
RESEARCH Open Access

A semantic web framework to integrate cancer
omics data with biological knowledge
Matthew E Holford1*, James P McCusker2, Kei-Hoi Cheung3,4,5, Michael Krauthammer1,2*

From Semantic Web Applications and Tools for Life Sciences (SWAT4LS) 2010
Berlin, Germany. 10 December 2010

Abstract

Background: The RDF triple provides a simple linguistic means of describing limitless types of information. Triples
can be flexibly combined into a unified data source we call a semantic model. Semantic models open new
possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high
throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data
warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint.
With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative
semantic models retrieved from Corvus in the light of systematic biological knowledge.

Results: For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data
from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data,
the other, regulatory networks constructed from transcription factor binding information. These two semantic
models were created in an ad hoc manner but support a common interface for integration with the quantitative
semantic models. Such combined semantic models allow us to pose significant translational medicine questions.
Here, we study the interplay between a cell’s molecular state and its response to anti-cancer therapy by exploring
the resistance of cancer cells to Decitabine, a demethylating agent.

Conclusions: We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely,
that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its
cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar
hypotheses can be developed easily.

Background
The Yale Specialized Program in Research Excellence
(SPORE) in skin cancer is a large translational cancer
project, which aims to accelerate the movement of bio-
logical insights from the “bench to bedside”. The
SPORE collects skin cancer samples from mostly malig-
nant melanoma patients and performs a multitude of
Omics studies, probing the melanoma genome, epigen-
ome, transcriptome and proteome. This data can be
integrated with clinical outcome information to derive

prognostic and predictive biomarkers, i.e. genomic mar-
kers that predict patient survival and drug therapy effec-
tiveness, respectively.
Conventionally, these markers are either derived sta-

tistically in an unbiased fashion [1], or by prior knowl-
edge and candidate (gene) selection [2]. We are
interested in combining these approaches, and are devel-
oping means for unbiased assessment of Omics data
using existing knowledge on cellular processes that
affect drug effectiveness. The representational inclusivity
of semantic models simplifies such heterogeneous meth-
odologies. Here we create semantic models that define
the genomic state of cancer cells and the functional
annotation of the cells’ molecular entities (i.e. genes or
proteins). We query these semantic models using
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SPARQL to better understand the molecular basis of
drug resistance and sensitivity.
We start by retrieving quantitative data from a large

relational database, a component of the Corvus architec-
ture [3], storing melanoma Omics data. To do this, we
created a new semantic component of Corvus, a
SPARQL endpoint which relies upon Hibernate [4] for
Object Relational Mapping (ORM). Through this end-
point, we can dynamically create semantic models of the
data stored within. We can then merge these quantita-
tive semantic models with other semantic models hold-
ing systematic biological information. The Omics data is
thus annotated with functional information, such as
involvement in certain cellular processes, hierarchical
classification or membership in a set of similarly deli-
neated biological entities. Currently, these semantic
models of functional data are (1) SKOS-converted GO
[5] information and (2) representations of transcription
factor binding networks. Though these semantic models
are necessarily ad hoc, they were created to support a
common interface, namely the pointing of annotative
information to a gene or protein specified by a univer-
sally recognized identifier.
As a case study, we used the new Corvus SPARQL

endpoint to create a semantic model of data represent-
ing drug response to Decitabine, a demethylating agent
that has been shown to be clinically active in melanoma
[6]. Using SPARQL, we queried Corvus for melanoma
samples with information on promoter methylation sta-
tus and gene expression before and after Decitabine
treatment. This semantic model is augmented with
functional annotations using the GO and transcription
factor binding network semantic models. The resulting
combined semantic model is then queried to find mole-
cular mechanisms that explain why some samples have
better response to Decitabine treatment than others.
To attain these goals, we needed to build a data struc-

ture that integrated quantitative Omics data with func-
tional information. Our combined data structure
incorporates gene expression and methylation data for
seven melanoma cell lines [7]; it also contains GO anno-
tations for the whole of the human genome and net-
works of genes within the sphere of influence of known
human transcription factors. Expressing this data struc-
ture as a semantic model affords us a number of advan-
tages. First, it provides a way for others to borrow from
and build upon our work. It allows us to use the stan-
dardized SPARQL interface to perform queries that
bridge quantitative and functional knowledge. It also
gives us the capability to infer previously unstated infor-
mation by reasoning over the data with a Semantic Web
aware Description Logic (DL) reasoner. We attempted
wherever possible to borrow terms from well-established
OBO ontologies [8].

