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Abstract Empirical tsunami fragility curves are devel-

oped based on a Bayesian framework by accounting for

uncertainty of input tsunami hazard data in a systematic

and comprehensive manner. Three fragility modeling

approaches, i.e. lognormal method, binomial logistic

method, and multinomial logistic method, are considered,

and are applied to extensive tsunami damage data for the

2011 Tohoku earthquake. A unique aspect of this study is

that uncertainty of tsunami inundation data (i.e. input

hazard data in fragility modeling) is quantified by com-

paring two tsunami inundation/run-up datasets (one by the

Ministry of Land, Infrastructure, and Transportation of the

Japanese Government and the other by the Tohoku Tsu-

nami Joint Survey group) and is then propagated through

Bayesian statistical methods to assess the effects on the

tsunami fragility models. The systematic implementation

of the data and methods facilitates the quantitative com-

parison of tsunami fragility models under different

assumptions. Such comparison shows that the binomial

logistic method with un-binned data is preferred among the

considered models; nevertheless, further investigations

related to multinomial logistic regression with un-binned

data are required. Finally, the developed tsunami fragility

functions are integrated with building damage-loss models

to investigate the influences of different tsunami fragility

curves on tsunami loss estimation. Numerical results

indicate that the uncertainty of input tsunami data is not

negligible (coefficient of variation of 0.25) and that

neglecting the input data uncertainty leads to overestima-

tion of the model uncertainty.

Keywords Bayesian regression � Tsunami fragility �
Logistic regression � Multinomial regression � Markov

Chain Monte Carlo simulation � 2011 Tohoku earthquake

1 Introduction

In the last two decades, tsunamis triggered by earthquakes

were responsible for 33 % of total deaths and 35 % of total

economic losses globally (Guha-Sapir et al. 2015). A

reliable quantification of tsunami risk becomes increas-

ingly important for emergency officers to manage critical

infrastructures and for insurance companies to quantify the

expected economic losses (Goda 2015). An accurate risk

analysis encompasses reliable assessments of hazard,

exposure, and vulnerability. The tsunami hazard assess-

ment is often given in a form of inundation maps, reporting

inundation depths at various locations, for different tsu-

nami rupture scenarios (Goda et al. 2014; Fukutani et al.

2015; Goda and Song 2016). Exposure assessment identi-

fies the elements at risk, including human, built, and nat-

ural environments in coastal areas. Finally, vulnerability is

represented by fragility curves, i.e. probability of reaching

or exceeding specific damage states for a given hazard

intensity (Porter et al. 2007). Different methods for
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deriving fragility curves can be found in the literature

(Rossetto et al. 2014). They can be classified into four

approaches: (a) empirical methods based on statistical

analysis of observed damage data; (b) judgmental methods

based on expert elicitation; (c) analytical methods based on

evaluation of the performance response through structural

analysis; and (d) hybrid techniques by combining the pre-

ceding methods. This work focuses on the empirical

methods for tsunami fragility modeling.

Empirical tsunami fragility modeling requires numerous

pairs of tsunami damage observations (e.g. the number of

buildings reaching or exceeding a specific damage state)

and explanatory variables related to hazard and exposure.

Tsunami inundation depth is widely adopted as tsunami

intensity measure in developing tsunami fragility curves

(Koshimura et al. 2009; Reese et al. 2011; Suppasri et al.

2011, 2013; Charvet et al. 2014a). It is important to rec-

ognize that observed tsunami intensity measures are sub-

jected to errors. Measurement errors are always present,

influenced by survey techniques, equipment, and condi-

tions. When direct measurements are not available and

inundation needs to be assessed over a vast area quickly,

interpolation of measured tsunami depths at nearby loca-

tions may be considered, which inevitably introduces

additional errors (both random and systematic) in the

gathered tsunami data. In the context of empirical fragility

modeling, uncertainty associated with input hazard data

should be treated adequately, because neglecting this kind

of uncertainties results in potential overestimation of model

uncertainty associated with developed fragility curves

(Cetin et al. 2002; Der Kiureghian 2002; Straub and Der

Kiureghian 2008). In the literature, problems of imple-

menting different sources of uncertainties in fragility

functions have been tackled mainly in the field of earth-

quake engineering (e.g. Der Kiureghian 2002; Porter et al.

2007; Bradley 2010; Baker 2015; Jalayer et al. 2015;

Lallemant et al. 2015). The general frameworks for

developing robust fragility models (e.g. Bayesian statistics)

help implement both inherent and epistemic uncertainties

in the assessment of the statistics describing fragilities

(Gardoni et al. 2007). In tsunami fragility modeling,

incorporation of input data errors and uncertainty has not

been explored rigorously (Tarbotton et al. 2015).

The aims of this paper are twofold. Firstly, uncertainty

of input tsunami hazard parameters is evaluated by con-

sulting with two extensive tsunami inundation/run-up

datasets by the Ministry of Land, Infrastructure, and

Transportation (MLIT 2014) and by the Tohoku Tsunami

Joint Survey (TTJS) group (Mori et al. 2011), which were

compiled after the 11th March 2011 Tohoku earthquake

(Fraser et al. 2013). Secondly, the effects of propagating

the input data uncertainty on tsunami fragility functions are

investigated by adopting Bayesian regression methods. It is

noteworthy that, in general, the empirical assessment of

input inundation data uncertainty is very limited due to the

lack of observed data. The 2011 Tohoku tsunami offers a

unique opportunity to evaluate the accuracy and consis-

tency of the tsunami inundation data from extensive post-

event field surveys and tsunami damage inspections. The

MLIT database contains more than 200,000 buildings (each

data entry includes building type, location, tsunami damage

level, and inundation depth) and is particularly useful for

developing empirical tsunami fragility curves (Suppasri

et al. 2013; Charvet et al. 2014a). The TTJS database

contains more than 5000 surveyed inundation and run-up

heights along the Tohoku coastline and is useful for

examining the tsunami inundation/run-up characteristics at

both regional and local levels. The uncertainty of tsunami

inundation data is evaluated by comparing the MLIT and

TTJS data, noting that this comparison is not straightfor-

ward because spatial distributions of the MLIT and TTJS

data differ and conversions of height to depth data are

necessary by adopting a suitable digital elevation model

(DEM). A potential log-normal distribution of the obser-

vations’ error is found; such result is in line with the

findings of Kim et al. (2014) given the extension of the

analyzed coastline.

Among procedures for developing tsunami empirical

fragility curves in the literature (Tarbotton et al. 2015),

three statistical approaches are considered: (a) lognormal

fragility model (Peiris 2006; Porter et al. 2007), (b) bino-

mial logistic regression (Reese et al. 2011), and (c) multi-

nomial logistic regression (Charvet et al. 2014a; Yazdi

et al. 2015). For each method, two sets of tsunami fragility

functions are developed by neglecting and considering the

input data uncertainty. Innovative aspects of this work in

implementing the preceding three methods are that they are

based on a Bayesian framework and thus the uncertainty of

input data is adequately propagated in conducting the point

estimation of fragility parameters. As the complexity of the

fitted models increases from the lognormal to multinomial

logistic models, a Markov Chain Monte Carlo (MCMC)

simulation (Cheung and Beck 2010) has been conducted

for the parameter estimation. To authors’ knowledge,

Bayesian regression methods are applied in this paper for

the first time in assessing tsunami empirical fragilities. The

systematic implementation of the data and methods facil-

itates the quantitative comparison of tsunami fragility

assessments under different assumptions.

