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Anti-tumor effects of retinoids combined with
trastuzumab or tamoxifen in breast cancer cells:
induction of apoptosis by retinoid/trastuzumab

combinations
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Abstract

and/or ER may have enhanced anti-tumor effects.

and receptor signaling were performed.

in trastuzumab-resistant BT474 cells.

Introduction: HER2 and estrogen receptor (ER) are important in breast cancer and are therapeutic targets of
trastuzumab (Herceptin) and tamoxifen, respectively. Retinoids inhibit breast cancer growth, and modulate
signaling by HER2 and ER. We hypothesized that treatment with retinoids and simultaneous targeting of HER2

Methods: The effects of retinoids combined with trastuzumab or tamoxifen were examined in two human breast
cancer cell lines in culture, BT474 and SKBR3. Assays of proliferation, apoptosis, differentiation, cell cycle distribution,

Results: In HER2-overexpressing/ER-positive BT474 cells, combining all-trans retinoic acid (atRA) with tamoxifen or
trastuzumab synergistically inhibited cell growth, and altered cell differentiation and cell cycle. Only atRA/
trastuzumab-containing combinations induced apoptosis. BT474 and HER2-overexpressing/ER-negative SKBR3 cells
were treated with a panel of retinoids (atRA, 9-cis-retinoic acid, 13-cis-retinoic acid, or N-(4-hydroxyphenyl)
retinamide (fenretinide) (4-HPR)) combined with trastuzumab. In BT474 cells, none of the single agents except 4-
HPR induced apoptosis, but again combinations of each retinoid with trastuzumab did induce apoptosis. In
contrast, the single retinoid agents did cause apoptosis in SKBR3 cells; this was only modestly enhanced by
addition of trastuzumab. The retinoid drug combinations altered signaling by HER2 and ER. Retinoids were inactive

Conclusions: Combining retinoids with trastuzumab maximally inhibits cell growth and induces apoptosis in
trastuzumalb-sensitive cells. Treatment with such combinations may have benefit for breast cancer patients.

Introduction

HER2 and estrogen receptor (ER) play critical roles in
the clinical care of breast cancer patients as both prog-
nostic factors and therapeutic targets. Approximately
25% of invasive breast tumors have overexpression/
amplification of HER2, which is an adverse prognostic
factor [1,2]. Trastuzumab (Herceptin), a humanized
monoclonal antibody against the extracellular domain of
HER2 [3-5], has shown significant therapeutic benefit in
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the treatment of patients with HER2-overexpressing
breast cancer [6-20]. Approximately 60% of primary
breast cancers are ER-positive [21,22]. The selective ER
modulator tamoxifen is highly effective standard therapy
for all stages of endocrine-responsive breast cancer.
Retinoids inhibit growth of breast cancer cell lines in
culture and inhibit breast tumor growth in animal mod-
els. Retinoid signals are mediated through the retinoic
acid receptors (RARs) and the retinoid X receptors
(RXRs), with each family represented by three distinct
receptor genes designated o, B, and y [23-25]. All-trans
retinoic acid (atRA) preferentially binds RARs but not
RXRs [23-25]; however, atRA can be converted
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intracellularly to 9-cis-retinoic acid (9-cis-RA), an RXR
ligand [26]. 9-cis-RA and 13-cis-RA bind both RARs and
RXRs. N-(4-hydroxyphenyl) retinamide (4-HPR, fenreti-
nide) is a synthetic analog of atRA [23-25] that has also
shown anti-tumor activity, but may have differing
mechanisms of action. Following stimulation by reti-
noids, RAR-RXR heterodimers and RXR-RXR homodi-
mers can form [23-25]. The receptor dimers bind to
retinoic acid response elements or retinoid X response
elements in the promoter sequences of target genes, and
they modulate gene transcription [23-25].

Effects of retinoids on signaling by ER and HER2 have
been reported. Inhibition of breast tumor cell growth by
retinoids is greater for ER-positive cells than ER-nega-
tive cells [27], which may be partly related to alterations
in retinoid metabolism [28]. Some studies have found
that RA increased the amount of ER in MCF7 breast
cancer cells [29], although others reported that RA
downregulated ER in this cell line [30]. Regardless, acti-
vated RARs have been observed to exert anti-estrogenic
effects by directly or indirectly impairing binding of ER
to estrogen response elements (EREs) [31]. Conversely,
the N-terminal region of ERa. modulates the transcrip-
tional activity of RAR [32].

Both RARa and RARP have been implicated in the
anti-proliferative effects of retinoids against breast can-
cer. RARo expression is correlated positively with ER
and with RA sensitivity, and is inducible by estrogen
[27]. RARP has been ascribed tumor suppressor-type
activity and is often down regulated in breast cancer; it
is inducible by atRA, and inducibility correlates with
atRA sensitivity [27]. In both ER-positive T47D cells
and ER-negative SKBR3 cells, some evidence suggests
that RARa is the receptor solely sufficient for the
growth inhibition, cell cycle arrest, apoptosis, and mod-
ulation of RAR levels [33].

