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Abstract Matter interacting classically with gravity in 3 4+ 1 dimensions usually
gives rise to a continuum of degrees of freedom, so that, in any attempt to quantize
the theory, ultraviolet divergences are nearly inevitable. Here, we investigate matter
of a form that only displays a finite number of degrees of freedom in compact sec-
tions of space-time. In finite domains, one has only exact, analytic solutions. This is
achieved by limiting ourselves to straight pieces of string, surrounded by locally flat
sections of space-time. Globally, however, the model is not finite, because solutions
tend to generate infinite fractals. The model is not (yet) quantized, but could serve
as an interesting setting for analytical approaches to classical general relativity, as
well as a possible stepping stone for quantum models. Details of its properties are
explained, but some problems remain unsolved, such as a complete description of the
most violent interactions, which can become quite complex.

Keywords Locally flat - Straight strings - Holonomy - Classical general relativity -
Exact solutions

1 Introduction: Gravity in 2 + 1 Dimensions

Classical point particles, interacting only gravitationally in 2 4 1 dimensions, require
a limited number of physical degrees of freedom per particle [1-3]. Although they
are surrounded by locally flat space-time (if the cosmological constant is taken to be
zero), space-time may globally form a closed, compact universe [4, 5]. The classical
equations can be solved exactly, and for this reason this is a magnificent model for a
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Fig.1 (a) 2 dimensional space A’
surrounding a point particle. A
Points A and A’ are identified.

(b) artist’s impression of 2

dimensional space embedded in

higher dimensions

a) b)

complete, exactly solvable cosmology. Many researchers are more interested in quan-
tized theories, where the point particles are removed as being unwanted topological
defects, to be replaced by non-trivial global topological features of the universe. Such
theories however have no local degrees of freedom at all, so from a conceptual point
of view they are actually further removed from the physical world than our gravitating
point particles.

Indeed, the importance of the model of gravitating point particles in a locally flat
2 4 1 dimensional space-time, is still severely underestimated. It will serve as a start-
ing point for the 3 + 1 dimensional theory discussed in this paper. In 2 4 1 dimen-
sions, pure gravity (gravity without matter in some small section of space-time) has
no physical degrees of freedom at all. This is because the Riemann curvature Rygy s
can be rewritten in terms of a symmetric 3 x 3 matrix Q*" as follows:

Ropys = €apusysv O, (L.1)

so that the Ricci curvature is
Ruy = Rapy? = (8u08ay — 81y 8ar) O = Qliguy — Qyas (1.2)
so that 0, = %Rg‘gw, — Ryy. (1.3)

Clearly, if matter is absent, R, vanishes, and therefore so do O, and Ryg, 5. Con-
versely, a point particle represents point curvature. Thus, particles are point singular-
ities surrounded by flat space-time. A particle at rest can be described as in Fig. 1.
The wedge is stitched closed, so that the points A and A’ are identified. The defect
angle can directly be identified with the particle’s rest mass. One can show that sys-
tems containing several point particles in motion, while the total momentum is kept
zero, is surrounded by a conical space-time, of which the deficit angle can be iden-
tified with the total energy.! Only particles with negative rest mass, or systems with
negative energy, are surrounded by a conical space-time with negative deficit angle,
or surplus angle, see also Fig. 2b.

When such a particle is set in motion, the surrounding space-time is described by
performing Lorentz transformations upon the stationary case of Fig. 1. One then can

IThere may however also be a time shift when a curve is followed around the cone. This time shift is then
identified with total angular momentum.
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study systems with many particles, by viewing space-time as a tessellation of locally
flat triangles, or polygons. A number of surprises are encountered:

e Using fast moving, heavy particles, a space-time can be created that appears to
allow for the existence of closed timelike curves [6, 7], much like in Godel’s uni-
verse [8]. This would clash with fundamental principles of causality, but one can
also show that in physically realistic models such configurations cannot occur, be-
cause a universe that contains such a “Gott pair” would actually collapse to a point
before the timelike curve could be closed [9]. Any closed timelike curve that one
would be tempted to construct would pass through a non-existing region of the
universe.

o If all particles in a 241 dimensional universe would be stationary or nearly station-
ary, the two-dimensional integrated scalar Ricci tensor, f 8%x /&R, would have to
be positive, so with a sufficient number of particles the spacelike part of this uni-
verse would always close into an S(2) geometry. Its timelike coordinate can form
a compact dimension (featuring both a bang and a crunch), or a semi-infinite one,
with either a bang or a crunch.

e With fast moving particles one can however also form 2-d surfaces with higher
genus, without requiring negative mass particles [10].

Quantization of this system is often carried out ‘as usual’ [11, 12], but there are del-
icate problems, having to do with the fact that we are dealing with a strictly finite
universe, so that the role of an ‘observer’ is questionable, and the statistical interpre-
tation of the wave function is dubious because the finiteness of the universe prohibits
infinite sequences of experiments to which a statistical analysis would apply. Carry-
ing quantization out with care, one first observes that evidently, time is quantized into
‘Planck time’ units [13]. This is easily derived from the fact that the Hamiltonian is
an angle and it is bounded to the unit circle. Consequently, a quantum theory cannot
be formulated using differential equations in time, but rather one should use evolution
operators that bridge integral time segments. This indeed can be regarded as a first
indication of some sort of space-time discreteness, which we will encounter later in a
more concrete way. However, a confrontation with foundational aspects of quantum
mechanics appears to be inevitable.

In this paper, the question is asked whether a similar “finite” theory can also be
formulated in 3 4 1 dimensions. This is far from obvious. One first notices that the
absence of matter now no longer guarantees local flatness, since the Ricci curvature
R, can vanish without the total Riemann curvature R"‘ﬁ n being zero. However, one
still can decide to view space-time as a tessellation of locally flat pieces. The defects
in such a construction again may represent matter. The primary defects one finds are
direct generalizations of the 2 4+ 1 dimensional case. Take a particle-like defect in
2-space. In 3 + 1 dimensions, such defects manifest themselves as strings.

