm length aq and the leg length lp are the non-negative integers appearing

in the modified Frobenius notations (a1a2 · · · ar|l1l2 · · · lr+M ) of the Young diagram λ. In

the ABJM case, the (ordinary) Frobenius notation (a1a2 · · · ar|l1l2 · · · lr) of Young diagram

[λ1λ2 · · · ] = [λ′1λ
′
2 · · · ]T in the partition notation was defined by aq = λq − q, lp = λ′p − p

with r = max{s|λs−s ≥ 0} = max{s|λ′s−s ≥ 0} and explained carefully in figure 1 of [27].

In the ABJ case, we define the modified Frobenius notation (a1a2 · · · ar|l1l2 · · · lr+M ) by

aq = λq − q −M, lp = λ′p − p+M, (2.12)

– 6 –
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with

r = max{s|λs − s−M ≥ 0} = max{s|λ′s − s+M ≥ 0} −M. (2.13)

Diagrammatically, the arm length and the leg length are interpreted as the horizontal and

vertical box numbers counted from the shifted diagonal line. This is explained further by

an example in figure 1.

Our first observation is the usage of a combination of the Cauchy determinant formula

and the Vandermonde determinant formula2

∏N1

i<j(xi − xj) ·
∏N2

a<b(ya − yb)
∏N1

i=1

∏N2

a=1(xi + ya)
= (−1)N1(N2−N1) det




1
x1+y1

· · · 1
x1+yN2

...
. . .

...
1

xN1
+y1

· · · 1
xN1

+yN2

yN2−N1−1
1 · · · yN2−N1−1

N2

...
. . .

...

y01 . . . y0N2




. (2.14)

Here on the right hand side, the upper N1 ×N2 submatrix and the lower (N2 −N1)×N2

submatrix are given respectively by

(
1

xi + ya

)

1≤i≤N1

1≤a≤N2

,
(
yN2−N1−p
a

)
1≤p≤N2−N1

1≤a≤N2

. (2.15)

The determinantal formula (2.14) can be proved without difficulty by considering the N2×
N2 Cauchy determinant and sending the extra N2 −N1 pieces of xi to infinity.

Here comes the main idea of our computation. Without the extra monomials yN2−N1−p
a ,

as emphasized in [14, 27], the partition function can be rewritten into traces of powers of

the density matrices. In the study of the ABJM half-BPS Wilson loop [27], the monomials

of the Wilson loop insertion play the role of the endpoints in this multiplication of the

density matrices. This can be interpreted as follows: the partition function is expressed

by “closed strings” of the density matrix while the Wilson loops are expressed by “open

strings”. This implies that the ABJ partition function, after rewritten by using (2.14), can

also be expressed by powers of the density matrices with monomials yN2−N1−p
a in the both

ends, similarly to the case of the ABJM Wilson loop. The only problem is to count the

combinatorial factors correctly.

We can also prove this relation by counting the combinatorial factors explicitly. How-

ever, it is easier to present the proof by using various determinantal formulas. In the

following subsections we shall provide proofs for the results (2.3) and (2.10) in this way.

Readers who are not interested in the details of the proofs can accept the results and jump

to section 3.

2We are informed by M. Honda that this formula already appeared in [34].

– 7 –
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(a) (b)

Figure 1. Frobenius notation for the ABJM case (a) and for the ABJ case (b). The same

Young diagram [λ1λ2λ3λ4λ5λ6λ7] = [7766421] or [λ′
1
λ′
2
λ′
3
λ′
4
λ′
5
λ′
6
λ′
7
] = [7655442] is expressed as

(a1a2a3a4|l1l2l3l4) = (6532|6421) in the ABJM case while (a1a2a3|l1l2l3l4l5l6) = (320|975421) in

the ABJ case (M = 3). It is also convenient to regard the first three horizontal arrows in (b) as

additional arm lengths (−1,−2,−3).

2.1 Proof of the formula for the partition function

In this subsection, we shall present a proof for (2.3). Let us plug xi = eµi and ya = eνa or

xi = e−µi and ya = e−νa into (2.14). Multiplying these two equations side by side, we find

(−1)
1

2
N1(N1−1)+ 1

2
N2(N2−1)

(∏
i<j 2 sinh

µi−µj

2 ·∏a<b 2 sinh
νa−νb

2∏
i,a 2 cosh

µi−νa
2

)2

= det




(P (µi, νj))1≤i≤N1

1≤j≤N2

(EM−p(νj))1≤p≤M
1≤j≤N2


 det




(Q(νj , µi))1≤i≤N1

1≤j≤N2

(E−M+p−1(νj))1≤p≤M
1≤j≤N2


 , (2.16)

where Q, P and E are defined in (2.5). In order to evaluate the integration of the prod-

uct (2.16) of two N2 × N2 determinants, we apply the formula (A.1) with r = 0. Then

we obtain

(−1)
1

2
N1(N1−1)+ 1

2
N2(N2−1) 1

N2!

