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1 Introduction

All confirmed fundamental fermion fields are chiral. We can express all known matter fields

as left-handed Weyl fermions — Q, uc, dc, L, ec — that transform under the Standard

Model (SM) gauge group SU(3)×SU(2)×U(1) as (3, 2)1/6, (3̄, 1)−2/3, (3̄, 1)1/3, (1, 2)−1/2

and (1, 1)1, respectively. There are no vector-like fermions, i.e., pairs of fields with ‘equal-

but-opposite’ charges. One consequence of this experimental fact is that, before electroweak

symmetry breaking (EWSB), all fundamental fermions are massless. A corollary is that all

fermion masses are proportional to the parameter that controls EWSB. In the case of the

SM, this is the vacuum expectation value v of the neutral component of the scalar Higgs

field H, (1, 2)1/2.

One can speculate why, to date, all identified fermion fields turned out to be chiral. On

one hand, the existence of a single chiral fermion charged under a gauge symmetry implies

the existence of several other chiral fields in order to cancel the gauge anomalies. On the

other hand, vector-like fermions, if they were to exist, would have masses unrelated to

EWSB and could be out of the reach of current experimental probes. The lack of concrete,

unambiguous, experimental evidence leads one to conclude that, if they do exist, vector-like

fermions are either very heavy or, in the event that the new fermion is not charged under

the SM gauge group, very weakly coupled.

Yet, we know the SM is not complete. The SM fermion content, combined with the

SM Higgs sector, leads to the prediction that neutrino masses are zero. While this is not a

bad approximation — neutrino masses are known to be tiny — it is factually incorrect [1–

4]. The origin of nonzero neutrino masses is currently unknown, but it is clear that new

degrees of freedom must exist. The preferred neutrino mass mechanism makes use of the

fact that neutrinos are singlets of the unbroken SM gauge groups and hence can have
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Majorana masses. In the simplest realizations, the so called Seesaw Mechanisms [5–10, 10–

16], a heavy state is introduced that mediates the Weinberg operator, (LH)(LH). On the

other hand, Dirac neutrino masses also require the introduction of a new, SM gauge-singlet

fermionic degree of freedom. While technically natural, this hypothesis is often considered

to be contrived since it requires extremely small Yukawa couplings.

New degrees of freedom are also required in order to explain the Dark Matter (DM)

puzzle. Regardless of its nature, the existence of DM also appears to imply a new funda-

mental physics scale (see [17] for an attempt at a counter example).

In this paper, we propose that all light fermionic degrees of freedom are chiral in the

sense described above — what we mean by “light” will be made clear below. In particular,

new light fermionic degrees of freedom required to explain neutrino masses and DM must

also be chiral. To achieve this, we postulate the existence of, at least, a new nonanomalous

U(1) gauge symmetry that we dub U(1)ν . We impose, similar to the SM, that (i) all new

fermions are charged under U(1)ν — that plays the role of SM hypercharge — and (ii)

no light vector-like fermions exist. Anomaly cancellations then require the existence of

several new fields. With these ingredients we construct a model for a Dark Sector (DS)

that, in analogy to the SM, shows accidental global symmetries as a consequence of the

U(1)ν charge assignments. These in turn imply the existence of at least one stable massive

particle that serves as a DM candidate.

Similar to the SM active neutrino, massless fermions appear in the DS. We show that

the smallness of neutrino masses can be understood if the initially massless DS states are

charged under the SM lepton number symmetry. Lepton number is communicated between

the SM and the DS via a nonchiral, heavy mediator sector charged under both the SM and

the DS gauge symmetries. After integrating out the mediator sector, this model produces

naturally small Dirac neutrino masses through a mechanism first described in [18]. This

contrasts with previous models of a chiral DS, e.g. [19], where the Seesaw is still invoked.

Kinetic mixing between the SM and the U(1)ν gauge bosons [20] is unavoidable in this

scenario. It leads to several consequences, most importantly, the possibility of detecting

the DM particles in the laboratory [21]. Barring the possibility of fine tuning, the predicted

DM cross section would be within reach for the next generation of DM direct detection

experiments.

In order to develop the scenario described above, an algorithm is necessary to write

chiral models that are at least anomaly-free under a U(1) gauge symmetry [22] — see

also [23, 24]. A general technique to do so is described in section 6, towards the end of

this manuscript. Indeed, following the steps detailed in section 6, one can construct any

number of models that fit our requirements. The method also allows one to address several

technical questions including what are the “minimal” anomaly-free U(1) gauge theories

with chiral fermions. This question is answered precisely, for two different criteria for

minimality: smallest highest charge and smallest number of fermion fields.

Before embarking in such general considerations, we describe in section 2 a simple yet

phenomenologically appealing realization of our scenario and, in section 3, discuss in some

detail some of the relevant features of this model, mostly those related to the introduction

of new gauge interactions. We discuss how small neutrino masses and dark matter can be
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accommodated in this model in sections 4 and 5. Finally, in section 7, we briefly discuss

other models, potential research directions, and provide some concluding thoughts.

2 Chiral U(1)ν model

In this section we construct a Lagrangian consisting of the SM, a U(1)ν-charged, nonanoma-

lous “dark sector (DS)” and a “mediator sector”.

