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Abstract

bioconversion of chitin to GIcNAc is of great value.

from Paenibacillus species.

Background: N-acetyl-3-D-glucosamine (GIcNAC) is widely used as a valuable pharmacological agent and a
functional food additive. The traditional chemical process for GIcNAc production has some problems such as high
production cost, low yield, and acidic pollution. Hence, to identify a novel chitinase that is suitable for

Results: A novel chitinase gene (PbChi74) from Paenibacillus barengoltzii was cloned and heterologously expressed
in Escherichia coli as an intracellular soluble protein. The gene has an open reading frame (ORF) of 2,163 bp
encoding 720 amino acids. The recombinant chitinase (PbChi74) was purified to apparent homogeneity with a
purification fold of 2.2 and a recovery yield of 57.9%. The molecular mass of the purified enzyme was estimated to
be 74.6 kDa and 74.3 kDa by SDS-PAGE and gel filtration, respectively. PbChi74 displayed an acidic pH optimum of
4.5 and a temperature optimum of 65C. The enzyme showed high activity toward colloidal chitin, glycol chitin,
N-acetyl chitooligosaccharides, and p-nitrophenyl N-acetyl 3-glucosaminide. PbChi74 hydrolyzed colloidal chitin to
yield N-acetyl chitobiose [(GICNAC),] at the initial stage, which was further converted to its monomer N-acety!
glucosamine (GIcNAC), suggesting that it is an exochitinase with B-N-acetylglucosaminidase activity. The purified
PbChi74 coupled with RmNAG (B-N-acetylglucosaminidase from Rhizomucor miehei) was used to convert colloidal
chitin to GlcNAc, and GIcNAc was the sole end product at a concentration of 27.8 mg mL™" with a conversion yield
of 92.6%. These results suggest that PbChi74 may have great potential in chitin conversion.

Conclusions: The excellent thermostability and hydrolytic properties may give the exochitinase great potential in
GlcNAc production from chitin. This is the first report on an exochitinase with N-acetyl-3-D-glucosaminidase activity
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Background

Chitin is a p-1,4-linked linear insoluble polymer of N-acetyl
D-glucosamine (GlcNAc), which is an abundant polysac-
charide, after cellulose. Chitinolytic enzymes have been
classified into two categories according to their methods of
cleavage on chitin chains. Endochitinases (EC 3.2.1.14) ran-
domly catalyze the cleavage of [-1,4-glycosidic bonds in
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chitin to release N-acetyl chitooligosaccharides (N-acetyl
COSs); exochitinases (EC 3.2.1.52) can be divided into two
subcategories: chitobiosidases (EC 3.2.1.29), which catalyze
the successive release of diacetylchitobiose units in a step-
wise fashion as the sole product from chitin, and N-acetyl
-1,4-D-glucosaminidases (EC 3.2.1.30), which act as an
exo-splitting model on diacetyl chitobioses and N-acetyl
COSs (the formerly classified EC 3.2.1.29 and EC 3.2.1.30
have been included in EC 3.2.1.52) [1]. They have received
much attention in recent years due to various applications
such as production of functional N-acetyl COSs and
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GlcNAc [2], bioconversion of chitin waste to bioethanol
[3], and bio-control of fungal phytopathogens [4].

Chitinases are mainly classified into the glycoside hydro-
lase (GH) families 18 and 19, and widely exist in a great
range of organisms including bacteria, fungi, plants, insects,
and animals [5]. Among them, bacterial chitinases gained
more research interest due to their diverse properties and
potential industrial applications [6]. To date, a number of
bacterial chitinases have been isolated and characterized
[3,7-15]. Many chitinase genes have also been cloned and
expressed from bacteria such as Bacillus sp. DAU101 [16],
B. licheniformis [17], Paenibacillus sp. [18], Sanguibacter
antarcticus [19], and Stenotrophomonas maltophilia [4].
However, most reported chitinases belong to endochiti-
nases, while a few exochitinases were found in bacteria
such as Thermococcus chitonophagus [7], Microbispora sp.
[20], and Bacillus sp. [16]. Until now, Paenibacillus spe-
cies have been reported to produce some endochitinases
[3,11-14,18,21], but no exochitinase from Paenibacillus
species has been found.

GIcNAC has attracted much attention in recent years due
to its therapeutic activity in osteoarthritis. In particular, the
demand for GIcNAc in the health food industry is growing
rapidly [22]. Generally, GIcNAc was commercially prepared
via an extreme process based on the high concentration
acid hydrolysis of chitin at relatively high temperatures. But
the process has some problems, such as high production
cost, low yield, and acidic pollution [22]. Besides, GIcNAc
production by chemical methods limits GIcNAcs applica-
tion in the food industry [23]. Hence, several attempts have
been performed on the GIctNAc production using enzym-
atic hydrolysis of chitin [24,25], but the yield still remains
low. Thus, further development of enzymatic chitinolysis
for GlcNAc production is required [11].

