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Abstract
In this paper, we formulate a regular q-fractional Sturm-Liouville problem (qFSLP)
which includes the left-sided Riemann-Liouville and the right-sided Caputo
q-fractional derivatives of the same order α, α ∈ (0, 1). We introduce the essential
q-fractional variational analysis needed in proving the existence of a countable set of
real eigenvalues and associated orthogonal eigenfunctions for the regular qFSLP
when α > 1/2 associated with the boundary condition y(0) = y(a) = 0. A criterion for
the first eigenvalue is proved. Examples are included. These results are a
generalization of the integer regular q-Sturm-Liouville problem introduced by
Annaby and Mansour in (J. Phys. A, Math. Gen. 38:3775-3797, 2005; J. Phys. A, Math.
Gen. 39:8747, 2006).
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1 Introduction
In the joint paper of Sturm and Liouville [], they studied the problem

–
d

dx

(
p

dy
dx

)
+ r(x)y(x) = λwy(x), x ∈ [a, b], (.)

with certain boundary conditions at a and b. Here, the functions p, w are positive on [a, b]
and r is a real valued function on [a, b]. They proved the existence of non-zero solutions
(eigenfunctions) only for special values of the parameter λ which are called eigenvalues.
For a comprehensive study of the contribution of Sturm and Liouville to the theory, see [].
Recently, many mathematicians have become interested in a fractional version of (.), i.e.,
when the derivative is replaced by a fractional derivative like Riemann-Liouville deriva-
tive or Caputo derivative; see [–]. Iterative methods, variational method, and the fixed
point theory are three different approaches used in proving the existence and uniqueness
of solutions of Sturm-Liouville problems, cf. [, , ]. The calculus of variations has re-
cently been developed to calculate the extremum of a functional that contains fractional
derivatives, which is called the fractional calculus of variations; see for example [–].
In [], Klimek et al. applied the methods of fractional variational calculus to prove the ex-
istence of a countable set of orthogonal solutions and corresponding eigenvalues. In [, ],
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Annaby and Mansour introduced a q-version of (.), i.e., when the derivative is replaced
by Jackson q-derivative. Their results are applied and developed in different respects; for
example, see [–]. Throughout this paper q is a positive number less than . The set of
non-negative integers is denoted by N, and the set of positive integers is denoted by N.
For t > ,

Aq,t :=
{

tqn : n ∈N
}

, A∗
q,t := Aq,t ∪ {},

and

Aq,t :=
{±tqn : n ∈N

}
.

When t = , we simply use Aq, A∗
q , and Aq to denote Aq,, A∗

q,, and Aq,, respectively. In
the following, we state the basic q-notations and notions we use in this article, cf. [, ].

For n ∈N, the q-shifted factorial (a; q)n of a ∈C is defined by

(a; q) :=  and for n ∈N, (a; q)n :=
n∏

k=

(
 – aqk–). (.)

The multiple q-shifted factorial for complex numbers a, . . . , ak is defined by

(a, a, . . . , ak ; q)n :=
k∏

j=

(aj; q)n. (.)

The limit limn→∞(a; q)n exists and is denoted by (a; q)∞. For α ∈ R,

(a; q)α =
(a; q)∞

(aqα ; q)∞
.

The q-gamma function, [, ], is defined for z ∈C, z �= –n, n ∈N by

�q(z) :=
(q; q)∞
(qz; q)∞

( – q)–z,  < |q| < . (.)

Here we take the principal values of qz and (–q)–z . Then �q(z) is a meromorphic function
with poles at z = –n, n ∈ N.

Let μ ∈ R be fixed. A set A ⊆ R is called a μ-geometric set if for x ∈ A, μx ∈ A. If f is a
function defined on a q-geometric set A ⊆R, the q-difference operator, Dq, is defined by

Dqf (x) :=
f (x) – f (qx)

x – qx
, x ∈ A/{}. (.)

If  ∈ A, we say that f has q-derivative at zero if

lim
n→∞

f (xqn) – f ()
xqn , x ∈ A, (.)

exists and does not depend on x. In this case, we shall denote this limit by Dqf (). In some
literature the q-derivative at zero is defined to be f ′() if it exists, cf. [, ], but the above
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definition is more suitable for our approach. The non-symmetric Leibniz rule

Dq(fg)(x) = g(x)Dqf (x) + f (qx)Dqg(x) (.)

holds. Equation (.) can be symmetrized using the relation f (qx) = f (x) – x( – q)Dqf (x),
giving the additional term –x( – q)Dqf (x)Dqg(x). The q-integration of Jackson [] is de-
fined for a function f defined on a q-geometric set A to be

∫ b

a
f (t) dqt :=

∫ b


f (t) dqt –

∫ a


f (t) dqt, a, b ∈ A, (.)

where

∫ x


f (t) dqt :=

∞∑
n=

xqn( – q)f
(
xqn), x ∈ A, (.)

provided that the series converges. A function f defined on X is called q-regular at zero if

lim
n→∞ f

(
xqn) = f () for all x ∈ X.

Let C(X) denote the space of all q-regular at zero functions defined on X with values in R.
C(X) associated with the norm function

‖f ‖ = sup
{∣∣f (xqn)∣∣ : x ∈ X, n ∈N

}
,

is a normed space. The q-integration by parts rule [] is

∫ b

a
f (x)Dqg(x) = f (x)g(x)

∣∣b
a +

∫ b

a
Dqf (x)g(qx) dqx, a, b ∈ X, (.)

where f , g are q-regular at zero functions.
For p > , and Y is Aq,t or A∗

q,t , the space Lp
q(Y ) is the normed space of all functions

defined on Y such that

‖f ‖p :=
(∫ t



∣∣f (u)
∣∣p dqu

)/p

< ∞.

If p = , then L
q(Y ) associated with the inner product

〈f , g〉 :=
∫ t


f (u)g(u) dqu (.)

is a Hilbert space. A weighted L
q(Y , w) space is the space of all functions f defined on Y ,

such that

∫ t



∣∣f (u)
∣∣w(u) dqu < ∞,
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where w is a positive function defined on Y . L
q(Y , w) associated with the inner product

〈f , g〉 :=
∫ t


f (u)g(u)w(u) dqu

is a Hilbert space. The space of all q-absolutely functions on A∗
q,t is denoted by ACq(A∗

q,t)
and defined as the space of all q-regular at zero functions f satisfying

∞∑
j=

∣∣f (uqj) – f
(
uqj+)∣∣ ≤ K for all u ∈ A∗

q,t ,

and K is a constant depending on the function f , cf. [], Definition ... That is,

ACq
(
A∗

q,t
) ⊆ Cq

(
A∗

q,t
)
.

The space AC(n)
q (A∗

q,t) (n ∈ N) is the space of all functions defined on X such that
f , Dqf , . . . , Dn–

q f are q-regular at zero and Dn–
q f ∈ACq(A∗

q,t), cf. [], Definition ... Also
it has been proved in [], Theorem ., that a function f ∈AC(n)

q (A∗
q,t) if and only if there

exists a function φ ∈ L
q(A∗

q,t) such that

f (x) =
n–∑
k=

Dk
qf ()

�q(k + )
xk +

xn–

�q(n)

∫ x


(qu/x; q)n–φ(u) dqu, x ∈ A∗

q,t .

In particular, f ∈ AC(A∗
q,t) if and only if f is q-regular at zero such that Dqf ∈ L

q(A∗
q,t).

It is worth noting that in [], all the definitions and results we have just mentioned are
defined and proved for functions defined on the interval [, a] instead of A∗

q,t . In [],
Mansour studied the problem

Dα
q,a– p(x)cDα

q,+ y(x) +
(
r(x) – λwα(x)

)
y(x) = , x ∈ A∗

q,a, (.)

where p(x) �=  and wα >  for all x ∈ A∗
q,a, p, r, wα are real valued functions defined in A∗

q,a

and the associated boundary conditions are

cy() + c
[
I–α

q,a– pcDα
q,+ y

]
() = , (.)

dy(a) + d
[
I–α

q,a– pcDα
q,+ y

](a
q

)
= , (.)

with c
 + c

 �=  and d
 + d

 �= . it is proved that the eigenvalues are real and the eigenfunc-
tions associated to different eigenvalues are orthogonal in the Hilbert space L

q(A∗
q,a, wα).