Moreover, developed tsunami fragility models (three

methods with/without input data uncertainty) are imple-

mented in tsunami loss estimation to investigate the impact

of different tsunami fragility models on risk assessment.

For this, a portfolio of wooden buildings in the Tohoku

region is considered. The loss assessment results are cal-

culated using a procedure similar to Yu et al. (2013) and

Stoch Environ Res Risk Assess

123



are presented in a form of total economic loss as well as

economic loss as a function of distance from the shoreline

to evaluate the spatial variation of the impact of different

fragility functions.

The paper is organized as follows. Section 2 presents the

mathematical formulations of the three tsunami fragility

models based on the Bayesian framework. In Sect. 3,

empirical uncertainty of tsunami inundation data is evalu-

ated based on the MLIT and TTJS databases for the 2011

Tohoku earthquake. Section 4 presents the development

and systematic comparison of tsunami fragility models by

considering the three statistical methods with/without input

data uncertainty. The tsunami loss estimation results based

on different fragility models are discussed in Sect. 5, and

key conclusions are drawn in Sect. 6.

2 Bayesian fragility models

The three fragility models are conventionally developed

through the least squares fitting procedure for the lognor-

mal model and through the maximum likelihood method

for the binomial/multinomial logistic models. In this work,

these fragility models are developed through the Bayesian

method by incorporating the input data uncertainty. The

Bayesian approach is problem-specific and requires a good

understanding of physical nature of the problem and

observations (Der Kiureghian 2002). After a brief review

of the Bayesian updating formula, methods of point esti-

mation, neglecting and considering input data uncertainty

are presented.

2.1 Bayesian estimation

Let h represent fragility parameters that are to be estimated

based on the observed data D. h can be treated as a set of

random variables characterized by probability distribution

functions. According to the Bayesian paradigm, the dis-

tribution of h can be updated as new observational infor-

mation becomes available (Box and Tiao 1992):

f hjDð Þ ¼ c�1 � L Djhð Þ � f hð Þ ð1Þ

where f(h) is the prior distribution of fragility parameters

and represents the information available on h prior to the

estimation; L(D|h) is the likelihood function and represents

the information contained in the observation; f(h|D) is the
posterior distribution describing the updated estimate of h;
and c is a normalizing factor:

c ¼
Z

L Djhð Þ � f hð Þ � dh ð2Þ

The likelihood function depends on the adopted type of

regression and is proportional to the conditional probability

of the dataD given the parameter h; therefore, assuming that

observations are independent, the likelihood is given by:

L Djhð Þ ¼
Yn
i¼1

f Dijhð Þ ð3Þ

where n is the number of observations, Di is the ith

observation composed by the intensity measure value and

the associated damage outcomes for damage states

(Di = [imi, ni,DS1,…,ni,DSk]); and f(Di|h) is the value of the
likelihood for the ith observation given h.

The likelihood function represents the key factor for the

propagation of the data uncertainty in the regression.

According to the total probability theorem (Jaynes 2003),

for the ith observation, the likelihood function can be

written as:

f Dijhð Þ ¼
Z þ1

�1
f Dije,hð Þ � fi eð Þ � de ð4Þ

where fi(e) is the probability density function (pdf) of the

error associated with the ith observation, modeled as a

Gaussian distribution with zero mean and standard deviation

re. The subscript i indicates that re can be different for each

observation. f(Di|e, h) is the value of likelihood for the ith

observation given h and the error associatedwith observation
e (i.e. the likelihood for the sumof the logarithmof imi and e).
The parameters that maximize the posterior represent the

solutions of the problem. In the following, this is referred to

as Bayesian maximum likelihood.

2.2 Lognormal method

In the lognormal method, exceedance probabilities for

damage states are calculated and median values are plotted

against a range of equally spaced bins of tsunami hazard

parameter (e.g. inundation depth interval of 0.5 m). The

probability of occurrence of damage is:

P DS� dsjhð Þ ¼ U
ln h� ln g

b

� �
ð5Þ

where U is the standard normal distribution function, h is

the inundation depth, g is the median, and b is the loga-

rithmic standard deviation (or dispersion parameter). The

two parameters g and b are obtained by plotting the log-

arithm of inundation depth versus the inverse cumulative

distribution function of the exceedance probability and by

performing a linear regression analysis according to the

following relation:

ln h ¼ ln gþ b � U�1 P DS� dsjhð Þ½ � þ eR ð6Þ

where eR is the term representing the regression error,

which is normally distributed with zero mean and unknown

standard deviation rR. In Eq. (6), P(DS C ds|h) can be
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obtained based on the data analysis of damage outcomes

for each inundation depth bin. It follows that lnh is nor-

mally distributed with mean function of unknown param-

eters g and b, and unknown standard deviation equal to rR.

The linear regression is generally carried out through a

least squares fitting procedure by minimizing the square of

residuals between empirical data and calculated values. By

adopting the Bayesian regression procedure, the funda-

mental equation is Eq. (1) where in the specific case h = [g,
b, rR]. The prior distribution can be decomposed into three

marginal distributions of independent variables. In particu-

lar, as priors, uniform distributions are used for g, b, and rR

in absence of other information. The likelihood function is:

L g;b;rRjDð Þ ¼
Yn
i¼1

1ffiffiffiffiffiffi
2p

p
� rR

�

exp � 1

2 � r2R
� ln hi � ln g� b �U�1 P DS� dsjhið Þð Þ
� �2� �

ð7Þ

The triplet of the parameters is determined by maximizing

the posterior numerically over the model parameter space.

When the observations are uncertain or not free from

error, additional uncertainty should be considered in the

problem. In this case, Eq. (6) becomes:

ln hþ eln h ¼ ln gþ b � U�1 P DS� dsjhð Þ½ � þ eR ð8Þ

where elnh is the error of observational data. According to

Eq. (4), the ith term of the product in Eq. (7) becomes:
Z þ1

�1

1ffiffiffiffiffiffi
2p

p
� rR

�

exp � 1

2 � r2R
� ln hi þ �ln h � ln g� b � U�1 P DS� dsjhið Þð Þ
� �2� �

�

f eln hð Þ � deln h
ð9Þ

where f(elnh) is the pdf of the error. The error is normally

distributed with zero mean and standard deviation rlnh.

The parameter rlnh needs to be estimated from the analysis

of the error associated with observations.

Assuming independent uniform priors, likelihood, and

error distribution, the formulation can be simplified further.

In fact, the likelihood function remains the same as defined

in Eq. (7) where the term rR is replaced by the square root

of the sum of the two variances corresponding to the

regression error and data error, respectively:

rTOT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2R þ r2ln h

q
ð10Þ

This simplification facilitates the efficient estimation of the

model parameters, since it avoids the integration related to

Eq. (9).

2.3 Binomial logistic method

Logistic regression is a special case of a generalized linear

model and can be used for developing empirical fragility

functions based on binomial data. For each damage state,

individual building damage survey results provide with a

binary indication of whether the considered damage state is

exceeded or not and the maximum water depth at the

building site. Unlike the lognormal model, the data are not

organized in bins.

Let pi denote the probability that the ith observed

building is diagnosed as attaining a specific damage state

ds. The probability that all observed buildings are classified

with ds is:

Yn
i¼1

1

yi

� �
� pyii � 1� pið Þ1�yi ð11Þ

where yi is equal to 1 if the ith observation falls in the

examined damage state and it is zero otherwise. Therefore,

Eq. (11) is the likelihood function representing the proba-

bility of observed data. The term p may assume different

forms, such as probit, logit, and loglog (Hosmer et al.