Our starting point is that, indeed, straight strings are surrounded by a locally flat
metric. In Sect. 2, we recapitulate the well-known derivation of the metric near such a
string. Then, in Sect. 3, moving strings are described. These topics are quite elemen-
tary but we need these discussions to initiate the mathematical derivations that come
next. In Sect. 4, joints between strings are introduced. Then we arrive at collisions.
The orthogonal case (Sect. 5) seems to be the easiest case, though we will see that
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there is a catch, at the end. The most difficult case occurs when two strings approach
at an angle. There are two possibilities. The “quadrangle” final state is discussed
in Sect. 6. It leads to delicate mathematical relations between SL(2, C) matrices.
We needed to do some computer algebra, the result of which was deferred to the
Appendix. This algebra reveals that, at the highest relative velocities of the approach-
ing strings, the quadrangle final state is ruled out, so that more complex final states
are expected. An attempt to describe these is made in Sect. 7.

2 Strings

It could be that matter is always arranged in such a way that it can be regarded as
defects in a locally perfectly flat space-time. As opposed to technical approaches to-
wards solving General Relativity [14], we now regard matter of this form as elemen-
tary. The novelty in this idea is that, in spite of matter being distributed on subspaces
of measure zero, we still insist that it obeys local laws of causal behavior. Let us see
how this looks.

By simply adding the third space dimension as a spectator, orthogonal to the first
two, we find flat 3 dimensional space-time surrounding a string. Indeed, the energy
momentum tensor of a straight, infinite, static string pointing in the z-direction, is

Tyv = 1,,8%(X), 133 = —too = 0, all other 7,5 =0, 2.1

where o is the string tension parameter. When o is small, the metric generated by
such a string is found by slightly smearing the delta peak. The curvature is only in
the transverse coordinates x. Choosing conveniently scaled coordinates and replacing
82(%) by
1 -
—0( — ), 22)
e

where 7 = | x|, we find that for 7 < ¢, the transverse components of the metric must
be those of a sphere,

ds? = di? + sin’7dg? +dz2 —df?, 7 <e. (2.3)

At 7 = ¢, the transverse metric changes into that of a cone. The cone that touches the
sphere at that point generates the metric

ds? = dr12 ~+ (r1 cos ,9)2d<p2 +dz? —dr?,  ricose >sine, 2.4

where the coordinate ;| is matched to the coordinate 7 at the point 7 = ¢, r| =tane.
The deficit angle « of the cone is 2w (1 — cose).

Inside the smeared region, where the metric is that of (2.3), we have the Ricci
curvature

Ryx = Ryy =1, Ry =Ry =0, (2.5)
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Fig. 2 (a) Cross section of

3-space surrounding a positive A A + A’ A -
string, with deficit angle AA’;

(b) Cross section of 3-space

surrounding a negative string,

showing a surplus angle AA’

- =

) h)

while on the conical metric (2.4), the curvature vanishes. Substituting (2.1) into Ein-
stein’s equation, one then gets

1

87Go— =
d Qnsz

1, (2.6)
so that for small values of ¢, the deficit angle can be written as
a=2r(1 —cose)8Gp e? = 81 Go. 2.7

We quickly return to the old coordinates where the delta peak is very sharp. Space-
time surrounding a string is then seen to be as sketched in Fig. 2a. When the string
constant o is large, we redefine it to be the one generating exactly the deficit angle
o = 8w Gp. Note that a positive string constant leads to a deficit angle. A negative
string constant would produce a surplus angle, see Fig. 2b. Normally, in string theory,
a negative string constant would make a string highly unstable, as it contains positive
pressure and negative energy. In our case, however, strings are constrained to form
straight lines, and therefore this instability has no effect at small distances. We later
may wish to include such negative strings in our models. We leave this open for the
time being, but unless indicated specifically, we will usually be discussing strings
with positive string constants and thus with positive deficit angles.

A more conventional derivation of the locally flat metric surrounding a string can
be found for instance in [15].

3 Moving Strings

A description of a multitude of static strings is now straightforward, in principle.
However, already here, one may expect considerable complications. The system of
static strings is not unlike the 2 + 1 dimensional universe with moving point particles,
where the time coordinate is replaced by the coordinate z of the static string system.
We know that the 2 4+ 1 dimensional world has either a big bang singularity or a
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big crunch [4, 5]. Similar “infrared” singularities might show up in the static string
system. This question will not be further pursued here. It is the local properties of the
model that we will investigate further.

Moving strings impose important questions concerning the internal consistency of
the model. A moving string can be characterized in different ways. Firstly, one can
specify the orientation vector & of the string, normalized such that its norm coincides
with half the deficit angle, %oz = 47 G when the string is at rest:

1
=—o. 3.1
o] = Za (3.1

In addition then we specify the velocity vector v of the string. But, noticing that the
string is invariant under boosts in the direction @, only the component of ¥ orthogonal
to o matters, so we limit ourselves to the case

3-@=0. (3.2)

Finally, the position of the string at = 0 should be specified. This requires another
vector orthogonal to . All in all, this requires 3 +2+2 = 7 real parameters, of which
5 are translationally invariant, and 2 can be set to zero by a spacelike translation in
3-space.

Alternatively, we can specify the string’s characteristics by giving the element of
the Poincaré group that describes the holonomy along a non-contractible cycle C
around the string. For static strings through the origin of 3-space, this is just the pure
rotation operator, which will be denoted as U (). For strings moving with velocity v
through the origin, this is the element B(v)U (@) B(—v) of the Lorentz group, where
B(?¥) is the element of SL(2, C) that represents a pure Lorentz boost corresponding
to the velocity .

If the string does not move through the origin, we get a more general element of
the Poincaré group.

Notice however, that an arbitrary element of the Lorentz group is specified by 6
parameters, not 5, and the elements of the Poincaré group by 10 parameters, not 7.
This means that not all elements of the Poincaré group describe the holonomy of
a string. Firstly, ignoring the translational part, the pure Lorentz transformation Q
associated to the closed curve C has to obey one constraint:

There must be a Lorentz frame such that, in that frame, Q is a pure rotation in
3-space.