A sufficient condition on the parameter λ to guarantee the existence and uniqueness of
the solution is introduced by using the fixed point theorem, also a condition is imposed
on the domain of the problem in order to prove the existence and uniqueness of solution
for any λ. This paper is organized as follows. Section  is on the q-fractional operators
and their properties which we need in the sequel. Cardoso [] introduced basic Fourier
series for functions defined on a q-linear grid of the form {±qn : n ∈ N} ∪ {}. In Sec-
tion , we reformulate Cardoso’s results for functions defined on a q-linear grid of the
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form {±aqn : n ∈ N} ∪ {}. In Section , we introduce a fractional q-analog for Euler-
Lagrange equations for functionals defined in terms of Jackson q-integration and the in-
tegrand contains the left-sided Caputo fractional q-derivative. We also introduce a frac-
tional q-isoperimetric problem. In Section , we use the variational q-calculus developed
in Section  to prove the existence of a countable number of eigenvalues and orthogonal
eigenfunctions for the fractional q-Sturm-Liouville problem with the boundary condition
y() = y(a) = . We also define the Rayleigh quotient and prove a criterion for the smallest
eigenvalue.

2 Fractional q-calculus
This section includes the definitions and properties of the left-sided and right-sided
Riemann-Liouville q-fractional operators which we need in our investigations.

The left-sided Riemann-Liouville q-fractional operator is defined by

Iα
q,a+ f (x) =

xα–

�q(α)

∫ x

a
(qt/x; q)α–f (t) dqt. (.)

This definition was introduced by Agarwal in [] when a =  and by Rajković et al. []
for a �= . The right-sided Riemann-Liouville q-fractional operator is defined by

Iα
q,b– f (x) =


�q(α)

∫ b

qx
tα–(qx/t; q)α–f (t) dqt; (.)

see []. The left-sided Riemann-Liouville q-fractional operator satisfies the semigroup
property

Iα
q,a+ Iβ

q,a+ f (x) = Iα+β

q,a+ f (x).

The case a =  is proved in [], while the case a >  is proved in [].
The right-sided Riemann-Liouville q-fractional operator satisfies the semigroup prop-

erty []

Iα
q,b– Iβ

q,b– f (x) = Iα+β

q,b– f (x), x ∈ A∗
q,b (.)

for any function defined on Aq,b and for any values of α and β .
For α >  and �α� = m, the left- and right-sided Riemann-Liouville fractional q-deriv-

atives of order α are defined by

Dα
q,a+ f (x) := Dm

q Im–α
q,a+ f (x), Dα

q,b– f (x) :=
(

–
q

)m

Dm
q– Im–α

q,b– f (x),

the left- and right-sided Caputo fractional q-derivatives of order α are defined by

cDα
q,a+ f (x) := Im–α

q,a+ Dm
q f (x), cDα

q,b– :=
(

–
q

)m

Im–α
q,b– Dm

q– f (x);

see []. From now on, we shall consider left-sided Riemann-Liouville and Caputo frac-
tional q-derivatives when the lower point a =  and right-sided Riemann-Liouville and
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Caputo fractional q-derivatives when b = a. According to [],pp., , Dα
q,+ f (x) exists

if

f ∈ L
q
(
A∗

q,a
)

such that Im–α
q,+ f ∈AC(m)

q
(
A∗

q,a
)
,

and cDα
q,a+ f exists if

f ∈AC(m)
q

(
A∗

q,a
)
.

The following proposition was proved in [] but we add the proof here for convenience
of the reader.

Proposition . Let α ∈ (, ).
(i) If f ∈ L

q(A∗
q,a) such that Iα

q,+ f ∈ACq(A∗
q,a) then

cDα
q,+ Iα

q,+ f (x) = f (x) –
Iα

q,+ f ()
�q( – α)

x–α . (.)

Moreover, if f is bounded on A∗
q,a then

cDα
q,+ Iα

q,+ f (x) = f (x). (.)

(ii) For any function f defined on A∗
q,a,

cDα
q,a– Iα

q,a– f (x) = f (x) –
a–α

�q( – α)
(qx/a; q)–α

(
Iα

q,a– f
)(a

q

)
. (.)

(iii) If f ∈ L
q(Aq,a) then

Dα
q,+ Iα

q,+ f (x) = f (x). (.)

(iv) For any function f defined on A∗
q,a,

Dα
q,a– Iα

q,a– f (x) = f (x). (.)

(v) If f ∈ACq(A∗
q,a) then

Iα
q,+

cDα
q,+ f (x) = f (x) – f (). (.)

(vi) If f is a function defined on A∗
q,a then

Iα
q,a– Dα

q,a– f (x) = f (x) –
aα–

�q(α)
(qx/a; q)α–

(
I–α

q,a– f
)(a

q

)
. (.)

(vii) If f is defined on [, a] such that Dqf is continuous on [, a] then

cDα
q,+ f (x) = Dα

q,+
[
f (x) – f ()

]
. (.)
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Proof The proof of (.) is a special case of [], Eq. (.), but note that there is a misprint
in Eq. (.); the summation should start from i = . If f is bounded on Aq,a, then I–α

q,+ f () =
, and (.) follows at once from (.). Now we prove (.). We have

cDα
q,a– Iα

q,a– f (x) =


�q( – α)

∫ a

qx
t–α(qx/t; q)–αDq

(
Iα

q,a– f
)( t

q

)
dqt,

where we used – 
q Dq– f (x) = Dq,xf ( x

q ). Then applying the q-integration by parts formula
(.) and using

Dq,ttβ (qx/t; q)β = –[β]tβ–(qx/t; q)β–, β ∈R, [β] :=
 – qβ

 – q
,

we obtain

cDα
q,a– Iα

q,a– f (x) =
a–α

�q( – α)
(qx/a; q)–α

(
I–α

q,a– f
)(a

q

)
– I–α

q,a– Iα
q,a– f (x).

Hence, the result follows from the semigroup property (.). Equation (.) was proved in
[], Eq. (.). The proof of (.) follows from the fact that

Dα
q,a– Iα

q,a– f (x) = –

q

I–α
q,a– Iα

q,a– f (x) = –

q

Dq– Iq,a– f (x) = f (x),

where we used the semigroup property (.). The proof of (.) is a special case of [], Eq.
(.). The proof of (.) is similar to the proof of (.) and is omitted. Finally, the proof
of (.) is a special case of [], Eq. (.). �

Set X = Aq,a or A∗
q,a. Then

C(X) ⊆ L
q(X) ⊆ L

q(X).

Moreover, if f ∈ C(X) then

‖f ‖ ≤ √
a‖f ‖ ≤ a‖f ‖.

We also have the following inequalities:
. If f ∈ C(A∗

q,a) then Iα
q,+ f ∈ C(A∗

q,a) and

∥∥Iα
q,+ f

∥∥ ≤ aα

�q(α + )
‖f ‖. (.)

. If f ∈ L
q(X) then Iα

q,+ f ∈ L
q(X) and

∥∥Iα
q,+ f

∥∥
 ≤ Mα,‖f ‖, Mα, :=

aα( – q)α

( – qα)(q; q)∞
. (.)

. If f ∈ L
q(X) then Iα

q,+ f ∈ L
q(X) and

∥∥Iα
q,+ f

∥∥
 ≤ Mα,‖f ‖, (.)
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where

Mα, :=
aα

�q(α)

√
( – q)

( – qα)

(∫ 


(qξ ; q)

α– dqξ

)/

.

. If α > 
 and f ∈ L

q(X) then Iα
q,+ f ∈ C(X) and

∥∥Iα
q,+ f

∥∥ ≤ M̃α‖f ‖, M̃α :=
aα– 



�q(α)

(∫ 


(qξ ; q)

α– dqξ

)/

. (.)

. Since ‖f ‖ ≤ √
a‖f ‖, we conclude that if f ∈ C(X) then Iα

q,+ f ∈ L
q(X) and

∥∥Iα
q,+ f

∥∥
 ≤ Kα‖f ‖, Kα :=

√
aMα,. (.)