∫ N2∏

a=1

dνa
2π

(∏
i<j 2 sinh

µi−µj

2 ·∏a<b 2 sinh
νa−νb

2∏
i,a 2 cosh

µi−νa
2

)2
e−

ik
4π

∑
a ν2a

= det



((P ◦Q)(µi, µj))1≤i,j≤N1

((P ◦ E−M+q−1)(µi))1≤i≤N1

1≤q≤M

((EM−p ◦Q)(µj))1≤p≤M
1≤j≤N1

(EM−p ◦ E−M+q−1)1≤p,q≤M


 , (2.17)

– 8 –



J
H
E
P
0
3
(
2
0
1
4
)
0
7
9

where the explicit expression for each component in the determinant is given by

(P ◦Q)(µ, µ′) =

∫
dν

2π
P (µ, ν)Q(ν, µ′)e−

ik
4π

ν2 , (P ◦ Eq)(µ) =

∫
dν

2π
P (µ, ν)Eq(ν)e

− ik
4π

ν2 ,

(Ep ◦Q)(µ) =

∫
dν

2π
Ep(ν)Q(ν, µ)e−

ik
4π

ν2 , Ep ◦ Eq =

∫
dν

2π
Ep(ν)Eq(ν)e

− ik
4π

ν2 .

(2.18)

Therefore the grand partition function (2.2) becomes

Ξk,M (z) =
∞∑

N=0

zN

N !

∫ N∏

i=1

e
ik
4π

µ2
i
dµi
2π

det

(
((P ◦Q)(µi, µj))N×N ((P ◦ E−M+q−1)(µi))N×M

((EM−p ◦Q)(µj))M×N (EM−p ◦ E−M+q−1)M×M

)
,

(2.19)

which can be expressed as the Fredholm determinant Det of the form

Ξk,M (z) = Det

(
1+ zP ◦Q zP ◦ E
E ◦Q E ◦ E

)
, (2.20)

by appendix B. Using the formula

Det

(
A B

C D

)
= DetA ·Det(D − CA−1B), (2.21)

and simplifying the components by

Ep ◦ Eq − zEp ◦Q ◦
[
1 + zP ◦Q◦

]−1
P ◦ Eq = Ep ◦

[
1 + zQ ◦ P ◦

]−1
Eq, (2.22)

we finally arrive at (2.3).

2.2 Proof of the formula for the half-BPS Wilson loop

In this subsection we shall present a proof for (2.10). The discussion is parallel to that of

the previous subsection. From the formula due to Moens and Van der Jeugt [35], we have

sλ((e
µ1 , . . . , eµN1 )/(eν1 , . . . , eνN2 ))

= (−1)r det



(P (µi, νj))1≤i≤N1

1≤j≤N2

(Eaq(µi))1≤i≤N1

1≤q≤r

(Elp(νj))1≤p≤M+r
1≤j≤N2

(0)(M+r)×r



/

det




(P (µi, νj))1≤i≤N1

1≤j≤N2

(EM−p(νj))1≤p≤M
1≤j≤N2


 , (2.23)

where (a1a2 · · · ar|l1l2 · · · lM+r) is the modified Frobenius notation of λ given in (2.12).

Combining this determinantal expression with (2.16), we have

(−1)
1

2
N1(N1−1)+ 1

2
N2(N2−1)sλ((e

µ1 , . . . , eµN1 )/(eν1 , . . . , eνN2 ))

×
(∏

i<j 2 sinh
µi−µj

2 ·∏a<b 2 sinh
νa−νb

2∏
i,a 2 cosh

µi−νa
2

)2

(2.24)

= (−1)r det



(P (µi, νj))1≤i≤N1

1≤j≤N2

(Eaq(µi))1≤i≤N1

1≤q≤r

(Elp(νj))1≤p≤M+r
1≤j≤N2

(0)(M+r)×r


 det




(Q(νj , µi))1≤i≤N1

1≤j≤N2

(E−M+p−1(νj))1≤p≤M
1≤j≤N2


 .
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Integrating this with the formula (A.1), we see that

(−1)
1

2
N1(N1−1)+ 1

2
N2(N2−1) 1

N2!

∫ N2∏

a=1

e−
ik
4π

ν2a
dνa
2π

(∏
i<j 2 sinh

µi−µj

2 ·∏a<b 2 sinh
νa−νb

2∏
i,a 2 cosh

µi−νa
2

)2

× sλ((e
µ1 , . . . , eµN1 )/(eν1 , . . . , eνN2 )) (2.25)

= (−1)r det



((P ◦Q)(µi, µj))1≤i≤N1

1≤j≤N1

((P ◦ E−M+q−1)(µi))1≤i≤N1

1≤q≤M
(Eaq(µi))1≤i≤N1

1≤q≤r

((Elp ◦Q)(µj))1≤p≤M+r
1≤j≤N1

(Elp ◦ E−M+q−1)1≤p≤M+r
1≤q≤M

(0)(M+r)×r


 .

Now the definition (2.9) of 〈sλ〉GC
k,M (z) and appendix B give

〈sλ〉GC
k,M (z) = (−1)r

∞∑

N=0

zN

N !