Recently, a novel species of Paenibacillus, viz., Paeniba-
cillus barengoltzii, has been reported [26]. We have newly
isolated a thermophilic marine bacterium Paenibacillus
barengoltzii CAU904 from the South China Sea which can
grow at 50C. Here, we report gene cloning, expression,
and biochemical characterization of a novel exochitinase
(PbChi74) from this strain. The conversion of chitin to
GIcNAc by the enzyme coupled with the -N-acetylgluco-
saminidase (RmNAG) from Rhizomucor miehei [27] was
further evaluated. This represents the first report on an
exochitinase with B-N-acetylglucosaminidase activity from
Paenibacillus species.

Results

Cloning and sequence analysis of a chitinase gene from

P. barengoltzii

A 375-bp gene fragment was obtained by PCR using
degenerate primers ChiF and ChiR with P. barengoltzii
CAU904 genomic DNA as the template. This sequence
was subsequently used to design hiTAIL-PCR primers
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(Table 1) to amplify the full-length coding region of the
gene. The full-length chitinase gene (PbChi74) has an
open reading frame (ORF) of 2,163 bp encoding 720
amino acids with a theoretical molecular mass of 74.2
kDa and pI of 4.74. A signal peptide of 34 amino acids
was predicted by SignalP analysis.

Multiple amino acid sequence alignments revealed that
PbChi74 showed the highest identity of 57% with a chitinase
from Paenibacillus sp. FPU7 (BAM67140 [11]) followed by
the chitinases from Paenibacillus alvei (WP_005546068,
54% identity), Bacillus circulans (AAF74782, 53% identity),
and Kurthia zopfii (BAA09831, 53% identity) (Figure 1). Do-
main structure prediction analysis indicated that PbChi74
was a multimodular protein having a GH family 18 catalytic
domain (TIM barrel), two fibronectin type III domains, and
a carbohydrate binding domain (CBM-5/12) involved in

Table 1 Conditions and primers for hiTAIL-PCR

Reaction  Numbers of Thermal settings
cycles
Primary 1 93C 1 min, 95C 1 min
5 94C 1 min, 60C 1 min, 72C 1.5 min
1 94C 1 min, 25C 3 min, ramping to 72C
in 3 min
15 94C 305, 63C 1 min, 72C 2.5 min
94C 305, 63C 1 min, 72C 2.5 min
94C 30 5, 44C 1 min, 72C 2.5 min
1 72C 8 min, 4C forever
Secondary 12 94C 30 s, 63C 1T min, 72C 2.5 min
94C 305, 63C 1 min, 72C 2.5 min
94C 30 s, 44C 1 min, 72C 2.5 min
1 72C 8 min, 4C forever
Tertiary 20 94C 305, 63C 1 min, 72C 2.5 min
94C 30 s, 63C 1 min, 72C 2.5 min
94C 30 5, 44C 1 min, 72C 2.5 min
1 72C 8 min, 4C forever
Primers Size (bp) Sequences®
AD1 15 5" NTCGASTWTSGWGTT3'
AD2 16 5" NGTCGASWGANAWGAA3'
AD3 16 5" WGTGNAGWANCANAGA3'
dsP1 24 5" ATTGGGAACGACGCTGCCGTTATA 3'
dspP2 24 5" ACGGAATACCCATGACGATTTTGG3'
dsP3 24 5' CTGGCGTTGTGATTCGTGGTTTGT 3'
uSP1 24 5" CGGCTTCCAAAATCGTCATGGGTA 3'
uSP2 24 5' TATAACGGCAGCGTCGTTCCCAAT 3'
uSP3 24 5" CAGCCGCGTACGTGAACAAAAATG 3'
uSP4 24 5" CAGCTCCGGCCAATCTGAGGGTAA 3'
uSP5 24 5" ATCAAGGGGATGCGCTCGCAGACA 3'
usPé6 24 5' CGGAAACCTTTCACCTGCCAGCAA 3'

*N=A/G/C/T, S=C/G, W=A/T.
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Figure 1 Sequence alignment of PbChi74 from P. barengoltzii with other bacterial chitinases. Numbers on the left are the positions of the
first amino acids in each line. The other listed sequences include the chitinases from Paenibacillus sp. FPU7 (BAM67140), Paenibacillus alvei
(WP_005546068), Bacillus circulans (AAF74782), and Kurthia zopfii (BAAQ9831).
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substrate binding. Thus, PbChi74 may be a novel member
of GH family 18 chitinases.

