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1 Introduction

To understand the basic mechanism of AdS/CFT correspondence [1–3], one of the most

important problems is the locality of a bulk spacetime [4–10]. One direct approach to this

problem is to probe a point in the bulk AdS by locally exciting the vacuum state |0〉bulk
around that point. A purely CFT counterpart of this was given in [11] for the AdS3/CFT2

setup. Consider a locally excited state φ̂α(y)|0〉bulk in the bulk, where φ̂α is a scalar field

in the AdS space, dual to a primary operator Oα and y is a point in AdS. Its CFT dual

|Ψα〉 is obtained from a boundary state or more precisely so called Ishibashi state [12] for

the global conformal symmetry (see also [13] for a slightly different proposal using the full
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Virasoro symmetry). This precisely reproduces the bulk two point function 〈φ̂α(y1)φ̂α(y2)〉
assuming that the bulk scalar field is a free massive scalar field [11, 14]. Indeed in the

section 2 of the present paper, we will prove that the state |Ψα〉 in [11] is precisely the

same as that obtained by acting the local bulk field operator in [4, 5] on the vacuum.

This state corresponds to the large N limit (or equally large c limit) and 1/N corrections

modify the identification of the dual state [14, 15]. We can also generalize this construction

of locally excited states in higher dimensions [14, 16].

The locality in AdS/CFT requires the large N limit with a large gap in the spectrum

of primary fields in a CFT [6, 17–19], called holographic CFTs. Therefore it is intriguing to

see how this condition appears when we regard |Ψα〉 as a locally excited state in the AdS.

However, the computation of the bulk two point function is universal in any CFTs and

the result reproduces the expected gravity result in AdS even for non holographic CFTs

such as free CFTs. Therefore we need to look at different quantities which depend on more

details of CFTs.

Motivated by this, the main purpose of this paper is to study the CFT two point

function of an primary field O(x) for the exited state |Ψα〉, which is written as a four point

function 〈Ψα|O(x)O(y)|Ψα〉 for the CFT vacuum. When the conformal dimension of O(x)

is large (but not too large), we can evaluate this two point function from the geodesic length

in the spacetime dual to the excited state |Ψα〉. Thus this quantity is also directly related

to the holographic entanglement entropy [20, 21]. Therefore this quantity is directly related

to the bulk geometry and we will use this to study the time evolution of bulk geometry,

which strongly depends on whether a CFT is holographic or not. If the bulk theory is

local and causal, then the excitations of light fields will spread relativistically inside a light

cone. Indeed we will observe such an evolution for holographic CFTs when the conformal

dimension of Oα is close to the Breitenlohner-Freedman (BF) bound [23]. On the other

hand, we find that this does not happen for a free fermions CFT.

This paper is organized as follows: in section 2, after we briefly review the state

|Ψα〉 dual to a localized excitation in the bulk AdS, we will show that this state can also

be derived from the known CFT dual of bulk local field. In section 3, we formulate the

computation of the two point function for the excited state in terms of four point function of

primary fields. In section 4, we focus on a large c CFT (i.e. holographic CFT) and evaluate

the two point function. We will show that our result agrees with our expectation from

AdS/CFT. In section 5, we study a different parameter region of conformal dimensions in

a large c CFT. In the appendix A, we compute the two point function in a free fermion CFT.

2 CFT duals of bulk localized states

2.1 Construction

In [11], CFT states which are dual to bulk localized states in AdS3/CFT2 are introduced

in terms of specific descendants of the global part (i.e. SL(2, R)2) of Virasoro symmetry.

At t = 0, this state is obtained by exciting only a point in the time slice of AdS3 (i.e. H2).
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If we set this point to the origin r = 0 of global AdS3

ds2 = −(r2 +R2)dt2 +
R2dr2

r2 +R2
+ r2dθ2, (2.1)

the dual state should be invariant under all SL(2, R)2 transformations which keep the point

invariant. This leads to the following constraints

(L0 − L̃0)|Ψα〉 = (L±1 + L̃∓1)|Ψα〉 = 0. (2.2)

The solutions to (2.2) can be constructed from (analogue of) Ishibashi states |Jα〉 for the

SL(2, R)2 algebra for various primaries and are explicitly given as follows:

|Ψα〉 =
√
N
∞∑
k=0

(−1)ke−εk|k, α〉, (2.3)

where we defined an orthonormal basis:

|k, α〉 =
1

Nk
(L−1L̃−1)k|α〉, (2.4)

where |α〉 is a primary state with the chiral and anti chiral conformal dimension hα = h̄α;

we also define the total conformal dimension by ∆α = hα + h̄α(= 2hα). Nk is defined as

Nk =
Γ(k + 1)Γ(2hα + k)

Γ(2hα)
. (2.5)

We introduced a parameter ε in (2.3) which provides a UV regularization and is taken such

that 1
c � ε � 1 in order to make its holographic meaning clear, where c is the central

charge of the CFT. The overall normalization which guarantees 〈Ψα|Ψα〉 = 1, is given by

N =
1∑∞

k=0 e
−2kε

= 1− e−2ε. (2.6)

It is useful to evaluate the averaged energy (or conformal dimension) ∆Ψα of |Ψα〉 as

∆Ψα = 〈Ψα|L0 + L̃0|Ψα〉 = (1− e−2ε)

∞∑
k=0

(2k + ∆)e−2εk = ∆α +
2

e2ε − 1
' ∆α +

1

ε
. (2.7)

We will also consider the time evolution1 of this state (2.3):

|Ψα(t)〉 = e−iHt|Ψα〉, (2.8)

where H = L0 + L̄0. It is obvious that this state follows the periodicity

|Ψα(t+ π)〉 = |Ψα(t)〉. (2.9)

Also at t = π/2, the state coincides with the Ishibashi state

|Ψα(π/2)〉 = |Jα〉 =
√
N
∞∑
k=0

e−εk|k, α〉. (2.10)

1Here we omit the t dependent phase factor eict/12 as it does not physically affect our arguments.
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2.2 Relation to HKLL prescription

Next we will show that this state |Ψα〉 can also be obtained from the CFT dual of bulk

local field constructed in [4, 5] (so called HKLL construction). We write the primary field

corresponding to the primary state |α〉 as Oα.