N∏

i=1

e
ik
4π

µ2
i
dµi
2π

× det

(
((P ◦Q)(µi, µj))N×N (P ◦ E−M+q−1(µi))N×M (Eaq(µi))N×r

((Elp ◦Q)(µj))(M+r)×N (Elp ◦ E−M+q−1)(M+r)×M (0)(M+r)×r

)

= (−1)r Det

(
1 + zP ◦Q zP ◦ E zEa

El ◦Q El ◦ E 0

)
. (2.26)

Finally, using (2.21) and (2.22), we find

〈sλ〉GC
k,M (z)

Ξk,0(z)

= (−1)rDet
[
El ◦ E−El ◦Q ◦ (1+ zP ◦Q◦)−1zP ◦ E

∣∣ −El ◦Q ◦ (1 + zP ◦Q◦)−1zEa

]

= Det
[
El ◦ (1 + zQ ◦ P ◦)−1E

∣∣ zEl ◦ (1 + zQ ◦ P ◦)−1Q ◦ Ea

]
, (2.27)

which is the desired formula (2.10). In the last determinant, the rows are determined by

modified legs l1, l2, . . . , lM+r, whereas the columns are determined by (−M, . . . ,−2,−1)

and modified arms a1, a2, . . . , ar.

3 Consistency with the previous works

In the subsequent sections, we shall use our Fermi gas formalism (2.3) to evaluate several

values of the partition function and proceed to confirm our conjecture of the grand potential

in (1.2). However, obviously only the values of the partition function at several coupling

constants are not enough to fix the whole large µ expansion in (1.2). Hence, before starting

our numerical studies, we shall first pause to study the consistency between our conjecture

of the perturbative part and the worldsheet instanton part in (1.2) with the corresponding

parts in the ’t Hooft expansion [6]. After fixing the worldsheet instanton contribution,

we easily see that it diverges at some coupling constants. As in the case of the ABJM

matrix model [8], since the matrix model is finite for any (k,M) satisfying 0 ≤M ≤ k (at

least 0 ≤ M ≤ k/2, as we shall see in the next section), the divergences in the worldsheet

instantons have to be cancelled by the membrane instantons and their bound states. We
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shall see that, for this cancellation mechanism to work for d
(m)
k,M , we need to introduce the

phase (−1)Mℓ for b̃
(ℓ)
k and c̃

(ℓ)
k in (1.2).3

3.1 Perturbative sum

The perturbative part of the grand potential in (1.2) implies that the perturbative sum of

the partition function reads

Zpert
k (N,N +M) = eAkC

−1/3
k Ai[C

−1/3
k (N −Bk,M )]. (3.1)

The argument of the Airy function is proportional to

N −Bk,M

k
= λ̂− 1

3k2
. (3.2)

It was noted in [6, 36] that the renormalized ’t Hooft coupling constant

λ̂ =
N

k
− 1

24
, (3.3)

in the ABJM case has to be modified to

λ̂ =
N1 +N2

2k
− (N1 −N2)

2

2k2
− 1

24
, (3.4)

in the ABJ case. We have changed Bk,0 into Bk,M to take care of this modification.

3.2 Worldsheet instanton

Let us see the validity of our conjecture on the worldsheet instanton d
(m)
k,M . First note that

the worldsheet instanton can be summarized into a multi-covering formula

JWS(µ) =
∞∑

g=0

∑

n,d1,d2

ngd1,d2

(
2 sin

2πn

k

)2g−2 (−e− 4µ
k β−1)nd1(−e− 4µ

k β)nd2

n
. (3.5)

This naturally corresponds to shifting the two Kahler parameters by ±2πiM/k.

Next, we shall see that the expression of the worldsheet instanton (1.4) reproduces the

genus-0 free energy of the matrix model [6]. As in [8], the first few worldsheet instanton

terms of the free energy Fk,M = logZk,M with abbreviation Zk,M = Zk(N,N +M) are

given by

F
WS(1)
k,M = Z

WS(1)
k,M ,

F
WS(2)
k,M = Z

WS(2)
k,M − 1

2
(Z

WS(1)
k,M )2, (3.6)

where the partition functions are

Z
WS(1)
k,M = d

(1)
k,M

Ai[C
−1/3
k (N + 4

k −Bk,M )]

Ai[C
−1/3
k (N −Bk,M )]

,

Z
WS(2)
k,M =

(
d
(2)
k,M +

(d
(1)
k,M )2

2

)
Ai[C

−1/3
k (N + 8

k −Bk,M )]

Ai[C
−1/3
k (N −Bk,M )]

, (3.7)

3The contents of this section are based on a note of Sa.Mo. during the collaboration of [19]. Sa.Mo. is

grateful to the collaborators for various discussions.
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and we have assumed that the worldsheet instantons are given by (1.4),

d
(1)
k,M = −n

0
10β

−1 + n001β

4 sin2 2π
k

,

d
(2)
k,M =

n010β
−2 + n001β

2

8 sin2 4π
k

+
n020β

−2 + n011 + n002β
2

4 sin2 2π
k

. (3.8)

From the asymptotic form of the Airy function

Ai[z] =
e−

2

3
z3/2

2
√
πz1/4

(
1− 5

48
z−3/2 +O(z−3)

)
, (3.9)

we find

Ai[C
−1/3
k (N + 4m

k −Bk,M )]

Ai[C
−1/3
k (N −Bk,M )]

= e−2π
√

2λ̂m

(
1− 2

√
2πm(m− 1

6)

k2
√
λ̂

− m

k2λ̂
+O(k−4)

)
. (3.10)

Hence, the free energy is given by

F
WS(1)
k,M = e−2π

√
2λ̂

[
g−2
s

1

4
(n010β

−1 + n001β) +O(g0s)

]
,

F
WS(2)
k,M = e−4π

√
2λ̂

[
g−2
s

(
− 1

32
(n010β

−2 + n001β
2)− 1

4
(n020β

−2 + n011 + n002β
2)

+
1

16
(n010β

−1 + n001β)
2x

)
+O(g0s)

]
, (3.11)

with x = 1/(π
√

2λ̂).