Doing so places our work under the auspices of com-
munity defined best practice and allows our model to be
used in conjunction with similarly designed semantic
models. Building the model involved the use of a variety
of cutting-edge Semantic Web technologies and
required the creation of several novel tools. The work
proceeded along three lines: (i). Creation of quantitative
semantic models by conversion of relational data from
melanoma cell lines to RDF/OWL; (ii). Creation of ad
hoc semantic models of functional data to represent
information from GO and transcription factor networks;
and (iii). Integration of the two through the common
interface provided by the semantic models of functional
data.
The integration of quantitative and functional biologi-

cal information to infer relevant new information has
been frequently explored. BioBIKE offers an environ-
ment for users to integrate a wide variety of experimen-
tal and genomic data to reach new conclusions [9].
Originally released as a LISP interactive library [10], the
software is now web-based to accommodate users with-
out programming expertise. When combined with the
BioDeducta module, it enables automated reasoning
[11]. Although BioBIKE makes extensive use of ontolo-
gies, it is not currently Semantic Web enabled. Another
notable example is HyBrow, a tool for the generation
and evaluation of biological hypotheses [12]. Here, the
user can derive hypotheses from HyBrow’s knowledge
base of functional biological information and test them
using various high-throughput data sources. The latest
incarnation, HyQue [13], uses OWL to create a Seman-
tic Web representation of its underlying knowledge
base. Like the work presented here, it allows the testing
of hypotheses against a genomic knowledge base
through SPARQL queries. It does not, however, provide
a direct means of incorporating new quantitative experi-
mental data with its knowledge base.
Chem2Bio2RDF [14] offers a similar integration of

chemical knowledge repositories using Semantic Web
technology. It also offers a SPARQL endpoint, but lacks
the means to incorporate raw experimental data. The
opposite is true of a recent endeavor by Song et al [15].
Here, OWL is used to provide an integrated model of
quantitative microarray data. Like us, they use a
dynamic mapping model (in this case, d2rq [16]) to pro-
vide semantic access to relational data. Their project
currently does not incorporate additional functional
genomic knowledge, however. Additionally, it currently
only supports tissue microarry (TMA) data, whereas
Corvus can potentially store any kind of high-through-
put quantitative biological data. Recent efforts by the
National Cancer Institute as part of the caBIG initiative
[17] have focused on addressing the integration issue
through the use of an Extraction-Transform-Load (ETL)
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strategy. Notably, the caIntegrator2 [18] project uses
ETL to integrate quantitative Omics data from caArray
[19] and functional biological data from caBio [20]. The
Bio2RDF project is notable for providing normalized
Uniform Resource Identifiers (URI)s for a wealth of
identifiers and relationships from functional biology in
the hopes of allowing easier integration of diverse data
sets [21].
Our previous work is discussed in [22]. This paper

offers several significant advances. The functional
knowledge component of our semantic model is
enhanced by inclusion of information about transcrip-
tion factor networks, proving the extensibility of our
interface with existing biological data sources. Data
about transcription factor networks is not typically
included in integrated genomics models. Their inclusion
was facilitated by the transitive reasoning capaiblities of
the Semantic Web technology. We show several new
example applications of our integrated semantic model.
We examine genes potentially targeted by Decitabine in
light of the biological pathways with which those genes
are associated, comparing apoptotic genes with those
genes involved with a divergent process - cell prolifera-
tion. Additionally, we try to find Decitabine-targeted
genes that express particular transcription factors. In all
cases, we use statistical tests to evaluate the significance
of our results.