We introduce a coordinate of global AdS3 as follows

ds2 =
R2

cos2 η
(−dτ2 + dη2 + sin2 ηdθ2). (2.11)

We can also use the coordinate ρ defined by

sinh ρ =
sin η

cos η
, cosh ρ =

1

cos η
, (2.12)

so that the metric looks like

ds2 = R2(− cosh2 ρdτ2 + dρ2 + sinh2 ρdθ2). (2.13)

The bulk local field operator φ̂α(τ, η, θ) is expressed in terms of the dual local operator

Oα(τ, θ) in the CFT as

φ̂α(τ, η, θ) =

∫ π/2

−π/2
dτ ′
∫ 2π

0
dθ′K(τ ′, θ′|τ, η, θ)Oα(τ ′, θ′). (2.14)

When η = 0, τ = 0 (i.e. the origin of global AdS3), we find the expression [4, 5]:

K(τ ′, θ′|0, 0, θ) =
1

2π2
ei∆ατ ′

2F1(1, 1,∆α,−e2iτ ′), (2.15)

where ∆α(= 2hα) is the total conformal dimension of the primary operator O. Note that

the above hypergeometric function is expressed as

2F1(1, 1,∆α,−e2iτ ) = Γ(∆α)

∞∑
n=0

Γ(n+ 1)

Γ(n+ ∆α)
(−1)ne2inτ . (2.16)

In general a primary field O is represented as the following mode expansion (see

e.g. [22]):

O(τ, θ) =
∑

n,m∈Z
On−hα,m−hαe

i(n−hα)(τ+θ)ei(m−hα)(τ−θ). (2.17)

Therefore, by acting on the vacuum, the bulk state φ̂α(0, 0, θ)|0〉 is dual to the CFT

state given by (after the integration of τ ′ and θ′)

φ̂α(0, 0, θ)|0〉 =
∞∑
n=0

Γ(n+ 1)Γ(2hα)

Γ(n+ 2hα)
(−1)n ·O−n−hα,−n−hα |0〉. (2.18)

On the other hand, using the commutation relation

[Lm, On−hα,k−hα ] = (m(hα − 1)− n+ hα)On+m−hα,k−hα ,

[L̃m, On−hα,k−hα ] = (m(hα − 1)− k + hα)On−hα,k+m−hα , (2.19)
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we obtain the following identifications:

(L−1)k(L−1)l|α〉 = Γ(k + 1)Γ(l + 1) ·O−k−hα,−l−hα |0〉, (k, l = 0, 1, 2, · · ·). (2.20)

By using these relations we can express the state |Ψα〉 as

|Ψα〉 =

∞∑
n=0

Γ(n+ 1)Γ(2hα)

Γ(n+ 2hα)
(−1)n ·O−n−hα,−n−hα |0〉. (2.21)

Thus |Ψα〉 and φ̂(0, 0, θ)|0〉 are equivalent.

3 Two point functions for |Ψα〉: formulation

The main quantities we study in this paper are two point functions of primary operators

O in the presence of the excitation given by the state |Ψα〉:

〈OO〉Ψα = 〈Ψα|OO|Ψα〉. (3.1)

3.1 Conventions of four-point functions

To evaluate (3.1), we need to know the four-point functions of the form 〈OαOαOO〉. There-

fore we would like to start with a brief summary of properties of four-point functions and

our conventions.

We focus on the four point function of the form

〈OA(x)OA(y)OB(z)OB(w)〉, (3.2)

where the (chiral) conformal dimensions of OA and OB are denoted by hA and hB.

By introducing the cross ratio

η =
(x− y)(z − w)

(x− z)(y − w)
, (3.3)

we can express the four point function (3.2) as follows

〈OA(x)OA(y)OB(z)OB(w)〉 = |x− z|−4hA |y − w|−4hB |z − w|4hA−4hB · |F (η)|2

= |x− y|−4hA |z − w|−4hB · |η|4hA · |F (η)|2. (3.4)

Note that actually we need to take the summation Σa|Fa(η)|2 over conformal blocks. How-

ever in the examples we discuss below only essentially involves only one conformal block.

This function F (η) is equal to the following limit of the four point function:

lim
w→∞

|w|4hB · 〈OA(0)OA(η)OB(1)OB(w)〉 = F (η). (3.5)

– 5 –
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3.2 Example 1: 2D free Dirac fermion

Here we summarize the result of four point function in a free Dirac fermion, which will be

employed later. It is useful to note that via the bosonization, a massless free Dirac fermion

is equivalent to a massless free scalar. We choose

OA = eiφ = ψ, OB = eiβφ, (3.6)

and consider 〈OA(x)ŌA(y)OB(z)ŌB(w)〉, which can be treated as in the previous way.

Assume the OPE φ(z)φ(w) ∼ − log(z − w). Note that hA = 1/2 and hB = β2/2.