. If f ∈ C(A∗
q,a) then Iα

q,a– f ∈ C(A∗
q,a) and

∥∥Iα
q,a– f

∥∥ ≤ cα,‖f ‖, cα, :=
aα( – q)α

( – qα)(q; q)∞
.

. If f ∈ L
q(X) then Iα

q,a– f ∈ L
q(X) and

∥∥Iα
q,a– f

∥∥
 ≤

⎧⎨
⎩

(–q)αaα

(–qα )(q;q)∞ ‖f ‖, if α < ,
(–q)α–aα–

(q;q)∞ ‖f ‖, if α ≥ .

. If α �= 
 and f ∈ L

q(X) then Iα
q,a– f ∈ L

q(X) and

∥∥Iα
q,a– f

∥∥
 ≤

⎧⎪⎨
⎪⎩

(–q)α– 
 aα√

–qα–(q;q)∞
‖f ‖, if α < 

 ,
(–q)αaα

(q;q)∞
√

(–qα–)(–qα )
‖f ‖, if α > 

 .

The following lemmas are needed in the remaining sections.

Lemma . Let α > . If
(a) f ∈ L

q(X) and g is a bounded function on Aq,a,
or

(b) α �= 
 and f , g are L

q(X) functions,
then

∫ a


g(x)Iα

q,+ f (x) dqx =
∫ a


f (x)Iα

q,a– g(x) dqx. (.)

Proof The condition (a) or (b) of the present lemma ensures the convergence of the
q-integrals in (.). Since

∫ a


g(x)Iα

q,+f (x) dqx =


�q(α)

∫ a


g(x)xα–

∫ x


(qt/x; q)α–f (t) dqt dqx,
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from the conditions on the functions f and g , the double q-integral is absolutely conver-
gent, therefore we can interchange the order of the q-integrations to obtain

∫ a


g(x)Iα

a+f (x) dqx =
∫ a


f (t)


�q(α)

∫ a

qt
xα–(qt/x; q)α–g(x) dqx dqt

=
∫ a


f (t)Iα

q,a– g(t) dqt. �

Lemma . Let α ∈ (, ).
(a) If g ∈ L

q(A∗
q,a) such that I–α

q g ∈ACq(A∗
q,a), and Di

qf ∈ C(A∗
q,a) (i = , ) then

∫ a


f (x)Dα

q,+ g(x) dqx = –f
(

x
q

)
I–α

q,+ g(x)
∣∣∣∣
a

x=
+

∫ a


g(x)cDα

q,a– f (x) dqx. (.)

(b) If f ∈ACq(A∗
q,a), and g is a bounded function on A∗

q,a such that Dα
q,a– g ∈ L

q(A∗
q,a) then

∫ a


g(x)cDα

q,+ f (x) dqx =
(
I–α

q,a– g
)(x

q

)
f (x)

∣∣∣∣
a

x=
+

∫ a


f (x)Dα

q,a– g(x) dqx. (.)

Proof The conditions on the functions f and g guarantee the convergence of the q-inte-
grals in (.) and (.), and their proofs follow from Lemma . and the q-integration by
parts rule (.). �

3 Basic Fourier series on q-linear grid and some properties
The purpose of this section is to reformulate Cardoso’s results of Fourier series expansions
for functions defined on the q-linear grid Aq := {qn, n ∈ N} to functions defined on q-
linear grids Aq,a := {±aqn, n ∈N}, a > .

Cardoso in [] defined the space of all q-linear Hölder functions on the q-linear grid
Aq. We generalize his definition for functions defined on a q-linear grid of the form Aq,a,
a > .

Definition . A function f defined on Aq,a, a > , is called a q-linear Hölder of order λ

if there exists a constant M >  such that

∣∣f (±aqn–) – f
(±aqn)∣∣ ≤ Mqnλ for all n ∈N.

Definition . The q-trigonometric functions Sq(z) and Cq(z) are defined for z ∈ C by
[, ]

Sq(z) =
∞∑

n=

(–)n qn(n+ 
 )zn+

(q; q)n+
=

z
 – q φ

(
; q; q, q/z),

Cq(z) =
∞∑

n=

(–)n qn(n– 
 )zn

(q; q)n
= φ

(
; q; q, q/z).

One can verify that

Dq,zSq(wz) =
w

 – q
Cq(

√
qwz),
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Dq,zCq(wz) = –
w

 – q
Sq(

√
qwz),

where z ∈ C and w ∈ C is a fixed parameter. A modification of the orthogonality relation
given in [], Theorem ., is the following.

Theorem . Let w and w′ be roots of Sq(z), and μ(w) := ( – q)Cq(q/w)S′
q(w). Then

∫ a

–a
Cq

(
q 

 wx
a

)
Cq

(
q 

 w′x
a

)
dqx =

⎧⎪⎨
⎪⎩

, if w �= w′,
a, if w = w′ = ,
aμ(w), if w = w′ �= ,

∫ a

–a
Sq

(
qwx

a

)
Sq

(
qw′x

a

)
dqx =

{
, if w �= w′,
aq–/μ(w), if w = w′.

Cardoso introduced a sufficient condition for the uniform convergence of the basic
Fourier series

Sq(f ) :=
a


+

∞∑
k=

akCq
(
q/wkx

)
+ bkSq(qwkx),

where a =
∫ 

– f (t) dqt and for k = , , . . . ,

ak =


μk

∫ 

–
f (t)Cq

(
q/wkt

)
dqt, bk =


μk

∫ 

–
f (t)Sq(qwkt) dqt,

μk = ( – q)Cq
(
q/wk

)
S′

q(wk)

on the q-linear grid Aq, where {wk : k ∈ N} is the set of positive zeros of Sq(z). Cardoso
proved that μk = O(q–k ) as k → ∞ for any q ∈ (, ). In the following we give a modified
version of Cardoso’s result for any function defined on the q-linear grid Aq,a, a > .

Theorem . If f ∈ C(A∗
q,a) is a q-linear Hölder function of order λ > 

 , then the q-Fourier
series

Sq(f ) :=
a


+

∞∑
k=

akCq

(
q/ wkx

a

)
+ bkSq

(
q

wkx
a

)
, (.)

where a = 
a
∫ a

–a f (t) dqt and, for k = , , . . . ,

ak(f ) =


aμk

∫ a

–a
f (t)Cq

(
q/ wkt

a

)
dqt, bk(f ) =

√q
aμk

∫ a

–a
f (t)Sq

(
q

wkt
a

)
dqt,

converges uniformly to the function f on the q-linear grid Aq,a.

Proof The proof is a modification of the proof of [], Theorem ., and is omitted. �

Remark . We replaced the condition

f
(
+)

= f
(
–)

, (.)
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where

f
(
+)

:= lim
x→+

f (x), f
(
–)

:= lim
x→–

f (x),

in [], Theorem ., by the weakest condition that f is q-regular at zero because (.)
is only needed to guarantee that limn→∞ f (qn–/) = limn→∞ f (–qn–/) and this holds if f
is q-regular at zero. See [], Eq. (.), for a function which is q-regular at zero but not
continuous at zero.

A modified version of [], Theorem ., is the following.

Theorem . If there exists c >  such that

∫ a

–a
f (t)Cq

(√
q

wkt
a

)
= O

(
qck) and

∫ a

–a
f (t)Sq

(
q

wkt
a

)
= O

(
qck) as k → ∞,

then the q-Fourier series (.) converges uniformly on Aq,a.

A modified version of [], Corollary ., is the following.

Corollary . If f is continuous and piecewise smooth on a neighborhood of the origin, then
the corresponding q-Fourier series Sq(f ) converges uniformly to f on the q-linear grid Aq,a.

Theorem . If f ∈ C(A∗
q,a) is a q-linear Hölder odd function of order λ > 

 and satisfying
f () = f (a) = , then the q-Fourier series

Sq(f ) :=
∞∑

k=

ckSq

(
wkx

a

)
,

where

ck(f ) = ck =


a√qμk

∫ a


f (t)Sq

(
wkt
a

)
dqt,

converges uniformly to the function f on the q-linear grid Aq,a.