2013). In this study, the logit function is considered:

pi ¼
exp b1 þ b2 � ln hið Þ

1þ exp b1 þ b2 � ln hið Þ ð12Þ

where b1 and b2 are the model parameters. In a non-

Bayesian framework, the point estimation is carried out

through the maximum likelihood procedure.

When a Bayesian regression is carried out, the posterior

of the model parameters can be formulated as Eq. (1),

where h = [b1, b2]. The prior distribution can be decom-

posed into two marginal distributions of independent

variables. As priors, uniform distributions are used for b1
and b2 in absence of other information. The likelihood

function is defined in Eq. (11). By maximizing the poste-

rior, the model parameters can be determined numerically.

An advantage of the Bayesian regression is that uncertainty

of the data can be incorporated in the parameter estimation.

More specifically, the ith term of the likelihood function

becomes [see Eq. (4)]:

Z þ1

�1

1

yi

� �
� exp b1 þ b2 � ln hi þ eln hð Þð Þ
1þ exp b1 þ b2 � ln hi þ eln hð Þð Þ

	 
yi
�

1� exp b1 þ b2 � ln hi þ eln hð Þð Þ
1þ exp b1 þ b2 � ln hi þ eln hð Þð Þ

	 
1�yi

�f eln hð Þ � deln h

ð13Þ

A pair of parameters that maximize the posterior represents

the solution of the problem.
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2.4 Multinomial logistic method

Multinomial regression is a generalized linear model that

allows considering more than two outcomes at the same

time and can be employed to develop empirical fragility

models for multiple damage states. Charvet et al. (2014a)

applied the procedure by considering binned data. More

specifically, denoting the probability that structures corre-

sponding to the ith observation data bin fall in the jth

damage state dsj by pij, the probability that all buildings of

the ith bin fall in the respective damage state class is given

by the multinomial probability distribution:

mi!Qk
j¼1 yij!

Yk
j¼1

pyijij ð14Þ

where mi is the total number of structures composing the

ith observation bin, k is the number of damage states, and

yij is the number of structures for the ith observation bin

attaining the specific damage state dsj. In Eq. (14), pij may

take different functions (e.g. probit, logit, and log–log) and

may assume different features (e.g. nominal, ordinal, and

hierarchical), as described in detail in McCullagh and

Nelder (1989). In the following, the logit function is con-

sidered, and the hierarchical partially-ordered approach is

adopted for the regression. In the hierarchical method, pij
assumes the following form:

pij ¼
exp b1;j þ b2;j � ln hi
� �

1þ exp b1;j þ b2;j � ln hi
� � � 1�

Xj�1

l¼1

pil

 !
ð15Þ

where b1,j and b2,j are the model parameters (i.e. the

intercept and the slope of the generalized linear model,

respectively); the approach is partially-ordered because the

model parameters are different for all the considered

damage states. Considering k damage states, it is possible

to write k-1 sets of Eq. (15). The first equation presents

only the fraction (i.e. no term in parenthesis) and Eq. (15)

for the kth damage state is equal to one. In a non-Bayesian

method, point estimates of the model parameters are cal-

culated, in accordance with the maximum likelihood

approach, by computing the first and second derivatives of

the likelihood (or log-likelihood) function that is expressed

as follows:

Yn
i¼1

Yk
j¼1

pyijij ð16Þ

where n is the number of bins.

The preceding problem can be evaluated within a

Bayesian framework, based on Eq. (1) with h = [b1,1,

b2,1,…,b1,k-1, b2,k-1]. The prior distribution can be com-

posed of 2 9 (k-1) marginal uniform distributions of

independent variables. The likelihood function is given in

Eq. (16). The Bayesian parameter estimation can be carried

out by maximizing the posterior. Given a high number of

model parameters, the parameter estimation is numerically

achieved through a MCMC simulation. The Bayesian

regression facilitates the inclusion of the data uncertainty.

In such cases, the the ith term of the likelihood function

becomes:

Yk
j¼1

Z þ1

�1

exp b1;j þ b2;j � lnhþ elnhð Þ
� �

1þ exp b1;j þ b2;j � lnhþ elnhð Þ
� � � 1�

Xj�1

l¼1

pil

 !
�

f elnhð Þ � delnh
ð17Þ

3 Uncertainty of tsunami inundation data

3.1 MLIT database

The input data for developing tsunami fragility models

are obtained from the MLIT damage database. Buildings

located in the inundated areas during the 2011 Tohoku

earthquake are included in the database and are charac-

terized by various attributes, such as geographical loca-

tion, structural material, story number, tsunami inundation

depth, and damage level. More than 200,000 structures

are located in Iwate, Miyagi and Fukushima prefectures

(from North to South). Among them, 83.9 % of the

structures (176,215 buildings) have information about

structural material, inundation depth, and damage state

(which is necessary for developing fragility functions).

The majority of the surveyed buildings (83.8 %) are

wooden structures, followed by masonry structures

(8.8 %), steel structures (5.0 %), and reinforced concrete

(RC) structures (2.4 %). In this study, only wooden

structures are considered for tsunami fragility modeling

due to statistical stability. The original MLIT database

adopts the tsunami damage scale with seven discrete

states, namely no damage (DS1), minor damage (DS2),

moderate damage (DS3), major damage (DS4), complete

damage (DS5), collapse (DS6), and wash-away (DS7).

Figure 1a shows the locations of the surveyed wooden

buildings along about 300 km coastline near the epicen-

ter, depicting the geographical distribution of damage

states. In terms of sustained damage levels, only 1.5 % of

the surveyed buildings did not suffer any damage, while

40.4 % of the buildings were washed away. The statistics

of the damage levels are presented in Fig. 1b. Figure 1c

shows a histogram of inundation depths that were expe-

rienced by the surveyed buildings ranging between 0.1 m

and 27.0 m. Prior to tsunami fragility modeling, the

original damage data are modified by combining DS6 and

DS7 data, noting that these two damage states are two
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different descriptions of a collapse mode. Therefore, as

also suggested in Charvet et al. (2014b), the seven dam-

age states (DS1-DS7) are reduced to six (DS1-DS6/7) in

the tsunami fragility analysis in the following.

The inundation depth data of the MLIT damage database

are assigned based on the MLIT 100-m mesh inundation

data (a separate database developed by the MLIT); in the

MLIT damage database, local variations of elevation at

sub-mesh levels are taken into account based on the DEM

data that are developed by the Geospatial Information

Authority of Japan (GSI). The GSI-DEM data are obtained

by airborne laser scanner surveys and have 5-m resolution;

the vertical accuracy is plus/minus 0.3 m in terms of

standard deviation. The MLIT 100-m data contain infor-

mation of locations, elevation, inundation depth, and

inundation height. The original inundation depth data were

obtained by conducting surveys of tsunami marks and

interviews to local residents and from existing reports/data.

When direct observations were not available, interpolation

of inundation depths/heights at nearby locations was car-

ried out. In other words, the MLIT inundation data, which

are used as input tsunami hazard parameters in the fragility

analysis (e.g. Suppasri et al. 2013; Charvet et al. 2014a),

are subjected to errors and uncertainty.

3.2 TTJS database

The TTJS database, which was developed independently

from the MLIT database, contains post-event surveyed

tsunami inundation/run-up heights along the Tohoku coast.