Since we plan to describe these Lorentz transformations in terms of their representa-
tions in SL(2, C), we identify this as a constraint on the associated SL(2, C')) matri-
ces. Write

0 = B(V)U (®)B(—1), (3.3)

where B(v) are 2 x 2 matrices representing boosts with velocity v (we will see shortly
that pure boosts are represented by Hermitean 2 x 2 matrices, (3.20)), and U is a
unitary matrix representing a pure rotation. When @ points in the z direction, we
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have
. elo 0
U(w)=< hy ) (3.4)
0 e 1w

so that
Tr(U) =2cosw. 3.5)

Since the trace is invariant under rotations and the boosts (3.3), it follows quite gen-
erally that

Im(Tr (Q)) =0, (3.6)
[Re(Tr (Q))| < 2. (3.7)

Equation (3.6) fixes one of the real variables of the Lorentz transformation Q. In-
equality (3.7) is important in a different way. A generic SL(2, C) matrix can de writ-
ten in a basis where it is diagonal. Because the determinant is restricted to be 1, the

diagonal form is then
0= (Z ’ ) (3.8)
~\o 1/z)° '

where z can be any complex number. Imposing (3.6) leaves two options: either z is
on the unit circle—in which case it represents a pure rotation in 3-space, or it is a
positive or negative real number. In the latter case, Q is a pure Lorentz boost, and
this is when (3.7) is violated. It describes the holonomy of something that is quite
different from a string. We return to that at the end of this section.

The second restriction to be imposed on the holonomy of a physical string is the
translational part of the element of the Poincaré group. We just saw that in the frame
where Q is diagonal, the string is static, and its position should be characterized by
a vector orthogonal to @. Using the same notation (3.3) to write the full Poincaré
element P, we add a displacement operator D (i) (i being the displacement vector):

P (e, y*) = B@)D(u)U (@) D(—u) B(—0), (3.9)

where o'} is the generator of the Lorentz transformation, and y* is the 4 dimensional
displacement vector:

o def

(P0)" & (Qx) + &

L) x" 4 y*. (3.10)

Henceforth, expressions such as Qx stand short for a 4 x 4 matrix L, acting on the
4-vector x*. In SL(2, C) notation, this would read

(00)°T+ (Qx)%0, = QT+ x"0,) Q" (3.11)
where o, are the three Pauli matrices. From (3.9), we have

y=B@) U (@) — U(@)u)B(—0). (3.12)
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In the static case, B = [, y can neither have a time component nor a component
parallel to . The time component could be introduced to describe a spinning string,
analogous to a spinning point particle in 2 + 1 dimensional gravity, but the problem
with that is that such a space-time would possess closed timelike curves (CTC); thus,
causality would be a problem.

A component of y in the @ direction could be introduced as a generalization of the
string concept; it would describe a string with torsion—one could call that a “spring”.
We will not discuss springs further, but we have to keep this possibility in mind.
Barring spin and torsion, gives two constraints on the vector y*.

Specifying the element of the Poincaré group that describes the holonomy asso-
ciated to a non-contractible curve around a string, specifies its position provided @&
does not vanish (vanishing strings have no specified position). To find the location of
a string if P is given is easy: just solve the equation

Px=x. (3.13)

In the static case, this gives
x=s&+te, (3.14)

where €0 is the unit vector in the time direction, while s and ¢ are free parameters.
Thus, we find the string world sheet.

We end this section with a few important facts about Lorentz transformations in
the SL(2, C) representation, for future use.

(1) Pure rotations in 3-space are described by the subgroup SU (2) of SL(2,C).
Thus, Q is a pure rotation iff 0" = 0. We often write such a matrix as

U(J)):C]I—i—iZsaaa, (3.15)
a

c=,/1—Zas3, (3.16)

and o, are the three Pauli matrices. s, is the rotation vector & but with a different
normalization:

where

5o = Sl (3.17)
12]
For a pure rotation along the z-axis, see (3.4), ¢ = cos(w) and s3 = sin(w). Note
that, as before (3.1), w is half the full rotation angle.
(2) Pure Lorentz boosts B(v) are Hermitean SL(2, C) matrices. Diagonalizing such
a matrix corresponds to rotating ¥ into the z-direction. The matrix then takes the

form
. (r 0 r?—1
@) (0 l/r) YT (3.18)
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3)

“)

In general,

B(@) =chl+ ) sha0q. (3.19)
a

where the vector sh is ¥ apart from a normalization:

Vg 1
shy Nk ch Nk (3.20)
Notice that Tr(B) > 2. Hermitean matrices with Tr (B) < —2 are equivalent
to —B since all SL(2, C) matrices Q describe the same Lorentz transformation
as — 0.
Any Lorentz transformation Q can be associated to a vector v and a vector @
such that it is the product of a pure boost and a pure rotation:

0 =BW)U(®). (3.21)

Proof: define the matrix R by
R=00", (3.22)

and notice that, since R is Hermitean and positive definite, it can be written as
_p2
R =B~ (3.23)

where B is also hermitian and, since det(Q) = 1, also det(B) = 1. Diagonalizing
R gives us B in diagonal form, and its eigenvalues (whose product is one), can be
matched with the boost velocity v which is again in the z-direction in this frame.
Finally, define U as

U=B"10, UU =B7'00"B ' =1 (3.24)

U is unitary, therefore it describes a pure rotation in 3-space.

Given any Lorentz transformation Q with Im(Tr (Q)) = 0, then there exists a
pure boost operator B(¥) and either a rotation U (&) or another pure boost B(v’)
such that

cither Q= B@)U(@)B(—=v), or Q=+B@)BW)B(—=v). (3.25)

Proof: looking at the eigenvalues of Q, one finds that, since their product is one
and the sum is real, they either match the eigenvalues of U (@) or those of =B(v’).
A matrix that diagonalizes Q can be written as B(V)U (®;) due to the previous
theorem. So we have

0 =B@®U@1)RU  (@)B~(v), (3.26)

where R stands for the matrix that is either a rotation or a boost. This rotation
or boost was in the z-direction, since R was diagonal. The matrix U (&) rotates
that vector into any other direction in 3-space.
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We now return to (3.13) and (3.14) for the string world sheet. Suppose we have a Q
that obeys (3.6) but not the inequality (3.7). Then, in some Lorentz frame, this is a
pure boost rather than a pure rotation. Write it as

(" 3.7
Q"(o 1/r>’ (3.27)

where we took the boost to be in the z-direction. The equation for the “world sheet”,
QOx = x, now leads to

z=0, t=0, (3.28)

in other words, the transverse plane at r = 0. This is a spacelike surface rather than
a timelike string world sheet. What we find here is a “tachyonic” string. Such ele-
ments will be difficult to incorporate in a viable gravity model, if we wish to have
some version of causality. We will therefore attempt to avoid structures for which the
holonomy is a boost.