Proof The proof follows from (.) by considering the function g(x) := f (qx), x ∈ Aq,a.
Since it is odd, we have ak =  for k = , , . . . , and

bk(f ) =
√

qμk

∫ a

–a
g(t)Sq

(
qwkt

a

)
dqt,

making the substitution u = qt and using the fact that g is an odd function, we obtain the
required result. �

Definition . Let (fn)n be a sequence of functions in C(A∗
q,a). We say that fn converges

to a function f in q-mean if

lim
n→∞

√∫ a

–a

∣∣fn(x) – f (x)
∣∣ dqx = .
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Proposition . If g ∈ C(A∗
q,a) is an odd function satisfying Dk

qg (k = , , ) is a con-
tinuous and piecewise smooth function in a neighborhood of zero, satisfying the boundary
condition

g() = g(a) = , (.)

then g can be approximated in the q-mean by a linear combination

gn(x) =
n∑

r=

c(n)
r Sq

(
wrx

a

)
,

where at the same time Dk
qgn (k = , ) converges in q-mean to the Dk

qg . Moreover, the coef-
ficients c(n)

r need not depend on n and can be written simply as cr .

Proof We consider the q-sine Fourier transform of D
qg . Hence

D
qg(x) =

∞∑
k=

bkSq

(
qwkx

a

)
= lim

n→∞γn(x), x ∈ Aq,a, (.)

where

γn(x) =
n∑

k=

bkSq

(
qwkx

a

)
, bk =

√q
aμk

∫ a


D

qg(x)Sq

(
qwkx

a

)
dqx.

Consequently,

lim
n→∞

∫ a



∣∣D
qg(x) – γn(x)

∣∣ dqx = .

Hence

Dqg(x) – Dqg() =
∫ x


D

qg(x) dqx =
a( – q)√q

∞∑
k=

bk

wk

(
–Cq

(
q/wkx

a

)
+ 

)
.

Applying the q-integration by parts rule (.) gives

ak(Dqg) = –
a( – q)√qwk

bk
(
D

qg
)
.

That is,

Dqg(x) – Dqg() =
∞∑

k=

ak(Dqg)
(

Cq

(
q/wkx

a

)
– 

)
.

Hence

Dqg(x) =
∞∑

k=

ak(Dqg)Cq

(
q/wkx

a

)
, x ∈ A∗

q,a. (.)
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Note that a(Dqg) =  because g() = g(a) = . Again by q-integrating the two sides of
(.), we obtain

g(x) =
∞∑

k=

ak(Dqg)
a( – q)

wk
Sq

(
wkx

a

)
, x ∈ A∗

q,a. (.)

One can verify that

bk(g) =
a( – q)

wk
ak(Dqg).

Hence the right-hand sides of (.) and (.) are the q-Fourier series of Dqg and g , respec-
tively. Hence the convergence is uniform in C(A∗

q,a) and Lq (A∗
q,a) norms. �

4 q-Fractional variational problems
The calculus of variations is as old as the calculus itself, and has many applications in
physics and mechanics. As the calculus has two forms, the continuous calculus with the
power concept of limits, and the discrete calculus which also is called the calculus of finite
differences, the calculus of variations has also both the discrete and the continuous forms.
For a brief history of the continuous calculus of variations, see []. The discrete calculus
of variations started in  by Fort in his book [] where he devoted a chapter to the
finite analog of the calculus of variations, and he introduced a necessary condition analog
to the Euler equation and also a sufficient condition. The paper of Cadzow [], , was
the first paper published in this field, then Logan developed the theory in his PhD thesis
[], , and in a series of papers [–]. See also the PhD thesis of Harmsen []
for a brief history for the discrete variational calculus; and for the developments in the
theory, see [–]. In , a q-version of the discrete variational calculus is introduced
by Bangerezako in [] for functions defined in the form

J
(
y(x)

)
=

∫ qβ

qα

xF
(
x, y(x), Dqy(x), . . . , Dk

qy(x)
)

dqx,

where qα and qβ are in the uniform lattice A∗
q,a for some a >  such that α > β , provided

that the boundary conditions

Dj
qy

(
qα

)
= Dj

qy
(
qβ+) = cj (j = , , . . . , k – ).

He introduced a q-analog of the Euler-Lagrange equation which he applied to solve certain
isoperimetric problem. Then, in , Bangerezako [] introduced certain q-variational
problems on a nonuniform lattice. In [, ], Malinowska, and Torres introduced the
Hahn quantum variational calculus. They derived the Euler-Lagrange equation associated
with the variational problem

J(y) =
∫ b

a
F
(
t, y(qt + w), Dq,wy(t)

)
dq,wt,
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under the boundary condition y(a) = α, y(b) = β where α and β are constants and Dq,w is
the Hahn difference operator defined by

Dq,wf (t) =

{ f (qt+w)–f (t)
(qt+w)–t , if t �= w

–q ,
f ′(), if t = w

–q .

Problems of the classical calculus of variations with integrand depending on fractional
derivatives instead of ordinary derivatives are first introduced by Agrawal [] in .
Then he extended his result for variational problems including Riesz fractional derivatives
in []. Numerous works have been dedicated to the subject since Agrawal’s work. See for
example [, –, –].

In this section, we shall derive Euler-Lagrange equation for a q-variational problem
when the integrand includes a left-sided q-Caputo fractional derivative and we also solve
a related isoperimetric problem. From now on, we fix α ∈ (, ), and define a subspace of
C(A∗

q,a) by

Eα
a =

{
y ∈AC

(
A∗

q,a
)

: cDα
q,+ y ∈ C

(
A∗

q,a
)}

,

and the space of variations c Var(, a) for the Caputo q-derivative by

c Var(, a) =
{

h ∈ Eα
a : h() = h(a) = 

}
.

For a function f (x, x, . . . , xn) (n ∈ N) by ∂if we mean the partial derivative of f with re-
spect to the ith variable, i = , , . . . , n. In the sequel, we shall need the following definition
from [].

Definition . Let A ⊆ R and g : A× ] – θ , θ [→ R. We say that g(t, ·) is continuous at θ

uniformly in t, if and only if ∀ε > , ∃δ >  such that

|θ – θ| < δ −→ ∣∣g(t, θ ) – g(t, θ)
∣∣ < ε for all t ∈ A.

Furthermore, we say that g(t, ·) is differentiable at θ uniformly in t if and only if ∀ε > ,
∃δ >  such that

|θ – θ| < δ −→
∣∣∣∣g(t, θ ) – g(t, θ)

θ – θ
– δg(t, θ)

∣∣∣∣ < ε for all t ∈ A.

We now present first order necessary conditions of optimality for functionals, defined
on Eα

a , of the type

J(y) =
∫ a


F
(
x, y, cDα

q,+ y
)

dqx,  < α < , (.)

where F : A∗
q,a ×R×R →R is a given function. We assume that:

. The functions (u, v) → F(t, u, v) and (u, v) → ∂iF(t, u, v) (i = , ) are continuous
functions uniformly on Aq,a.

. F(·, y(·), cDα
q,+ (·)), δiF(·, y(·), cDα

q,+ (·)) (i = , ) are q-regular at zero.
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. δF has a right Riemann-Liouville fractional q-derivative of order α which is
q-regular at zero.

Definition . Let y ∈ Eα
a . Then J has a local maximum at y if

∃δ >  such that J(y) ≤ J(y) for all y ∈ Eα
a with ‖y – y‖ < δ,

and J has a local minimum at y if

∃δ >  such that J(y) ≥ J(y) for all y ∈ S with ‖y – y‖ < δ.

J is said the have a local extremum at y if it has either a local maximum or local minimum.

Lemma . Let γ ∈ L
q(A∗

q,a).
(i) If

∫ a


γ (x)h(x) dqx =  (.)

for every h ∈ L
q(Aq,a) then

γ (x) ≡  on Aq,a. (.)

(ii) If (.) holds only for all functions h ∈ L
q(A∗

q,a) satisfying h(a) =  then

γ (x) ≡  on Aq,qa. (.)

Moreover, in the two cases, if γ is q-regular at zero, then γ () = .