Enzyme expression and purification

The amplified PbChi74-coding DNA fragment was
inserted into the pET28a (+) plasmid with both BamHI
and Xhol restriction sites, resulting in an expression vec-
tor designated PbChi74-pET28, and then expressed in E.
coli as an active protein. The recombinant chitinase
(PbChi74) was purified to apparent homogeneity with a
purification fold of 2.2 and a recovery yield of 57.9%
(Table 2). The denatured molecular mass of the enzyme
was estimated to be 74.6 kDa on SDS-PAGE (Figure 2),
while the native molecular mass was determined to be
74.3 kDa by gel filtration (data not shown), suggesting
that the enzyme is a monomer.

Characterization of PbChi74

PbChi74 was most active at pH 4.5 (Figure 3a), and exhib-
ited good stability within pH 4.0-9.0, since more than 80%
of the activity was retained after the enzyme was treated
in different buffers (pH 4.0-9.0) for 30 min (Figure 3b).
The optimal temperature of PbChi74 was found to be
65C (Figure 4a), and it was stable up to 60C, as the re-
sidual activity was up to 96.5% of its original activity after
treatment at this temperature for 30 min (Figure 4b). The
half-lives of the enzyme at 65, 70, 75, and 80C were 211.7,
144.0, 79.7, and 35.2 min, respectively (Figure 4c).

Substrate specificity and kinetic parameters of PbChi74

PbChi74 exhibited the highest activity toward glycol chitin
(22.2 U mg™) followed by colloidal chitin (19.9 U mg™)
among the tested polysaccharides (Table 3). It also showed
slight activities toward other polysaccharides such as pow-
dery chitin (0.6 U mg"), carboxymethylcellulose (CMC)
(05 U mg’l), and chitosan (0.3 U mg’l) (Table 3). In
addition, PbChi74 showed high activities on the tested
N-acetyl COSs including (GIcNAc)s (198.4 U mg™),
(GIcNAc), (68.0 U mg?), (GlcNAc); (23.5 U mg™), and
(GleNAc), 26 U mg’l). Unexpectedly, the enzyme showed
relative high activity toward pNP-NAG (64 U mg?),

Table 2 Purification summary of PbChi74 from P.
barengoltzii

Purification Total Total Specific  Purification Recovery

step activity protein activity factor (fold) yield (%)
U (mg)® (Umg™)

Crude 563.7 634 8.8 1 100

enzyme

Ni-NTA 3266 164 199 2.2 579

agarose

®Enzyme activity was measured at 65C in 50 mM citrate buffer (pH 4.5) using
1% (w/v) of colloidal chitin as the substrate.

PProtein concentration was measured by the Lowry method [41] using BSA as
the standard.
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indicating that PbChi74 has N-acetyl-glucosaminidase ac-
tivity (Table 3).

The kinetic parameters (K, and V,,,,) of PbChi74 to-
ward colloidal chitin and glycol chitin were determined
to be 2.4 mg mL™" and 23.22 pmol min"' mg™”, 1.84 mg
mL™ and 23.4 pmol min™ mg™, respectively (Table 4).

Hydrolysis pattern of the PbChi74

PbChi74 hydrolyzed colloidal chitin or glycol chitin to
yield only (GlcNAc), at the initial hydrolysis stage (0 to 15
min), and GIcNAc was then accumulated with the exten-
sion of the incubation time (15 to 240 min). In order to
clarify whether (GlcNAc), was released directly from the
non-reducing end of colloidal chitin, the hydrolysis prod-
ucts of colloidal chitin at the early hydrolysis stage (2, 4, 8,
and 12 min) were further analyzed by HPLC. The results
showed that PbChi74 hydrolyzed colloidal chitin to yield
mainly (GlcNAc), and trace amounts of GIcNAc (data not
shown). The results suggest that PbChi74 should be an
exochitinase. At the end of the reaction, (GIcNAc), and
GlcNAc were the major hydrolysis products (Figure 5a).
In order to further detect the hydrolysis pattern of
PbChi74, N-acetyl chitooligosaccharides (DP 2-5) were hy-
drolyzed by PbChi74 (Figure 5b). All of the GIcNAc oligo-
mers were completely converted to the monomer GlcNAc
at the end of the reactions, confirming that PbChi74
possesses [>-N-acetylglucosaminidase activity. Therefore,
PbChi74 is an exochitinase with p-N-acetylglucosamini-
dase activity.

Conversion of colloidal chitin to GIcNAc by PbChi74
coupled with RmNAG

TLC analysis revealed that PbChi74 alone hydrolyzed
colloidal chitin to yield mainly (GIcNAc), and GlcNAc,
while RmNAG alone could not hydrolyze colloidal chitin
(Figure 6a). However, PbChi74 coupled with RmNAG ef-
ficiently converted colloidal chitin to GIcNAc as the sole
end product after 24 h incubation (Figure 6a). The high-
est chitin conversion ratio of 92.6% at a GIcNAc concen-
tration of 27.8 mg mL™ was obtained (Figure 6b).