4 Connecting Strings

We could try to limit ourselves to having only infinite, straight strings in our model,
but as soon as collisions are considered—and we will argue that these are inevitable—
one must face the presence of strings with finite lengths. These strings must then be
connected to other strings in junctions, see Fig. 3. Just as our infinite strings, junctions
are also surrounded by flat space [15]. The rules for connecting three strings A, B and
C are as follows.

(i) The junction at time # must lie on a point x(¢) that is on the world sheet of
the three strings and is a straight line. Thus, the three world sheets must have a
straight line in 4-space in common. This line is a solution of

Qax=0px=0cx=x 4.1

(which is, again, in the 4 dimensional notation). Depending on whether this line
is timelike, spacelike or lightlike, there are three classes of junctions: subluminal,
superluminal and lightlike. Superluminal junctions will be seen to come in two
types.

(ii) The fact that the surrounding space-time is flat implies that the holonomies must
match: Q4 = QpQc or, if we take all strings pointing towards the junction (so
that Q 4 turns into its inverse),

04080c =1 4.2)

Fig. 3 Junction connecting
three strings. The holonomy C 4 QB (3/ B
of string A equals the product
CpCc of the holonomies of Q
strings B and C A 0

s ¢

QcY >

@ Springer



Found Phys (2008) 38: 733-757 743

In the case of a superluminal junction, the three strings have a spacelike line in com-
mon. This means that a special Lorentz frame exists where this is a straight line in
the z-direction that is instantaneous in time. The three connecting strings are parallel
in that frame, but they may have different velocities. We either have one string split-
ting in two, or two strings merging into one. The first of these cases is impossible to
reconcile with local causality, but the latter, in principle, is: two parallel strings meet
and subsequently merge. Since the time reverse of this event violates causality, this
would be an example of information loss. At first we will find that this kind of events
may be difficult to avoid, but we will show how this can nevertheless be achieved if
we so wish.

In more general Lorentz frames, superluminal junctions can be easily recognized
as they describe a pair of strings opening up or closing like a superluminal zipper.
A superluminal zipper that is opening up will have to be avoided at all times; the
closing (joining) superluminal zipper is a curious case of information loss.

Lightlike and timelike (subluminal) junctions are fine.

If we wish two strings A and B to meet at one subluminal junction for an extended
amount of time, then this gives three restrictions on the associated holonomies Q 4
and Qp alone: first, the product of their holonomies must again be a string holonomy,
or

Im(Tr (@4 Q03)) =0, IRe(Tr (Qa0p))| = 2. 4.3)

From this, one can show that in a Lorentz frame where string A is static and pointing
in the z-direction, we have

el 0 ar+ia b1 +iby
QA=< _,-w>7 QB=< : . ) (4.4)
0 e w(=bi +iby) ar—ian

where all coefficients are real. Our second restriction now is that, in (4.4),
u >0, 4.5)

which corresponds to a subluminal junction. If u < O we have a superluminal junc-
tion. If © =1 the string B is static as well. One easily checks that then Qp is unitary
and hence a pure rotation. The case for general positive p is obtained by Lorentz
boosting in the only allowed direction, the z-direction (otherwise, A would not re-
main static). Note that such a boost is described by (3.27).

Finally, of course, the displacement vectors of the Poincaré group elements must
also match.

Thus, we will be specially interested in the case where, for every string junction,
there exists a Lorentz frame where all three strings are static. If the string constants
are large, so that the deficit angles (or possible surplus angles) are large, the situation
is a bit complicated, since at a junction the three strings appear not to lie in a single
plane. If the string constants are weak, one discovers that, in principle, there are
two types of subluminal junctions. They are sketched in Fig. 4. In the first case, see
Fig. 4a, either all deficit angles are positive or they are all negative (i.e., all surplus
angles are positive). This we will refer to as a regular junction. The strings behave as
elastic bands connected at a point: each string appears to pull the two others towards
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A
> C A\
B A p C

a) b)

Fig. 4 Two types of string junctions. In case (a), there is always an obtuse angle present. This is the case
when all three strings are positive or all three are negative. In case (b), one of the strings, in fact string #B,
has a sign opposite to the sign that the other two have in common

Fig. 5 Six string segments
connected into a triangle,
forming a ‘localized’ particle

it. In the case one string has a sign opposite to the two others, one gets the situation
sketched in Fig. 4b: it is the situation that can be deduced from the previous case by
replacing the one string with the exceptional sign by an opposite-sign string pointing
in the opposite direction.

This information is useful if one wants to investigate whether constructions can
be made with only finite extensions in space. Figure 5 shows an example of this.
We have three strings, A, B and C forming a triangle, and three others, a, b and ¢
that connect the three points to a point in the middle. The junctions 1, 2 and 3 are
irregular because they contain only sharp angles. Clearly, the strings a, b and ¢ must
have signs opposite to the signs of A, B and C. Junction number 4 is a regular one.

In general, it is easy to argue that finite size constructions with only positive sign
strings cannot be possible, since the entire thing is surrounded by flat space; hence
there is no gravitational field; the total energy must be zero. This will not be possible
with positive energy strings.

Much of the above remains true when the string constants, apart from their signs,
are large, but things then are a bit more difficult to visualize, since space and space-
time are locally but not globally flat.

In this paper we will not attempt to completely avoid the emergence of nega-
tive string constants. This would lead to negative energy states. One could think of
addressing these at a later stage in a quantum theory by some kind of second quanti-
zation. As long as we restrict ourselves to local behavior this might not be a disaster,
but of course the question of positive and negative string constants (deficit angles)
will have to be addressed. We will advocate to avoid superluminal junctions of the
splitting type at any stage, as these are difficult to reconcile with causality. Avoiding
superluminal junctions of the joining type will be a bit harder, but we will finally find
a procedure to avoid those together with the variety that opens up. Also all strings that
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Fig. 6 Orthogonal strings scattering. (a) Initial state. String B moves towards string A (arrow). The
cusps caused by their deficit angles are shown. Dashed lines are an orthogonal frame shown for reference.
(b) After the scattering, a new string C connecting the first two emerges. Strings A and B now both show
a kink. The cusps in the last situation are not shown. The oriented dashed curves explain (5.1)

violate the inequality (3.7) must be avoided since they too are impossible to reconcile
with causality. These two demands will require so much of our attention that we will
not further dwell on the signs of the string constants.