In this example, we can explicitly compute the four point function and find

〈OA(x)ŌA(y)OB(z)ŌB(w)〉 =

∣∣∣∣ 1

(x− y)(z − w)β2(1− η)β

∣∣∣∣2 . (3.7)

In other words, we have

η2hAF (η) =
1

(1− η)β
. (3.8)

Even though we do not expect any classical gravity dual for a free fermion CFT, this

provides us a toy example which allows full analytical calculations. We will summarize the

result of two point functions for our excited state |Ψα〉 in the appendix A.

3.3 Example 2: holographic CFT2 with hA = O(1) and hB = O(c)

In AdS3/CFT2, a CFT with its classical gravity dual is characterized by the following

properties [6, 17, 18]: (1) it has a large central charge c and (2) the low energy spectrum

is sparse. For such CFTs (called holographic CFTs), when we assume the conformal

dimensions hA = O(1) and hB = O(c), the function F (η) is found as follows by using the

result in [18, 24]:

F (η) =

(
αB

1− (1− η)αB

)2hA

· (1− η)−hA(1−αB), (3.9)

where αB =
√

1− 24hB/c.

If we expand in terms of small η, we have

F (η) = η−2hA

(
1 +

2hAhB
c

η2 + · · ·
)

(3.10)

3.4 Example 3: holographic CFT2 with hA/c� 1 and hB/c� 1

Consider a holographic CFT in two dimension when the conformal dimensions take their

values in the range:
hA
c
� 1,

hB
c
� 1,

hAhB
c

= fixed. (3.11)

In this case by using eq. (B.34) in [18], we find

F (η) = η−2hA · e
2hAhB

c 2F1(2,2,4,η), (3.12)

– 6 –
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where note that

2F1(2, 2, 4, η) =
6

η
(η log(1− η)− 2 log(1− η)− 2η) . (3.13)

We can confirm that the leading linear term when we Taylor expand the exponential

in (3.12) agrees with the leading linear term in the expansion w.r.t. hB/c of (3.9).

3.5 Computations of two point functions for |Ψα〉

We now set the two primary operators as OA = Oα and OB = O in (3.2). Thus we have

hA = hα and hB = hO. Using this, we would like to compute the two point function

〈Ψα|O(1)O(e−iσ)|Ψα〉 on a cylinder for the excited state |Ψα〉. The coordinate σ corre-

sponds to the circular direction with 2π periodicity at fixed time t = 0. The primary

operator O(x) is expected to probe the physical properties of the excited state |Ψα〉.
We can identify L−1 and L̃−1 as the derivative ∂x and ∂̃x which act on the four point

function (3.2) in the limit x → 0 and u = 1/y → 0. Thus we can express this two point

function as the derivatives of four point function. More explicitly, taking the time evolution

into account, we have

〈Ψα(t)|O(1)O(e−iσ)|Ψα(t)〉

= N · |1− e−iσ|−4hO · lim
x→0,u→0

DxDu
[
|1− xu|−4hα |η|4hα |F (η)|2

]
, (3.14)

where N is the normalization factor (2.6). The operations Dx and Du are defined by

Dx =

∞∑
p=0

e−ip(2t+π) · e−pε

Np
(∂x)p(∂̄x)p, (3.15)

Du =
∞∑
q=0

eiq(2t+π) · e−qε

Nq
(∂u)q(∂̄u)q, (3.16)

where the coefficient Np is defined in (2.5). Also the cross ratio η is given by

η =
(eiσ − 1)(xu− 1)

(eiσ − u)(x− 1)
= eiσ

(1− e−iσ)(xu− 1)

(eiσ − u)(x− 1)
,

1− η =
(1− u)(1− eiσx)

(eiσ − u)(1− x)
= e−iσ · (1− u)(1− eiσx)

(1− e−iσu)(1− x)
. (3.17)

It is a simple exercise to confirm the correct normalization when O is the identity

operator by setting |η|4∆α |F (η)|2 = 1:

〈Ψα|Ψα〉 = N · lim
x→0,u→0

DxDu
[
|1− xu|−4∆α

]
= N ·

∞∑
k=0

e−2εk = 1. (3.18)

In general CFTs, it is not easy to take the infinite summation (3.15) and (3.16). Indeed,

in examples we will discuss later, we often approximate them by replacing the infinite

summation by a finite sum
∑n

p=0 and
∑n

q=0. We call this an order n approximation. It

is obvious that if we want reliable results for smaller ε, we need to increase n accordingly

such that n ∼ 1/ε.

– 7 –
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4 Two point functions for |Ψα〉: holographic CFTs

Here we study two point functions of primary operator O(x) for the excited state |Ψα〉
in holographic CFTs to the leading order of 1/c expansion. In this section we assume

that the conformal dimension of O(x) is large enough to be order c and this amplifies the

time dependence of the two point functions. Here we should note that |Ψα〉 was originally

constructed for the pure AdS3. To be exact, in the presence of heavy operator O(x), some

corrections are needed for the precise form of |Ψα〉. However, as long as the bulk excitations

created by |Ψα〉 do not significantly overlap with those created by O(x), we expect that we

can neglect such corrections. Indeed our final results qualitatively confirm this expectation.

4.1 Behavior near σ = 0 (small η expansion)

If we assume η is very small or equally σ is small in (3.17) , the two point function is

expanded as follows

〈Ψα|O(1)O(e−iσ)|Ψα〉

= N · |1− e−iσ|−4hO · lim
x,u→0

DxDu
[
|1− xu|−4hα

(
1 +

2hαhO
c

η2 +
2hαhO
c

η̄2

)]
. (4.1)

It is already clear from the above expression that only diagonal summations i.e. (∂x∂u∂̄x∂̄u)k

do contribute and therefore the phase factors eiπ(q−p) in Dx and Du do not contribute. This

means that the above terms are invariant under the time evolution.