Discussion
Chitinases have drawn much attention in recent years due
to their great potential in industrial applications [1,5]. To
date, a number of microbial endochitinases have been
identified and characterized [1,4], whereas there is still
only limited information on exochitinases [7,16,20,28].
Furthermore, no exochitinases have been reported from
Paenibacillus sp. Here, for the first time, we describe gene
cloning, expression, characterization and application of a
novel exochitinase from Paenibacillus barengoltzii.

A chitinase gene (PbChi74) from P. barengoltzii was
cloned and functionally expressed in E. coli. PbChi74 had
a GH family 18 catalytic domain and shared the highest
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Figure 2 SDS-PAGE analysis of proteins during the purification

process of PbChi74 from P. barengoltzii expressed in E. coli.

Lane M, low molecular weight protein standards; lane 1, crude

enzyme (supernatant); lane 2, purified chitinase after Ni-NTA column.
.

identity of 57% with a chitinase from Paenibacillus sp.
FPU7 [11]. The molecular masses of most reported chiti-
nases from Paenibacillus species are in the range of 38 to
153 kDa [11]. The purified PbChi74 in the present study
had a molecular mass of 74.6 kDa (Figure 2), which is dif-
ferent from those of chitinases from other Paenibacillus
species, including Paenibacillus sp. FPU-7 (61, 78, 82 87,
97,122, and 153 kDa [11]), P. azotofixans YUPP-5 (70 kDa
[21]), and Paenibacillus sp. D1 (56.6 kDa [3]). Addi-
tionally, the molecular mass of PbChi74 is different from
those of other exochitinases from microorganisms such as
Microbispora sp. V2 (35 kDa [20]), Streptomyces violaceus-
niger (56.5 kDa [28]), Bacillus sp. DAU101 (66 kDa [16]),
and Thermococcus chitonophagus (90 kDa [7]). Thus,
PbChi74 should be a novel member of GH family 18
chitinases.

PbChi74 was an acidic chitinase with an optimal pH of
4.5 (Figure 3a). This value is lower than that of a chitinase
from Paenibacillus sp. D1 (pH 5.0 [3]) and those of several
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exochitinases including the enzymes from S. violaceusniger
(pH 5.0 [28]) and Bacillus sp. DAU101 (pH 7.5 [16]), but
higher than that of an exochitinase from Microbispora sp.
V2 (pH 3.0 [20]). It showed good pH stability within pH
4.0-9.0 (Figure 3b), which is a wider range than those of
most other chitinases from bacteria such as Halobacter-
ium salinarum (pH 6.0-8.5 [29]) and S. violaceusniger (pH
4.0-8.0 [28]). PbChi74 was most active at 65C (Figure 4a),
which is only close to the value for an exochitinase from
T. chitonophagus (80C [7]) among exochitinases, but is
much higher than those of most other chitinases which
have optimal temperatures in the range of 30-50C
[3,4,28]. However, this value is lower than those of several
chitinases from Bacillus sp. (75C [30]) and Thermococcus
kodakaraensis KOD1 (ChiA5, 85C and ChiA4, 90C [31]).
In addition, PbChi74 showed good thermostability at high
temperatures, with half-lives of 212, 144, and 80 min at
70, 75, and 80C, respectively (Figure 4c). The high
temperature optimum and good thermal stability are ad-
vantageous for potential applications in recycling of bio-
degradable chitin wastes.

The specific activities of PbChi74 toward colloidal chitin
(19.9 U mg) and glycol chitin (22.2 U mg") are much
higher than those of most other reported chitinases
[8,11,16,17,20,28]. Interestingly, PbChi74 exhibited high
specific activity toward pNP-NAG (6.4 U mg™), while
most other chitinases have no or trace -N-acetylglucosa-
minidase activities [32]. The action patterns of PbChi74
were investigated by analyzing the hydrolysis products of
colloidal chitin and N-acetyl COSs (DP 2-5). PbChi74 effi-
ciently released (GlcNAc), from the colloidal chitin, G3,
G4, and G5 without formation of GIcNAc at the initial
stage, suggesting that it is an exo-type chitinase. At the
end of the hydrolysis process, (GlcNAc), was further
converted to GIcNAc, confirming that PbChi74 has B-N-
acetylglucosaminidase activity. The hydrolysis property of
PbChi74 is similar to that of a bifunctional chitinase
(Chisb) from Bacillus sp. DAU101 [16] and an exochiti-
nase from T. kodakaraensis KODI1 [31]. Most other GH
family 18 exochitinases exhibit a processive mode of ac-
tion to release (GIcNAc), as the major final product, while
they cannot hydrolyze (GlcNAc), to GlcNAc [33,34]. The
unique property of PbChi74 may make the enzyme a good
candidate for the conversion of chitin to GIcNAc.