Heights of watermarks on buildings, trees, and walls were

measured using a laser range finder, a level survey, a real-

time kinematic global positioning system (RTK-GPS)

receiver with a cellular transmitter, and total stations (Mori

et al. 2011). Generally, the accuracy of the measurements

is within a few centimeters vertically. The database

includes information of location (latitude and longitude as

well as address), measurement date/time (used for tidal

level corrections), tsunami heights, run-up distance from

shoreline, tidal levels, reliability of measurements, and

target objects/marks. The TTJS inundation height data can

be adopted as a benchmark in assessing the errors/uncer-

tainty associated with the MLIT inundation data as they

may be considered to be more accurate (or controlled);

only TTJS data with high reliability (Rank A) are used in

this study. Based on the TTJS height data, the corre-

sponding depth data can be obtained by using the GSI-

DEM data (note: the correction potentially introduces

systematic errors).

Fig. 1 a Spatial distribution of surveyed wooden buildings having different damage states, b histogram of the tsunami damage states, and

c histogram of the inundation depths
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3.3 Uncertainty of tsunami inundation data

The MLIT inundation depth data (as in the MLIT damage

database) are subjected to two sources of uncertainty:

(i) they are based on the MLIT 100-m data (i.e. errors due

to interpolation/smoothing) and (ii) elevation data at the

building sites are not available (thus the MLIT depth data

cannot be converted to height deterministically). In other

words, it is not straightforward to evaluate the accuracy of

the MLIT 100-m data (both depth and height are available)

quantitatively, because the data are only available at 100-m

resolution (coarse for detailed assessment) and the loca-

tions corresponding to the representative values for the

meshes are unknown. By taking into account the charac-

teristics of the available data, uncertainty associated with

the tsunami inundation data is assessed by comparing the

MLIT versus TTJS inundation height data.

To relate the MLIT data points with the TTJS data

points (which have different spatial distributions and cov-

erage), several distance radii between 5 and 50 m are

considered (i.e. 5, 10, 20, and 50 m). A schematic repre-

sentation of the MLIT and TTJS observation points is

given in Fig. 2. The radius of 5 m is suitable for a lower

bound because the baseline GSI-DEM data for the MLIT

database are at this resolution. The radius of 50 m (a half of

100 m) is considered as an upper bound. With the increase

of the radius, the number of data pairs increases because

more points in the TTJS and MLIT databases can be

associated each other (although the similarity of the

selected data decreases with the separation distance due to

the changes of the elevation and the local variability of the

tsunami waves). Figure 3a shows the scatter plots of the

MLIT and TTJS height data for the radii of 5 and 50 m.

Figure 3b presents the differences between the TTJS and

MLIT height data as a function of GSI elevation, while

Fig. 3c displays the ratios between the TTJS and MLIT

height data as a function of GSI elevation.

Table 1 lists inundation height statistics for different

values of radii between 5 and 50 m; the Pearson’s linear

correlation coefficient (q) between the TTJS and MLIT

100-m data, the statistics of the differences between the

TTJS and MLIT height data, and the statistics of the ratios

between the TTJS and MLIT height data (in logarithm) are

included. When the TTJS and MLIT data points are close

(e.g. less than 5 m), the TTJS and the MLIT inundation

height data are consistent. With the increase of the sepa-

ration distance between the TTJS and MLIT data points,

the consistency of the TTJS and the MLIT data decreases

and the data points start to scatter more widely. This can be

inspected from the decreasing trends of the linear correla-

tion coefficient and the increasing trends of the standard

deviation of the differences and ratios. Another important

observation is that when the radius for interpolation

becomes large (e.g. 50 m), the consistency of the inunda-

tion metrics is deteriorated significantly. Therefore, a

caution is necessary in carrying out such interpolation.

Taking the TTJS data as benchmark, the standard deviation

of the differences of the height data can be assigned as

1.5–2.0 m and the corresponding logarithmic standard

deviation of the ratios of the height data is 23 % (Table 1).

Moreover, Fig. 4 shows the empirical distributions of the

height differences and the height ratios for the TTJS and

the MLIT data. It indicates that the height ratios are well

fitted by a normal distribution (i.e. the ratios are log-nor-

mally distributed), while the height differences are not.

Based on the preceding results, the inundation data are

assumed to be log-normally distributed and the data

uncertainty equal to 25 % is considered in the Bayesian

tsunami fragility analysis (Sect. 4).

4 Tsunami fragility assessment

This paper focuses on wooden buildings damaged due to

tsunami triggered by the 11th March 2011 Tohoku earth-

quake. In the following, empirical fragility curves are

obtained with the different regression methods considering

and neglecting the input data uncertainty.

4.1 Results for lognormal method

For the lognormal method, the inundation depth data are

binned with equal intervals of 0.50 m, as suggested by
Fig. 2 Schematic representation of the MLIT and TTJS observation

points
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Suppasri et al. (2013). Figure 5 shows the posterior joint

distributions of the regression parameters (i.e. g, b, and
rR) without (black contours with solid line) and with (red

contours with dashed line) input data errors for the collapse

damage state. Figure 6 shows the corresponding marginal

distributions of the three parameters for the collapse

damage state. Neglecting the input data error, the Bayesian

maximum likelihood estimations (i.e. red points) and the

least squares results (hollow black circles) are identical. On

the other hand, considering the input data error, rR changes

significantly, showing a reduction from 0.29 to 0.14. This

reduction is due to the fact that the consideration of the

input data error reduces the regression error; this is

expected because the term elnh is moved from the left-hand

side to the right-hand side in Eq. (8). The reduction in rR

translates into a smaller confidence interval around the

central estimate of the fragility function. For example,

Fig. 7a shows the central estimate of the collapse (DS6/7)

(a) (b) (c)

Fig. 3 Comparison of the TTJS and MLIT inundation height data for

radii of 5 and 50 m: a scatter plot of the TTJS and MLIT inundation

height data, b difference between the TTJS and MLIT inundation

height data with respect to the GSI-elevation, and c ratio between the

TTJS and MLIT inundation height data with respect to the GSI

elevation

(a) (b)

Fig. 4 Empirical distributions of the differences (blue dotted line) and of the logarithmic ratios (purple line) between the MLIT and TTJS data in

comparison with the normal fit (dashed dotted black line): a radius of 5 m and b radius of 50 m

Table 1 Comparison of the

TTJS and MLIT inundation

height data

Radius (m) q lhMLIT-hTTJS (m) rhMLIT-hTTJS (m) glog(hMLIT/hTTJS) blog(hMLIT/hTTJS)

5 0.96 0.13 1.50 1.023 0.21

10 0.94 0.21 1.83 1.035 0.21

20 0.95 0.24 1.65 1.053 0.22

50 0.94 0.06 1.94 1.035 0.23
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fragility function for wooden structures and the 90 %

confidence intervals without and with input data error.

Figure 7b shows the resulting fragility curves for all

damage states, and Table 2 lists the parameters of the

fragility curves obtained without and with input data error.