4.2 hα = 1 case

Let us focus on the special case hα = 1 for simplicity and evaluate the two point function

up to O(σ2) in the σ → 0 limit. In this case we obtain

〈Ψα|O(1)O(e−iσ)|Ψα〉 · |1− e−iσ|4hO

= 1 +N · 2hO
c
· lim
x,u→0

DxDu
[

(eiσ − 1)2

(1− x̄ū)2(eiσ − u)2(1− x)2
+ (h.c.)

]
= 1 +N · 2hO

c
·
∞∑
k=0

(k + 1)(1− e−iσ)2e−ikσ−2εk + (h.c.)

= 1 +
2hO
c

(1− e−2ε)

(
(1− e−iσ)2

(1− e−iσ−2ε)2
+

(1− eiσ)2

(1− eiσ−2ε)2

)
. (4.2)

We should note that this result is reliable only when the second term (perturbative

correction) is very small. When σ � 1 , we find

〈Ψα|O(1)O(e−iσ)|Ψα〉 · |1− e−iσ|4hO ' 1− 4hO · σ2

c(1− e−2ε)
. (4.3)

Using the averaged energy (2.7), we can rewrite this as follows

〈Ψα|O(1)O(e−iσ)|Ψα〉 · |1− e−iσ|4hO ' 1− ∆Ψα∆O · σ2

c
, (4.4)

where we used 2hα = ∆α = 2.

– 8 –
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This short distance behavior (4.3) is analogous to that of entanglement entropy, called

the first law like relation [25] (see also [26]). We take the operator O to be a twist operator

for the replica method and its conformal dimension is given by hO = c
24(n − 1/n). In

this case, by taking a derivative of n setting n = 1 we obtain the increased amount of

entanglement from (4.4) as follows:

∆SA '
∆Ψασ

2

6
. (4.5)

This agrees with the prediction from the first law like relation in [25]. In section 4.5 we

will confirm this behavior (4.4) from holographic calculations of a BTZ black hole.

4.3 General hα

For more general hα we find the following expression when σ � 1

〈Ψα|O(1)O(e−iσ)|Ψα〉 · |1− e−iσ|4hO = 1−N · 4hαhO
c
·A · σ2, (4.6)

where A is computed as

A =

∞∑
k=0

k∑
p=0

[
k! · (k − p+ 1)2 · (p+ 2hα − 3)(p+ 2hα − 4) · · · (2hα − 2)

p! · (k + 2hα − 1)(k + 2hα − 2) · · · (2hα)
e−2εk

]
. (4.7)

Indeed we can confirm

A =
1

1− e−2ε

[
1 +

1

hα(e2ε − 1)

]
, (4.8)

which leads to the formula (4.4).

4.4 Time-dependence near σ = 0 in a one more higher order

In the perturbation around η = 0, the term which has non-trivial time dependence appears

from the order O(η2η̄2). More explicitly, we can replace the parenthesis in (4.1) with(
1 +

2hαhO
c

η2 +
2hαhO
c

η̄2 + 4

(
hαhO
c

)2

η2η̄2

)
. (4.9)

Assuming hα = 1 we get

〈Ψα|O(1)O(e−iσ)|Ψα〉 · |1− e−iσ|4hO = (eq. (4.2)) + 4N
(
hαhO
c

)2

|1− e−iσ|4 · I

' (eq. (4.2)) + 4N
(
hO
c

)2

σ4 ·G, (4.10)

where G at time t is computed as

G ≡ lim
x,u→0

DxDu
[

1

|1− e−iσu|4|1− x|4

]
=

1

(1 + eit−ε)2(1 + e−it−ε)2
. (4.11)

Thus we can conclude that under the time evolution, the two point function does not

change at the order O(σ2), but increases at the order O(σ4).
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4.5 Two point functions from BTZ

Before we present our main results, it is useful to study a holographic calculation of two

point functions for an excited state dual to a BTZ black hole [27]

ds2 = (r2 +R2 −M)dτ2 +
R2dr2

R2 + r2 −M
+ r2dθ2, (4.12)

where the mass parameter M is proportional to the mass m of the object which constitutes

the black hole:

m =
M

8GNR2
. (4.13)

The mass m is related to the conformal factor via the familiar relation [2, 3]

∆ = 1 +
√
m2R2 + 1. (4.14)

The energy ∆Ψα of the state |Ψα〉 is given by (2.7) and we can identify

mΨαR ' ∆Ψα . (4.15)

The two point function in AdS space is generally approximated as

〈O(x)O(y)〉 ∼ e−mOL, (4.16)

where mO is the mass of the field dual to operator O given by mOR ' ∆O and L is the

geodesic distance of the two points in AdS.