Proof To prove (i), we fix k ∈ N and set hk(x) =
{ , x = aqk ,

, otherwise. Then hk ∈ L
q(, a). Substi-

tuting in (.) yields

aqk( – q)γ
(
aqk) = , ∀k ∈ N.

Thus, γ (aqk) =  for all k ∈N. Clearly if γ is q-regular at zero, then

γ () := lim
k→∞

γ
(
aqk) = .

The proof of (ii) is similar and is omitted. �

Lemma . If α ∈ C(A∗
q,a) and

∫ a


α(x)Dqh(x) dqx = 

for any function h satisfying
. h and Dqh are q-regular at zero,
. h() = h(a) = ,

then α(x) = c for all x ∈ A∗
q,a where c is a constant.
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Proof Let c be the constant defined by the relation c = 
a
∫ a

 α(x) dqx. Let

h(x) :=
∫ x



[
α(ξ ) – c

]
dqξ , x ∈ A∗

q,a.

So, h and Dqh are q-regular at zero functions such that h() = h(a) = . We have

∫ a



[
α(x) – c

]
Dqh(x) dqx =

∫ a


α(x)Dqh(x) dqx +

[
α(x) – c

]
h(x)

∣∣a
x= = ,

on the other hand,

∫ a


α(x)Dqh(x) dqx =

∫ a



[
α(x) – c

] dqx = .

Therefore, α(x) = c for all x ∈ Aq,a. But α is q-regular at zero, hence α() = . This yields
the required result. �

Theorem . Let y ∈ c Var(, a) be a local extremum of J . Then y satisfies the Euler-
Lagrange equation

∂F(x) + Dα
q,a–∂F(x) = , ∀x ∈ A∗

q,qa. (.)

Proof Let y be a local extremum of J and let η be arbitrary but fixed variation function
of y. Define

�(ε) = J(y + εη).

Since y is a local extremum for J , and J(y) = �(), it follows that  is a local extremum
for φ. Hence φ′() = . But

 = φ′() = lim
ε→

d
dε

φ(y + εη) =
∫ a



(
∂Fη + ∂FcDα

q,+η
)

dqx.

Using (.), we obtain

 =
∫ a



(
∂F + cDα

q,a–∂F
)
η dqx + I–α

q,a–∂F(x)η(x)
∣∣a
x=.

Since η is a variation function, η() = η(a) = , and we have

∫ a



(
∂F + Dα

q,a–∂F
)
η dqx = 

for any η ∈ c Var(, a). Consequently, from Lemma ., we obtain (.) and this completes
the proof. �

4.1 A q-fractional isoperimetric problem
In the following, we shall solve the q-fractional isoperimetric problem: Given a functional
J as in (.), find which functions minimize (or maximize) J , when subject to the boundary
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conditions

y() = y, y(a) = ya (.)

and the q-integral constraint

I(y) =
∫ a


G

(
x, y, cDα

q,+ y
)

dqx = l, (.)

where l is a fixed real number. Here, similarly to before:
. The functions (u, v) → G(t, u, v) and (u, v) → ∂iG(t, u, v) (i = , ) are continuous

functions uniformly on Aq,a.
. G(·, y(·), cDα

q,+ (·)), δiG(·, y(·), cDα
q,+ (·)) (i = , ) are q-regular at zero.

. δG has a right Riemann-Liouville fractional q-derivative of order α which is
q-regular at zero.

A function y ∈ E that satisfies (.) and (.) is called admissible.

Definition . An admissible function y is an extremal for I in (.) if it satisfies the
equation

∂G(x) + Dα
q,a–∂G(x) = , ∀x ∈ A∗

q,qa. (.)

Theorem . Let y be a local extremum for J given by (.), subject to the conditions (.)
and (.). If y is not an extremal of the function I , then there exists a constant λ such that
y satisfies

∂H(x) + Dα
q,a–∂H(x) = , ∀x ∈ A∗

q,qa, (.)

where H := F – λG.

Proof Let η,η ∈ c Var(, a) be two functions, and let ε and ε be two real numbers, and
consider the new function of two parameters

y̆ = y + εη + εη. (.)

The reason why we consider two parameters is that we can choose one of them as a func-
tion of the other in order for y̆ to satisfy the q-integral constraint (.). Let

Ĭ(ε, ε) =
∫ a


G

(
x, y̆, cDα

q,+ y̆
)

dqx – l.

It follows by the q-integration by parts rule (.) that

∂ Ĭ
∂ε

∣∣∣∣
(,)

=
∫ a



(
∂G(x) + Dα

q,a–∂G(x)
)
η dqx.

Since y is not an extremal of I , there exists a function η satisfying the condition
∂ Ĭ
∂ε

|(,) �= . Hence, from the fact that Ĭ(, ) =  and the implicit function theorem, there
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exists a C function ε(·), defined in some neighborhood of zero, such that

Ĭ
(
ε, ε(ε)

)
= .

Therefore, there exists a family of variations of type (.) satisfying the q-integral con-
straint. To prove the theorem, we define a new function J̆(ε, ε) = J(y̆). Since (, ) is a local
extremum of J̆ subject to the constraint Ĭ(, ) = , and ∇ Ĭ(, ) �= (, ), by the Lagrange
multiplier rule, see [], there exists a constant λ for which the following holds:

∇ J̆(, ) �= (, ) – λĬ(, ) = (, ).

Simple calculation shows that

∂ J̆
∂ε

∣∣∣∣
(,)

=
∫ a



(
∂F(x) + Dα

q,a–∂F(x)
)
η dqx

and

∂ Ĭ
∂ε

∣∣∣∣
(,)

=
∫ a



(
∂G(x) + Dα

q,a–∂G(x)
)
η dqx.

Consequently,

∫ a



[
∂F(x) + Dα

q,a–∂F(x) – λ
(
∂G(x) + Dα

q,a–∂G(x)
)]

η dqx.

Since η is arbitrary, from Lemma ., we obtain

∂F(x) + Dα
q,a–∂F(x) – λ

(
∂G(x) + Dα

q,a–∂G(x)
)

= 

for all x ∈ A∗
q,qa. This is equivalent to (.) and completes the proof. �

The functions

eα,β (z; q) :=
∞∑

n=

zn

�q(αn + )
;

∣∣z( – q)α
∣∣ < ,

Eα,β (z; q) :=
∞∑

n=

q
α
 n(n–) zn

�q(αn + )
; z ∈C,

are q-analogs of the Mittag-Leffler function

Eα,β (z) =
∞∑

n=

zn

�q(αn + )
, z ∈C;

see []. We have

cDα
q,+ eα,(z; q) := eα,(z; q); cDα

q,+ Eα,(z; q) = Eα,(qz; q). (.)
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Example . Consider the fractional q-isoperimetric problem:

J(y) =
∫ a



(cDα
q,+ y(x)

) dqx,

I(y) =
∫ a


eα,

(
xα ; q

)cDα
q,+ y(x) dqx = l, (.)

y() = , y(a) = eα,
(
aα ; q

)
,

where  < a( – q) < . Then

H =
(cDα

q,+ y
) – λeα,(x; q)cDα

q,+ y

and

∂H + Dα
q,a–∂H = Dα

q,a–
(
cDα

q,+ y(x) – λeα,(x; q)
)
.

Therefore a solution of the problem is λ =  and y(x) = eα,(xα ; q). Similarly a solution of
the problem

J(y) =
∫ a



(cDα
q,+ y(x)

) dqx,

I(y) =
∫ a


Eα,

(
(qx)α ; q

)cDα
q,+ y(x) dqx = l, (.)

y() = , y(a) = Eα,
(
aα ; q

)
,

where a >  is y(x) = Eα,(xα ; q).

5 Existence of discrete spectrum for a fractional q-Sturm-Liouville problem
In this section, we use the q-calculus of variations we developed in Section  to investigate
the existence of solutions of the qFSLP

Dα
q,a– p(x)cDα

q,+ y(x) + r(x)y(x) = λwαy(x), x ∈ A∗
q,qa, (.)

under the boundary condition

y() = y(a) = . (.)