Results and discussion
The Corvus SPARQL endpoint
Rationale for building a SPARQL endpoint
Data for seven melanoma cell lines was stored in a rela-
tional database component of Corvus, an object model
for experimental data. It currently controls a data ware-
house holding over 4 million observations from diverse
Omics experiments across melanoma cell lines. Pre-
sently, Corvus exists as a Java library with object-rela-
tional mapping (ORM) accomplished through
Hibernate. Quantitative cancer omics data is stored in a
standard database schema specified by the ORM. We
present here a new semantic interface to Corvus which
retrieves data in the form of RDF triples. Unfortunately,
the sheer volume of data contained within our local
Corvus database would result in a semantic model of
such size as to be untenable for the purposes of DL rea-
soning. What was needed instead was a way to retrieve
a subset of the Corvus warehouse containing only the
information essential to the problem at hand. Ideally
this could be accomplished in a dynamic fashion.
Integration of traditional relational databases with

RDF has been explored extensively in recent years [23].
Typically the approach is to create a generic mapping
between relational and RDF schema. This has been
done either through automatic mappings, where

relational tables correspond to RDFS classes and rela-
tional columns to RDF predicates [24], or with domain-
specific semantics [25]. Some tools, such as d2rq, pro-
vide for both approaches and allow user customization
for complex cases such as when mappings are not one-
to-one. Mappings may be stored in a variety of formats,
ranging from XML configuration files to custom lan-
guages such as R2O [26]. These mapping artifacts can
then be used to dynamically generate SQL queries to
the relational database based upon queries expressed
according to the RDF schema, usually using SPARQL.
We experimented directly with the d2rq framework,

which allows a relational database to be queried like a
semantic model using SPARQL. Using a configuration
file to map fields in the Corvus object model to RDF
properties, we were able to generate SPARQL queries
that retrieved a manageable subset of the Corvus ware-
house. However, we found that the SQL generated by
the tool to query the relational database was inefficient
and data retrieval took longer than expected. We
decided instead to leverage the Hibernate mappings
already part of the Corvus object model to interact with
the relational database. We wrote a SPARQL interface
to the Corvus object model which interacts directly with
the Java/ORM library, taking advantage of Hibernate’s
ability to optimize and cache relational queries. To the
best of our knowledge, although the issue of mapping
SPARQL to object oriented representations such as
Hibernate has been discussed [27,28], no tools for doing
this have been released to the public. Our approach is
to create wrapper classes around the Hibernate mapping
classes which map the property getters to RDF predi-
cates. Indirect mappings make possible situations in
which the RDF and relational schemas do not corre-
spond one to one. Though this approach is not necessa-
rily a universal solution, we felt that given Corvus’
ability to represent such a broad swathe of Omics data,
the performance gain offered by these customized map-
pings more than justified the up-front expense of their
creation.
Corvus model to RDF mapping
We mapped fields from the Corvus object model to
classes and relationships from OBO ontologies. In par-
ticular, we employed terms from Information Artifact
Ontology (IAO) [29] and Ontology for Biomedical
Investigations (OBI) [30]. In addition to being actively
developed, these ontologies are notable for building
upon the foundation Basic Formal Ontology (BFO)
[31] and the OBO Relation Ontology (RO) [32] which
were specially designed to be extensible by any biome-
dical ontology. This allows our semantic model to be
incorporated with other OBO ontologies with relative
ease. It should be noted that we are simply borrowing
terms from these ontologies, not incorporating them in
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their entirety as doing so would have a significantly
deleterious effect on reasoning performance. This does
not pose a hindrance to our goals as we do not need
to make inferences across the whole hierarchy of terms
in these ontologies. By using the terms, however, we
provide an entry point for others who may wish to
explore this type of inferencing in the future. Quantita-
tive data storage in the Corvus object model is cen-
tered around the Observation class. Instances of this
class represent individual data points in a collection of
data, such as an array. They contain the numerical
value of the data as well as pointers to other classes
indicating the type and provenance of the data. These
other classes include Dataset, which holds metadata on
experimental conditions; Measure, which specifies
details about the type of data being measured; Sample,
which describes the cell line being measured; and
Reporter, the genomic feature (typically a gene) for
which data is being reported. We mapped Observation
to the IAO class measurement datum and used the
IAO data property has measurement value to associate
numerical data values. Dataset was linked to the IAO
class data set. Individual Observations can be specified
as belonging to a Dataset using the RO property part
of. Samples were declared as instances of the OBI class
cell culture. Association of an Observation with a Sam-
ple was done using IAO’s is about property. Reporter
was linked to the Genomic Region class from the
GELO ontology. This class is defined as a superclass of
the OBO Sequence Ontology ’s (SO) [33]biological
region class and it attaches properties to assign a refer-
ence location for a genomic element within the gen-
ome. For the purposes of our data, Reporters were
made instances of SO’s transcript class, as the refer-
ence sequence (RefSeq) was used. We used the URIs
for RefSeq sequences provided by the Bio2RDF project.
Using this normalized identifier allows us to easily link
with other semantic models describing the same genes.
Bio2RDF also provides us with an ecosystem whereby
a stable link between this and other identifiers is main-
tained in the absence of a single autoritative global
identifier. Similarly, it protects our reference from
becoming disconnected from future versions of the
same identifier. To capture information from the Cor-
vus Measure class, instead of mapping to an instance
of a class, we forwarded two of Measure’s fields to
properties in the domain of measurement datum.
These were the IAO is quality measurement of prop-
erty and the IAO has measurement unit label property.
Finally, we used the Dublin Core [34] annotation prop-
erties title and identifier to assign names for Samples,
Datasets and Reporters and reference identifiers to
Reporters. A detailed view of this model is provided in
Figure 1.