5 Orthogonal Collisions

When we were dealing with point particles, in the 2 4+ 1 dimensional case, we could
safely assume that the particles will never collide head-on. In general, they will miss
one another, and consequently no further dynamical rules are needed to determine
how an N particle system will evolve. This will not be true in higher dimensional
spaces.” Strings in 3 4+ 1 dimensional space-time will in general not be able to avoid
one another. They will cross, and in doing so, two straight string sections will not be
straight anymore after the collision.

Consider an initial state in which two strings are heading towards one another. We
can always work in a Lorentz frame where one of the strings, call it A, is at rest.
The conical 3-space surrounding it has a deficit angle @ = 2w 4. In the generic case,
in this Lorentz frame, the second string does not have to be oriented orthogonally
to the first one. Its string constant, 8, does not have to be the same as «. Consider
now the velocity vector v of the second string. If it is not orthogonal to the string A,
we perform a Lorentz boost in that direction. String A will stay at rest. If v is not
orthogonal to the string B, we replace it by one that is orthogonal to B. This way,
one convinces oneself that, in general, we can limit ourselves to the case where v is
orthogonal to both A and B.

However, it is a physical limitation if we also assume A to be orthogonal to B.
Just because it is special, we consider this case first. The collision event is sketched in
Fig. 6. In Fig. 6a, the two strings approach one another. They both drag a space-time
cusp with them. Now, what happens when B hits A, is best understood by drawing
the cusp of A in the opposite direction. The result of that, however, is that string B is
seen to have a kink. The same thing happens to string A itself; it develops a kink due

2Stlrings will in general not collide head-on in a space-time of more than 4 dimensions. However, the
generalizations of the objects we discuss in this paper, in higher dimensions will be branes, not strings.
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to the cusp of B. After the passage, the two kinks must be connected by a new string,
C that stretches with A and B now moving away from one another.

Indeed, we see that, in general, the holonomy of string C is non-trivial; it is ob-
tained from the holonomies Q4 and Qp of strings A and B as follows (depending
on sign conventions for Q 4, Op and Qc¢):

Oc=03'0,'080a4. (5.1)

Q4 and Qp do not commute because they represent rotations along two different
axes. Clearly, upon crossing, two strings produce a third stretching between them.
This is why our model should not be thought of as being globally finite. Every cross-
ing produces more new string segments, so that, in the absence of possible quantum
effects, any regular but non-trivial initial condition will eventually create states in
which myriads of tiny string segments cover all of space-time. If the original de-
fect angles were relatively small, their commutators will be again much tinier, so the
newly created strings are very weak ones. Locally, however, we still have straight
string segments surrounded by flat space-time.

There is an important remark to be made here. If the original strings have been
approaching each other with velocities close to that of light then the orthogonal ve-
locities will also be close to that of light after the collision. However, then we can
easily run into the situation that the newly produced junctions will go faster than
light: they will be superluminal. Since they will be of the “joining” variety, these
junctions will not violate causality.

Our strategy will be to search for models where the total set of possible string
holonomies is a finite one, or else at least discrete, but this we leave for later invest-
igations. There is a more urgent problem that we have to face first.

6 Slanted Collisions

In the previous section the result was explained of a collision between two strings
and a relative velocity vector that are all orthogonal. What happens when the angles
have different values?

In this case, one can convince oneself that no solution is possible with a single
string stretching between the outgoing strings. This can be understood by study-
ing the geometry, as sketched in Fig. 7. But we can also verify that, in general, the
holonomy (5.1) is not of the string type: it violates (3.6).

To save the model, one can now propose the following. When two strings A and B
collide at an angle ¢ # 90°, not one but two new strings appear,> both stretching from
A to B. A single string cannot be associated with a holonomy of the form (5.1), but a
pair of strings can. The question is now, whether the data of this pair of strings would
be uniquely determined by the initial characteristics of A and B. To investigate this
question, the author combined analytical arguments with computer calculations, just
to see how things will work out. The topology is defined in Fig. 8.

3Later, in Sect. 8, we will see that even more than two new strings may emerge.
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Fig. 7 Scattering at an angle,
@ #90°. The cusp of string A is A
shown, and the effect it has on \
string B. After the collision, if
the cusp would be kept open,
these two parts would still form
a straight line. Closing the cusp
would move point P to point Q.
If at P the string touches the
cylinder surrounding A, it
should do this now at point Q.
‘We see that then B| and B> do
not intersect

Fig. 8 Scattering at an angle
produces two new strands.

(a) A and B enter. (b) Since A
passes the cusp of B and vice
versa, strands A and A3 form
angles. These four pieces are
labelled /—4. Four new string
pieces must be further specified,
here labelled a—d

At first sight, it seems that we have considerable freedom to define the orienta-
tions, strengths and velocities of the ‘internal’ strings a—d. However, if we fix one of
these, all others are determined since the holonomies at a junction must obey (4.2).
In addition, the strings must be properly attached to one another. As it turns out, the
matching of the strings is guaranteed if (4.2) is obeyed at all junctions, and if in ad-
dition the string conditions (3.6) and (3.7) are obeyed by all four new holonomies,
a—d.

The holonomy matrices at the ‘external lines’ 1-4 are fixed by the initial condi-
tions. Originally, we had, in one conveniently chosen Lorentz frame, Q1 = Qp and
03 = QX] . Here, the inverse sign arises if we decide to consider the holonomies with
respect to observers looking towards the interaction point, and the holonomy curves
C are chosen to go clockwise. Then,

0:s=035'07'0s,

o ©.1)
Q2:Q1 Q3 0.

The last equation is actually the one required for consistency with the demand that

01020304=1. (6.2)

Given the holonomy Q, of the string section a, the others can be defined as follows:
0r=0402.  Qc=0503  Qu=0.07", 6.3)
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which is the most systematic definition, and consistency with (6.2) is ensured. We
emphasize that there is always some ambiguity in defining the Lorentz frames for the
holonomies Q1—Q4 and Q,—Qy4, so we use (6.1)—(6.3) also to specify these frames.

Let now all external holonomies Q1—Q4 be given. How much freedom is there
for Q,—Q4? We do not need to consider the translation parameters in the Poincaré
group; these will be taken care of automatically, since there is a point (0, 0, 0, 0)
where the colliding strings A and B first met. This point can be kept at the origin of
our coordinate frame. Thus, we consider the equations for the elements of the Lorentz
group, which are most conveniently described as SL(2, C) matrices. Each element of
the Lorentz group is characterized by 6 real variables: a rotation vector and a velocity
vector, or alternatively the four complex numbers in a 2 x 2 matrix Q, subject to the
constraint that the complex number det(Q) should be set equal to 1.