Inhibition of breast cancer cell growth by atRA and 4-
HPR has been associated with downregulation of HER2;
while atRA induced morphologic changes consistent
with differentiation, 4-HPR induced those of apoptosis
[34]. Another study demonstrated that RA can induce
differentiation of cultured breast tumor cells, and this
was again associated with reduction in cell surface
HER2 [35]. atRA and 9-cis-RA caused decreases in
HER2 and HER3, and inhibited SKBR3 cell growth with
cell cycle arrest and induction of apoptosis [36], and the
retinoids downregulated HER4 in T47D cells [37]; atRA
also downregulated HER2 and HER3 in MCF cells [38].
4-HPR was reported in another study to downregulate
both HER2 and the epidermal growth factor receptor
(EGFR, HER1) [39]. In contrast, stimulation of SKBR3
cells with epidermal growth factor or heregulin B1
(HRGPB1) upregulates RARa expression [40], yet resis-
tance to atRA-induced growth inhibition has been
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reported for HER2-overexpressing breast cancer cells
(either HER2-transfected MCF7 cells or naturally over-
expressing BT474 or MDA-MB-453 cells); pretreatment
for several days with trastuzumab could sensitize these
latter two cell lines to inhibition by atRA [41,42]. Tras-
tuzumab treatment increased RA response element
binding activity measured by electrophoretic mobility
shift assay in a HER2-overexpressing cell line [41]. Co-
amplification of RARa with HER2 has been reported in
human breast tumors [43]. Finally, retinoids have been
found to delay the onset of mammary tumors in HER2
transgenic mice [44,45], and a selective ER modulator/
rexinoid combination was synergistic in the prevention
or treatment of such tumors, despite the ER-negative
status of such tumors [46].

Given the known interactions of retinoids with ER and
HER?2, we hypothesize that treatment with retinoids and
simultaneous targeting of HER2 and/or ER may be a
fruitful approach to treating breast cancer. As models,
we have used ER-positive (BT474) and ER-negative
(SKBR3) HER2-overexpressing human breast cancer cell
lines. In the present article we examine the effects of
various retinoids (atRA, 9-cis-RA, 13-cis-RA, and 4-
HPR), trastuzumab, tamoxifen, or combinations of these
drugs on proliferation, cell cycle, differentiation, and
apoptosis in BT474 and SKBR3 cells. Since retinoids,
trastuzumab, and tamoxifen are individually agents that
possess anti-tumor activity toward breast cancer, combi-
nations of these drugs may translate into improved ther-
apy for breast cancer patients. We report synergistic
inhibition of cell proliferation for combinations of these
drugs, but apoptosis-inducing activity only of the reti-
noid/trastuzumab combinations.

Materials and methods

Drugs

Trastuzumab (Herceptin) was a gift from Genentech
(South San Francisco, CA, USA), supplied as a stock
solution in PBS. Tamoxifen citrate, atRA, 9-cis-RA, 13-
cis-RA, and 4-HPR were purchased from Sigma-Aldrich
(St Louis, MO, USA); stock solutions of these drugs
were prepared in 100% ethanol (EtOH) and were kept
light-protected. HRGB1 was purchased from R&D Sys-
tems (Minneapolis, MN, USA) and was reconstituted in
PBS.

Cell culture

BT474 cells [47] and SKBR3 cells were obtained from
American Type Culture Collection (Manassas, VA,
USA). BT474 cells - which are ER-positive, estrogen
dependent, and HER2 overexpressing [48-50] - were cul-
tured in RPMI 1640 medium (GIBCO, Grand Island,
NY, USA) supplemented with 10% heat-inactivated FBS
(GIBCO), 2 mM l-glutamine (GIBCO), 10 ug/ml bovine
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insulin (Sigma-Aldrich), and penicillin/streptomycin
(GIBCO) at 37°C in a 5% carbon dioxide/95% air-humi-
dified incubator. SKBR3 cells - which are ER-negative
and HER2 overexpressing - were cultured in McCoy’s
5A medium with l-glutamine (GIBCO) supplemented
with 15% FBS (GIBCO) and penicillin/streptomycin
(GIBCO).

WST-1 colorimetric cell proliferation assay

BT474 cells or SKBR3 cells were seeded in 96-well
plates at 10,000 or 5,000 cells per well, respectively. On
the following day, the cells were treated with vehicle
(EtOH + PBS) or drug(s). In each independent experi-
ment, eight replicate wells of cells were used for each
treatment. On day 6 following treatment, the WST-1
proliferation assay was performed according to the pro-
tocol provided by the manufacturer (Roche Applied
Science, Indianapolis IN, USA). Results are expressed as
a percentage of control (vehicle-treated cells).

Analysis of drug interactions

Drug interaction results from the WST-1 proliferation
assay were examined by the method of Chou and Tala-
lay [51] using the commercially available software Cal-
cuSyn [52,53] (Biosoft, Ferguson, MO, USA). The Chou-
Talalay method is based on the median-effect equation
for the dose-effect relationship:

folf,=(D/Dy)m
which can be linearly transformed as:
log (f, /#,)=mlog(D)-mlog (D)

where f, is the fraction affected, f, is the fraction unaf-
fected, D is the dose, D, is the dose that produces a
median effect (IC50), and m is the coefficient signifying
the sigmoidicity of the curve (or the slope in a linear
transformation).

For examining the effect of multiple drugs, a combina-
tion index (CI) is calculated based on the doses that
have equivalent effects. The formula used for calculating
the CI of two drugs is:

Cl=(D1c/D1)+(D2c/D2)

and the formula used for determining the CI of three
drugs is:

Cl=(D1c/D1)+(D2c/D2)+(D3c/D3)

where D1, D2, and D3 are the doses for each drug
alone that inhibit a certain percentage, and D1c, D2c,
and D3c are the doses for each drug in a combination
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that inhibit the same percentage. The CI is a quantita-
tive measurement of the degree of interaction between
two or more drugs: CI < 1 indicates synergism between
the drugs, CI = 1 indicates additivity, and CI > 1
denotes antagonism.

Analysis of cell cycle and detection of apoptosis by
determination of sub-G; DNA peak

BT474 cells or SKBR3 cells were seeded in 25 cm?® flasks
at 1 x 10° or 0.5 x 10° cells per flask, respectively. On
the following day, the cells were treated with vehicle
(EtOH + PBS) or drug(s). At designated time points,
floating cells in the growth media were collected, and
adherent cells were trypsinized and collected. The
pooled floating and adherent cells were washed twice
with cold PBS. The washed cells were then resuspended
in 2 ml of cold PBS, fixed by three stepwise additions of
2 ml each of cold 95% EtOH, and were stored at 4°C.
For analysis of cell cycle and sub-G; DNA peak [54],
the fixed cells were pelleted by centrifugation, incubated
with 1 mg/ml ribonuclease A (Sigma-Aldrich) in PBS at
37°C for 30 minutes, and stained on ice with 50 pg/ml
propidium iodide (Sigma-Aldrich) in PBS for 1 hour.
The cell cycle distribution (percentages of cells in the
Go/Gy, S, and G,/M phases) and the percentage of cells
in the sub-G; DNA peak were determined by flow
cytometry.