Querying the Corvus SPARQL endpoint
To retrieve a subset of the Corvus warehouse that was
sufficient for our ultimate querying purposes, we
issued a SPARQL query that would retrieve all relevant
information for the seven cell lines mentioned above.
We used a SPARQL DESCRIBE query which simply
returns all relevant properties for a type into a seman-
tic model. Our query retrieves all Observations asso-
ciated with the cell lines and pulls in information on
experimental conditions from the Sample and Dataset
tables and on the genes involved from the Reporter
table. We issued the following SPARQL query for each
of the seven cell lines:
PREFIX obo: <http://purl.obolibrary.

org/obo/>
PREFIX dc: <http://purl.org/dc/ele-

ments/1.1/>
PREFIX ro: <http://www.obofoundry.org/

ro/ro.owl#>
DESCRIBE ?rep ?obs ?data ?samp
WHERE {
?samp dc:title ‘’YUMAC’’.
# IAO_0000136 = ‘is_about’
?obs obo:IAO_0000136 ?samp.
?obs ro:part_of ?data.
?obs obo:IAO_0000136 ?rep.

}
Retrieval of a populated semantic model containing

the approximately 120,000 observation for a cell line
using our Hibernate-based mapping typically took
between one and two minutes.

Semantic representations of functional knowledge
Annotated GO terms
To include functional information about genes, we
decided to incorporate the well-known GO. GO is pre-
sented in the OBO format, a simple model for expres-
sing hierarchies of terms and the relationships between
them. Although significantly less powerful for inferen-
cing than a fully DL-compatible language like OWL, the
OBO language makes it straightforward to declare rela-
tionships between classes of object.
We found an effective compromise to be the use of

the Simple Knowledge Organization System (SKOS)
[35]. In this ontology, written in OWL, terms such as
those in OBO taxonomies are expressed as instances of
a Concept class. Class subsumption is handled though
OWL object properties that describe Concepts as
broader or narrower than other Concepts. In this system,
properties can be assigned easily to class-like terms
without violating the strictures of OWL-DL. This
approach offers significant advantages for querying and
reasoning, as the common alternative, creation of
restrictions on classes, is computationally expensive
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while still requiring the creation of individual instantia-
tions to infer properties. Using the OBO to SKOS con-
version tools developed at University of Manchester
[36], we created a GO-SKOS ontology which converts
GO terms to instances of Concept and is a relationships
to broader relationships.
We downloaded the standard human genome anno-

tations provided by the Gene Ontology consortium. In
order to easily merge with the quantitative semantic
model retrieved from Corvus, we converted the GO
annotation file’s HUGO symbols to RefSeq identifiers
using conversion tables made available from Entrez
[37] and used the Bio2RDF normalized URIs. In fitting
with the Corvus model, we cast individual refseqs as
instances of the SO:transcript class. We then used
three basic relationships from RO to link the gene to
its appropriate term in whichever of GO’s three main
hierarchies. Genes annotated with a Biological Process
term were linked using participates in; those labeled as
expressing a Molecular Function were linked using has
function and genes marked as being located in a parti-
cular Cellular Component were linked using part of.