The geodesic distance L, which connects two points at the AdS boundary: (r∞, θ∞)

and (r∞,−θ∞) at τ = 0 (note r∞ →∞), is given by

L = 2R log
r∞√

R2 −M + r2
∗
,

cos

(
2
√
R2 −M
R

θ∞

)
=
r2
∗ −R2 +M

r2
∗ +R2 −M

. (4.17)

Finally we get

L = 2R · log

√
2r∞

√
1− cos

(
2θ∞

√
1− 12mR/c

)
R
√

1− 12mR/c
. (4.18)

Now we set σ = 2θ∞ and then we can estimate assuming σ � 1 as follows:

L− L0 '
mR2

c
σ2. (4.19)

This leads to

〈Ψα|O(1)O(e−iσ)|Ψα〉
〈0|O(1)O(e−iσ)|0〉

' 1− (mOR)(mR)

c
σ2 + · · · = 1− ∆Ψα∆O

c
σ2 + · · ·. (4.20)

This behavior agrees with (4.4).
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However, we should note that we cannot always approximate our excited state |Ψα(t)〉
by a BTZ solution, though they have the same energy. This is simply because the BTZ

solution is static, while our excited state is time-dependent (except the near AdS boundary

region). Nevertheless, if we take the large ε limit, then |Ψα(t)〉 is reduced to the primary

state |α〉 which is static and is known to be described by a BTZ black hole, using the result

in [18]. When ε is not large, we expect a non-trivial time evolution with a periodicity π,

whose study is the main issue of the rest of this paper.

4.6 Full numerical calculation

To understand the behavior away from σ = 0 we need a numerical calculation. For this

we approximate the infinite summation in (3.15) and (3.16) by a finite sum such that

0 ≤ p, q ≤ n (i.e. order n approximation). We can always confirm the validity of this

approximation by comparing the small σ behavior with the universal exact result (4.4).

Let us choose hα = 1/2 for example2 and take hO to be O(c) with αO =
√

1− 24hO
c so

that we can employ the formula (3.9). The full expression is given by the following formula

〈Ψα|O(1)O(e−iσ)|Ψα〉
〈0|O(1)O(e−iσ)|0〉

= 〈Ψα|O(1)O(e−iσ)|Ψα〉 · |1− e−iσ|4hO

= N · |1− e−iσ|2 · lim
x,u→0

DxDuK, (4.21)

where K is given by

K =
α2
[
|1− u| · |1− e−iσu| · |1− x| · |1− eiσx|

]α−1

|(1− e−iσu)α(1− x)α − e−iασ(1− u)α(1− eiσx)α|2
. (4.22)

In particular, if we take the limit αO = 0 or equally hO = c
24 , the expression is

simplified as follows

K = |(1− u)(1− x)(1− e−iσu)(1− eiσx)|−1 ·
∣∣∣∣−iσ + log

(1− u)(1− eiσx)

(1− e−iσu)(1− x))

∣∣∣∣−2

. (4.23)

We showed the numerical plot of the two point function ratio (4.21) for the state

|Ψα(t)〉 in figure 1 at the time t = 0 and t = π/2. For ε = ∞ we find that they coincide

and this is because |Ψα(t)〉 is equal to the primary state |α〉, which is static. Indeed we can

confirm the result for ε =∞ agrees with the holographic result (4.18) from the BTZ black

hole.3 For general ε, we find that the two point function increases under the time evolution

when 0 ≤ t ≤ π/2. This time evolution gets more enhanced as ε becomes smaller.

2Actually hα = 1/2 has a special meaning in the dual gravity side. It corresponds to the mass m2 =

−1/R2 which saturates the Breitenlohner-Freedman (BF) bound [23]. In other words, it corresponds to the

lightest scalar field in AdS.
3Note that since we are assuming that hO is the order O(c), we do not expect the geodesic approxima-

tion (4.16), which assumes 1 � hO � c, is valid. However, for the heavy primary field corresponding to

ε→∞ limit, the gravity dual is known to be the BTZ, which is a solution to the vacuum Einstein equation.

Owing to this special situation, we find this agreement between our CFT result and the geodesic one.

– 11 –
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Figure 1. The plot of the ratio 〈Ψα|O(1)O(e−iσ)|Ψα〉
〈0|O(1)O(e−iσ)|0〉 at the time t = 0 (left graph) and t = π/2

(right graph) as a function of σ. At t = 0, the excitation is localized at the center of AdS. While

at t = π/2, the excitation spreads throughout AdS. We chose hα = 1/2 and hO = c
24 and made

order n = 4 approximation. The blue, red and green curve corresponds to the value ε = 0.35, 1,

and ∞. Note that when ε = ∞ the left and right graphs do coincide, because the corresponding

BTZ solution is static. We can also see the two point function increases under the time evolution

when 0 ≤ t ≤ π/2 for finite ε.

4.7 Time evolution of |Ψα(t)〉 and bulk causal propagations

Let us study the time evolution of the two point function more closely in the light of its

holographic dual. Consider the gravity dual of the time evolution of the state |Ψα(t)〉. The

primary operator Oα is dual to a bulk scalar field φα with mass mα = ∆α/R. At t = 0,

the origin r = 0 of the global AdS3 is locally excited. Note that we expect that the metric

of the gravity dual even at t = 0 will be modified everywhere due to the gravitational

back reactions of the energetic excitation, though the scalar field expectation value 〈φα〉 is

non-vanishing only near the center of global AdS3. Under the time evolution, the profile of

scalar field φα gets oscillating and some amount of energy is emitted as gravitational waves.

The total energy is given by (2.7). We expect that if ε is small and the dimension ∆α of

the operator is small enough such that ∆Ψα � ∆α, then large amount of excitations will

spread at the speed of light, as sketched in the left picture of figure 2. This is because the

mass of scalar field is small and the energy of oscillation is very large. In this holographic

picture, the geometry at time t = t0 is perturbed from that of t = 0 only in a region where

the light rays from the origin can reach within the time period t0.