Detection of apoptosis by annexin V assay

BT474 cells were seeded in 25 cm? flasks at 10° cells per
flask. On the following day, cells were treated with drugs
or vehicle. At designated time points, floating cells in
the growth media were collected, and adherent cells
were trypsinized and collected. The pooled floating and
adherent cells were washed with cold PBS. The cells
were then stained using Vybrant Apoptosis Assay Kit #2
(Molecular Probes, Eugene, OR, USA). Briefly, the cells
were incubated with Alexa Fluor 488 annexin V and
propidium iodide in 1x Annexin-Binding Buffer (pro-
vided with the kit) for 15 minutes at room temperature.
The percentages of annexin V-positive and propidium
iodide-positive cells were determined by flow cytometry.

Detection of differentiation by Nile red staining of neutral
lipids

BT474 cells or SKBR3 cells were seeded in 25 cm?® flasks
at 1 x 10° or 0.5 x 10° cells per flask, respectively. On
the following day, the cells were treated with vehicle
(EtOH + PBS), or drug(s). On day 6 following treatment,
the cells were collected by trypsinization, washed with
PBS, and stained with 100 ng/ml Nile red fluorescent
dye (Sigma-Aldrich) in PBS for 5 minutes at room tem-
perature. The stained cells were then washed twice with
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PBS, resuspended in PBS, and analyzed by flow cytome-
try [55].

Immunoblot experiments

Immunoblotting was performed on cell extracts by stan-
dard techniques using the following antibodies. Antibo-
dies to RARa (sc-551), RARB (sc-552), RXRa (sc-553),
RXRpB (sc-742) and HER2 (sc-284) were from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Antibodies
to AKT, phospho-AKT, mitogen-activated protein
kinase (MAPK) and phospho-MAPK were from Cell Sig-
naling Technology (Beverly, MA, USA). Antibody to
phospho-HER2 (Tyr-1248) (c-erbB-2/HER-2/neu phos-
pho-specific Ab-18) was from NeoMarkers (Fremont,
CA, USA) and antibody to actin was from Sigma (St
Louis, MO, USA).

Measurement of estrogen receptor transcriptional activity
by dual luciferase reporter assay

BT474 cells were seeded in six-well plates at 10° cells
per well. On the following day, the cells were transiently
co-transfected with Renilla luciferase reporter vector
plasmid pRL-CMV (Promega, Madison, WI, USA) (a
control to normalize for transfection efficiency) and a
plasmid containing three consensus EREs fused to a fire-
fly luciferase reporter vector (3 x ERE-TATA-Luc)
described previously [56,57] using the TransFast trans-
fection reagent (Promega) according to the manufac-
turer’s protocol. Briefly, each well of cells was incubated
at 37°C for 30 minutes in serum-free RPMI media con-
taining 1,000 ng 3 x ERE-TATA-Luc reporter vector, 20
ng Renilla luciferase reporter vector pRL-CMV, and
TransFast transfection reagent. Following incubation,
the transfection mixture was removed, and normal
growth media (including 10% FBS without charcoal
stripping) was added to the cells, followed immediately
by addition of experimental drugs. Drug treatment was
with vehicle (EtOH + PBS), 1 uM Faslodex, 1 uM atRA,
1 pg/ml trastuzumab, 1 uM tamoxifen, or the various
drug combinations at the same concentrations. Two
days following transfection and treatment, the dual luci-
ferase reporter assay was performed using the Promega
Dual Luciferase Reporter Assay System according to the
manufacturer’s protocol. The firefly luciferase activities
of the treated cells were normalized to their Renilla luci-
ferase activities and are expressed as a percentage of
activity of untreated cells.

Production of trastuzumab-resistant BT474 cells
Trastuzumab-resistant BT474 cells were selected as
described [58] by long-term culture in media containing
trastuzumab at 100 pg/ml. Cells were maintained in the
same trastuzumab-containing media unless otherwise
indicated.
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Results

Analysis of interactions between atRA, trastuzumab, and
tamoxifen on cell proliferation
ER-positive/HER2-overexpressing BT474 cells were trea-
ted with atRA, trastuzumab or tamoxifen at a range of
doses (0.2 to 10 uM for atRA and tamoxifen, and 0.2 to
10 pg/ml for trastuzumab) and with various combina-
tions of the three drugs at fixed dose ratios. On day 6
following treatment, the effects of the single agents and
drug combinations on BT474 cell growth were exam-
ined by the WST-1 proliferation assay. The results from
WST-1 assays were expressed as a percentage of control
growth, and drug interactions were analyzed by the
Chou-Talalay method.

Each single agent demonstrated dose-dependent inhi-
bition of cell proliferation (Tables 1, 2, 3 and 4). All
combinations of atRA/trastuzumab, of atRA/tamoxifen,
of trastuzumab/tamoxifen (except a dose of 0.2 uM),
and of the atRA/trastuzumab/tamoxifen triple combina-
tion examined were synergistic (most were strongly
synergistic with CI < 0.3 or very strongly synergistic
with CI < 0.1) (Tables 1, 2, 3 and 4).

Analysis of cell cycle following drug treatment

The cell cycle distribution of BT474 cells was analyzed
following treatment with single agents or various combi-
nations of atRA, tamoxifen or trastuzumab. Each drug
individually is known to cause G cell cycle accumula-
tion. Compared with untreated cells and vehicle-treated
cells, single agents and various combinations of the
three drugs led to an enhanced accumulation of cells in
the Go/G; phase coupled with a reduction of cells in the
S phase of cell cycle (Figure 1). In general, the drug
combinations produced lower percentage of cells in the
S phase than did single agents.