We also wished for the properties assigned to genes to
propagate up the chain of hierarchy. In other words, if
a particular gene participates in a specific biological
process, we wanted the reasoner to be able to infer
that it also participates in the more generic process.
For example, genes participating in apoptosis also par-
ticipate in the more general process of cell death and
in biological processes in general. To accomplish this,
we used an OWL property chain, a new feature in
OWL 2, to associate participates in with broader, stat-
ing that if A participates in B and C is a broader con-
cept than B, then A participates in C as well. This type
of inference is possible because the is-a (subsumption)
relationship between SKOS concepts is a relationship
between individuals rather than between classes. The
relationship is illustrated in Figure 2. We made the
same declarations for the has function and part of
properties.
With these declarations in place we were able to run

the semantic model through a DL reasoner and create
a greatly expanded semantic model with all inferences
spelled out (i.e. all annotation properties propagated

Figure 1 Corvus object model. Diagram showing Java classes in the Corvus model (orange boxes) next to their corresponding OWL classes
(blue boxes). Data or annotation properties are shown as gray ellipses. Edge labels show the Java method used to call the Corvus model in red
and the RDF property used in the semantic model in blue.
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along the hierarchy). There is a trade-off here as we
gain faster query times by precomputing all inferences
at the expense of additional storage space and less
flexibility, as we need to recompile when the

underlying data changes. Creation of the fully entailed
GO annotation semantic model took approximately
five minutes on our Linux workstation using 8 GB of
memory.

Figure 2 Gene Ontology annotation hierarchy. Diagram showing the propagation of the participates_in property up the class subsumption
hierarchy. This inference is achieved by using an OWL 2 property chain associating the participates in property with the SKOS broader property.
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Transcription factor networks
We retrieved a list of 615 known human transcription
factors and the sets of genes they regulate. These sets
are commonly recursive as many of the regulated genes
are themselves associated with transcription factors. By
linking transcription factors to genes and expanding the
recursive nodes, we can create a large (and often par-
tially cyclical) network of genes that are within the
sphere of influence of a transcription factor. This can be
done with relative ease using OWL language constructs
and a DL reasoner such as Pellet. We did so by creating
a handful of ad-hoc OWL properties and property
chains. The custom properties are: corresponds_to,
which relates a transcription factor to a gene which
expresses it; regulates, which relates a gene to a tran-
scription factor which regulates its expression; coregu-
lates, which relates a gene expressing a transcription
factor with the genes that the transcription factor regu-
lates; and indirectly_coregulates, which relates a gene
expressing a transcription factor to genes further out in
the sphere of influence of the transcription factor. A
property chain allows us to infer that if transcription
factor TF1 corresponds_to gene G1 and TF1 regulates a
second gene, G2, then G1 coregulates G2. A second
property chain declares that if G1 coregulates G2 and
G2 coregulates a third gene, G3, then G1 indirectly_core-
gulates G3. Running this semantic model through a DL
reasoner like Pellet will expand these relationships to
closure and result in a network reflecting the full sphere
of influence of each transcription factor. Often, these
networks will be quite large, ranging into the hundreds
and thousands of genes. Creation of the fully entailed
transcription factor semantic model took around three
minutes on the aforementioned Linux workstation. The
relationships used to describe transcription factor net-
works are illustrated in Figure 3.

Integrating and using the results
Merging of RDF graphs
The GO annotation and transcription factor network
semantic model could at this point be merged with the
quantitative semantic model retrieved from Corvus, the
points in common being the instances of SO transcript
representing individual RefSeqs/genes. Because we use
identical URIs from the Bio2RDF namespace to describe
these instances, we can assure that we are referring to
the same gene in the two sources. This merged semantic
model could now be queried using SPARQL. The full
architecture of our setup for creating an RDF graph
from Corvus and merging it with the GO graph is
shown in Figure 4.
Example queries
We wanted to show that it was possible to use Corvus
to execute arbitrarily complex queries incorporating