The numerical results indicate that medians and

(a) (b) (c)

Fig. 5 Posterior distributions of the regression parameters neglecting (black contours) and considering (red contours) the input data error for the

collapse damage state (DS6/7) based on the lognormal method: a g-b joint distribution, b g-rR joint distribution, and c b-rR joint distribution

(a) (b) (c)

Fig. 6 Posterior distributions of the regression parameters neglecting

(black lines) and considering (red lines) the input data uncertainty for

the collapse damage state (DS6/7) based on the lognormal method:

a g marginal distribution, b b marginal distribution, and c rR
marginal distribution

(a) (b)Fig. 7 Tsunami fragility curves

based on the lognormal method:

a collapse fragility curves and

90 % confidence interval

neglecting and considering

input data error, and b tsunami

fragility curves for all damage

states
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logarithmic standard deviations are equal for the two

considered cases, whereas the regression confidence inter-

vals are lower when the input data error is taken into

account, with a reduction of about 50 % according to

available data.

It is noteworthy that the data need to be binned

(grouped) to apply this method. From a practical point of

view, when the lognormal method is used by taking into

account the input data error, the influence of considering

the uncertainty is revealed as the narrower fragility confi-

dence interval, whereas the central fragility curve does not

change. In other words, the model dispersion is not

affected.

4.2 Results for binomial logistic method

For the binomial logistic method, individual records are

used as un-binned data, as suggested by Reese et al. (2011).

Figure 8a, b show the joint posterior distributions for DS6/

7 neglecting and considering input data error, respectively.

Figure 8a shows that the Bayesian maximum likelihood

(red point) coincides with the maximum likelihood

approach (hollow black circle). Figure 8b shows that the

parameters obtained with the Bayesian and non-Bayesian

procedures are different. This difference can be observed in

terms of resulting fragility functions. Figure 9 shows the

fragility functions for all damage states neglecting (solid

line) and considering (dashed line) the input data error.

Table 3 lists the numerical values of the estimated fragility

parameters. The medians remain the same and the loga-

rithmic standard deviations are decreased by about 10 %

(e.g. DS5 and DS6/7).

For the Bayesian binomial logistic method using

ungrouped data, the effect of considering the input data

error shows up in the reduced logarithmic standard devia-

tion of a fragility curve. This means that the dispersion of

the fragility model is decreased and thus more confidence

on the central estimate of the tsunami fragility is achieved.

It is noted that the preceding result is generally applicable

to binned data (as in the multinomial logistic method in

Sect. 4.3).

4.3 Results for multinomial logistic method

For the multinomial logistic method, the inundation depth

data are binned with non-uniform intervals in order to

obtain equally populated bins (Charvet et al. 2014a). In the

estimation, the reference damage state (i.e. the damage

state with probability equal to 1) is set to DS1 (Sect. 2.4);

thus the order of damage states in Eq. (15) should be

reversed. Figure 10 shows the results of the MCMC sim-

ulations for the Bayesian approach, neglecting and con-

sidering the input data error, represented by continuous line

and dashed line, respectively. The blue and red lines are the

intercept (b1) and slope (b2) of the generalized linear

model, respectively. The dashed black line represents the

value obtained through the maximum likelihood point

estimate procedure. From the plot, the effects of the initial

values of parameters take a while to disappear before the

process begins to look stationary (1000 simulation steps are

sufficient to achieve the convergence).

(a) (b)Fig. 8 Posterior distribution of

regression parameters b1 and b2
for a without and b with input

data error for the collapse

damage state (DS6/7) based on

the binomial logistic method

Table 2 Parameters of fragility curves neglecting and considering

the input data error based on the lognormal method

Damage state Without input data error With input data error

g (m) b (-) rR (-) g (m) b (-) rR (-)

DS2 0.04 1.49 0.40 0.04 1.49 0.31

DS3 0.29 1.00 0.33 0.29 1.00 0.22

DS4 0.82 0.81 0.25 0.82 0.81 0.01

DS5 1.68 0.66 0.32 1.68 0.66 0.20

DS6/7 1.90 0.73 0.29 1.90 0.73 0.14
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Neglecting the input data error, the final values (blue

and red light numbers), obtained after 1000 simulations,

converge to the value obtained with the maximum likeli-

hood point estimate procedure (black numbers). Consid-

ering the input data error, the model parameters (blue and

red bold numbers) are different with respect to the pre-

ceding case. This difference can be observed in terms of

resulting empirical fragility functions, as presented in

Fig. 11 neglecting (continuous lines) and considering

(dashed lines) the input data error. Moreover, Table 4 lists

the parameters of the obtained fragility curves for all

damage states. The results show that the medians remain

the same and the logarithmic standard deviations related to

the case with input data errors are decreased by as large as

16 %.

Similarly to the binomial logistic method, the incorpo-

ration of input data errors into the tsunami fragility mod-

eling only affects the model dispersion. The preceding

general results are applicable to the case when un-binned

data, rather than binned data, are used. This is because the

multinomial logistic regression, as extension of the bino-

mial logistic regression, can be performed for both types of

data.

4.4 Comparison of tsunami fragility models

The systematic applications of three Bayesian regression

methods facilitate the meaningful comparisons of the tsu-

nami fragility curves developed under different assump-

tions. To inspect the differences of the fragility curves

visually, Fig. 12 compares the tsunami fragility curves for

DS4, DS5, and DS6/7 based on the lognormal, binomial

logistic, and multinomial logistic methods without and with

the input data uncertainty (note: for the lognormal model,

the inclusion of the input data error in the analysis has no

effect on the developed fragility curve). It can be observed

from Fig. 12 that medians for the lognormal method are

smaller than those for the binomial/multinomial logistic

method, while model dispersions for the lognormal method

are greater than those for the binomial/multinomial logistic

method (note: these observations are applicable to both

cases neglecting and considering the input data error). This

means that at low inundation depths, the fragility curves

based on the lognormal method predict higher damage

probabilities than those based on the binomial/multinomial

logistic method. On the other hand, the opposite tendency

is applicable at high inundation depths. The differences can

be attributed to the forms of the base functions (lognormal

versus logistic) and partly to different grouping schemes

used for the three methods. The latter has relatively minor

effects because the binomial and multinomial methods

produce similar results although they adopt different

grouping procedures.

Regarding the impact of incorporating the uncertainty of

inundation depth data in the fragility modeling, the log-

normal method and the binomial/multinomial logistic

method affect the developed fragility models differently.

When the lognormal method is adopted, only a reduction of

the confidence interval can be observed, which is consistent

with Cetin et al. (2002) for liquefaction triggering analysis.

In contrast, when the binomial/multinomial logistic method

is used, a reduction of the model dispersion is observed; the

result is in accord with Der Kiureghian (2002) for seismic

fragility analysis. These differences of the tsunami fragility

curves caused by the different modeling approaches, have

direct influence on the tsunami damage assessment (and the

seismic loss estimation). In fact, for the logistic regression

methods, the central estimate fragility curve obtained

considering the input data error returns a greater damage

probability for high values of inundation depth and a

smaller damage probability for low inundation depths, in

comparison with the case in which the input data error is

neglected (note: the consideration of the input data

Fig. 9 Tsunami fragility curves neglecting (continuous line) and

considering (dashed line) input data error based on the binomial

logistic method

Table 3 Parameters of fragility curves neglecting and considering

the input data error based on the binomial logistic method

Damage state Without input data error With input data error

g (m) b (-) g (m) b (-)

DS2 0.04 1.23 0.04 1.23

DS3 0.29 1.02 0.28 0.99

DS4 0.99 0.68 0.99 0.65

DS5 1.97 0.47 1.96 0.43

DS6/7 2.13 0.52 2.12 0.47
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uncertainty does not affect the median and thus the

changing point of the increased/decreased damage proba-

bility correspond to the median inundation depth).

The differences between fragilities with and without

input data uncertainty are larger for severer damage states

(DS4, DS5, and DS6/7). These differences reflect the not

uniform number of observations across damage states.