Let us estimate this wave front by assuming the global AdS3 metric (2.1). The null

geodesic from r = 0 at time t = 0 reaches r = r0 at

t0 = arctan
(r0

R

)
. (4.24)

By using (4.17), the wave front at t = t0 can be probed by the space-like geodesic which

connects σ = 0 and σ = σ0, where σ0 is given by

cosσ0 =
r2

0 −R2

r2
0 +R2

. (4.25)

This is solved as

σ0 = π − 2t0. (4.26)

Note that we assumed the range 0 ≤ t0 ≤ π/2 and 0 ≤ σ0 ≤ π.

– 12 –
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Figure 2. The sketches of time evolution of the local excitation |Ψα〉 in a global AdS3. The gray

regions describe the bulk scalar field excitation. In the white region we can ignore matter field

contributions and the spacetime can be approximated by the BTZ black hole solution with the

correct mass. The left picture corresponds to the light excitation hα ' 1/2. Since the dual bulk

scalar field is light, we expect light like propagation of excitations. The right picture describes the

geometry for hα � 1. Since the scalar field is very massive, the excitation does not reach the AdS

boundary. Also the primary state includes in |Ψα〉 gives a back reacted geometry (deficit angle

spacetime) localized at the center of AdS.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0
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Figure 3. The plot of the ratio R(t) ≡ 〈Ψα(t)|O(1)O(e−iσ)|Ψα(t)〉
〈0|O(1)O(e−iσ)|0〉 (left graph) and the difference

R(t)−R(0) (right graph) as a function of σ for t = 0, π/6, π/3, π/2, 2π/3, 5π/6, π (from the bottom

to the top graph). At t = 0, the excitation is localized at the center of AdS. While at t = π/2, the

excitation is spread throughout AdS. We chose hα = 1/2 and hO = c
24 for ε = 0.35. We employed

n = 4 approximation. In the right graph, we marked points σ = 0, π/6, π/3, π/2, 2π/3, 5π/6 with

blue dots, corresponding to the wave fronts as computed in (4.26).

We showed in figure 3 the time evolution of two point function for the excited state

|Ψα(t)〉 when the mass of dual bulk scalar field saturates the BF bound i.e. hα = 1/2 (or

∆α = 1) and therefore is lightest. At t = 0 we find that the non-trivial suppression of

two point function, which reflects the localized bulk excitation at the origin of AdS r = 0.

Under the time evolution, the suppression of two point function gets reduced for large

enough values of σ such that σ ≥ π − 2t in a good approximation (see the right graph

in figure 3). Thus we conclude that this shows a light-like spread of the localized bulk

excitation in AdS as expected. In this way, we observed that the time evolution of two

point function shows bulk causal propagations. This is in contrast with the result in a free

fermion CFT, where we do not find any causal propagations from the two point function

as we show in appendix A.

– 13 –



J
H
E
P
0
9
(
2
0
1
6
)
1
3
0

αO = 0.5, ε = 0.35

αO = 0.9, ε = 0.35

Figure 4. The two point function ratios for various αO =
√

1− 24hO/c. The left graph shows

R(t) ≡ 〈Ψα(t)|O(1)O(e−iσ)|Ψα(t)〉
〈0|O(1)O(e−iσ)|0〉 as a function of σ for t = 0, π/6, π/3, π/2, 2π/3, 5π/6, π from the

bottom to top. The right graph describes the difference R(t) − R(0) as a function of σ for t =

0, π/6, π/3, π/2, 2π/3, 5π/6, π. At t = 0, the excitation is localized at the center of AdS. While

at t = π/2, the excitation is spread throughout AdS. We chose hα = 1/2 and employed n = 4

approximation. In the right graph, we marked points σ = 0, π/6, π/3, π/2, 2π/3, 5π/6 with blue

dots, corresponding to the light-like wavefront as computed in (4.26).

So far we assumed αO = 0 or equally hO = c
24 for the numerical plot. Now we show

the behavior of two point functions for αO = 0.5 and αO = 0.9 in figure 4 when hα takes

the same value hα = 1/2. We can confirm the causal propagations of excitations as in the

previous section.

4.8 Two point functions for other values of hα

Here we show the numerical plot of the two point function for hα = 1 and hα = 10. In the

figure 5 we set ε = 0.35. In the case hα = 1 we find approximately a causal propagations

of radiations as in the previous result for hα = 1/2. On the other hand, when hα = 10, the

energy of the primary state ∆α dominates the total energy ∆Ψα and the effect of radiations

is relatively small since ∆α � 1/ε in our numerical computation. Thus we expect that the

dual spacetime geometry consists of a static core dual to the state |α〉 plus a small amount

of radiations. Geodesics on the this back reacted geometry become very long in the region

σ ∼ π, and thus all the correlation functions near σ = π are suppressed. Also there is a

potential barrier as we approach the AdS boundary due to the large mass of bulk scalar

field. These qualitatively explain the behavior of our results (refer to the right picture

in figure 2).
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Figure 5. The two point function ratios for various hα. The left graph shows R(t) ≡
〈Ψα(t)|O(1)O(e−iσ)|Ψα(t)〉

〈0|O(1)O(e−iσ)|0〉 as a function of σ for t = 0, π/6, π/3, π/2, 2π/3, 5π/6, π from the bot-

tom to top. The right graph describes the difference R(t) − R(0) as a function of σ for

t = 0, π/6, π/3, π/2, 2π/3, 5π/6, π from the bottom to top. We chose α = 1/2 and employed

n = 4 approximation. In the case hα = 1, we find approximate light-like wavefront as in hα = 1/2.

At hα = 10, we cannot observe light-like wavefront, because the bulk scalar field is too heavy.