Analysis of differentiation following drug treatment
Differentiation of BT474 cells was determined by Nile
red fluorescent dye staining of neutral lipids on day 6

Table 1 WST-1 proliferation assay for BT474 cells treated
with atRA and trastuzumab

Fraction affected

Dose atRA Trastuzumab atRA + Combination
Tzmab index
0.2 0.17 £ 0.052 026 £ 0009 056 + 0021 0.19 + 0.057
04 028 £ 0056 051 £0006 079 +£ 0037 001 + 0.003
06 0.33 £ 0.058 058 £ 0012 083+ 0049 001 + 0.007
1 046 £ 0.046 062 £0026 086+ 0042 001 + 0.005
5 052 £ 0061 064 £ 0023 085+ 0052 007+ 0046
10 0.55 + 0.058 066 + 0030 087 + 0048 0.10 + 0.067

Doses of all-trans retinoic acid (atRA) and trastuzumab (Tzmab) in uM and pg/
ml, respectively. Each value is the mean of three independent experiments
(with eight replicate wells for each treatment) + standard error.
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Table 2 WST-1 proliferation assay for BT474 cells treated
with atRA and tamoxifen

Fraction affected

Dose atRA Tamoxifen atRA + Tam Combination index
0.2 021 £ 0012 0.16 +£ 0059 033 + 0015 053 £ 0.099
04 0.26 + 0075 023 + 0049 046 + 0020 0.27 £ 0.066
0.6 037 £ 0026 029 £ 0075 051 £0035 024+ 0.062
1 047 £ 0043 033 £0.032 060 £ 0027 0.16 £ 0.048
5 051 + 0067 042 +0.029 062 + 0050 0.64 + 0072
10 0.53 £ 0071 059 + 0045 069 + 0050 0.61 £ 0.106

Doses of all-trans retinoic acid (atRA) and tamoxifen (Tam) in uM. Each value
is the mean of three independent experiments (with eight replicate wells for
each treatment) + standard error.

following treatment with HRGB1 (positive control), sin-
gle agents, or various combinations of atRA, tamoxifen
or trastuzumab. Compared with untreated and vehicle-
treated cells, HRGB1, single agents, or various drug
combinations led to an increase in neutral lipid produc-
tion (Figure 2). Treatment with the atRA/trastuzumab,
trastuzumab/tamoxifen, and atRA/trastuzumab/tamoxi-
fen combinations resulted in greater neutral lipid pro-
duction than the respective single agents alone (P <
0.05) (Figure 2). The triple combination induced the
greatest degree of differentiation (P < 0.05) (Figure 2).

Analysis of apoptosis following drug treatment

To detect apoptotic cells, both floating and adherent
BT474 cells were examined by annexin V staining and
sub-G; DNA peak analysis following treatment with sin-
gle agents or various combinations of the three drugs.
Both annexin V staining and sub-G; DNA peak analysis
demonstrate that only the atRA/trastuzumab and atRA/
trastuzumab/tamoxifen combinations induced apoptosis
(Figure 3). The atRA/trastuzumab combination resulted
in 3%, 9%, and 16% annexin V-positive cells (Figure 3a),
and in 3%, 13%, and 26% cells in the sub-G; DNA peak
(Figure 3b) on days 2, 4, and 6, respectively. The atRA/
trastuzumab/tamoxifen combination induced the

Table 3 WST-1 proliferation assay for BT474 cells treated
with trastuzumab and tamoxifen

Fraction affected

Dose Trastuzumab Tamoxifen Tzmab + Combination
Tam index
0.2 027 £ 0006 0.20 + 0.028 039 £ 0020 127 +£0212
04 049 £0009 021 £0022 060 £ 0.038 026 £ 0.072
06 058 +0012 034+ 0040 069 £ 0026 0.13 £ 0.027
1 064 +£ 0017 036 + 0021 0.75 £ 0021 0.10 £ 0.017
5 066 +£ 0012 048 + 0015 0.82 £ 0022 0.19 £ 0.047
10 068 + 0012 064 + 0012 090 + 0012 007 £ 0016

Doses of trastuzumab (Tzmab) and tamoxifen (Tam) in pg/ml and uM,
respectively. Each value is the mean of three independent experiments (with
eight replicate wells for each treatment) + standard error.
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greatest percentage of apoptotic cells (3%, 11%, and 25%
annexin V-positive cells, and 3%, 13%, and 36% cells in
the sub-G; DNA peak on days 2, 4, and 6, respectively)
(Figure 3). Therefore, while neither the single agents nor
the atRA/tamoxifen or trastuzumab/tamoxifen combina-
tions induced apoptosis, the atRA/trastuzumab and
atRA/trastuzumab/tamoxifen combinations did result in
apoptosis.

Given the unique ability of the atRA/trastuzumab
combination to induce apoptosis in ER-positive BT474
cells, and the known interaction between retinoids and
ER signaling discussed above, it was of interest to
extend these experiments to ER-negative/HER2-overex-
pressing cells. In addition, it was of interest to compare
the effects of other retinoids to those of atRA.

Effect of other retinoids with trastuzumab on cell
proliferation of ER-positive and ER-negative cells
HER2-overexpressing ER-positive/BT474 cells or ER-
negative/SKBR3 cells were treated with each of the fol-
lowing single agents: 1 pg/ml trastuzumab, 1 uM atRA,
1 pM 9-cis-RA, 1 puM 13-cis-RA, 1 uM 4-HPR, 2.5 pM
4-HPR, or 5 pM 4-HPR - or with trastuzumab/retinoid
combinations. On day 6 following treatment, the effects
of the single agents and drug combinations on BT474
or SKBR3 cell growth were examined by the WST-1
proliferation assay. The results from WST-1 assays were
expressed as a percentage of untreated cells. The combi-
nations of trastuzumab with the various retinoids
showed greater growth inhibition than the single agents
alone in both BT474 cells (Figure 4a) and SKBR3 cells
(Figure 4b) - with the exception of 4-HPR, which
showed minimal ability to enhance trastuzumab-
mediated growth inhibition in both cell lines.