After plugging the Gopakumar-Vafa invariants [37, 38],

n010 = n001 = −2, n020 = n002 = 0, n011 = −4, (3.12)

this reproduces the genus-0 free energy

Fg=0 =
4π3

√
2

3
λ̂3/2 +

2π3i

3

(
M

k

)3

+ const (3.13)

− 1

2
(β + β−1)e−2π

√
2λ̂ +

(
1

16
(β2 + 16 + β−2) +

x

4
(β + β−1)2

)
e−4π

√
2λ̂ +O(e−6π

√
2λ̂),

which was found in subsection 5.3 of [6].

3.3 Cancellation mechanism

In the preceding subsections, we have presented a consistency check with previous stud-

ies for the perturbative part and the worldsheet instanton part of our conjecture (1.2).

Note that these worldsheet instantons contain divergences at certain coupling constants.

(See (3.8).) As in the case of the ABJM matrix model [8], since there should be no diver-

gences in the matrix integration for 0 ≤M ≤ k, the divergences have to be cancelled by the

membrane instantons and the bound states. Corresponding to the extra phases from β±1
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in d
(m)
k,M , we have found that the singularity of the worldsheet instanton (1.4) is cancelled if

we introduce the extra sign factor (−1)Mℓ in the membrane instantons. Namely, we have

checked that the singularity in

d
(m)
k,Me

−4mµeff/k + (−1)Mℓ
(
b̃
(ℓ)
k µeff + c̃

(ℓ)
k

)
e−2ℓµeff , (3.14)

at k = 2m/ℓ is canceled for several values. The extra sign factor (−1)Mℓ can also be

understood by the shift of the Kahler parameters in the ABJ matrix model as pointed out

below (3.5).

4 Phase factor

After the consistency check of the perturbative sum, the worldsheet instantons and the

cancellation mechanism in the previous section, let us start to compute the grand partition

function Ξk,M (z) in (2.3). Since the grand partition function Ξk,0(z) of the ABJM matrix

model was studied carefully in our previous paper [8], we shall focus on the computation

of the components of the matrix (2.4). After expanding in z, we find

Hm,n(z) =

∞∑

N=0

(−z)NH(N)
m,n, (4.1)

where each term H
(N)
m,n is simply given by a 2N + 1 multiple integration.

For N = 0 we easily find (~ = 2πk)

H(0)
m,n =

∫
dy

~
e

2π
~
(m+ 1

2)ye−
i

2~
y2e−

2π
~
(n+ 1

2)y =
e−

πi
4√
k
e−

2πi
2k

(m−n)2 , (4.2)

while for N 6= 0 we find

H(N)
m,n =

∫
dy0
~

dx1
~

dy1
~

· · · dxN
~

dyN
~
e

2π
~
(m+ 1

2)y0e−
i

2~
y20

1

2 cosh y0−x1

2k

e
i

2~
x2
1

1

2 cosh x1−y1
2k

× e−
i

2~
y21 · · · 1

2 cosh
yN−1−xN

2k

e
i

2~
x2
N

1

2 cosh xN−yN
2k

e−
i

2~
y2N e−

2π
~
(n+ 1

2)yN . (4.3)

Introducing the Fourier transformation,

1

2 cosh yi−1−xi

2k

=

∫
dpi
2π

e−ipi(yi−1−xi)/~

2 cosh pi
2

,

1

2 cosh xi−yi
2k

=

∫
dqi
2π

e−iqi(xi−yi)/~

2 cosh qi
2

, (4.4)

and integrating over y1, x1, · · · , yN+1, we find

H(N)
m,n =

e−
πi
4√
k
e−

2πi
2k (m+ 1

2)
2

e−
2πi
2k (n+

1

2)
2
∫
dp1dq1
2π~

· · · dpNdqN
2π~

(4.5)

e−
1

~
2π(m+ 1

2)p1
1

2 cosh p1
2

e
i

~
p1q1

1

2 cosh q1
2

e−
i

~
q1p2 · · · e i

~
pN qN

1

2 cosh qN
2

e−
1

~
2π(n+ 1

2)qN .
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Using further the formulas
∫
dp1
2π

e−
1

~
2π(m+ 1

2)p1
1

2 cosh p1
2

e
i

~
p1q1 =

1

2 cosh
q1+2πi(m+ 1

2)
2k

,

∫
dpi
2π

e
i

~
pi(qi−qi−1)

2 cosh pi
2

=
1

2 cosh qi−1−qi
2k

, (i = 2, 3, · · · , N − 1) (4.6)

to carry out the p-integrations, we finally arrive at the expression

H(N)
m,n =

e−
πi
4√
k
e−

2πi
2k (m+ 1

2)
2

e−
2πi
2k (n+

1

2)
2
∫
dq1
~

dq2
~

· · · dqN
~

1

2 cosh
q1+2πi(m+ 1

2)
2k

× 1

2 cosh q1
2

1

2 cosh q1−q2
2k

1

2 cosh q2
2

· · · 1

2 cosh
qN−1−qN

2k

1

2 cosh qN
2

e−
1

k (n+
1

2)qN . (4.7)