5 Analysis for hα � c and hO � c in holographic CFT

So far we assume hα = O(1) and hO = O(c). In this case, though we want to employ the

operator O as a probe, its conformal dimension is the same order of the central charge

and we cannot neglect the back reaction by the operator O. This motivates us to study

another region: hO � c. Motivated by this, we would like to focus on the region hα
c � 1

and hO
c � 1 in this section.

We can evaluate the two point function by simply plugging the formula (3.12) in (3.14)

and compute the two point function numerically. We show the behavior of two point func-

tions as functions of σ for (hα, hO, c) = (1/2, 100, 10000) and (hα, hO, c) = (10, 30, 10000) in

figure 6. In both cases, we find that the time dependence is not strong compared with that

in figure 3. This is because in the current case, hO is much smaller than c and therefore

the probe operator O cannot amplify the back reaction due to the excited state |Ψα〉.
In the first case (hα, hO, c) = (1/2, 100, 10000), the result is similar to the result for

(hα, αO) = (1/2, 0.9) in figure 4. On the other hand, in the second one (hα, hO, c) =

(10, 30, 10000), we find that the time-dependence is more suppressed and its holographic

interpretation is the same as that depicted in the right picture of figure 2.

In figure 6, we also plotted the ratios of the CFT two point functions against that

from the BTZ geodesic (4.18) at the times t = 0 and t = π/2. From this we learn that at

t = 0 the profile is very close to that obtained from a BTZ black hole, while at t = π/2

they differs largely. This shows that the spacetime metric at t = 0 is well approximated by
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Figure 6. The profiles of two point functions in the two choices of the parameters: (hα, hO, c) =

(1/2, 100, 10000) (upper) and (hα, hO, c) = (10, 30, 10000) (lower). The left graphs show the quan-

tity R(t) ≡ 〈Ψα(t)|O(1)O(e−iσ)|Ψα(t)〉
〈0|O(1)O(e−iσ)|0〉 as a function of σ for t = 0, π/6, π/3, π/2, 2π/3, 5π/6, π from

the bottom to top. The right graphs show this two point function R(t) divided by the holographic

result from the geodesic length in BTZ black hole with mass corresponding to ∆Ψα . The blue and

red curve correspond to this ratio at t = 0 and t = π/2, respectively. In each case we set ε = 0.5

and employed the n = 2 order approximation. In both graphs, we find that the time dependence is

weak compared to that in figure 3. We find that at t = 0 the profile is very close to that obtained

from a BTZ, while at t = π/2 they differs largely especially in the region where σ is large. This

shows that the spacetime at t = 0 can be approximated well by the BTZ solution, on the other

hand, the spacetime at t 6= 0 is a non-trivial solution of the Einstein equation coupled to the scalar

field which is quite different from the BTZ solution. The behavior of these graphs mentioned above

also explains the fact that even at t 6= 0 the geometry outside the excitation should be a BTZ black

hole with the mass corresponding to ∆Ψα .

the BTZ black hole solution. This supports our claim in figure 2. The region outside the

causal evolution of the localized excitation, which is the white region in figure 2, can be

described by a solution of the vacuum Einstein equation and therefore it should be a BTZ

black hole with the mass corresponding to ∆Ψα . The behavior of the right plots in figure 6

in the region where σ is not large shows this expectation is indeed right. The region inside

should be described by a non-trivial solution of Einstein equation coupled to the scalar

field matter. In order to know the interior geometry exactly, we need a further analysis for

the Einstein-scalar system. However, in each plot we can see that the suppression of the

correlation function gets reduced in the region where σ is large, thus we expect that the

deformation of the interior geometry from the pure AdS is smaller than that of the exterior

geometry, i.e. a BTZ black hole spacetime with the mass ∆Ψα .
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6 Conclusions

In this article, we studied time evolutions of a class of excited states |Ψα〉 in two dimensional

holographic CFTs, which are expected to be dual to localized excitations in the bulk AdS3,

in order to understand the bulk locality and causality purely from CFTs. We computed two

point functions of heavy primary operators to probe back-reactions in the bulk geometry

from the localized bulk excitations. We found that excited states dual to a scalar field

with a mass close to the BF bound show the time evolutions which are dual to light-like

spread of the localized excitations in the bulk AdS. On the other hand, those dual to a

very massive scalar field show weak time evolutions localized in the middle of AdS space,

which is interpreted as non-relativistic excitations of the scalar field in the AdS. In both

cases, we found that outside the light cone, the bulk geometry can be well approximated

by BTZ black hole with the mass ∆Ψα . We also found that the short distance behavior

of the two point function satisfies the relation analogous to the first law of entanglement

entropy. Note that there have been many works which employ the large c approximation

in 2d holographic CFTs to extract bulk classical gravity, the present paper has a unique

feature that it focuses on an excitation which is very elementary from the bulk gravity i.e.

local excitation in a bulk point. Our study in this paper revealed the emergence of bulk

light cone structure purely from CFT computations.