Effect of other retinoids with trastuzumab on cell cycle of
ER-positive and ER-negative cells

The cell cycle distribution of BT474 cells or SKBR3 cells
was analyzed on day 2 following treatment with single
agents or combinations of the drugs. Each drug indivi-
dually is known to cause G; cell cycle accumulation.

In BT474 cells, compared with untreated cells and
vehicle-treated cells, the single agents trastuzumab and
4-HPR, and the combinations of trastuzumab with the
various retinoids, led to an enhanced accumulation of
cells in the Gy/G; phase coupled with a reduction of
cells in the S phase of the cell cycle (Figure 5). In gen-
eral, the drug combinations produced a lower percen-
tage of cells in the S phase than did single agents alone
in BT474 cells (Figure 5).

In SKBR3 cells, all single agents resulted in a reduced
S phase (4-HPR required higher concentrations),
although there was only a modest effect of adding tras-
tuzumab to 4-HPR and no additional effect of adding
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Table 4 WST-1 proliferation assay for BT474 cells treated with atRA, trastuzumab, and tamoxifen

Fraction affected

Dose atRA Trastuzumab Tamoxifen atRA + Tzmab + Tam Combination index
02 020 £ 0.028 024 + 0017 0.10 £ 0.063 058 = 0.017 015+ 0014
04 029 + 0.041 048 + 0.032 0.15 + 0.036 0.84 + 0.007 0.01 + 0001
06 0.37 + 0023 0.58 + 0.012 025 + 0.087 089 + 0.010 0.01 + 0001
1 046 + 0.046 0.63 + 0.023 029 + 0.055 0.90 + 0.006 0.01 + 0.003
5 0.55 + 0.038 0.65 + 0.015 0.37 £ 0.055 0.89 + 0.009 0.06 = 0.011
10 0.57 + 0.041 0.66 + 0.030 0.59 £ 0.048 0.90 + 0.003 0.09 + 0.020

Doses of all-trans retinoic acid (atRA), trastuzumab (Tzmab), and tamoxifen (Tam) in uM, pg/ml, and pM, respectively. Each value is the mean of three
independent experiments (with eight replicate wells for each treatment) + standard error.

trastuzumab to the other retinoids (Figure 5). Unlike the
BT474 cells, none of the drugs or their combinations
had a significant impact on the G; phase in SKBR3
cells; rather, the retinoids (excluding 4-HPR) caused an
increase in the G,/M phase, which was just slightly
enhanced by addition of trastuzumab to any of the reti-
noids (Figure 6).

Effect of other retinoids with trastuzumab on
differentiation of ER-positive and ER-negative cells
Differentiation of BT474 cells or SKBR3 cells was deter-
mined by Nile red fluorescent dye staining of neutral
lipids on day 6 following treatment with HRGB1 (posi-
tive control), single agents, or combinations of the
drugs. In BT474 cells, trastuzumab and single retinoid
agents only slightly increased neutral lipid production,
although it was significantly enhanced by adding trastu-
zumab to retinoids (other than 4-HPR) (Figure 7). In

SKBR3 cells, single-agent retinoids induced significantly
greater neutral lipid production, with the exception of
4-HPR; addition of trastuzumab to retinoids, however,
did not enhance the effect of the retinoids, except for 4-
HPR (Figure 7).

Effect of other retinoids with trastuzumab on apoptosis
of ER-positive and ER-negative cells

To detect apoptotic cells, both floating and adherent
BT474 or SKBR3 cells were examined by sub-G; DNA
peak analysis following treatment for 6 days with single
agents or combinations of the drugs. In BT474 cells,
sub-G; DNA peak analysis demonstrated that only the
combinations of trastuzumab with retinoids induced
apoptosis; none of the single agents (except 4-HPR at
higher concentrations) induced apoptosis; and 4-HPR
alone induced apoptosis at concentrations higher than 1
UM (2.5 pm or 5 um), and this was not enhanced by

BT-474 Cells

|:| untreated
1 uM atRA

vehicle

=1 pg/ml Trastuzumab
2 1 uM atRA + 1 pg/ml Tzmab EEH 1 pM atRA + 1 pM Tam
H 1 pg/ml Tzmab + 1 uM Tam 1 uM atRA + 1 pg/ml Tzmab + 1 pM Tam

E 1 uM Tamoxifen

90

80

B |
(=]

307

cell cycle distribution (

G0/G1

Figure 1 Cell cycle analysis. BT474 cells were either untreated or treated with vehicle (ethanol + PBS), 1 uM all-trans retinoic acid (atRA), 1 pg/
ml trastuzumab, 1 uM tamoxifen, 1 UM atRA + 1 pg/ml trastuzumab (Tzmab), T uM atRA + 1 uM tamoxifen (Tam), 1 ug/ml trastuzumab (Tzmab)
+ 1 uM tamoxifen (Tam), or 1T uM atRA + 1 pg/ml trastuzumab (Tzmab) + 1 uM tamoxifen (Tam). On day 2 following treatment, both floating
and adherent cells were collected and fixed. The percentages of cells in the Go/Gy, S, and Go/M phases of the cell cycle were determined by
flow cytometric analyses. Results are mean of three independent experiments + standard error.
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Figure 2 Differentiation of BT474 cells as determined by Nile red staining of neutral lipids. BT474 cells were either untreated or treated
with vehicle (ethanol + PBS), 50 ng/ml heregulin B1, 1 uM all-trans retinoic acid (atRA), 1 pg/ml trastuzumab, 1 uM tamoxifen, T uM atRA + 1
pg/ml trastuzumab (Tzmab), T uM atRA + 1 uM tamoxifen (Tam), 1 ug/ml trastuzumab (Tzmab) + 1 uM tamoxifen (Tam), or T uM atRA + 1 ug/
ml trastuzumab (Tzmab) + 1 uM tamoxifen (Tam). On day 6 following treatment, the cells were collected and stained with the fluorescent dye
Nile red. The fluorescence intensities of the cells were analyzed by flow cytometry and expressed relative to the intensity of the untreated cells.