The junction equations (6.1)—(6.3) leave us the freedom to choose Q. This gives
a space with 6 real parameters. Then the string equation (3.6) for Q,—Qy, together
gives us 4 real constraints. The surviving 2-dimensional manifold is then further
constrained by the demands (3.7). Thus, the manifold of all possibilities is a two-
dimensional space.

To obtain somewhat more understanding of this manifold, let us consider the 8
dimensional set of all L(2, C) matrices for Q,, without the nonlinear constraint con-
cerning the determinant. The conditions (3.6), ImTr (Q4,p.¢,¢) = 0, in combination
with the junction equations (6.3), are 4 linear equations for the matrix elements of
Q.. This leaves us with a linear 8 — 4 = 4 dimensional space. Then we have the
inequalities (3.7), which for the matrix Q, imply that

ay+iay by+iby
Qa=<

. lar +di| <2, 6.4
c1+ic dl—ia2> lai il ©4)

and similarly for the three other internal holonomies. Realizing that, in our 4 dimen-
sional space, these conditions can be written as

le; x| <2, i=1,...,4, (6.5)

and assuming that, in general, the four vectors e; will be independent, we see that, in

the generic case, the surviving space is a compact one: a four dimensional hypercube.

We can be sure that the inequalities (6.5) give us a non empty four dimensional space.
Next, however, we have the two constraints

Re(det(Q,)) =1, Im(det(Q,)) =0. (6.6)

These two equations for Q, ensure that the same equation will hold for Q,—Qy,
because the determinant is preserved, and because det(Q;) = 1 also for the external
01—-04. Now these are quadratic equations for the coefficients of Q,, so the question
whether these two equations are compatible with the inequalities (6.5) and with one
another is a more delicate one. It can be simplified in the following way.

First, we can sit in a frame where string B is stationary and oriented in the z-
direction, or more precisely,

elo 0
0p=01= ( _,.w> . ©6.7)
0 e
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In that case, the condition Im(Tr (Q4)) =0, Q4 = Q, Ql_l, see (6.3) and (3.6), im-
plies that the coefficients for Q, in (6.4) obey

Im(e_i‘”(al +ian) + €' — iag)) =0 — di=a. (6.8)

a b
Qa = ( *) s (69)
c a

where a, b and ¢ are complex numbers. The condition that det(Q,, ) is real can now
be written as

Therefore, we can write

¢ = —pu1b*, (6.10)

where (1] is a real parameter. This is (4.4). We will usually limit ourselves to the case
u1 > 0, the junction with Q1 is then subluminal. The condition that the real part of
the determinant is 1 can now be written as follows:

14+iap b1 +iby
Qa= <

, ,ap, by, by real, 6.11

=114 a2 + p 3+ 52). (6.12)

Note that choosing @1 > 0 ensures that the square root is real.

The condition that the traces of O, and Q. are real form two linear conditions
on the three coefficients a», by and b, (where only the parameter | appears non
linearly). Suppose that these are used to fix b; and b,. Then we are left with ©1 and
ap as two independent free parameters.

The question that remains is whether we can also obey the inequalities (3.7) for
the string holonomies Q,—Q,. Those for Q, and Q, can easily be read off:

Qs =1 — alz—m®}+03), 6.13)
Qu: (sinw —aycosw)? > —py (b7 + b3), '

which is ensured if we choose @1 > 0.

Next, we can perform the same trick at the junction with Q; or at the junction Q3.
If we choose Q> then only one further linear constraint on the coefficients a; and b;
follows, and so we have two freely adjustable parameters w1 and > that now pa-
rameterize our two-dimensional manifold. We may freely limit ourselves to positive
values of 11 and uy so that we can be sure that the junctions connecting Q1 and Q>
to the quadrangle are both subluminal. Unfortunately however, this gives us no guar-
antee that Q3 and Q4 will be subluminal as well, and the line joining them, string
segment Q., is then not guaranteed to obey the necessary inequality (3.7) that would
ensure it to be a subluminal string.

There is a smarter way to proceed: we pick two opposite junctions, say Q1 and Q3.
Now, however, our numerical calculations show us a surprise. At least this author had
not expected the special thing that happens.
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Suppose we first go to the Lorentz frame where Q, and Qg are static. Choose
Q1 to be a rotation along in the z-axis. Then Q, and Q, are both described by the
parametrization of (6.11), with freely adjustable 1. The coefficients in this frame
obey four real constraints, but since the determinant is known to be real, these are
actually just three new, linear constraints.

Now perform the Lorentz transformation that makes Q3 a static rotation along the
z-axis. Again assume a freely adjustable parameter w3 and four constraints on the
coefficients, of which only three are independent because of the determinant. One
would have thought to end up with all coefficients fixed, apart from the two freely
adjustable parameters 1 and u3.

But this is not what happens. The four linear constraints on the parameters are
independent, while, instead, the two parameters ;1 and p3 are not independent. They
are found always to be related by an equation of the form

A+ B

=—, 6.14
C+ Duy ( )

3

where the coefficients A, B, C and D depend in a complicated way on the data
that describe the holonomies of the external lines only. This is true whenever the
holonomies Q1 and Q3 obey the string equation (3.6).

This puts our problem in a different perspective: we can only succeed in devising
an acceptable pattern of a single quadrangular string loop if the coefficients A, B, C
and D allow for positive values for both w and p3. Conversely, if we have such a so-
lution then we are guaranteed that all four internal strings are Lorentz transformations
of static ones, and hence they all obey the inequality (3.7). However, we found that
the coefficients can obtain all sorts of values. It is possible that A and B are negative
while C and D are positive. In that case, it may well be that no acceptable solution
exists. We return to this case in the next section.

Since @1 and w3 are not independent, they only fix one parameter of our two
dimensional manifold. We can now return to introducing p; as the other parameter.
The relation between p; and (4 is similar to the one between w1 and 3. So, again,
we have four coefficients A, B, C and D, of which we must check whether they allow
two positive values for py and u4. If so, we have a solution with only subluminal
junctions and subluminal strings.

The explicit expressions for the four coefficients are too lengthy to be displayed
here. We checked numerically that indeed w1 and w, are independent, so together
they can be used to search a suitable point of our two-parameter space. The resulting
relations between the coefficients @; and b; now completely determine their values.