When more observations are available, the model disper-

sion without input data uncertainty becomes smaller, and

consequently, the effect of the input data uncertainty

becomes more relevant. This is because the number of

observations governs both the likelihood function and the

model dispersion.

Further insights can be obtained by examining regres-

sion residuals between observed data and fitted fragility

curves. Figure 13 shows the residuals (i.e. the difference

between the observed data and the fitted fragility curve)

obtained for each regression method; the results are pre-

sented for all damage states, neglecting and considering the

input data error. To concentrate on the interval where the

Fig. 10 Convergence of parameter estimation based on Markov Chain Monte Carlo simulations neglecting and considering the input data error

(continuous and dashed line respectively)

Fig. 11 Tsunami fragility curves neglecting (continuous line) and

considering (dashed line) input data error based on the multinomial

logistic method

Table 4 Parameters of fragility curves neglecting and considering

the input data error based on the multinomial logistic method

Damage state Without input data error With input data error

g (m) b (-) g (m) b (-)

DS2 0.01 2.50 0.01 2.38

DS3 0.23 1.92 0.24 1.61

DS4 1.02 0.83 1.01 0.77

DS5 1.95 0.51 1.95 0.45

DS6/7 2.08 0.54 2.08 0.49
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greatest differences occur, the residual range is focused on

inundation depth between 0.1 m and 4.0 m. To discuss the

differences of the observations and model predictions

quantitatively, the square root of sum of squares (SRSS) of

the residuals for inundation depth between 0.1 and 27.0 m

is evaluated for the three methods and the calculated values

are presented in the figure (note: the percentages in

parenthesis show the differences between the cases without

and with input data error). The results shown in Fig. 13

suggest that the profiles of the residual variations in terms

of inundation depth for the three methods are similar

although the magnitudes of the deviations from zero

residual line for the binomial/multinomial logistic methods

are smaller than those for the lognormal method (these

trends can be also inspected by comparing the SRSS val-

ues). In terms of the inclusion/exclusion of the input data

uncertainty in the regression analysis, (i) no changes are

observed for the lognormal method (as expected); (ii) the

binomial logistic method produces residuals quite similar

to the case in which the input data error is neglected for

DS2, DS3, and DS4, whereas it produces smaller residuals

for DS5 and DS6/7; and (iii) for the multinomial logistic

method, residuals are consistently smaller for all damage

states when the input data error is taken into account in the

fragility modeling. Furthermore, focusing on the SRSS

values for the structural damage states (i.e. DS3, DS4, DS5,

and DS6/7), the binomial logistic regression presents the

smaller residuals, followed in order by the multinomial

logistic regression and the lognormal regression.

It can be concluded that for the tsunami fragility data for

wooden houses in the Tohoku region, using the binomial

logistic method with un-binned data leads to smaller

overall residuals between observed data and fitted models,

and therefore is preferred with respect to the other two

methods. Nevertheless, further investigations related to the

multinomial logistic method are required by considering

un-binned data, as this is not directly investigated in this

paper.

5 Tsunami loss assessment

This section presents the tsunami loss assessment accord-

ing to a methodology that is similar to a performance-based

earthquake engineering (PBEE) framework (Cornell et al.

2002; Goda and Song 2016). The PBEE aims to quantify

the extent of damage and consequences probabilistically

and is useful for assessing financial and socioeconomic

impact of earthquake-related hazards (e.g. Goda 2015).

Therefore, the presented results can be viewed from a
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decision support system perspective, which are valuable to

stakeholders and decision makers.

5.1 Set up

Empirical tsunami fragility curves based on the three dif-

ferent methods, considering and neglecting the input data

error, can be used to carry out tsunami loss estimation. In

this way, the effect induced by the input data error on the

fragility curves can be further propagated to tsunami loss.

The expected economic loss E[L] for a single building can

be calculated as:

E L½ � ¼
Xk
j¼1

Rj � P DS� dsj
� �

� P DS� dsjþ1

� �� �
ð18Þ

where k is the number of damage states; Rj is the repair cost

associated with the damage state j; and P(DS C dsj) is the

exceedance probability for the damage state j. The buildings

considered for the loss estimation are the same low-rise

wooden structures (1 or 2 stories) that are contained in the

MLIT database and used for the fragility modeling. Observed

tsunami inundationdepths at building sites are usedas tsunami

hazard parameter for the loss assessment. In particular, the

inundation depth values are considered to be log-normally

distributed with the central values corresponding to the

observed ones and logarithmic standard deviation equal to

25 % (i.e. consistent with the results presented in Sect. 3.3).

Repair/replacement costs associated with damage states

are computed on the basis of damage ratios 0, 5, 20, 40, 60,

and 100 % for DS1, DS2, DS3, DS4, DS5, and DS6/7

(MLIT 2014), respectively. The assumed damage ratio and

the replacement cost are multiplied to obtain the values of

R. According to the MLIT (2015) and to the Japanese

Construction Research Institute (CRI 2011), the mean unit

construction cost is equal to 1600 $/m2 and the coefficient

of variation is 32 %. These are the values adopted for

residential low-rise wooden buildings. The unit construc-

tion cost is multiplied by the footprint area and the number

of stories (information available in the MLIT database) to

obtain the total construction cost for each building. The

total economic loss is the sum of expected loss for all the

buildings in the portfolio. The total economic loss for

wooden houses is computed considering uncertainties

related to the inundation depth and those related to the

construction cost through a Monte Carlo simulation. In

particular, 1000 simulations are performed by taking into

account variability of the construction costs and the tsu-

nami inundation depths for individual buildings.
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SRSS w/o error = 0.12
SRSS w error    = 0.12

SRSS w/o error = 0.10 
SRSS w error = 0.08 (-20%)

SRSS w/o error = 0.13 
SRSS w error = 0.13

SRSS w/o error = 0.25
SRSS w error    = 0.25

SRSS w/o error = 0.62
SRSS w error = 0.36 (-42%)

SRSS w/o error = 0.24
SRSS w error = 0.26 (+8%)

SRSS w/o error = 0.48
SRSS w error    = 0.48

SRSS w/o error = 0.37
SRSS w error = 0.30 (-19%)

SRSS w/o error = 0.26
SRSS w error = 0.27 (+4%)

SRSS w/o error = 0.79
SRSS w error    = 0.79

SRSS w/o error = 0.46
SRSS w error = 0.37 (-19%)

SRSS w/o error = 0.39
SRSS w error = 0.26 (-33%)

SRSS w/o error = 0.75
SRSS w error    = 0.75

SRSS w/o error = 0.45
SRSS w error = 0.41 (-9%)

SRSS w/o error = 0.43
SRSS w error = 0.13 (-70%)

Fig. 13 Residuals (observation minus prediction) based on the lognormal, binomial logistic, and multinomial logistic methods for all damage

states neglecting (black continuous line) and considering (red dashed line) input data error
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5.2 Total tsunami loss and risk disaggregation

Table 5 lists the central estimates of the total tsunami loss

based on the three regression methods neglecting and

considering the input data error. The lognormal method

results in the greatest total expected loss (by about 4 %)

when compared with the binomial and multinomial logistic

methods. Whereas the logistic methods return similar val-

ues of total expected loss with a mean difference of 0.5 %.

The major difference of the total expected loss is a con-

sequence of the differences in the tsunami fragility curves

at smaller inundation depths (Fig. 12).