As in the case of the Wilson loops, we can express H
(N)
m,n (N 6= 0) as

H(N)
m,n =

e−
πi
4√
k
e−

2πi
2k (m+ 1

2)
2

e−
2πi
2k (n+

1

2)
2
∫
dx

~

1

2 cosh
x+2πi(m+ 1

2)
2k

1

2 cosh x
2

φ(N−1)
n (x), (4.8)

where the functions φ
(N)
n (x) are defined by

φ(N)
n (x) =

√
2 cosh

x

2

∫
dy

~
ρN (x, y)

e−
1

k (n+
1

2)y
√

2 cosh y
2

, (4.9)

with

ρ(x, y) =
1√

2 cosh x
2

1

2 cosh x−y
2k

1√
2 cosh y

2

. (4.10)

In (4.9), the multiplication among the density matrices ρ(x, y) is defined with a mea-

sure 1/~,

ρN (x, y) =

∫
dz

~
ρ(x, z) ρN−1(z, y). (4.11)

The functions φ
(N)
n (x) can be determined recursively by

φ(N)
n (x) =

√
2 cosh

x

2

∫
dy

~
ρ(x, y)

φ
(N−1)
n (y)√
2 cosh y

2

, (4.12)

with the initial condition φ
(0)
n (x) = e−

1

k (n+
1

2)x.

Note that, in (4.8), the function 1/ cosh
x+2πi(m+ 1

2)
2k has poles aligning on the imaginary

axis. The pole with the smallest positive imaginary part is at x = πi
(
k − 2

(
m+ 1

2

))
for

M in the range 0 ≤ M < (k + 1)/2 since m runs from 0 to M − 1. Hence, for M in this

range, the relative position between the pole and the real axis is the same as the ABJM
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case M = 0 and we can trust the formula (4.8) literally. However, for (k + 1)/2 ≤ M ≤ k

the above pole comes across the real axis and we need to deform the integration contour

of (4.8), which is originally along the real axis, to the negative imaginary direction. This

phenomenon and the contour prescription rule were already pointed out in [28]. In their

work, they proposed this prescription by requiring the continuity at M = (k + 1)/2 and

the Seiberg duality. They also checked that this prescription gives the correct values of the

partition function (2.1) for small N and k. Our above analysis further pins down the origin

of this deformation of the integration contour. The deformation comes from changing the

integration variables from (4.3) to (4.8). For simplicity, hereafter, we shall often refer to

the validity range as 0 ≤M ≤ k/2 instead of 0 ≤M < (k + 1)/2.

4.1 Phase factor

Unlike the case of the Wilson loops, the complex phase factor looks very non-trivial and

needs to be studied separately. Using our Fermi gas formalism (2.3), we have found from

numerical studies that the phase factor is given by a rather simple formula:

1

2π
argZk(N,N +M) =

1

8
M(M − 2) +

1

4
MN − 1

12k
(M3 −M). (4.13)

We have checked this formula numerically for N = 0, 1, 2, 3. The results are depicted in

figure 2. As noted in the above paragraph, our numerical studies are valid not only for

0 ≤ M ≤ k/2 but also slightly beyond k/2; 0 < M < (k + 1)/2. In fact, we believe that

our phase formula (4.13) is valid for the whole region of 0 ≤ M ≤ k because we can show

that this phase reproduces a phase factor appearing in the Seiberg duality

1

2π
arg

Zk(N,N +M)

[Zk(N,N + k −M)]∗
=
k2

24
+

1

12
+
k(N − 1)

4
(4.14)

as was conjectured in [39] and further interpreted as a contact term anomaly in [40].

5 Grand potential

After studying the phase factor of the partition function in the previous section, let us turn

to their absolute values and study the grand potential defined by these absolute values (1.1).

5.1 Grand potential at certain coupling constants

As was found in [8, 15, 16] the computation of the ABJM partition functions becomes

particularly simple for k = 1, 2, 3, 4, 6. Also, as we have seen in section 4, the formula (4.8)

with integration along the real axis is literally valid only for 0 ≤M ≤ k/2. Hence, we can

compute various values of the partition function for

(k,M) = (2, 1), (3, 1), (4, 1), (6, 1), (4, 2), (6, 2), (6, 3). (5.1)

The results of their absolute values are summarized in figure 3.4 As discussed in [39], the

case of k/2 ≤M ≤ k is related to that of 0 ≤M ≤ k/2 by the Seiberg duality.

4Some of the values were already found in [41]. Comparing our results with theirs is a very helpful check

of our formalism. We are grateful to M. Shigemori for sharing his unpublished notes with us.
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(a) N = 0 (b) N = 1
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Figure 2. Numerical studies of the phase factor of the partition function. The horizontal axis

denotes k while the vertical axis shows the phase normalized by 2π. Numerical data are depicted

by points and our expectations (4.13) mod 1 are expressed by curves. Each picture corresponds to

different values of N and each curve in the picture starting from k = 2M − 1 corresponds different

values of M .

Let us consider the grand potential defined with the absolute values of the partition

function (1.1). Our strategy to determine the grand potential from the partition function

is exactly the same as that of [8] and we shall explain only the key points here. Since

the grand potential with the sum truncated at finite N always contains some errors, it is

known that fitting with the partition function itself gives a result with better accuracy.