An important future problem is to well understand the geometry inside the light cone,

where the scalar field is non-trivially excited. To explore the interior of the light cone, we

need a careful analysis of Einstein-scalar theory. We note that our excited state |Ψα〉 can

have arbitrary large energy and has an exact periodicity π in time direction. It is intrigu-

ing to find a corresponding gravity solution with such a periodicity, because generically

localized matter in gravity theory does not have such periodicity and tends to form a black

hole finally [28, 29].
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A Two point functions for |Ψα〉 in a free fermion CFT

In this section, as an toy analytical example, we would like to evaluate the two point

function (3.14) for the c = 1 CFT (free Dirac fermion or free scalar) by using (3.8). We

choose O = eiβφ. We can express (3.14) in the following form:

〈Ψα|O(1)O(e−iσ)|Ψα〉 = N · |1− e−iσ|−2β2 · lim
x,u→0

DxDu
[
|1− xu|−2|1− η|−2β

]
= N · |1− e−iσ|−2β2 · lim

x,u→0
DxDu [I(x, u, x̄, ū, σ)] , (A.1)
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where we defined

I(x, u, x̄, ū, σ) (A.2)

=

( ∞∑
k=0

xkuk

) ∞∑
k̄=0

x̄k̄ūk̄

( ∞∑
l=0

clx
l

) ∞∑
l̄=0

c̄l̄x̄
l̄

( ∞∑
m=0

dmu
m

)( ∞∑
m̄=0

d̄m̄ū
m̄

)
.

The actions of Dx,u (3.15) and the limits x, u → 0 tell us that only the terms in

I(x, u, x̄, ū, σ) which satisfy

p = k + l = k̄ + l̄, q = k +m = k̄ + m̄, (A.3)

contribute to the final result.

Then it is convenient to decompose the summation into three parts p > q, q < p and

p = q. In this way we obtain the following evaluation:

〈Ψα(t)|O(1)O(e−iσ)|Ψα(t)〉 · N−1 · |1− e−iσ|2β2

=

∞∑
p=0

p−1∑
q=0

e2i(q−p)t(−1)p+qe−ε(p+q)

∣∣∣∣∣
q∑

m=0

cp−q+mdm

∣∣∣∣∣
2

,

+

∞∑
p=0

∞∑
q=p+1

e2i(q−p)t(−1)p+qe−ε(p+q)

∣∣∣∣∣
p∑
l=0

cldq−p+l

∣∣∣∣∣
2

+
∞∑
p=0

e−2εp

∣∣∣∣∣
p∑

m=0

cmdm

∣∣∣∣∣
2

. (A.4)

Now we focus on the special case β = 1. In this case we find

c0 = d0 = 1, cl≥1 = (1− e−iσ)eilσ, dl≥1 = 1− e−iσ. (A.5)

Thus we can evaluate each of summations as follows:
q∑

m=0

cp−q+mdm =

p∑
l=0

cldq−p+l = (1− e−iσ)eipσ,

p∑
m=0

cmdm = (1− e−iσ)eipσ + e−iσ. (A.6)

Finally we can compute the two point function (for OB = eiφ) as follows

〈Ψα(t)|O(1)O(e−iσ)|Ψα(t)〉

= N ·

|1− e−iσ|−2 ·
∞∑
p=0

e−2pε
(

1 + (1− eiσ)e−i(p+1)σ + (1− e−iσ)ei(p+1)σ
)

+
∞∑
p=0

∞∑
q=0

e2i(q−p)t(−1)p+qe−ε(p+q)

 ,
= |1− e−iσ|−2 ·

[
1 +

(
e−iσ − 1

1− e−2ε−iσ +
eiσ − 1

1− e−2ε+iσ

)
(1− e−2ε)

]
+

1− e−2ε

(1− e2ite−ε)(1− e−2ite−ε)
. (A.7)
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Figure 7. The left graph shows a plot of the ratio 〈Ψα|O(1)O(e−iσ)|Ψα〉
〈0|O(1)O(e−iσ)|0〉 as a function of σ for β = 1,

for free fermion CFT. The blue, red and yellow curve corresponds to the value ε = 0.1, 0.5 and 5.

The right plot describes the same ratio at t = 0 (blue), t = π/4 (red), t = π/2 (yellow), t = 3π/4

(green) for ε = 0.1.

Thus at t = 0 we just have in the limit ε→ 0

〈Ψα|O(1)O(e−iσ)|Ψα〉 ' |1− e−iσ|−2. (A.8)

At the same time, we should notice that this is a special example because if we just consider

a primary state |α〉 we find the same result (this is true for any β):

〈α|O(1)O(e−iσ)|α〉 = |1− e−iσ|−2. (A.9)

This may be surprising as we cannot see the difference between the primary state |α〉 and

our new state |Ψα〉. Moreover, they are even the same as the two point function for the

vacuum state |0〉. However we would like to interpret this as an artifact of free CFTs. For

interacting CFTs this does not happen in general as we saw in the sections above. For

non-zero ε, we find a non-trivial behavior as in figure 7. In both the limit ε→ 0 and ε→∞
the results coincide with the vacuum two point function 〈0|OO|0〉.

We would also like to mention that this result does not satisfy the short distance

behavior (4.4), which means that the free fermion CFT is an exception. A similar result is

known for entanglement entropy as found in [26].

Now, at t = π/2 we obtain

〈Ψα(π/2)|O(1)O(e−iσ)|Ψα(π/2)〉 (A.10)

= |1− e−iσ|−2 ·
[
1 +

(
e−iσ − 1

1− e−2ε−iσ +
eiσ − 1

1− e−2ε+iσ

)
(1− e−2ε)

]
+

1− e−2ε

(1− e−ε)2
,

where only the last term is modified. If we take the limit ε→ 0 we get

〈Ψα(π/2)|O(1)O(e−iσ)|Ψα(π/2)〉 ' |1− e−iσ|−2 +
2

ε
. (A.11)

This shows that the time evolution gives a larger correction to the two point function.

We plotted the behavior of the two point function in figure 7 for several ε and t at β = 1.

Its time evolution is indeed different from what we expect from the causal propagation in

AdS space. This is consistent with the fact that there is no classical gravity dual to a free

fermion CFT.
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