information across varied knowledge domains. To this
end, we tried to verify cell lines that were resistant or
sensitive to Decitabine, a demethylating agent used for
melanoma therapy. Our formulated query asks for genes
with high methylation values prior to Decitabine admin-
istration and increased gene expression following. We
look at the number of such genes involved in apoptosis
and compare this with the number involved in an anti-
thetical process - cell proliferation. We use values from
two datasets obtained from the Corvus SPARQL end-
point, relative methylation values prior to treatment and
ratio of gene expression post-to pre-treatment. Apopto-
sis- and cell-proliferation-related genes were found by
integrating the semantic model containing the GO
annotations. Using features from the recently standar-
dized SPARQL 1.1, we can aggregate genes by cell line
to get a count of highly expressed genes per cell line.
We retrieve the count of methylated and highly
expressed genes associated with apoptosis and the ratio
of this value of the number of methylated and highly
expressed genes associated with cell proliferation. The
SPARQL query is:
PREFIX dc: <http://purl.org/dc/ele-

ments/1.1/>
PREFIX ro: <http://www.obofoundry.org/

ro/ro.owl#>
PREFIX obo: <http://purl.obolibrary.

org/obo/>
PREFIX go: <http://purl.org/obo/owl/

GO#>
PREFIX k: <http://krauthammerlab.med.

yale.edu/>
SELECT (count (distinct ?repA) as ?apop-

count) (count (distinct ?repA)/
count (distinct ?repB) as ?

ratio) ?sampName
WHERE {
?ds dc:title “Methylation Relative” .
?ds2 dc:title “AZA Pre-Post Treatment

Ratios” .
?obs ro:part_of ?ds .
# IAO_0000004 = ‘has measurement value’

?
# obs obo:IAO_0000004 ?obsVal .
?obs obo:IAO_0000136 ?repA .
?obs obo:IAO_0000136 ?samp .
# OBI_0100060 = ‘cell culture’
?samp a obo:OBI_0100060 .
?samp dc:title ?sampName .
# go:0006915 = ‘apoptosis’
?repA ro:participates_in go:0006915 .
?obs2 obo:IAO_0000136 ?repA .
?obs2 ro:part_of ?ds2 .
?obs2 obo:IAO_0000004 ?obsVal2 .
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?obs2 obo:IAO_0000136 ?samp .
?dsB dc:title “Methylation Relative” .
?dsB2 dc:title “AZA Pre-Post Treatment

Ratios” .
?obsB ro:part_of ?dsB .
?obsB obo:IAO_0000004 ?obsBVal .
?obsB obo:IAO_0000136 ?repB .
?obsB obo:IAO_0000136 ?sampB .
?sampB a obo:OBI_0100060 .
?sampB dc:title ?sampName .
# go:0008283 = ‘cell proliferation’
?repB ro:participates_in go:0008283 .
?obs2B obo:IAO_0000136 ?repB .
?obs2B ro:part_of ?dsB2 .
?obs2B obo:IAO_0000004 ?obsBVal2 .
?obs2B obo:IAO_0000136 ?sampB .
FILTER ( ?obsVal > 2) .
FILTER ( ?obsVal2 > 1) .
FILTER ( ?obsBVal > 2) .
FILTER ( ?obsBVal2 > 1) .

}
GROUP BY ?sampName
ORDER BY ?sampName
We can compare these counts to what we know from

experimental data regarding the level of sensitivity/resis-
tance of various cell lines [7]. The results are shown in
Table 1: The sensitive cell lines with low IC50 values
(YUMAC, YUSAC and YULAC) had the three highest
gene counts, whereas the two most resistant lines
(WW165 and YURIF) had the lowest. Additionally,
whereas the resistant cell line WW165 had a low pro-
portion of apoptosis-related genes to cell-proliferation-
related genes (0.33), the five sensitive cell lines each
show equivalent numbers of apoptosis- and cell-prolif-
eration-related genes. As the mechanism of Decitabine
action is demethylation of gene promoters, and (re)
expression of the corresponding genes, these results give
rise to the following hypothesis: Decitabine targets apop-
tosis-related gene promoters predominantly in Decita-
bine-sensitive cell lines, thus conveying its cytotoxic