Results are mean of eight independent experiments + standard error.

trastuzumab (Figure 8). In contrast, the single retinoid
agents did cause apoptosis in SKBR3 cells, with 4-HPR
having a much weaker effect compared with the other
retinoids; the addition of trastuzumab to the retinoids
produced a small enhancement in the induction of
apoptosis (Figure 8).

Effect of drugs on receptor signaling
The effect on receptor signaling of treatment of BT474
cells with atRA, trastuzumab, or both was examined
(Figure 9). Single-agent trastuzumab at 1 pg/ml resulted
in a moderate decrease in total levels of HER2, and, as
expected, a more significant decrease in HER2 activity
as reflected by the level of HER2 autophosphorylation.
Treatment with atRA at 1 pM had no effect on HER2
expression level or the degree of phosphorylation, and,
when added to 1 pg/ml trastuzumab, did not have a sig-
nificant effect on HER2 expression level or activity. Sin-
gle-agent atRA also did not significantly affect AKT or
MAPK expression or activity. Trastuzumab treatment
resulted in partial inhibition of AKT and MAPK activity;
while addition of atRA to trastuzumab had no further
effect on AKT activity, the combination did appear to
result in a small further decrement in MAPK activity.
Single-agent atRA at 1 uM caused a small decrease in
the level of RARa (Figure 9). Trastuzumab at 1 pg/ml
had a similar effect, and the combination resulted in the
greatest decrease in expression level of this receptor.

Treatment with atRA did not appear to affect levels of
RARB, RXRa or RXRf; however, trastuzumab caused a
small decrement in expression of RARB that was
enhanced when combined with atRA (Figure 9).

ER transcriptional activity was examined using an ERE
assay in BT474 cells. Treatment with single-agent atRA
caused a profound inhibition of ERE activity, compar-
able with the ER downregulator Faslodex (Figure 10).
Single-agent trastuzumab caused partial inhibition of
ERE activity comparable with that of tamoxifen, impli-
cating peptide growth factor signaling pathway-driven
ER activation in these cells; however, adding trastuzu-
mab to tamoxifen did not further inhibit ERE activity.
Adding trastuzumab, tamoxifen or both to atRA could
not further inhibit ERE activity beyond that of atRA
treatment alone.

Effect of atRA on growth of trastuzumab-resistant BT474
cells

Given the ability of the atRA/trastuzumab combination
to synergistically induce apoptosis in BT474 cells under
conditions where neither agent alone could do so, it was
of interest to examine the activity of atRA in trastuzu-
mab-resistant BT474 cells. Resistance was induced in
these cells by long-term culture in trastuzumab-contain-
ing media. As shown in Figure 11, atRA did not affect
the growth of trastuzumab-resistant BT474 cells,
whether used in the presence or absence of trastuzumab
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in the media. In fact, removal of trastuzumab from the
media did not affect growth of these cells. Slight growth
inhibition was observed when trastuzumab-resistant
cells were treated with 10 pM of the epidermal growth
factor receptor/HER2 dual tyrosine kinase inhibitor lap-
tinib analog GW2974 in the presence of trastuzumab-
containing media, although this required doses much
greater than those typically required to inhibit growth of
trastuzumab-sensitive cells; the addition of atRA to
GW2974 was not able to enhance growth inhibition
observed with the latter agent alone.

Discussion

HER?2 and ER play critical roles in breast cancer and are
validated therapeutic targets in this disease. Retinoids
have also been shown to inhibit breast cancer growth.

We have demonstrated that combining atRA with tras-
tuzumab, tamoxifen, or both results in strong synergistic
growth inhibition of BT474 human breast cancer cells.
To elucidate the molecular mechanisms underlying this
synergistic growth inhibition, we examined the effects of
single agents and various drug combinations on cell
cycle, differentiation, and apoptosis. We found that
treatment with the atRA/trastuzumab and atRA/trastu-
zumab/tamoxifen combinations caused induction of
apoptosis, which was not observed for single drugs or
the trastuzumab/tamoxifen or atRA/tamoxifen
combinations.

Since we observed that combining atRA with trastuzu-
mab uniquely resulted in apoptosis, we examined the
effects of other retinoids with trastuzumab, in both ER-
positive (BT474) and ER-negative (SKBR3) HER2-
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Figure 4 WST-1 proliferation assay of BT474 cells and SKBR3 cells treated with various retinoid combinations. WST-1 proliferation assay
of (a) BT474 cells or (b) SKBR3 cells either untreated or treated for 6 days with vehicle (ethanol + PBS), trastuzumab (Tzmab), various retinoids,
or their combinations. Results from WST-1 assays are expressed as a percentage of untreated cells. Each value is the mean of three independent
experiments (with eight replicate wells for each treatment) + standard error. atRA, all-trans retinoic acid; 4-HPR, N-(4-hydroxyphenyl) retinamide
(fenretinide); RA, retinoic acid.
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Figure 5 Cell cycle analysis of BT474 cells treated with various retinoid combinations. Cell cycle analysis of BT474 cells either untreated or
treated for 2 days with vehicle (ethanol + PBS), trastuzumab (Tzmab), various retinoids, or their combinations. On day 2 following treatment,
both floating and adherent cells were collected and fixed. Percentages of cells in the (a) Go/G; phase, (b) S phase, and (c) G,/M phase of the
cell cycle were determined by flow cytometric analyses. Results are mean of three independent experiments + standard error. atRA, all-trans
retinoic acid; 4-HPR, N-(4-hydroxyphenyl) retinamide (fenretinide); RA, retinoic acid.