First we can compare the values found in figure 3 with the perturbative sum (3.1). This

already shows a good concordance. For the m-th instanton effects, after subtracting the

perturbative sum and the major instanton effects, we fit the partition function against the

linear combinations of

(−∂N )nC
−1/3
k eAkAi

[
C

−1/3
k

(
N +

4m

k
−Bk,M

)]
. (5.2)

Finally we reinterpret the result in terms of the grand potential. Our results are summarized

in figure 4.

Compared with our study in [8, 18] we have much smaller number of exact values of the

partition function. The lack of data causes quite significant numerical errors (about 1%).

Nevertheless, since we have already known the rough structure of the instanton expansion,

we can find the exact instanton coefficient without difficulty.
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|Z2(0, 1)| =
1√
2
, |Z2(1, 2)| =

1

4
√
2π
, |Z2(2, 3)| =

π2 − 8

128
√
2π2

,

|Z2(3, 4)| =
5π2 − 48

4608
√
2π3

, |Z2(4, 5)| =
81π4 − 848π2 + 480

294912
√
2π4

,

|Z3(0, 1)| =
1√
3
, |Z3(1, 2)| =

2−
√
3

12
, |Z3(2, 3)| =

−(9
√
3− 14)π + 3

√
3

432π
,

|Z3(3, 4)| =
14π − 18− 15

√
3

1728π
,

|Z4(0, 1)| =
1

2
, |Z4(1, 2)| =

π − 2

32π
,

|Z4(2, 3)| = 0.00003473909952494269119117566353230112859310233773233

7261807934218890234955828380992634025931149937612,

|Z6(0, 1)| =
1√
6
, |Z6(1, 2)| =

3
√
3− π

108
√
2π

,

|Z6(2, 3)| = 3.76773027707758200049183186585155883429506373384028699

96374213997516824024006754651401031813928511× 10−6,

|Z6(3, 4)| = 5.26914099452731795482041046853051131744637477848566664

22916096253100787064300949345207528685791× 10−10,

|Z4(0, 2)| =
1

2
√
2
, |Z4(1, 3)| =

4− π

32
√
2π
,

|Z4(2, 4)| = 0.00001506227428345380302357520499270222421841701033492

362553063511451195968480813607610027807404966983,

|Z6(0, 2)| =
1

6
, |Z6(1, 3)| =

7π − 12
√
3

432π
,

|Z6(2, 4)| = 4.77900663573206185466590506879892353173666149000261702

495431896753514231026609667127826160173459× 10−7,

|Z6(0, 3)| =
1

6
√
2
, |Z6(1, 4)| =

45
√
2− 8

√
6π

1296π
,

|Z6(2, 5)| = 2.34333487780752843368477720747976341731283580616750538

345879256373591282194222350629426352014176× 10−7.

Figure 3. Some exact or numerical values of partition functions.

Note that the instanton coefficients of (k,M) = (k, k/2) are similar to those of (k,M) =

(k, 0) for even k and those of (k,M) = (6, 1), (6, 2) are similar to those of (k,M) = (3, 1).

Due to this similarity, we have to confess that we only really fit the values of the partition

function for (k,M) = (3, 1) and (k,M) = (4, 1) up to seven instantons. For other cases,

after fitting for about three instantons, the patterns become clear and we can bring the

results from the known ones and simply confirm the validity.
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Jnp
k=2,M=1 =