GIcNAc, the structural monomer of chitin, has long
been used as a valuable pharmacological agent in the
treatment of a wide variety of ailments and as a functional
additive in food production [2,35]. Traditionally, GIcNAc
has been produced by acid hydrolysis of chitin, which re-
sults in environmental pollution. Hence, a green biopro-
cess for GlcNAc production is of great value. Usually, the
complete conversion of chitin for GIcNAc production re-
quires the synergistic action of chitinase and [-N-acetyl-
glucosaminidase [22]. As PbChi74 has both chitinase and
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Figure 3 Optimal pH (a) and pH stability (b) of the purified PbChi74 from P. barengoltzii. The optimal pH was determined in 50 mM of
various buffers within pH 2.0-12.0. The buffers used were: glycine-HCl (solid squares) (pH 2.0-3.5), sodium citrate (open diamonds) (pH 3.0-6.0),
acetate (solid diamonds) (pH 4.0-5.5), sodium phosphate (open triangles) (pH 6.0-7.5), Tris-HCI (solid circles) (pH 6.5-8.0), CHES (open squares)
(pH 7.5-9.0), MOPS (open circles) (pH 8.0-10.0), and glycine-NaOH (solid triangles) (pH 10.0-12.0). To determine pH stability, the enzyme aliquots

were incubated in different buffers mentioned above at 30C for 30 min and then the residual activities were measured.

GlcNAcase activities, it was further investigated for GIcNAc
production from chitin in this study. PbChi74 could not
completely convert colloidal chitin to GIcNAc (Figure 6a),
possibly because the B-N-acetylglucosaminidase activity is
not sufficient. Co-action of PbChi74 and RmNAG for the

hydrolysis of colloidal chitin significantly improved the
GIcNAc production and resulted in GIcNAc as the only
end product (about 100%, Figure 6), yielding 27.8 mg mL™
with a high conversion ratio of up to 92.6% after a 24-h in-
cubation. The concentration of generated GIcNAc is much
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Figure 4 Optimal temperature (a), thermal stability (b), and thermal inactivation (c) of the purified PbChi74 from P. barengoltzii. The
temperature optimum was determined at different temperatures (30-80C) in 50 mM sodium citrate (pH 4.5). For determination of thermostability,
the residual activity was measured in 50 mM sodium citrate (pH 4.5) at 65C after the enzyme was treated for 30 min at different temperatures.

For determination of thermal inactivation, the enzyme was incubated at 65C (open diamonds), 70C (solid triangles), 75C (solid circles), and 80C
(open squares) for 4 h.
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Table 3 Substrate specificity of the purified PbChi74 from
P. barengoltzii

Substrate

Specific activity (U mg™)®

Colloidal chitin 199 0.2
Glycol chitin 22202
Powdery chitin 06 0.1
cMC 05 0.1
Chitosan® 03 005
pNP-NAG 64 0.1
(GIcNAC), 2603
(GIcNAC)3 23508
(GIcNAC), 680 2.1
(GIcNAC)s 1984 7.9

“The enzyme activity was determined at 65C in 50 mM sodium citrate buffer
(pH 4.5).
bThe degree of deacetylation of chitosan used is 85%.

higher than those of previous reports (3.46 mg mL? [36];
4.4 mg mL™ [35]; 7.5 mg mL™ [37]; 9.5 mg mL™" [24]; 15.4
mg mL™" [35]; 21.3 mL™ [25]). The conversion ratio is also
higher than those of most other reports (73% [23]; 64 to
77% [35]; 85% [37]), and is only near to that of the report
from Kuk et al. (94.9% [24]). It is noteworthy that the reac-
tion time (24 h) in the present study is much shorter than
those of previous reports (2 d [25], 2012; 4 d [36]; 6 d [37];
10 d [35]). Therefore, the exochitinase PbChi74 could be a
good candidate for GIcNAc production. The economic
utilization of chitin as a feedstock for the bioethanol pro-
duction would represent a profound shift in industrial car-
bon utilization, allowing sustainable resources to substitute
for petroleum-based products, in which the biopolymer
must first be broken down into constituent mono sugars
that can be more easily converted in biological processes
before its exploitation as a source material [38]. Hence, the
hydrolytic property of PbChi74 may be beneficial for
bioethanol production from chitin materials.