overexpressing human breast cancer cells. We found in
BT474 cells that, while none of the single agents (except
4-HPR) induce apoptosis, the combinations of various
retinoids with trastuzumab also result in apoptosis. In
contrast, the single-agent retinoids (other than 4-HPR)
do induce apoptosis in SKBR3 cells (weakest for 4-
HPR), and adding trastuzumab to the retinoids causes

only a small enhancement of that effect. The pan-reti-
noid receptor agonists 9-cis-RA and 13-cis-RA hence
behave similarly to atRA, while 4-HPR has a different
activity profile. A recent study reported synergistic
growth inhibition and induction of apoptosis for the
combination of trastuzumab and 9-cis-RA in hepatocel-
lular cells [59], suggesting application to a broader range
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Figure 6 Cell cycle analysis of SKBR3 cells treated with various retinoid combinations. Cell cycle analysis of SKBR3 cells either untreated or
treated for 2 days with vehicle (ethanol + PBS), trastuzumab (Tzmab), various retinoids, or their combinations. On day 2 following treatment,
both floating and adherent cells were collected and fixed. Percentages of cells in the (a) Go/G; phase, (b) S phase, and (c) G,/M phase of the
cell cycle were determined by flow cytometric analyses. Results are mean of three independent experiments + standard error. atRA, all-trans
retinoic acid; 4-HPR, N-(4-hydroxyphenyl) retinamide (fenretinide); RA, retinoic acid.

of malignancies; that report demonstrated that trastuzu-  the Go/G; phase of the cell cycle [36,60-65]. Our results
mab inhibited phosphorylation of RXRa and enhanced  confirm these findings. Compared with untreated cells
9-cis-RA-induced RA response element and retinoid X  and vehicle-treated cells, the combinations of trastuzu-
response element activity. mab with various retinoids lead to enhanced accumula-

The single agents employed in our study have been tion of BT474 cells in the Go/G; phase and SKBR3 cells
reported previously to promote accumulation of cells in  in the G,/M phase, coupled with a reduction of cells in
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the S phase. We further demonstrate that the combina-
tions generally lead to a greater reduction of cells in the
S phase of the cell cycle than the respective single
agents in BT474 cells.

Retinoids have also been demonstrated to modulate
breast cancer cell growth through differentiation as well

as apoptosis [34,35], and to cooperate with heregulin to
induce morphologic differentiation (branching morpho-
genesis) in three-dimensional culture [66]. We have
found that the single-agent retinoids, trastuzumab and
tamoxifen, individually induce differentiation but not
apoptosis in BT474 cells. The combinations of various
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Figure 8 Detection of apoptotic BT474 cells or SKBR3 cells treated with various retinoid combinations, determined by sub-G; DNA
peak analysis. (a) BT474 cells or (b) SKBR3 cells were either untreated or treated with vehicle (ethanol + PBS), trastuzumab (Tzmab), various
retinoids, or their combinations. On day 6 following treatment, both floating and adherent cells were collected and examined by sub-G; DNA
peak analysis. Percentages of cells in the sub-G; DNA peak were determined by flow cytometry. Results are mean of three independent
experiments + standard error. atRA, all-trans retinoic acid; 4-HPR, N-(4-hydroxyphenyl) retinamide (fenretinide); RA, retinoic acid.

retinoids and trastuzumab result in greater differentia-
tion than respective single agents in BT474 cells. Com-
pared with untreated cells and vehicle-treated cells, the
single retinoid agents alone induce greater differentia-
tion and greater apoptosis in SKBR3 cells than in BT474
cells. The combinations of various retinoids and trastu-
zumab result in greater apoptosis than, but similar

differentiation as, respective single agents alone in
SKBR3 cells.

The combinations of trastuzumab and various reti-
noids do induce apoptosis in both BT474 cells and
SKBR3 cells. Our findings are consistent with previous
studies that show sensitivity to atRA is decreased in
HER2-overexpressing breast cancer cells [41,42].
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Figure 9 Effect of treatment of BT474 cells on receptor
signaling. Effect of all-trans retinoic acid (atRA), trastuzumab or the
combination on HER2 expression level and activity, on AKT
expression level and activity, on mitogen-activated protein kinase
(MAPK) expression level and activity, and on expression levels of
retinoic acid receptor (RAR)at, RARB, retinoid X receptor (RXR)o. and
RXRB in BT474 cells. Drugs used at indicated concentrations. pHER2,
PMAPK and pAKT, phospho-HER2, phospho-MAPK and phospho-
AKT, respectively.

Consequently, we find that targeting of HER2 by trastu-
zumab in the presence of retinoids induces apoptosis
and greater differentiation in BT474 cells; the potentia-
tion of retinoid-induced apoptosis by trastuzumab was
modest in SKBR3 cells. The capacities of retinoids to
induce differentiation and apoptosis are thus enhanced
when trastuzumab inhibits signaling by HER2. Through
the induction of apoptosis, greater differentiation, and
effects on cell cycle, the combinations of trastuzumab
and various retinoids resulted in greater growth inhibi-
tion than single agents alone in both BT474 cells and
SKBR3 cells.

Numerous previous studies have suggested promise
for the combination of retinoids with anti-estrogens.
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Tamoxifen was found to potentiate the effect of atRA to
inhibit estrogen-induced growth of MCF7 cells [31]. In
a rat carcinogen-induced mammary tumor model, the
rexinoid bexarotene (Targretin) was able to induce com-
plete remission of the majority of established tumors,
and its combination with tamoxifen was more effective
than either alone [67]. In this model, there was also
some evidence that adding the retinoid to tamoxifen
after the development of tamoxifen resistance may
restore some sensitivity to tamoxifen, since response
rates were higher than when tamoxifen was discontin-
ued and Targretin was used instead [68].