The proof of the main result of this section depends on the Arzelà-Ascoli theorem [],
p.. The setting of this theorem is a compact metric space X. Let C(X) denote the space
of all continuous functions on X with values in C or R. C(X) is associated with the metric
function

d(f , g) = max
{∣∣f (x) – g(x)

∣∣ : x ∈ X
}

.

Theorem . (Arzelà-Ascoli theorem) If a sequence {fn}n in C(X) is bounded and equicon-
tinuous then it has a uniformly convergent subsequence.
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In our q-setting, we take X = A∗
q,a. Hence f ∈ C(A∗

q,a) if and only if f is q-regular at zero,
i.e.,

f () := lim
n→∞ f

(
aqn).

Remark . A question may be raised as to why in (.) we have only x ∈ A∗
q,qa in-

stead of A∗
q,a. The reason for that is that the qFSLP (.)-(.) will be solved by using the

q-fractional isoperimetric problem developed in Theorem ., and its q-Euler-Lagrange
equation (.) holds only for x ∈ A∗

q,qa. Also, in order for (.) to hold at x = a, we should
have Dα

q,a– (p(·)cDα
q,+ y(·))(a) =  and this holds only if p(a)cDα

q,+ y(a) = , which may not
hold.

Theorem . Let 
 < α < . Assume that the functions p, r, wα are defined on A∗

q,a and
satisfying the conditions:

(i) wα is a positive continuous function on [, a] such that Dk
q


wα

(k = , , ) are
bounded functions on Aq,a,

(ii) r is a bounded function on Aq,a,
(iii) p ∈ C(A∗

q,a) such that infx∈Aq,a p(x) > , and supx∈Aq,a | r(x)
wα (x) | < ∞.

The q-fractional Sturm-Liouville problem (.)-(.) has an infinite number of eigenvalues
λ(), λ(), . . . , and to each eigenvalue λ(n) there is a corresponding eigenfunction y(n), which
is unique up to a constant factor. Furthermore, the eigenfunctions y(n) form an orthogonal
set of solutions in the Hilbert space L

q(A∗
q,a, wα).

Proof As we mentioned in Remark ., the qFSLP (.)-(.) can be recast as the q-frac-
tional variational isoperimetric problem: Find the extremal of the functional

J(y) :=
∫ a



[
p(x)

(cDα
q,+ y

) + r(x)y]dqx (.)

subject to the boundary condition

y() = y(a) = , (.)

and the isoperimetric constraint

I(y) =
∫ a


wα(x)y dqx = . (.)

The q-fractional Euler-Lagrange equation for the functional I is

wα(x)y(x) =  for all x ∈ Aq,a,

which is satisfied only for the trivial solution y = , because wα is positive on Aq,a. So,
no extremals for I can satisfy the q-isoperimetric condition. If y is an extremal for the
q-fractional isoperimetric problem, then from Theorem ., there exists a constant λ such
that y satisfies the q-fractional Euler-Lagrange equation (.) in A∗

q,qa but this is equivalent
to the qFSLP (.).
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In the following, we shall derive a method for approximating the eigenvalues and the
eigenfunctions at the same time similar to the technique in [, ]. The proof follows in six
steps.

Step . First let us point out that functional J defined in (.) is bounded from below.
Indeed, since p, wα are positive on Aq,a,

J(y) =
∫ a



[
p(x)

(cDα
q,+ y

) + r(x)y]

≥ inf
x∈Aq,a

r(x)
wα(x)

∫ a


wα(x)y(x) dqx

= inf
x∈Aq,a

r(x)
wα(x)

=: M > –∞.

According to the Ritz method [], p., we approximate a solution of (.)-(.) using
the following q-trigonometric functions with the coefficients depending on wα :

ym(x) =
√wα

m∑
k=

βk√
μk

Sq

(
wkx

a

)
. (.)

Observe that ym() = ym(a) = . By substituting (.) into (.) and (.) we obtain

Jm(β, . . . ,βm) = Jm
(
[β]

)

=
m∑

k,j=

βjβk√
μj

√
μk

∫ a



[
p(x)cDα

q,+
Sq( wk x

a )√wα

cDα
q,+

Sq( wjx
a )√wα

+
r(x)

wα(x)
Sq

(
wkx

a

)
Sq

(
wjx
a

)]
dqx (.)

subject to the condition

Im(β,β, . . . ,βm) = Im
(
[β]

)
=

a√q


m∑
k=

β
k = . (.)

The functions defined in (.) and (.) are functions of the m variables β,β, . . . ,βm.
Thus, in terms of the variables β, . . . ,βm, our problem is to minimize Jm(β,β, . . . ,βm) on
the surface σm of the m dimensional sphere defined in (.). Since σm is a compact set and
Jm(β,β, . . . ,βm) is continuous on σm, Jm(β,β, . . . ,βm) has a minimum λ

m at some point
(β ()

 , . . . ,β ()
m ) of σm. Let

y()
m =

√wα

m∑
k=

β
()
k

μk
Sq

(
wkx

a

)
.

If this procedure is carried out for m = , , . . . , we obtain a sequence of numbers
λ

()
 ,λ()

 , . . . , and a corresponding sequence of functions

y()
 (x), y()

 (x), y()
 (x), . . . .
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Noting that σm is the subset of σm+ obtained by setting βm+ = , while

Jm(β, . . . ,βm) = Jm+(β, . . . ,βm, ),

consequently,

λ
()
m+ ≤ λ()

m . (.)

Increasing the domain of definition of a function can only decrease its minimum. It follows
from (.) and the fact that J(y) is bounded from below that its limit

λ() = lim
m→∞λ()

m

exists.
Step . We shall prove that the sequence (y()

m )m∈N contains a uniformly convergent sub-
sequence. From now on, for simplicity, we shall write ym instead of y()

m . Recall that

λ()
m =

∫ a



[
p(x)

(cDα
q,+ ym

) + r(x)y
m
]

dqx

is convergent, so it must be bounded, i.e., there exists a constant M >  such that

∫ a



[
p(x)

(cDα
q,+ ym

) + r(x)y
m
]

dqx ≤ M, m ∈ N.

Therefore, for all m ∈N we have the inequality

∫ a


p(x)

(cDα
q,+ ym

) dqx ≤ M +
∣∣∣∣
∫ a


r(x)y

m(x) dqx
∣∣∣∣

≤ M + sup
x∈Aq,a

∣∣∣∣ r(x)
wα(x)

∣∣∣∣
∫ a


wα(x)y

m(x) dqx

:= M + sup
x∈Aq,a

∣∣∣∣ r(x)
wα(x)

∣∣∣∣ =: M.

Moreover, since infx∈Aq,a p(x) >  we have

(
inf

x∈Aq,a
p(x)

)∫ a



(cDα
q,+ ym

) dqx ≤
∫ a


p(x)

(cDα
q,+ ym

) dqx ≤ M,

and hence
∫ a



(cDα
q,+ ym

) dqx ≤ M

infx∈Aq,a p(x)
=: M

. (.)

Since ym() = , from (.) and (.)

‖ym‖ =
∥∥Iα

q,+
cDα

q,+ ym
∥∥ ≤ M̃α

∥∥cDα
q,+ ym

∥∥


≤ M̃αM
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for α > /. Hence, (ym)m is uniformly bounded on A∗
q,a. Now we prove that the sequence

(ym)m is equicontinuous. Let x, x ∈ Aq,a. Assume that x < x. Applying the Schwarz in-
equality and (.)

�q(α)
∣∣ym(x) – ym(x)

∣∣
= �q(α)

∣∣Iα
q,+

cDα
q,+ ym(x) – Iα

q,+
cDα

q,+ ym(x)
∣∣

=
∣∣∣∣xα–



∫ x


(qt/x; q)α–

cDα
q,+ ym(t) dqt – xα–



∫ x


(qt/x; q)α–

cDα
q,+ ym(t) dqt

∣∣∣∣
≤

∣∣∣∣xα–


∫ x

x

(qt/x; q)α–
cDα

q,+ ym(t) dqt
∣∣∣∣

+
∣∣∣∣
∫ x



{
xα–

 (qt/x; q)α– – xα–
 (qt/x; q)α–

}cDα
q,+ ym(t) dqt

∣∣∣∣
≤ M

(
xα–



∫ x

x

(qt/x; q)
α– dqt

)/

+ M

(∫ x



(
xα–

 (qt/x; q)α– – xα–
 (qt/x; q)α–

) dqt
)/

.