Conclusions

A novel exochitinase (PbChi74) from Paenibacillus bare-
ngoltzii was gene cloned, expressed, and biochemically
characterized. PbChi74 was a monomer with a molecular
mass of 74.6 kDa. It was most active at pH 4.5 and 65C.
The enzyme exhibited high specific activity towards chi-
tins, N-acetyl COSs (DP 3-5), and pNP-GlcNAc. It

Table 4 Kinetic parameters of PbChi74 from P.
barengoltzii®

Substrate Vmax (imol K (Mg kear (87)  kear/Km
min'mg")  mL") (mg”'s™)

Colloidal chitin 23.22 24 0.028 0.011

Glycol chitin 234 1.84 0.029 0.016

*The kinetic parameters were determined at 65C in 50 mM sodium citrate
buffer (pH 4.5) for 5 min.
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exhibited an exo-type cleavage pattern and a unique activ-
ity converting (GlcNAc), into its monomer. The enzyme
together with RmNAG was efficiently used for the
GlcNAc production from colloidal chitin. The excellent
properties of the enzyme may give it great potential in chi-
tin conversion.

Methods

Strains, plasmids, and reagents

The newly isolated marine bacterium Paenibacillus
barengoltzii CAU904 was used in this study. The strain
has been deposited in the China General Microbio-
logical Culture Center (CGMCC) under accession number
[CGMCC:9530]. Escherichia coli DH5a (Biomed, Beijing,
China) and E. coli BL21 (Biomed) were used as host
strains for DNA manipulation and gene expression, re-
spectively. pET28a(+) was used as the expression vector
(Novagen, Madison, W1, USA). Taq DNA polymerase and
restriction endonuclease were obtained from TaKaRa
(Shiga, Japan). T4 DNA ligase was purchased from New
England Biolabs (Ipswich, MA, USA).

Chitin (from crab shells), glycol chitin, powdery chi-
tin, carboxymethylcellulose (CMC), and p-nitrophenyl
N-acetyl-B-D-glucosaminide (yNP-NAG) were obtained
from Sigma Chemicals Co. (St. Louis, MO, USA). Chitosan
with a deacetylation degree of 85% was obtained from
Fluka (Buchs, Switzerland). N-acetyl chitooligosaccharides
with degree of polymerization (DP) 2-5 were purchased
from Seikagaku (Tokyo, Japan). Chelating Sepharose
Ni-iminodiacetic acid (Ni-IDA) and Sephacryl S-200 HR
resins were purchased from GE Healthcare (Piscataway,
NJ, USA). Silica gel plates were obtained from E. Merck
Co. (Darmstadt, Germany). All other chemicals used were
of analytical grade unless otherwise stated.

Cloning and sequence analysis of a chitinase gene

For isolation of genomic DNA, P. barengoltzii CAU904 was
cultivated at 50C for 3 days in a medium consisting of
(g L™): colloidal chitin 10, tryptone 5, yeast extract 5,
K,HPO, 0.87, KH,PO, 0.68, MgSO, 0.2, sea salt 5. The
genomic DNA was isolated and used as the template for
polymerase chain reaction (PCR) amplification. The partial
core region of the chitinase gene was amplified using degen-
erate primers ChiF (5’ATHAAYATHATGACNTAYGA3))
and ChiR (5'CCAGTACCGNKTRTANCCRTTS'), corre-
sponding to the conserved motifs INIMTYD and NGYK/
TRYW, respectively) of GH family 18 chitinases. The PCR
conditions were as follows: 5 min at 94C, followed by 20
cycles of 95C for 30 s, 55C for 30 s, and 72C for 1 min,
with 1C decrease in annealing temperature per cycle, then
15 cycles of 95C for 30 s, 50C for 30 s, and 72C for 1
min, followed by a final extension of 10 min. The PCR
products were purified and ligated into the pMD-18T vec-
tor for sequencing. A modified hiTAIL-PCR was used to
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Figure 5 Hydrolysis pattern of PbChi74 toward colloidal chitin (a) and N-acetyl chitooligosaccharides with DP 2-5 (b). The reactions were
performed at 50C in 50 mM citrate buffer (pH 4.5), and aliquots were withdrawn at different time intervals and analyzed by thin layer
chromatography (TLC).
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obtain the full-length gene of chitinase from P. barengoltzii
CAU904 [39]. hiTAIL-PCR was performed under the con-
ditions listed in Table 1. The nested known sequence spe-
cific primers (SP) were designed accordingly and used to
amplify the 5" and 3" flanking regions of the core region in
consecutive reactions together with arbitrary degenerate
(AD) primers. The full-length chitinase gene was obtained
by conducting the hiTAIL-PCR twice with six SPs and
three ADs (Table 1). Finally, the coding region of the gene
without the signal peptide was amplified by PCR amplifica-
tion with the primers ChilBamHF (5'’AACGGATCCGC
CGATCAGGCCTACAAG3', BamHI restriction site is
underlined) and ChilXhoR (5’ACCCTCGAGTTTCAGC
CATAACGCAGG3, Xhol restriction site is underlined)
and an annealing temperature of 55C. The gene has been
submitted to NCBI GenBank under accession number
[GenBank:KJ626399].