We checked explicitly with numerical examples that the above procedure appears
to work flawlessly. If the two sets of coefficients A—D allow for positive u values,
(m1, ..., na > 0) this guarantees that all internal lines obey the string equation (3.6),
that the four junctions at Q1—Q4 are all subluminal, and that the four strings Q,—Qg
also obey the string inequality (3.7).

However, we have to check explicitly the existence of two positive p values.
In (6.14), with C normalized to one, two positive (or vanishing) values are excluded
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only if*
A <O, B <0, Cc=l1, D > 0. (6.15)

Thus, we have to exclude this domain for the two sets of antipodal points. It was
found however, that this domain can actually easily be entered, when the external
holonomy operators Q1—Q4 are far from the identity. So, if that happens, we have no
one-string-loop solution with the given topology.

A simple symmetry argument (see Appendix) shows that the coefficients A—D
relating 14 to o are a simple permutation of the coefficients relating p3 to pg. It
follows that, if there are positive solutions for 11 and w3 then also positive solutions
exist for pp and 4.

Note however, that we can also choose the crossed diagrams. As in the Feynman
diagrams of quantum field theory, we have besides the original loop two crossed
diagrams, such as the one obtained by interchanging the points 2 and 3. Each of these
can be tried, but still there is no guarantee that a solution of this form will always
exist.

Finally, there is another important question to ask: will the internal holonomies
Q,—04 all describe string sections with positive string constants (positive defect
angles)? To check this is technically awkward. It means that negative energy strings
are not excluded for the time being. They are not as harmful as the strings that violate
causality, but still, one might prefer to have only states with positive local energy
densities. It seems that the wrong sign can easily come up. We decide to postpone
this question.

In fact, the orthogonal scattering case, described in Sect. 5, would generate super-
luminal junctions unless we replace the solution by our double string diagram. Here
however, superluminal junctions seem to be impossible to avoid unless we allow
some of the internal string sections to have the wrong sign for their string constants.
The sign problem, therefore, appears to be difficult to avoid.

7 Other Transitions

In the previous section it was found that there are two regions defined by the in-
equalities (6.15) (one for each diagonal), that we have to stay out of. The regions are
exclusively defined by the external holonomy matrices Q1—Q4, that is, by the initial
string configuration. So if we enter any one of these regions, the result of this colli-
sion cannot be the configuration sketched in Fig. 7. Therefore, in that case, we have
to try something else. To do this, we made a further study of the coefficients A-D.
It was found that they enforce 1 & 3 = 1 when the relative velocities of the exter-
nal strings are all non-relativistic. This is the allowed region. What if strings collide
relativistically?

4The case where one or more of these coefficients are equal to zero might be admissible, since lightlike
joints do not seem to violate causality.
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Fig. 9 Scattering producing a
multitude of new string sections,
investigated in the text

a) b)

We checked the case where Q1 and Q> are large, with possibly relativistic relative
velocities, but

E¥0,05=(0401)"" ~1. (7.1)

If this case could be handled, then we can try more complicated scattering diagrams,
of the kind depicted in Fig. 9. If we consider a sufficiently large number of intermedi-
ate strands in this collision process, condition (7.1) can be realized in all subsegments.
This would guarantee the possibility of this multiple strand final state if the state with
just two strands would be forbidden. Even this, however, is difficult to prove. If the
external holonomies obey (7.1) then the coefficients A—D linking diagonally oppo-
site junctions depend entirely on the details of the matrix elements of E, regardless
how close this matrix is to the identity, as explicit algebraic calculations show. From
this it follows that both the allowed and the forbidden domains touch the point £ =1.
We were not yet able to prove that configurations with either a single internal quad-
rangle or multiple strands suffice to cover all eventualities, as the space of all possible
external holonomies Q1—Qj4 is very large.

Strings crossing over is not the only kind of “events” that can take place in this
model. We can also encounter the situation where a string bit, of the kind that results
from collisions of the type described in the above, is reduced to zero length. It is
bounded by two other junctions that herewith merge into one. Our first try should be
whether the result could again be a one-strand, two-strand, or multiple strand final
state, just like the ones described earlier. However, if we allow ourselves strings with
negative string constants, then there is a simpler final state: the one where the original
string gets a “negative length”. This is really a string where the deficit angle has
switched sign. Once it was decided to allow their presence, we could allow them here
as well.

8 Discussion and Conclusions

We conclude that it may well be possible to construct a complete model for classical
(i.e. unquantized) General Relativity with matter, which allows for the construction of
piecewise exact solutions in space-time. The model consists exclusively of piecewise
straight string segments, surrounded by locally flat regions of Minkowski space-time.
This means that these string segments actually also encompass the gravitational de-
grees of freedom. Interaction occurs when two pieces of string intersect, or when the
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length of one or more string pieces shrinks to zero. At every intersection, at least
three (in the case of orthogonal scattering), but nearly always at least six new string
sections appear (described by the four finite segments in the quadrangle of Fig. 8,
and remembering that the two original strings each split in two). In the latter case, the
properties of these new string segments, their string constants, as well as their orien-
tations and velocities, are all described by a point in a compact two parameter space.
These freely adjustable points at every interaction junction in 4-space correspond to
the freedom one has in choosing the matter interactions. This is not obviously an
Euler-Lagrange system, since it cannot be mapped onto its time-reverse. Indeed, one
expects that, as time evolves, the string segments become smaller and smaller, and
more numerous as well. Also, the two-dimensional parameter space at each intersec-
tion is too small to allow us to choose the 4 new string constants from a discrete set
of a priori possibilities, and therefore, the string constant parameter space will form
a continuum, unlike what one would expect in a realistic model of the real world.

The above are enough reasons why we will not advocate “quantization” of this
model along the usual procedures. Quantization will have to go by means of the “pre-
quantization” procedure proposed earlier [16]. This however will require some further
refinements that will be explained in a separate paper. The reason why we keep the
subject of quantization separate is that it requires basically new assumptions, and that
the model described here could be used for different purposes.

There are quite a few open questions apart from quantization. First of all, one
would like the model to be complete, that is, give a well formulated prescription
under all circumstances how the evolution evolves. We found that many but not all
pairs of strings, upon intersecting, can evolve exactly as shown in Fig. 8. When the
relative velocities upon impact are high and the string constants are large, more than
four new strands may have to appear. One might even suspect an instability such as
the formation of a black hole horizon, although precisely in this model one might
also suspect the converse, that black holes cannot form. If all string constants are
kept positive, localized matter configurations cannot exist, whereas all gravitational
curvature must be associated with strings—there is no pure gravity in this model. So,
if there is a black hole, strings will have to stick out from it.