[
−4µ2 + 2µ+ 1

π2

]
e−2µ +

[
−52µ2 + µ+ 9/4

2π2
+ 2

]
e−4µ

+

[
−736µ2 − 304µ/3 + 154/9

3π2
+ 32

]
e−6µ

+

[
−2701µ2 − 13949µ/24 + 11291/192

π2
+ 466

]
e−8µ

+

[
−161824µ2 − 634244µ/15 + 285253/75

5π2
+ 6720

]
e−10µ

+

[
−1227440µ2 − 5373044µ/15 + 631257/20

3π2
+

292064

3

]
e−12µ +O(e−14µ),

Jnp
k=3,M=1 = −2

3
e−4µ/3 − e−8µ/3 +

[
4µ2 + µ+ 1/4

3π2
− 34

9

]
e−4µ +

25

18
e−16µ/3 +

68

15
e−20µ/3

+

[
−52µ2 + µ/2 + 9/16

6π2
+

296

9

]
e−8µ − 1894

189
e−28µ/3 +O(e−32µ/3),

Jnp
k=4,M=1 =

[
4µ2 + 2µ+ 1

2π2
− 2

]
e−2µ +

[
−52µ2 + µ+ 9/4

4π2
+ 18

]
e−4µ

+

[
736µ2 − 304µ/3 + 154/9

6π2
− 608

3

]
e−6µ +O(e−8µ),

Jnp
k=6,M=1 =

2

3
e−2µ/3 − e−4µ/3 +

[
−4µ2 + 2µ+ 1

3π2
+

34

9

]
e−2µ +

25

18
e−8µ/3 − 68

15
e−10µ/3

+

[
−52µ2 + µ+ 9/4

6π2
+

296

9

]
e−4µ +

1894

189
e−14µ/3 +O(e−16µ/3),

Jnp
k=4,M=2 = −e−µ +

[
−4µ2 + 2µ+ 1

2π2

]
e−2µ − 16

3
e−3µ +

[
−52µ2 + µ+ 9/4

4π2
+ 2

]
e−4µ

− 256

5
e−5µ +

[
−736µ2 − 304µ/3 + 154/9

6π2
+ 32

]
e−6µ − 4096

7
e−7µ +O(e−8µ),

Jnp
k=6,M=2 = −2

3
e−

2

3
µ − e−

4

3
µ +

[
4µ2 + 2µ+ 1

3π2
− 34

9

]
e−2µ +

25

18
e−

8

3
µ +

68

15
e−

10

3
µ

+

[
−52µ2 + µ+ 9/4

6π2
+

296

9

]
e−4µ − 1894

189
e−

14

3
µ +O(e−16µ/3),

Jnp
k=6,M=3 = −4

3
e−

2

3
µ − 2e−

4

3
µ +

[
−4µ2 + 2µ+ 1

3π2
− 20

9

]
e−2µ − 88

9
e−

8

3
µ − 108

5
e−

10

3
µ

+

[
−52µ2 + µ+ 9/4

6π2
− 298

9

]
e−4µ − 25208

189
e−

14

3
µ +O(e−16µ/3).

Figure 4. Grand potential obtained by fitting the exact or numerical values of partition function.
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5.2 Grand potential for general coupling constants

Now let us compare the grand potential in figure 4 with a natural generalization of our

instanton expansion in the ABJMmatrix model. We first observe a good match for them-th

pure worldsheet instanton effects for m < k/2. Secondly, we find that we have to modify

signs by the factor (−1)Mℓ for the functions a
(ℓ)
k , b̃

(ℓ)
k , c̃

(ℓ)
k characterizing the membrane

instantons. This is important not only for ensuring the cancellation of the divergences as

we noted in subsection 3.3, but also for reproducing the correct coefficients of π−2. Thirdly,

we confirm that the prescription of introducing the sign factor (−1)Mℓ reproduces correctly

the bound states, where there are no pure membrane instanton effects.

As for the constant term in the membrane instanton, there is an ambiguity as long

as it does not raise any singularities. There are two candidates for it: one is of course to

take exactly the same constant term as in the ABJM case when expressed in terms of the

chemical potential µ. Another choice is to define c̃
(ℓ)
k by respecting the derivative relation.

Namely, in the ABJM matrix model it was observed that, when the grand potential Jk(µ)

is expressed in terms of the effective chemical potential µeff , the constant term is the

derivative of the linear term (1.5). These two choices give different answers because of the

change in Bk,M . Comparing these two candidates with our numerical results in figure 4,

we have found that neither of them gives the correct answer. Instead, the difference with

the latter one is always k/M times bigger than the former one. From this observation, we

can write down a closed form for our conjecture in (1.2). We have checked this conjecture

up to seven worldsheet instantons and four membrane instantons.

Although we restrict our analysis to the case 0 ≤ M ≤ k/2, we believe our final

conjecture (1.2) is valid for the whole region of 0 ≤M ≤ k because of the consistency with

the Seiberg duality. Though the expression (1.2) does not look symmetric in the exchange

betweenM and k−M , if we pick up a pair of integers whose sum is k, we find two identical

instanton expansion series after cancelling the divergences.5 We have checked this fact for

all the pairs whose sums are k = 1, 2, 3, 4, 6.

6 Discussions

In this paper we have proposed a Fermi gas formalism for the partition function and

the half-BPS Wilson loop expectation values in the ABJ matrix models. Our formalism

identifies the fractional branes in the ABJ theory as a certain type of Wilson loops in the

ABJM theory. Hence, our formalism shares the same density matrix as that of the ABJM

matrix model, which is suitable for the numerical studies. We have continued to study the

exact or numerical values of the partition function using this formalism. Based on these

values, we can determine the instanton expansion of the grand potential at some coupling

constants k = 2, 3, 4, 6 and conjecture the expression (1.2) for general coupling constants.

Let us raise several points which need further clarifications.

The first one is the phase factor of our conjecture. As we have seen in figure 2, we have

checked this conjecture for N = 0, 1, 2, 3 carefully. However when N ≥ 3 the numerical

5We are grateful to S. Hirano, K. Okuyama, M. Shigemori for valuable comments on it.
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errors become significant and it is difficult to continue the numerical studies with high

accuracy for large k. It is desirable to study it more extensively.

The second one is the relation to the formalism of [28], which looks very different from

ours. As pointed out very recently in [29] it was possible to rewrite the formalism of [28]

into a mirror expression where the physical interpretation becomes clearer. We would like

to see the exact relation between theirs and ours.

Thirdly, we have found an extra term in (1.2) proportional to the quantum mirror map

e
(ℓ)
k [19]. We have very few data to identify its appearance and it would be great to check

it also from the WKB expansion [14, 17], though we are not sure whether the restriction

0 ≤ M ≤ k/2 gives any difficulty in the WKB analysis. Furthermore, we cannot identify

its origin in the refined topological strings or the triple sine functions as proposed in [19].

We hope to see its origin in these theories. It may be a key to understand the gravitational

interpretation [42] of the membrane instantons.