Nucleotide and deduced amino acid sequences were an-
alyzed with the ExPASy Proteomics tools (http://www.
expasy.org/tools). Database homology searches of nucleo-
tide sequences were carried out using BLAST at the NCBI
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The amino acid
sequences were aligned by the ClustalW program (ftp://
ftp-igbmc.u-strasbg.fr/pub/ClustalW/). The signal peptide
was analyzed at the SignalP 3.0 server (http://www.cbs.dtu.
dk/services/SignalP-3.0). A search analysis of conserved
domain and signature sequences was carried out using
Scan Prosite (http://prosite.expasy.org/scanprosite).

Expression of the chitinase gene in E. coli

The PCR product amplified using the specific primers
ChilBamHF and ChilXhoR was purified and subcloned
into the pET28a(+) vector. The recombinant vectors
were then transformed into E. coli BL21 (DE3) for pro-
tein expression. The positive clones were directly
screened by colony PCR and cultured in LB media con-
taining 50 pug mL™" of kanamycin at 37C in a shaker.
After the optical density (ODggo) of the culture medium
was up to 0.6, isopropyl-p-D-thio-galactopyranoside
(IPTG) was added at a final concentration of 1 mM for
protein induction, and the culture was further grown at
30C for 10 h.

Purification of the recombinant chitinase (PbChi74)

The culture broth (300 mL) was harvested by centrifu-
ging at 5,000 g for 10 min, and the precipitated cells
were collected, resuspended in 50 mM Tris HCI buffer
(pH 8.0) and disrupted by ultrasonication. The cell deb-
ris was removed by centrifuging at 8,900 g for 10 min,
and the supernatant was collected and used as the crude
enzyme. The crude enzyme was loaded on a Ni-IDA col-
umn (1 10 cm) which was pre-equilibrated with buffer
A (50 mM Tris HCI buffer pH 8.0 containing 20 mM
imidazole and 500 mM NaCl). The column was washed
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with 5 column volumes (CV) of buffer A followed by 5
CV of buffer B (50 mM Tris HCI pH 8.0 containing 50
mM imidazole and 500 mM NaCl). After then, the
bound proteins were eluted with buffer C (50 mM Tris
HCI buffer pH 8.0 containing 200 mM imidazole and
500 mM NaCl). The flow rate during the purification
process was fixed at 1 mL min™ unless otherwise speci-
fied. The eluted fractions showing chitinase activity were
checked for purity by SDS-PAGE. The purified fractions
were combined, concentrated, and buffer exchanged for
50 mM phosphate buffer (pH 6.0).

The native molecular mass of PbChi74 was estimated
by gel filtration on a Sephacryl S-200 HR column (1 50
cm). The proteins were eluted with 50 mM phosphate
buffer (pH 6.0) containing 150 mM NaCl at a flow rate
of 0.3 mL min™. The molecular mass standards used for
calibration were phosphorylase b (97.2 kDa), fetuin from
fetal calf serum (68.0 kDa), albumin from chicken egg
white (45.0 kDa), and chymotrypsinogen A (25.7 kDa).

Enzyme assay and SDS-PAGE analysis

The chitinase activity was assayed as described by Lee
et al. [16] with minor modifications. The reaction mixture
containing 0.1 mL of suitably diluted enzyme solution and
0.1 mL of 1% (w/v) colloidal chitin solution was incubated
at 50C for 30 min. The amount of released reducing
sugars was then determined by the dinitrosalicylic acid
(DNS) method [40]. One unit (U) of chitinase activity was
defined as the amount of enzyme required to liberate 1
pmol of reducing sugars per minute under the above con-
ditions using N-acetyl glucosamine (GIcNAc) as the stand-
ard. The protein concentration was estimated according
to the method of Lowry et al [41] using BSA (bovine
serum albumin) as the standard. Specific activity was
expressed as units per milligram of protein.

SDS-PAGE was performed according to the method of
Laemmli [42] using 12.5% separation gel. Protein bands
were visualized by staining with Coomassie Brilliant Blue
R-250. The molecular mass standards (TaKaRa, Dalian,
China) included phosphorylase b (97.2 kDa), albumin
(66.4 kDa), ovalbumin (44.3 kDa), carbonic anhydrase
(29.0 kDa), trypsin inhibitor (20.1 kDa), and lysozyme
(14.3 kDa).