The absence of pure gravity degrees of freedom is intriguing. In a sense, mat-
ter here is “unified” with gravity, not, as in many models, because gravity generates
particle-like degrees of freedom, but the converse, because the matter degrees of free-
dom, here the string bits, carry around all the space-time curvature there is.

It appears that one might have to decide also to allow for “negative" strings, featur-
ing surplus angles rather than deficit angles. The question must be answered whether
or not our newly formed string segments can always be arranged such that they will
all be positive ones. Judging from Fig. 4b, this is unlikely but perhaps not impossible.

Also an important question is how to describe our choice for a point in parameter
space at every intersection. Parameter space is compact, but the space of all possible
collisions is not. After accounting for all symmetries such as the Poincaré group at the
center of mass, we are left with a non-compact 4 dimensional space of all possible
collision parameters. We need an infinite dictionary to describe the parameters for
what happens at all these possible interactions. As we had to discover, this space is
too large to exclude the existence of corners where further complications arise.
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Apart from all such questions, the model described here might be quite useful to
address all sorts of conceptual questions in classical and quantum gravity. The one
thing it does not suffer from is ultra-violet divergences, although the infrared question
(the question as to what happens at large distances and time intervals) will be quite
difficult. Strings could terminate in infinitely dense fractals of string segments, where
they could close the universe.
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Appendix: The Algorithm for a Quadrangle Configuration

In Fig. 8b, we define the holonomies of the external lines to be Q1> 3,4, obeying

01020304 =1 (A.1)

The internal lines have Qg p.c.¢ With

Qq = 0401, Op= 0,02, O =003, 0i=0:04. (A2

To do the calculations, we avoid square roots by setting

B
0=, 01=0,20,", szi=(1—”f 1_,-1,.)’ (A3)

0 1+it;
where
0, = 1 (l+v2 2v )(1—w2 2wi ) “d)
YT =)0 4w\ 20 1402 2wi  1—w?)’ '
Furthermore,
0:=0:105'07", 0s=010.07'05"07 " (A.5)
All Q’s obey
ImTr (Q) =0, |ReTr (Q)| < 2. (A.6)

The internal strings are then parameterized as follows:
L+iyn X12+iyi2
Qu=A < i . , (A7)
—pa(xi2+iy2) 1 —iyn

where A will be adjusted such that det(Q,) = 1. Together with (A.2), this specifies
all string parameters. We now define the holonomies Q. r¢ » as being the original
internal holonomies Q, p .4 in the basis where Q1 2 3 4 is diagonal. This implies

Q.= Qv_lQany Qf = Op,

B » (A.8)
Q,=0, 001, Gr=(01020v)" Qua(Q1020y).
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In this basis, they should all take the form (A.7), with the associated parameters ;.
Therefore, we define the functions F;; as follows:

Fii=Re(Qil — 0:3),  Fo=Im(Qil + 0,

1 2 1 2 (A.9)
Fi3 =Re(u; Qi; + Qi), Fia =Tm(u; @iy — Qi7)-

If we choose the Q; here to be Q. 1,4 1, these functions should all be zero.
When handling the most general case, the resulting expressions tend to become
lengthy. It is more illuminating to take an arbitrary example. We took:

! t ! (A.10)
-, = —, s w=—. .
3 )

With this, the condition F4; = 0 yields

=

Y1 (—3x12(—39692619 + 46224949 1)

1
T 148988448
+28(—3849888 + y12(33449 + 2251121 1»))). (A.11)

Then, F4 = 0 leads to

15(179661440 + x12(—75340697 + 354247143 15))
4(—902444771 + 502645021 12) '

yi2=— (A.12)

Next came the surprise: requiring F13 = F44 = 0 does not fix the value of x1,, but in
stead the value of 14:

224726999641 + 40360716889 112
133691328551 — 3792771481211,

Ha (A.13)

Indeed, with this value for w4, the value of xi is kept free. As a check, we
find that, with (A.11) and (A.12), all internal holonomies obey the string equation
ImTr (Qg.p,c,a) = 0. Instead of x12, we could choose now 1 as a new parameter.

Therefore, we check the functions Fy;. Of these, F|| and Fy, are already zero. Both
equations F13 =0 and F14 = 0 lead to the same expression

_ —931364904960(—1 + 1)
1458158337341 — 2431046249155 + 171(39825058285 + 73046360557 147)

(A.14)

X12

This leaves the functions F3; to be checked. Again, F31 and F3; are already obeyed.
The remaining two both give the same result:

379277148121 + 4036071688911
133691328551 — 2247269996411,

13 (A.15)

Since, in this case, both (A.13) and (A.15) have a minus sign in their denominators,
it is easy to find positive values for ©1 and wy such that both u3 and u4 are positive
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as well:
B B 266305004377 939268715453
mi=5 R2= BT 085504870 M7 155488166083
(A.16)

The newly opened strings indeed also obey (A.6):

Tr(Q.) = 1.68394,  Tr(Qp) = 1.58638,
Tr(Q.) = 1.88194,  Tr(Qyg) = 1.37714,

(A.17)

where the values were rounded for clarity.
This good behavior, however, is due to the fact that the scattering is at high angles
and non-relativistic. If we do the same calculation for slightly different values:

, =, A.18
W= g ( )

rwe get as our two equations:

23654969982136936 + 20734925253590287 111
19234905848692273 + 166443732167407124;

16644373216740712 + 20734925253590287 1>
19234905848692273 + 236549699821369364,

w3 =
(A.19)

s =

here, we see two equations that both are incompatible with positive values for w1,
u3, o and pwg. As stated earlier, the general expressions for all values of #1, >, v and
w in the allowed regions are too lengthy to be revealing.

We here observe that the coefficients A, B, C and D for the two diagonals are
clearly related. This is due to the symmetry of the problem:

1 1
If uy=— then u3=—. (A.20)
M4 w2

This symmetry is due to the fact that our initial configuration was one with free strings
approaching one another. In this case, the existence of positive solutions for @ and

(3 automatically guarantees the existence of positive solutions for po and w4, and
vice versa.
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