The consideration of the input data uncertainty does not

affect the expected total loss for the lognormal method,

whereas there are slight increases of the expected tsunami

loss by 0.68 and 0.43 % for the binomial logistic method

and the multinomial logistic method, respectively. These

numbers are small in relative terms, but they result in

significant differences as actual values (i.e. hundreds of

millions of dollars). They can be explained by the changes

of the tsunami fragility curves (i.e. same median with

reduced model dispersion). In fact, the greatest part of the

exposure is located in the first 1500 m from the shoreline,

where very large tsunami inundation depths were observed

at many coastal cities and towns during the 2011 Tohoku

tsunami (Fraser et al. 2013; Goda et al. 2014). Therefore,

increased damage probabilities for collapse and complete

damage, combined with greater damage ratios, result in

greater tsunami loss estimates.

To further investigate the spatial distribution of the

tsunami loss, a risk disaggregation is shown in Fig. 14 in

terms of distance from the shoreline. The disaggregation is

calculated by summing up the tsunami loss with an interval

of 5 m. Generally, the tsunami loss profiles for the three

methods are similar; the peaks are observed at 100 m from

the coastline (where a large number of buildings are

located and they experience high inundation depths). The

results obtained with the lognormal method (Fig. 14a)

indicate that the central estimate does not change

depending on how the input data error is treated in the

fragility modeling (as expected from Sect. 4.1); while the

90 % confidence interval becomes narrower around the

central estimate when the input data uncertainty is taken

into account. The reduction of the confidence interval is

approximately equal to 13 %. Figure 14b shows the results

obtained with the binomial and multinomial logistic

methods. Tsunami loss profiles for the two cases are sim-

ilar. Finally, Fig. 14c presents the ratio between expected

tsunami loss profiles obtained considering and neglecting

the input data error for the different regression methods. In

Fig. 14c, the result for the lognormal method is constant

with a ratio of 1.0. For the logistic regression approaches,

Table 5 Expected losses with

and without input data error for

the three regression methods

Regression method E[L] expected losses ($)

Without input data error With input data error

Lognormal method 1.534 9 1010 1.534 9 1010

Binomial logistic method 1.465 9 1010 1.475 9 1010

Multinomial logistic method 1.475 9 1010 1.481 9 1010
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Fig. 14 Expected tsunami losses as a function of distance from the

shoreline based on the lognormal method (a) and the binomial and

multinomial logistic methods (b), and c ratios of expected tsunami

losses neglecting and considering input data error based on the three

regression methods
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the expected tsunami loss obtained considering the input

data error is greater by about 1 % with respect to the case

in which the input data error is ignored. This trend is

observed up to about 1500 m from the shoreline, where

90 % of the total loss exposure is concentrated.

6 Summary and conclusions

This work presented a Bayesian statistical framework to

consider the input data uncertainty in the empirical tsunami

fragility modeling and investigated the effects of this kind

of uncertainty on risk assessment for tsunamis. Three most

common methods for tsunami fragility modeling were

considered: the lognormal model based on linear regres-

sion, the binomial logistic regression, and the multinomial

logistic regression. The developed Bayesian approaches

were applied to the extensive MLIT tsunami damage data

for residential wooden structures obtained from the 11th

March 2011 Tohoku earthquake by neglecting and con-

sidering the input data error. To evaluate the uncertainty of

tsunami inundation (i.e. input data for tsunami fragility

modeling) from empirical perspectives, inundation heights

available in the MLIT and TTJS databases were used. The

data analysis indicated that a potential input error of

20–25 % in terms of the coefficient of variation is suit-

able for the Tohoku tsunami inundation data. This mag-

nitude of the input data uncertainty was then propagated in

the tsunami fragility modeling as well as tsunami loss

estimation using the three regression procedures.

The systematic assessment and comparison of the tsu-

nami fragility curves developed using different regression

approaches within the Bayesian statistical framework

indicated that considering the input data error leads to a

reduction of the confidence interval for the lognormal

method, whereas the incorporation of the input data

uncertainty results in decreased model dispersion. The

tsunami fragility models based on the lognormal method

generally have smaller medians with greater dispersions, in

comparison with those based on the binomial/multinomial

logistic method. It is important to highlight that the dif-

ferences in the developed fragility curves have conse-

quential influence on the estimated tsunami loss (e.g.

reduced confidence interval of the central loss estimate for

the lognormal regression and increased expected tsunami

loss for the logistic regressions). It was also observed that

considering the input data error through the proposed

Bayesian framework leads to a reduction of the residuals

between observed data and fitted fragility models. Overall,

the binomial logistic method may be preferred among the

three regression methods, since it achieved the smaller

residuals.

It is important to underline that in developing empirical

tsunami fragility curves, accounting for the input data

uncertainty makes their use in damage and loss assessment

more reliable. In fact, such fragilities are suitable for a

more general use, since the restriction of application with

respect to the areas for which they are calibrated is

removed (in a sense of input data uncertainty; regional

dependence of the fragility models on the characteristics of

local structures still exists). Further extensions and devel-

opments of this work can be considered in three aspects.

One is to consider the entire posterior distributions of

regression parameters in fragility modeling, in order to

obtain a more robust estimation of the fragility functions.

The second is to consider binned data for the binomial

logistic regression and un-binned data for the multinomial

logistic regression in order to facilitate the more complete

and systematic comparisons of the tsunami fragility

methods, going beyond the scope that the current literature

concerns. The last aspect is to consider models accounting

for inundation flow velocity, fluid momentum or the other

relevant fluid dynamic information as explanatory hazard

variable in addition to flow depth, such as the models

developed by Charvet et al. (2015) for inundation flow

velocity. For the latter case, the quantification of uncer-

tainty is a real challenge given the limited amount of

observed data in terms of tsunami flow velocity.

Acknowledgments This work is funded by the Engineering and

Physical Sciences Research Council (EP/M001067/1).

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Baker JW (2015) Efficient analytical fragility function fitting using

dynamic structural analysis. Earthq Spectra 31(1):579–599

Box GEP, Tiao GC (1992) Bayesian inference in statistical analysis.

Wiley, New York

Bradley BA (2010) Epistemic uncertainties in component fragility

functions. Earthq Spectra 26(1):41–62

Cetin KO, Der Kiureghian A, Seed RB (2002) Probabilistic models

for the initiation of seismic soil liquefaction. Struct Saf

24(1):67–82

Charvet I, Ioannou I, Rossetto T, Suppasri A, Imamura F (2014a)

Empirical fragility assessment of buildings affected by the 2011

Great East Japan tsunami using improved statistical models. Nat

Hazards 73(2):951–973

Charvet I, Suppasri A, Imamura F (2014b) Empirical fragility analysis

of building damage caused by the 2011 Great East Japan tsunami

in Ishinomaki City using ordinal regression and influence of key

Stoch Environ Res Risk Assess

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


geographical features. Stoch Environ Res Risk Assess

8(7):1853–1867

Charvet I, Suppasri A, Kimura H, Sugawara D, Imamura F (2015)