The fourth one is about the Wilson loop in the ABJ theory. After seeing that there

are only new terms appearing in the membrane instantons, we expect that the instanton

expansion of the vacuum expectation values of the Wilson loop should be expressed simi-

larly as that in the ABJM case [27]. However, we have not done any numerical studies to

support it. Also, it is interesting to see how our study is related to other recent works on

the ABJ Wilson loops [43–45].

Finally, one of the motivation to study the ABJ matrix model is its relation to the

higher spin models. Since we have written down the grand potential explicitly, it is possible

to take the limit proposed in [46]. We would like to see what lessons can be learned for the

higher spin models.
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A A useful determinantal formula

Lemma A.1. Let (φi)1≤i≤n+r and (ψj)1≤j≤n be functions on a measurable space and let

(ζiq)1≤i≤n+r
1≤q≤r

be an array of constants. Then we have

1

n!

∫ n∏

k=1

dxk · det
[
(φi(xk))1≤i≤n+r

1≤k≤n
(ζiq)1≤i≤n+r

1≤q≤r

]
· det(ψj(xk))1≤j,k≤n

= det

[
(mij)1≤i≤n+r

1≤j≤n
(ζiq)1≤i≤n+r

1≤q≤r

]
, (A.1)

with mij =
∫
dxφi(x)ψj(x).
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Proof. Expand two determinants on the left hand side with respect to columns:

1

n!

∫ n∏

k=1

dxk det

[
(φi(xk))1≤i≤n+r

1≤k≤n
(ζiq)1≤i≤n+r

1≤q≤r

]
· det(ψj(xk))1≤j,k≤n

=
1

n!

∫ n∏

k=1

dxk
∑

σ∈Sn+r

sgn(σ)
n∏

k=1

φσ(k)(xk) ·
r∏

q=1

ζσ(n+q),q

∑

τ∈Sn

sgn(τ)
n∏

k=1

ψτ(k)(xk)

=
1

n!

∑

σ∈Sn+r

sgn(σ)

r∏

q=1

ζσ(n+q),q ·
∑

τ∈Sn

sgn(τ)

n∏

k=1

∫
dxφσ(k)(x)ψτ(k)(x)

=
1

n!

∑

τ∈Sn

sgn(τ)
∑

σ∈Sn+r

sgn(σ)

r∏

q=1

ζσ(n+q),q ·
n∏

k=1

mσ(k),τ(k)

=
1

n!

∑

τ∈Sn

sgn(τ) det

[
(mi,τ(j))1≤i≤n+r

1≤j≤n
(ζiq)1≤i≤n+r

1≤q≤r

]
. (A.2)

It follows from the alternating property for determinants that this equals to

1

n!

∑

τ∈Sn

det

[
(mi,j)1≤i≤n+r

1≤j≤n
(ζiq)1≤i≤n+r

1≤q≤r

]
= det

[
(mi,j)1≤i≤n+r

1≤j≤n
(ζiq)1≤i≤n+r

1≤q≤r

]
. (A.3)

B Expansion of Fredholm determinant

Although we have used an infinite-dimensional version, we shall give a finite-dimensional

version of the identity below. For a positive integer n, we let [n] = {1, 2, . . . , n}.

Lemma B.1. Let N,L be non-negative integers. Let A = (aij), B = (biq), C = (cpj), and

D = (dpq) be matrices of finite sizes N ×N , N × L, L ×N , and L × L, respectively. Let

1′NL be the (N + L) × (N + L) diagonal matrix whose the first N diagonal entries are 1

and other entries are 0. Then the following identity holds.

det

(
1′NL+

(
A B

C D

))
=

N∑

n=0

1

n!

N∑

k1,...,kn=1

det

(
(aki,kj )1≤i,j≤n (bki,q)1≤i≤n,1≤q≤L

(cp,kj )1≤p≤L,1≤j≤n D

)
. (B.1)

Proof. Put A = (aij)1≤i,j≤N+L =

(
A B

C D

)
. Expanding the determinant with respect to

rows, we have

det(1′NL +A) =
∑

σ∈SN+L

sgn(σ)
N∏

i=1

(δi,σ(i) + ai,σ(i))×
L∏

p=1

aN+p,σ(N+p). (B.2)

Divide the product for i: for each σ ∈ SN+L,

N∏

i=1

(δi,σ(i) + ai,σ(i)) =
∑

I⊂[N ]

∏

i∈I

ai,σ(i) ×
∏

i∈[N ]\I

δi,σ(i). (B.3)
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Here the product
∏

i∈[N ]\I δi,σ(i) vanishes unless σ(i) = i for all i ∈ [N ] \ I, i.e., unless the
support supp(σ) of σ is a subset of I ∪ {N + 1, . . . , N +L}. In that case, the permutation

σ can be seen as a permutation on I ∪ {N + 1, . . . , N + L}. Denoting by SI∪{N+1,...,N+L}

the permutation group consisting of such permutations,

det(1′NL +A) =
∑

I⊂[N ]

∑

σ∈SI∪{N+1,...,N+L}

sgn(σ)
∏

i∈I

ai,σ(i) ×
L∏

p=1

aN+p,σ(N+p)

=
∑

I⊂[N ]

det

(
(ai,j)i,j∈I (ai,N+q)i∈I,q∈[L]

(aN+p,j)p∈[L],j∈I (aN+p,N+q)p,q∈[L]

)
. (B.4)

It is immediate to see that this identity presents the desired identity.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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