Effect of pH and temperature on the activity and stability
of the purified PbChi74

The effect of pH on the activity of PbChi74 was deter-
mined in various buffers (50 mM) within pH 2.0-12.0.
The buffers used were glycine-HCl (pH 2.0-3.5), citrate
(pH 3.0-6.0), acetate (pH 4.0-5.5), phosphate (pH 6.0-7.5),
Tris-HCl (pH 7.5-9.0), MOPS (pH 6.5-8.0), CHES (pH
8.0-10.0), and glycine-NaOH (pH 10.0-12.0). To determine
the pH stability, the enzyme samples were incubated in
the above-mentioned buffers at 30C for 30 min, and the
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residual activities were then measured by the standard en-
zyme assay.

The optimal temperature of PbChi74 was determined in
50 mM citrate buffer (pH 4.5) at different temperatures
(30 to 80C). For thermal stability estimation, the aliquots
were pre-incubated in 50 mM citrate buffer (pH 4.5) at
different temperatures (30 to 80C) for 30 min, and the re-
sidual activities were then assayed. The thermal inactiva-
tion of the enzyme was estimated by incubating the
enzyme in 50 mM acetate buffer pH 4.5 at different tem-
peratures (65, 70, 75, and 80C) for 4 h. Aliquots were
taken at different time intervals, and their residual activ-
ities were measured according to the standard enzyme
assay.

Substrate specificity and kinetic parameters of the
purified PbChi74

For substrate specificity, the enzyme activity of PbChi74
was determined in 50 mM citrate buffer (pH 4.5) at 65C
for 30 min using 1% (w/v) of different polysaccharides
(colloidal chitin, carboxymethylcellulose, carboxymethyl
chitin, glycol chitin), N-acetyl chitooligosaccharides with
degree of polymerization (DP) 2-5 as well as pNP-NAG
(2 mM). The products released from the N-acetyl chitooli-
gosaccharides were analyzed by an HPLC Evaporative
Light Scattering Detector (Agilent 1260 Series, Agilent
Technologies, Santa Clara, CA, USA) equipped with a
Cosmosil Sugar-D column (4.61 250 mm, Japan). The
mobile phase used was acetonitrile/water (75:25, v/v), and
the flow rate was set at 1 mL min™. For pNP-GlcNAc
used as the substrate, a reaction mixture containing 50 pL
of enzyme solution, 100 pL of pNP-NAG (2 mM), and 50
pL of 200 mM citrate buffer (pH 4.5) was incubated at
65C for 10 min. The reaction was terminated by the
addition of 200 pL of 0.5 M NaOH solution, and then the
amount of pNP released was determined by measuring
the absorbance at 410 nm. One unit of enzyme activity
was defined as the amount of enzyme required to liberate
1 pmol of reducing sugars or pNP per minute under the
above assay conditions.

Kinetic parameters of the PbChi74 towards colloidal
chitin and glycol chitin were determined by measuring
the enzyme activity using different substrate concentra-
tions in 50 mM citrate buffer (pH 4.5) at 65C for 5 min.
The K, and V.« values were calculated using GraFit
software.

Hydrolysis pattern of the purified PbChi74

The hydrolysis properties of PbChi74 on colloidal chitin
and N-acetyl chitooligosaccharides (DP 2-5) were ana-
lyzed by incubating 1% (w/v) of substrates in 50 mM cit-
rate buffer (pH 4.5) with 1 U mL™" of enzyme at 50C for
4 h. Aliquots withdrawn at different time intervals were
immediately boiled for 10 min to terminate the enzyme,
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and the hydrolysis products were then analyzed by thin
layer chromatography (TLC) according to the method of
Yang et al. [27]. To detect the hydrolysis pattern of
PbChi74, the products from colloidal chitin at the initial
stage were quantitatively analyzed by HPLC.

Conversion of colloidal chitin to GIcNAc

The reaction mixture (600 mL), consisting of 3% (w/v)
colloidal chitin dissolved in 50 mM phosphate buffer
(pH 6.0), was incubated in the presence of 5.0 U mL™ of
PbChi74, or 1 U mL™ of RmNAG or 50 U mL" of
PbChi74 combined with 1 U mL" of RmNAG at 45C
for 24 h. The B-N-acetylglucosaminidase (RmNAG) from
Rhizomucor miehei was prepared according to a previous
study [27]. Samples were taken at different times and
boiled for 5 min to terminate the enzymes. After centri-
fuging at 7000 g for 10 min, the supernatant was col-
lected and qualitatively and quantitatively analyzed by
TLC and HPLC, respectively. The conversion ratio is the
percentage of released GIcNAc weight (mg) to initial
total colloidal chitin weight (mg).
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