A number of clinical trials have explored the thera-
peutic potential of retinoids in breast cancer patients or
as prevention agents. Fenretinide, Targretin, 9-cis-RA,
13-cis-RA and atRA have been examined in clinical
trials. A small phase II trial of 13-cis-RA in 18 heavily
pretreated (chemotherapy and endocrine therapy refrac-
tory) advanced breast cancer patients yielded no objec-
tive responses [69]. Fenretinide had relatively mild and
reversible toxicity in a small phase II trial in patients
with advanced disease but also showed no clinical activ-
ity [70]. A small phase II trial of atRA in patients with
hormone refractory metastatic breast cancer showed it
to be relatively well tolerated, but noted only one partial
response among 14 evaluable patients - although there
was marked interpatient variability in pharmacokinetics
[71]. A large phase III secondary prevention trial using
fenretinide for 5 years after surgical treatment for ductal
carcinoma in situ or stage I breast cancer revealed no
statistically significant effect on the prevention of second
contralateral or ipsilateral breast malignancies in the
group as a whole, or in distant metastases or survival -
although intriguingly there was a reduction of contralat-
eral and ipsilateral breast cancer among premenopausal
patients in the study [72], which may suggest a specific
interaction with estrogen signaling; at 15-year follow up,
the study continued to show the same trend [73].

Given the disappointing results for retinoids as single
agents in advanced disease, combinations with other
agents become of interest. The combinations of tamoxi-
fen with atRA, retinyl acetate, 9-cis-RA, fenretinide, Tar-
gretin and retinyl palmitate have been studied in clinical
trials.

A pilot breast cancer chemoprevention trial using fen-
retinide in combination with tamoxifen is being con-
ducted [74]. This agent is also being tested as secondary
chemoprevention (of contralateral breast cancer) as a
single agent by the Milan group. In patients with
advanced disease in a small phase I trial of the 9-cis-
RA/tamoxifen combination, the dose-limiting toxicities
were headache, hypercalcemia and noncardiogenic pul-
monary edema; and of nine assessable patients, there
was one partial response and one complete response,
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Figure 10 Estrogen receptor transcriptional activity in BT474 cells. Estrogen receptor (ER) transcriptional activity in BT474 cells transiently
co-transfected with 3x ERE-TATA luciferase and CMV-Renilla luciferase vectors following treatment with 1 pM Faslodex, 1 uM all-trans retinoic
acid (atRA), 1 pg/ml trastuzumab (Tzmab), 1 uM tamoxifen (Tam), or their combinations. The firefly luciferase activities of the treated cells have
been normalized to their Renilla luciferase activities and are expressed as a percentage of activity of untreated cells. Results are mean of three
independent experiments + standard error.
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Figure 11 Effect of atRA on growth of trastuzumab-resistant BT474 cells. WST-1 proliferation assay of trastuzumab-resistant BT474 cells
treated for 6 days with 10 uM GW2974, 1 uM all-trans retinoic acid (atRA), or their combination, in the presence or absence of trastuzumab
(Tzmab) in the culture media. Each bar is normalized to the growth of control (C, vehicle-treated) cells in trastuzumab-containing media. Each
value is the mean of three independent experiments (with three replicate wells for each treatment) + standard error.
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both in patients who had ER-positive tumors and pre-
vious tamoxifen therapy [75]. A phase I/II trial of
tamoxifen with or without fenretinide in ER-positive or
PR-positive, previously untreated metastatic breast can-
cer revealed no significant toxicity and improvement or
stabilization of disease in 12 of 15 patients [76]. In a
phase I/II trial of the atRA/tamoxifen combination in
patients with potentially hormone-responsive advanced
disease, the dose-limiting toxicity was headache and der-
matologic toxicity; and two out of seven patients with
measurable disease responded, while seven out of 18
patients with nonmeasurable but evaluable disease had
stable disease [77].

Targretin has been tested in patients with metastatic
breast cancer, as monotherapy and in combination with
tamoxifen for tamoxifen-resistant patients; however,
response rates were low - on the order of 3 to 6%,
although up to 20% of patients had some clinical benefit
[78]. In a phase II study of tamoxifen plus high-dose
retinyl acetate in postmenopausal patients with
advanced breast cancer, toxicity was generally mild and
an overall response rate of 38.5% was reported [79].

In a phase II trial of the fenretinide/tamoxifen com-
bination specifically in advanced disease patients with
ER-negative tumors or patients with ER-positive
tumors previously treated with tamoxifen, no objective
responses were observed although three patients had
prolonged stable disease [80]. A recent report with a 2
x 2 trial design found that either low-dose tamoxifen
or fenretinide could lower risk of breast neoplasms
compared with placebo, but curiously their combina-
tion could not, suggesting potential antagonism,
although the study was underpowered to detect true
differences [81]. A pilot phase II study of IFNB/retinyl
palmitate/tamoxifen in patients with advanced disease
showed a clinical response rate of 55% [82]. No
reported studies have evaluated the therapeutic effects
of a retinoid/trastuzumab combination in a clinical
trial, and our results suggest such a strategy could be
of benefit.

Conclusions

In summary, the combinations of various retinoids with
trastuzumab, tamoxifen, or both shows strong synergis-
tic inhibition of proliferation accompanied by cell-cycle
delay, differentiation, and, for retinoid/trastuzumab
combinations, apoptosis in both ER-positive and ER-
negative human breast cancer cells. The retinoid/trastu-
zumab combination resulted in enhanced inhibition of
MAPK signaling and downregulation of RARa and
RARB. Treatment with a retinoid and simultaneous inhi-
bition of HER2 and/or ER signaling may thus hold pro-
mise as therapy for breast cancer patients.
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