Figure 3 Transcription factor network properties. Diagram showing the properties used for describing transcription factor networks. The
corresponds_to and regulates properties are directly stated while the coregulates and indirectly_coregulates properties are inferred by expansion of
OWL 2 property chains.
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effect by activating the apoptosis pathway. The following
validation steps are warranted to strengthen the hypoth-
esis: First, one might want to independently test in vitro
both the demethylation of the implicated gene promo-
ters, as well as the re-expression of the corresponding
genes. Also, the finding should be repeated in a larger
cohort of melanoma samples. A current limitation of

our SPARQL query is that we only interrogate for fold
change after Decitabine treatment. As shown in prior
work, the absolute change in expression values after
treatment should also be taken into account [38].
In attempt to strengthen our hypothesis, we tried to

find genes expressing transcription factors which also
matched our criteria of being methylated and then
highly expressed post-AZA treatment. We issued the
following SPARQL query to identify transcription fac-
tors and samples for which this was the case:
PREFIX dc: <http://purl.org/dc/ele-

ments/1.1/>
PREFIX ro: <http://www.obofoundry.org/

ro/ro.owl#>
PREFIX obo: <http://purl.obolibrary.

org/obo/>
REFIX k: <http://krauthammerlab.med.

yale.edu/>
SELECT distinct ?rep ?tf ?samp ?obsVal ?

obsVal2
WHERE {

Figure 4 Model architecture. Diagram showing the architecture of the integrated model we used to perform the queries in this paper.

Table 1 Apoptosis-related genes by cell line

Cell Line Apoptosis-Related Ratio IC50 (nM)

YUMAC 11 0.916 34

YUSAC2 4 1 91

YULAC 5 1.25 110

YUSIT1 2 2 132

YUGEN8 3 0.6 139

WW165 2 0.333 239

YURIF 0 0 255

Table showing the seven melanoma cell lines, the total number of apoptosis-
related genes positively expressed that were formerly methylated, the ratio of
these to the number of cell-proliferation-related genes positively expressed
that were formerly methylated and the IC50 value.
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?ds dc:title “Methylation Relative” .
?ds2 dc:title “AZA Pre-Post Treatment

Ratios” .
?obs ro:part_of ?ds .
?obs obo:IAO_0000004 ?obsVal .
?obs obo:IAO_0000136 ?rep .
?obs obo:IAO_0000136 ?samp .
?samp a obo:OBI_0100060 .
?rep k:corresponds_to ?tf .
?obs2 obo:IAO_0000136 ?rep .
?obs2 ro:part_of ?ds2 .
?obs2 obo:IAO_0000004 ?obsVal2 .
?obs2 obo:IAO_0000136 ?samp .
FILTER (?obsVal > 2) .
FILTER (?obsVal2 > 0.5)

}
The query identified the transcription factors V$HEN1

01 and V$HEN 02 as formerly methylated and then
highly expressed following administration of Decitabine
in the YUMAC cell line. As seen above, this is notable
as being the cell line most sensitive to Decitabine. The
next step was to analyze the degree to which genes
regulated by these transcription factors were highly
expressed. Table 2 shows the number of genes regulated
by each transcription factor for each cell line that are
highly expressed. We used the Fisher Exact Test to
determine the significance of these results. As can be
seen the results for YUMAC are highly significant,
much more so than for the other cell lines. Finally, we
looked at the proportion of these highly expressed genes
regulated by the two transcription factors that are apop-
tosis-related as opposed to cell-proliferation-related.
This is shown in Table 3. As expected, the ratio is
higher for YUMAC than for other less sensitive cell
lines, suggesting that Decitabine-related promotion of
activation of the apoptosis pathway is most pronounced
in the cell lines most sensitive to the drug.

Conclusions
Our proof of concept query illustrates how easily data
from various sources can be integrated using the com-
mon framework of OWL/RDF. It reveals some of the
power of Semantic Web reasoning and querying tools
for inferring and elucidating discovered knowledge. It
also shows the importance of customization in mapping
non-semantic data to RDF. While generic tools mapping
relational data to RDF have recently emerged, our
experience with d2rq has shown that there are still areas
where direct mapping is significantly more efficient and
flexible. Our work also makes a strong case for the ben-
efits of using linked data, as use of the Bio2RDF normal-
ized URI for RefSeqs made integration of the two
branches of our ontology a breeze.
The flexibility of the Corvus object model will allow

us to incorporate quantitative Omics data from a variety
of modalities. In the future, this could include cancer
data from caArray or caIntegrator or data obtained
directly from ArrayExpress using MAGETab2RDF [39].
Essentially, Corvus functions as a contextualized obser-
vation repository and we intend to incorporate informa-
tion from other contexts including clinical data and
generic provenance data. We hope to use the new
semantic access point to Corvus to integrate this data
with other types of information such as pathway and
pharmacological data. The simplicity and elegance of
the integrated Semantic Web approach also suggests its
usefulness as an access point to making sense of varie-
gated data for researchers unequipped with the pro-
gramming or mathematical expertise to work with
traditional data mining tools.