Fragility estimations for Kesennuma City following the 2011

Great East Japan tsunami based on maximum flow depths,

velocities and debris impact, with evaluation of the ordinal

model’s predictive accuracy. Nat Hazards 79(3):2073–2099

Cheung SH, Beck JL (2010) Calculation of posterior probabilities for

Bayesian model class assessment and averaging from posterior

samples based on dynamic system data. Comput-Aided Civ

Infrastruct Eng 25(5):304–321

Construction Research Institute (2011) Japan building cost informa-

tion. Construction Research Institute, Tokyo, p 547

Cornell CA, Jalayer F, Hamburger RO, Foutch DA (2002) Proba-

bilistic basis for 2000 SAC Federal Emergency Management

Agency steel moment frame guidelines. J Struct Eng

129(4):526–533

Der Kiureghian A (2002) Bayesian methods for seismic fragility

assessment of lifeline components. Acceptable risk processes:

lifelines and natural hazards. In: Taylor C, VanMarcke E (eds)

Council on disaster reduction and technical council on lifeline

earthquake engineering, ASCE Monograph No. 21:61–77

Fraser S, Pomonis A, Raby A, Goda K, Chian SC, Macabuag J,

Offord M, Saito K, Sammonds P (2013) Tsunami damage to

coastal defences and buildings in the March 11th 2011 Mw9.0

Great East Japan earthquake and tsunami. Bull Earthq Eng

11(1):205–239

Fukutani Y, Suppasri A, Imamura F (2015) Stochastic analysis and

uncertainty assessment of tsunami wave height using a random

source parameter model that targets a Tohoku-type earthquake

fault. Stoch Environ Res Risk Assess 29(7):1763–1779

Gardoni P, Reinschmidt KF, Kumar R (2007) A probabilistic

framework for Bayesian adaptive forecasting of project progress.

Comput-Aided Civ Infrastruct Eng 22(3):182–196

Goda K (2015) Seismic risk management of insurance portfolio using

catastrophe bonds. Comput-Aided Civ Infrastruct Eng

30(7):570–582

Goda K, Song J (2016) Uncertainty modeling and visualization for

tsunami hazard and risk mapping: a case study for the 2011

Tohoku earthquake. Stoch Environ Res Risk Assess. doi:10.

1007/s00477-015-1146-x

Goda K, Mai PM, Yasuda T, Mori N (2014) Sensitivity of tsunami

wave profiles and inundation simulations to earthquake slip and

fault geometry for the 2011 Tohoku earthquake. Earth Planets

Space 66:105. doi:10.1186/1880-5981-66-105

Guha-Sapir D, Below R, Hoyois PH (2015) EM-DAT: international

disaster database. Available via www.emdat.be. Accessed 1 May

2015

Hosmer DW Jr, Lemeshow S, Sturdivant RX (2013) Applied logistic

regression. Wiley, Hoboken, p 528

Jalayer F, De Risi R, Manfredi G (2015) Bayesian Cloud Analysis:

efficient structural fragility assessment using linear regression.

Bull Earthq Eng 13(4):1–21

Jaynes ET (2003) Probability theory: the logic of science. Cambridge

University Press, Cambridge, p 729

Kim D, Kim BJ, Lee SO, Cho YS (2014) Best-fit distribution and log-

normality for tsunami heights along coastal lines. Stoch Environ

Res Risk Assess 28(4):881–893

Koshimura S, Oie T, Yanagisawa H, Imamura F (2009) Developing

fragility functions for tsunami damage estimation using numer-

ical model and post-tsunami data from Banda Aceh. Indones

Coast Eng J 51(3):243–273

Lallemant D, Kiremidjian A, Burton H (2015) Statistical procedures

for developing earthquake damage fragility curves. Earthq Eng

Struct Dyn. doi:10.1002/eqe.2522

McCullagh P, Nelder JA (1989) Generalized linear models. CRC

Press, Florida, p 532

Ministry of Land, Infrastructure, and Transportation (MLIT) (2014)

survey of tsunami damage condition. Available via http://www.

mlit.go.jp/toshi/toshi-hukkou-arkaibu.html. Accessed 1 July

2014

Ministry of Land, Infrastructure, and Transportation (MLIT) (2015)

National statistics. Available via http://www.mlit.go.jp/statistics/

details/index.html. Accessed 1 June 2015

Mori N, Takahashi T, Yasuda T, Yanagisawa H (2011) Survey of

2011 Tohoku earthquake tsunami inundation and run-up. Geo-

phys Res Lett 38(7):L00G14. doi:10.1029/2011GL049210

Peiris N (2006) Vulnerability functions for tsunami loss estimation.

In: Proceedings of the first European conference on earthquake

engineering and seismology, Geneva, Paper 1121

Porter K, Kennedy R, Bachman R (2007) Creating fragility functions

for performance-based earthquake engineering. Earthq Spectra

23(2):471–489

Reese S, Bradley BA, Bind J, Smart G, Power W, Sturman J (2011)

Empirical building fragilities from observed damage in the 2009

South Pacific tsunami. Earth Sci Rev 107(1):156–173

Rossetto T, D’Ayala D, Ioannou I, Meslem A (2014) Evaluation of

existing fragility curves. SYNER-G: typology definition and

fragility functions for physical elements at seismic risk.

Springer, Dordrecht, pp 47–93

Straub D, Der Kiureghian A (2008) Improved seismic fragility

modeling from empirical data. Struct Saf 30(4):320–336

Suppasri A, Koshimura S, Imamura F (2011) Developing tsunami

fragility curves based on the satellite remote sensing and the

numerical modeling of the 2004 Indian Ocean tsunami in

Thailand. Nat Hazards Earth Syst Sci 11(1):173–189

Suppasri A, Mas E, Charvet I, Gunasekera R, Imai K, Fukutani Y,

Imamura F (2013) Building damage characteristics based on

surveyed data and fragility curves of the 2011 Great East Japan

tsunami. Nat Hazards 66(2):319–341

Tarbotton C, Dall’Osso f, Dominey-Howes D, Goff J (2015) The use

of empirical vulnerability functions to assess the response of

buildings to tsunami impact: comparative review and summary

of best practice. Earth Sci Rev 142:120–134

Yazdi AJ, Haukaas T, Yang T, Gardoni P (2015) Multivariate

fragility models for earthquake engineering. Earthq Spectra.

doi:10.1193/061314EQS085M

Yu JJ, Qin XS, Larsen O (2013) Joint Monte Carlo and possibilistic

simulation for flood damage assessment. Stoch Environ Res Risk

Assess 27(3):725–735

Stoch Environ Res Risk Assess

123

http://dx.doi.org/10.1007/s00477-015-1146-x
http://dx.doi.org/10.1007/s00477-015-1146-x
http://dx.doi.org/10.1186/1880-5981-66-105
http://www.emdat.be
http://dx.doi.org/10.1002/eqe.2522
http://www.mlit.go.jp/toshi/toshi-hukkou-arkaibu.html
http://www.mlit.go.jp/toshi/toshi-hukkou-arkaibu.html
http://www.mlit.go.jp/statistics/details/index.html
http://www.mlit.go.jp/statistics/details/index.html
http://dx.doi.org/10.1029/2011GL049210
http://dx.doi.org/10.1193/061314EQS085M

	Bayesian tsunami fragility modeling considering input data uncertainty
	Abstract
	Introduction
	Bayesian fragility models
	Bayesian estimation
	Lognormal method
	Binomial logistic method
	Multinomial logistic method

	Uncertainty of tsunami inundation data
	MLIT database
	TTJS database
	Uncertainty of tsunami inundation data

	Tsunami fragility assessment
	Results for lognormal method
	Results for binomial logistic method
	Results for multinomial logistic method
	Comparison of tsunami fragility models

	Tsunami loss assessment
	Set up
	Total tsunami loss and risk disaggregation

	Summary and conclusions
	Acknowledgments
	References