Since x < x, we have

xα–
 (qt/x; q)α– ≤ xα–

 (qt/x; q)α– for all t < x < x.

Using the inequality

t ≥ t ≥  → (t – t) ≤ t
 – t

,

we obtain
∫ x



(
xα–

 (qt/x; q)α– – xα–
 (qt/x; q)α–

) dqt

≤
∫ x


xα–

 (qt/x; q)
α– dqt –

∫ x


xα–

 (qt/x; q)
α– dqt

=
∫ x

x

xα–
 (qt/x; q)

α– dqt +
∫ x


xα–

 (qt/x; q)
α– dqt

–
∫ x


xα–

 (qt/x; q)
α– dqt

=
∫ x

x

xα–
 (qt/x; q)

α– dqt +
(
xα–

 – xα–


)∫ 


(qξ ; q)

α– dqξ

≤
∫ x

x

xα–
 (qt/x; q)

α– dqt

for α > 
 . Hence, we have

∣∣ym(x) – ym(x)
∣∣ ≤ M

�q(α)
xα–



(∫ x

x

(qt/x; q)
α– dqt

)/

≤ M

�q(α)(qα ; q)∞
xα–


√

x – x ≤ M

�q(α)(qα ; q)∞
(x – x)α– 

 .
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Hence {ym} is equicontinuous. Therefore, from the Arzelà-Ascoli theorem for metric
spaces, a uniformly convergent subsequence (ymn )n∈N exists. It means that we can find
y() ∈ C(A∗

q,a) such that

y() = lim
n→∞ ymn . (.)

Step . From the Lagrange multiplier at [β] = (β ()
 , . . . ,β ()

m ), we have

δ

δβj

[
Jm

(
[β]

)
– λ()

m Im
(
[β]

)]∣∣
[β]=[β()], j = , , . . . , m.

By multiplying each equation by an arbitrary constant cj and summing from  to m, we
obtain

 =
m∑
j=

cj
δ

δβj

[
Jm

(
[β]

)
– λ()

m Im
(
[β]

)]∣∣
[β]=[β()]. (.)

For m ∈N, set

hm(x) :=
√wα

gm(x); gm(x) :=
m∑
j=

cj√
μj

Sq

(
wjx
a

)
.

According to Proposition ., we can choose the coefficients cj such that there exists a
function g satisfying

lim
m→∞ Dk

qgm = Dk
qg (k = , , )

and the convergence is in L
q(A∗

q,a) norm. Hence

lim
m→∞

∥∥Dk
qhm – Dk

qh
∥∥

 =  (k = , , ). (.)

We can write (.) in the form

 =
∫ a



[
p(x)cDα

q,+ ym
cDα

q,+ hm +
(
r(x) – λ

mwα(x)
)
ymhm

]
dqx. (.)

Since ym() = , from (.)

cDα
q,+ ym = Dα

q,+ ym = DqI–α
q,+ ym.

Then replacing cDα
q,+ ym by Dα

q,+ ym in (.) and applying the q-integration by parts rule
(.), we obtain

 = Im

:= –
∫ a


Dqp(x)cDα

q,+ hm(x)
(
I–α

q,+ ym
)
(qx) dqx

–
∫ a


p(qx)Dq

cDα
q,+ hm(x)

(
I–α

q,+ ym
)
(qx) dqx
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+
∫ a



[
r(x) – λ()

m wα(x)
]
ymhm dqx

+ p(x)cDα
q,+ hm(x)I–α

q,+ ym(x)
∣∣x=a
x=.

In the following we shall prove that

I := lim
m→∞ Im

=
∫ a


–Dqp(x)cDα

q,+ h(x)
(
I–α

q,+ y())(qx) dqx

–
∫ a


p(qx)Dq

cDα
q,+ h(x)

(
I–α

q,+ y())(qx) dqx

+ p(x)cDα
q,+ h(x)I–α

q,+ y(x)
∣∣x=a
x= +

∫ a



[
r(x) – λ()wα(x)

]
y()h dqx. (.)

Indeed,

|Im – I|

≤
∫ a



∣∣Dqp(x)
[cDα

q,+ hm(x)
(
I–α

q,+ ym
)
(qx) – cDα

q,+ h(x)
(
I–α

q,+ y())(qx)
]∣∣dqx

+
∫ a



∣∣p(qx)
[
Dq

cDα
q,+ hm(x)

(
I–α

q,+ ym
)
(qx) – Dq

cDα
q,+ h(x)

(
I–α

q,+ y())(qx)
]∣∣dqx

+
∣∣p(x)cDα

q,+ hm(x)I–α
q,+ ym(x) – p(x)cDα

q,+ h(x)I–α
q,+ y()(x)

∣∣x=a
x=

+
∫ a



∣∣[r(x) – λ()
m wα(x)

]
ymhm –

[
r(x) – λ()wα(x)

]
y()h

∣∣dqx. (.)

For the first q-integral in (.), by adding and subtracting the term

Dqp(x)cDα
q,+ h(x)

(
I–α

q,+ ym
)
(qx)

to the integrand, we obtain

∫ a



∣∣Dqp(x)
[cDα

q,+ hm(x)
(
I–α

q,+ ym
)
(qx) – cDα

q,+ h(x)
(
I–α

q,+ y())(qx)
]∣∣dqx

≤ ‖Dqp‖∥∥cDq,+ h
∥∥∞

∥∥(
I–α

q,+ ym
)
(qx) –

(
I–α

q,+ y())(qx)
∥∥



+ ‖Dqp‖MK–α

∥∥cDα
q,+ (hm – h)

∥∥


≤ ‖Dqp‖
q

{∥∥cDq,+ h
∥∥∞

∥∥I–α
q,+ ym – I–α

q,+ y()∥∥
 + MK–α

∥∥cDα
q,+ (hm – h)

∥∥


}
,

where K–α is the constant defined in (.) and M := supm∈N ‖ym‖∞. From (.) and
(.)

lim
m→∞

∥∥ym – y()∥∥ = lim
m→∞‖Dqhm – Dqh‖ = ,

then applying (.)-(.), we obtain

lim
m→∞

∥∥I–α
q,+ ym – I–α

q,+ y()∥∥
 = lim

m→∞
∥∥cDα

q,+ (hm – h)
∥∥

 = 
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and the first q-integral vanishes as m → ∞. As for the second q-integral, we add and
subtract the term p(qx)Dq

cDα
q,+ h(x)(I–α

q,+ ym)(qx). This gives

∫ a



∣∣p(qx)
[
Dq

cDα
q,+ hm(x)

(
I–α

q,+ ym
)
(qx) – Dq

cDα
q,+ h(x)

(
I–α

q,+ y())(qx)
]∣∣dqx

≤ ‖p‖∥∥Dq
cDα

q,+ h
∥∥



∥∥(
I–α

q,+ ym
)
(qx) –

(
I–α

q,+ y())(qx)
∥∥



+ ‖p‖MK–α

∥∥Dq
cDα

q,+ (hm – h)
∥∥



≤ ‖p‖
q

{∥∥Dq
cDα

q,+ h
∥∥



∥∥I–α
q,+ ym – I–α

q,+ y()∥∥
 + MK–α

∥∥Dq
cDα

q,+ (hm – h)
∥∥



}
.

Since Dq
cDα

q,+ f (x) = I–α
q D

qf if Dqf () = , and since limm→∞ ‖D
qhm – D

qh‖ = , from
(.), the second q-integral tends to zero as m tends to ∞. For the next two terms, we
have for x = , a,

(
I–α

q,+ ym
)
(qx) = q–αIα

q,+ ym(qx) → q–αIα
q,+ y()(qx)

resulting from the convergence of the sequence ‖ym – y‖ → , and at the points x = ,
x = a, we obtain

Dα
q,+ hm() → Dα

q,+ h(), Dα
q,+ hm(a) → Dα

q,+ h(a).