Methods
Quantitative data from melanoma cell lines
We examined data derived from seven melanoma cell
lines (WW165, YUMAC, YUGEN8, YUSAC2, YUSIT1,
YULAC and YURIF). These lines have been experimen-
tally classified using IC50 values from dose-response

Table 2 Highly expressed transcription factor regulated
genes

Cell line V$HEN1_01 V$HEN1_02 Total

YUMAC 90 (6.7 × 10-6) 108 (9.0 × 10-16) 5534

YUSAC2 31 (0.0055) 21 (0.25) 1795

YULAC 19 (0.36) 40 (2.1 × 10-9) 1514

YUSIT1 11 (0.022) 8 (0.15) 504

YUGEN8 18 (0.022) 10 (0.73) 977

YURIF 3 (0.64) 6 (0.31) 440

WW165 30 (0.054) 27 (0.091) 4015

Table showing the seven melanoma cell lines; the total number of genes
positively expressed that are directly regulated by V$HEN1_01 and V
$HEN1_02 along with the P-Value from the Fisher Test comparing this with
the overall distribution of highly expressed genes; and the total number of
genes positively expressed overall in the cell line.

Table 3 Apoptosis to cell proliferation ratios for
transcription factor regulated genes

Cell line V$HEN1_01 V$HEN1_02

YUSIT1 2 (2) 2 (0.67)

YUSAC2 0 (0) 0 (0)

YURIF 3 (1) 3 (1)

YUMAC 10 (0.77) 19 (0.79)

YULAC 3 (0.75) 2 (0.4)

YUGEN8 2 (0.5) 2 (0.5)

WW165 9 (0.64) 7 (2.33)

Table showing the seven melanoma cell lines; the number of positively
expressed genes that are associated with apoptosis and the ratio of those
genes to the number of positively expressed genes that are associated with
cell proliferation for V$HEN1_01 and V$HEN1_02.
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analysis as being either sensitive to (YUMAC, YUSAC2,
YULAC, YUSIT1, YUGEN8) or resistant to (WW165,
YURIF) decitabine (5-Aza-2’-deoxy-cytidine, Aza), a
DNA methyltransferase inhibitor. Specifically we looked
at relative methylation values prior to administration of
AZA and the ratio of gene expression following admin-
istration of AZA to before. The methylation values were
obtained from a Nimblegen promoter array using the
Methyl-DNA immunoprecipitation (MeDIP) technique
[40,41]. Gene expression ratios were obtained using a
custom 2-channel Nimblegen array. Data from both
arrays are available for download through ArrayExpress
[42]. We used the Gene Element Ontology (GELO) to
align the array probes to RefSeq identifiers [43].

Programming the merged dataset
The Corvus SPARQL endpoint Application Program-
ming Interface (API) was written in Java making exten-
sive use of the Jena API for RDF manipulation and the
closely related ARQ API for SPARQL processing [44].
The GO Annotation pre-processing was handled by a
Java program making use of the OWLAPI OWL2 library
[45] and the Pellet DL reasoner for Semantic Web data
[46]. Merging of the semantic models was also handled
by Java code using first the ARQ API to issue the
SPARQL query on the relational Corvus store and then
OWLAPI to perform the actual merge. The merged
dataset was loaded into an instance of TDB, an RDF tri-
ple store employing the Jena libraries. It was then loaded
into a running instance of Joseki, a web application
allowing execution of SPARQL queries over HTTP.
Joseki also uses the Jena libraries extensively. An end-
point for the merged dataset is available at http://dop-
pio.med.yale.edu:2020/sparql.
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API: Application Programming Interface; BFO: Basic Formal Ontology; caBIG:
cancer Biomedical Informatics Grid; DL: Description Logic; ETL: Extraction-
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