Therefore,

∣∣p(x)Dα
q,+ hm(x)I–α

q,+ ym(x) – p(x)Dα
q,+ h(x)I–α

q,+ y()(x)
∣∣x=a
x= = .

Similarly, the last term in the estimation (.) vanishes as m → ∞.
Step . We have

I =
∫ a


p(x)cDα

q,+ y(x)cDα
q,+ h(x) +

(
r(x) – λwα

)
y(x)h(x) dqx = . (.)

Set

γ(x) := p(x)cDα
q,+ y(x),

γ(x) :=
(
r(x) – λwα

)
y(x).

(.)

Thus, since h() = h(a) = ,

I =
∫ a



[(
I–α

q,a–γ
)
(x) – (Iq,+γ)(qx)

]
Dqh(x) dqx = .

Hence, from Lemma . there is a constant c such that

(
I–α

q,a–γ
)
(x) – (Iq,+γ)(qx) = c, ∀x ∈ A∗

q,a. (.)

Acting on the two sides of (.) by – 
q Dq– , we obtain

Dα
q,a–γ(x) + γ(x) = , x ∈ A∗

q,qa.

Hence, y is a solution of the qFSLP.
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Step . In the following, we show that (y()
m )m∈N itself converges to y(). First, from Theo-

rem . of [], for a given λ the solution of

[
Dα

q,a– p(x)cDα
q,+ y + r(x)

]
y(x) = λwα(x)y(x), (.)

subject to the boundary conditions

y() = y(a) =  (.)

and the normalization condition
∫ a


wα(x)y(x) dqx = , (.)

is unique except for a sign. Let us assume that y() solves (.) and the corresponding
eigenvalue is λ = λ(). Suppose that y() is nontrivial, i.e., there exists x ∈ A∗

q,qa such that
y(x) �=  and choose the sign so that y()(x) > . Similarly, for all m ∈N, let y()

m solve (.)
with corresponding eigenvalue λ = λ

()
m , and let us choose the sign so that y()

m (x) ≥ . Now,
suppose that (y()

m ) does not converge to y(). It means that we can find another subsequence
of y()

m such that it converges to another solution ỹ(). But for λ = λ(), the solution of (.)-
(.) is unique except for a sign, hence

ỹ() = –y()

and we must have ỹ()(x) < . However, this is impossible because for all m ∈ N,
y()

m (x) ≥ . This is a contradiction, hence the solution is unique.
Step . In order to find the eigenfunction y() and the corresponding eigenvalue λ(), we

minimize the functional (.) subject to (.) and (.) but now with an extra orthogonality
condition,

∫ a


y(x)y()(x)wα(x) dqx = .

If we approximate the solution by

ym(x) =
√wα

m∑
k=

βk√
μk

Sq

(
wkx

a

)
, ym() = ym(a) = ,

then we again obtain the quadratic form (.). However, admissible solutions are satisfying
(.) together with

a√q


m∑
k=

βkβ
()
k = , (.)

i.e., they lie in the (m – )-dimensional sphere. As before, we find that the function J̃([β])
has a minimum λ

()
m and there exists λ() such that

λ() = lim
m→∞λ()

m ,
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because J(y) is bounded from below. Moreover, it is clear that

λ() ≤ λ(). (.)

The function y()
m defined by

y()
m (x) :=

√wα

m∑
k=

β
()
k√
μk

Sq

(
wkx

a

)
,

achieves its minimum λ
()
m , where β () = (β ()

 , . . . ,β ()
m ) is the point satisfying (.) and

(.). By the same argument as before, we can prove that the sequence (y()
m ) converges

uniformly to a limit function y(), which satisfies the qFSLP (.) with λ(), boundary con-
ditions (.) and orthogonality condition (.). Therefore, the solution y() of the qFSLP
corresponding to the eigenvalue λ() exists. Furthermore, because orthogonal functions
cannot be linearly dependent, and since only one eigenfunction corresponds to each eigen-
value (except for a constant factor) we have the strict inequality

λ() < λ()

instead of (.). Finally, if we repeat the above procedure with similar modifications, we
can obtain the eigenvalues λ(),λ(), . . . and the corresponding eigenvectors y(), y(), . . . .

�

5.1 The first eigenvalue
Definition . The Rayleigh quotient for the q-fractional Sturm-Liouville problem (.)-
(.) is defined by

R(y) :=
J(y)
I(y)

,

where J(y) and I(y) are given by (.) and (.), respectively.

Theorem . Let y be a non-zero function satisfying y and cDα
q,+ y be in C(Aq,a∗) and

y() = y(a) = . Then y is a minimizer of R(y) and R(y) = λ if and only if y is an eigenfunction
of problem (.)-(.) associated with λ. That is, the minimum value of R at y is the first
eigenvalue λ().

Proof First, we prove the necessity. Assume that y is a non-zero minimizer of R(y) and
R(y) = λ. Consider the one parameter family of curves

y = y + hη, |h| ≤ ε,

where η and cDα
q,+ are C(A∗

q,a) functions and η() = η(a) =  and η �= . Define functions
φ, ψ , ξ on [–ε, ε] by

φ(h) := I(y + hη), ψ(h) := J(y + hη), ξ (h) = R(y + hη) =
ψ(h)
φ(h)

, h ∈ [–ε, ε].
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Hence ξ is C function on [–ε, ε]. Since ξ () = R(y),  is a minimum value of ξ . Conse-
quently, ξ ′

i () = . But

ξ ′(h) =


φ(h)

(
ψ ′(h) –

ψ(h)
φ(h)

φ′(h)
)

and

ψ ′() = 
∫ a



[
p(x)cDα

q,+ ycDα
q,+η + r(x)yη

]
dqx,

φ′() = 
∫ a


wα(x)y(x)η(x) dqx,

ψ()
φ()

= R(y) = λ.

Therefore,

ξ ′() =


I(y)

(∫ a



[
p(x)cDα

q,+ ycDα
q,+η +

(
r(x)y – λwα

)
η
]

dqx
)

.

Using (.), we obtain

∫ a



[
Dα

q,a– p(x)cDα
q,+ y(x) +

(
r(x) – λ

)
wα(x)y(x)

]
η(x) dqx = .

Applying Lemma ., we obtain

Dα
q,a– p(x)cDα

q,+ y(x) + r(x)y(x) = λwα(x)y(x), x ∈ A∗
q,qa.

This proves the necessity. Now we prove the sufficiency. Assume that y is an eigenfunction
of (.)-(.) associated with an eigenvalue λ. Then

Dα
q,a– p(x)cDα

q,+ y(x) + r(x)y(x) = λwα(x)y(x), x ∈ A∗
q,qa. (.)

Multiplying (.) by y and calculating the q-integration from  to a, we obtain

∫ a



[
y(x)Dα

q,a– p(x)cDα
q,+ y(x) + r(x)y(x)

]
dqx = λ

∫ a


wα(x)y(x) dqx.

Since y �= ,
∫ a

 wα(x)y(x) dqx >  and

∫ a
 [y(x)Dα

q,a– p(x)cDα
q,+ y(x) + r(x)y(x)] dqx∫ a

 wα(x)y(x) dqx
= λ.

That is, R(y) = λ. Therefore, any minimum value of J is an eigenvalue and it is attained
at the associated eigenfunction. Therefore the minimum value of J is the smallest eigen-
value. �
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6 Conclusion and future work
This paper is the first paper that deals with variational problems of functionals defined in
terms of Jackson q-integral on a finite domain and where the left-sided Caputo q-derivative
appears in the integrand. We give a fractional q-analog of the Euler-Lagrange equation
and a q-isoperimetric problem is defined and solved. We use these results in recasting
the qFSLP under consideration as a q-isoperimetric problem, and then we solve it by a
technique similar to the one used in solving regular Sturm-Liouville problems in [] and
fractional Sturm-Liouville problems in []. This completes the work started by the au-
thor in [], and it generalizes the study of integer Sturm-Liouville problem introduced
by Annaby and Mansour in [, ]. A similar study for the fractional Sturm-Liouville prob-
lem

cDq,a– p(x)Dα
q,+ y(x) + r(x)y(x) = λwα(x)y(x)

is in progress.
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