L = LSM + LDS + LMix + LMed, (2.1)

where LSM, LDS, and LMed represent the SM, DS, and Mediator Lagrangians, respectively.

The term LMix contains renormalizable operators that “mix” the SM and DS degrees of

freedom, including the kinetic mixing of U(1)ν with the hypercharge U(1)Y and the scalar

potential coupling between the Higgs field and the equivalent “dark Higgs” scalar field. We

discuss these term in detail in section 3.

In addition to the SM gauge group, L is also invariant under a gauged U(1)ν symmetry,

which “lives” in the DS. We assume the fermionic particle content, assuming all fermions

to be chiral, is as follows, keeping in mind that all fermions are left-handed Weyl fields:

• three fields with charge +1 — 10,1,2+ ;

• two fields with charge −2 — 21,2− ;

• two fields with charge −3 — 31,2− ;

• three fields with charge +4 — 40,1,2+ ;

• one field with charge −5 — 50−.

We adopt a normalization for the new gauge coupling gν in which all U(1)ν charges are

integers. The SM fields are not charged under U(1)ν , while the new fermions defined above

are not charged under the SM gauge symmetry.1 U(1)ν is assumed to be spontaneously

broken in order to render most of the new fermions and the new gauge boson massive. We

achieve this by, similar to the SM, adding one scalar field φ with charge +1 and a scalar

potential such that φ has a nonzero vacuum expectation value vφ.

Having defined the gauge symmetry and the particle content, the renormalizable Dark

Sector Lagrangian is well-defined:

LDS = LDS-kin + LDS-Yuk + V (φ) (2.2)

where LDS-kin and LDS-Yuk represent the kinetic-energy and Yukawa terms respectively,

while V (φ) is the scalar potential for the field φ. The kinetic-energy terms are

LDS−kin = −1

4
B̃µνB̃

µν + i1̄i+σ̄µD
µ
+11

i
+ + i2̄k−σ̄µD

µ
−22

k
−

+i3̄k−σ̄µD
µ
−33

k
− + i4̄i+σ̄µD

µ
+44

i
+ + i5̄0−σ̄µD

µ
−55

0
− + |Dµ

+1φ|2 (2.3)

1From the point of view of the SM, all new fermions are gauge-singlet “neutrinos,” hence the name

U(1)ν .
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where

Dµ
q = ∂µ − igνqB̃

µ, (2.4)

B̃µν is the U(1)ν field strength and B̃µ the U(1)ν gauge field. i = 0, 1, 2, k = 1, 2. Note

that, here, 1̄+ (which has charge −1) represents the complex-conjugated, right-handed

Weyl field associate to the 1+ left-handed Weyl field, etc.

The Yukawa interactions in the DS are given by:

− LDS−Yuk = fik1
i
+2

k
−φ+ hi0 4

i
+5

0
−φ+ hik 4

i
+3

k
−φ

∗ + h.c., (2.5)

where f , h are 2 × 3 and 3 × 3 Yukawa matrices respectively. In what follows the indices

i, k will be omitted whenever there can be no confusion.

After U(1)ν breaking, the 3−, 5− and 4+ fields “pair up” into three Dirac fermions,

labelled from here on χi, their masses-squared associated to the eigenvalues of the 3 × 3

mass-squared matrix MχM
†
χ, where

(Mχ)ij = hijvφ , i, j = 0, 1, 2. (2.6)

In general, Mχ is expected to have three nonvanishing eigenvalues and hence describe three

massive Dirac fermions.

Similarly, the two 2− fields pair up with two linear combinations of the three 1+ fields

into two Dirac fermions that we label Nk. Note that there is no 20− field. Hence, there is

a massless chiral linear combination of 1+ fields, that we call νc. All the masses-squared,

including the vanishing one, can be obtained from the eigenvalues of the 3×3 mass-squared

matrix MνNM †
νN , where

(MνN )ij = fijvφ , i, j = 0, 1, 2 , (2.7)

and where we define fi0 ≡ 0 for all i = 0, 1, 2. In summary, in the absence of fields that

connect the DS to the SM, after symmetry breaking, the model contains 3+2 = 5 massive

Dirac fermions N1,2, χ1,2,3, and one massless left-handed Weyl fermion, νc.

The unitary rotation of the fields 1+ and 2− that renders MνN diagonal has no ef-

fect in eq. (2.3) since these rotations operate independently on fields of the same charge.

Performing a similar change of basis on the 3−, 4+ and 5− fields in order to render Mχ

diagonal is different since, in this case, the 50− and 31,2− fields must be grouped together as

components of a 3-vector. If Mχ is diagonalized by the transformation

UMχV† = diag{Mχ1
,Mχ2

,Mχ3
} , (2.8)

where U ,V are 3 × 3 unitary matrices, “mixing” appears among the χ fields. The U(1)ν
couplings to the χi mass eigenstates are off-diagonal which indicates the presence of “flavor-

changing neutral currents” within each DS generation. Explicitly, in the mass basis, the B̃

couplings are given by2

gν
(

ν̄cσ̄µν
c − N̄RγµNR − 2N̄LγµNL − 4χ̄RγµχR + χ̄LQ35γµχL

)

B̃µ, (2.9)

2The Dirac fermions are (ignoring i, k indexes), NT = (2
−
, 1̄+), χ

T = (3
−
, 4̄+) , (5−

, 4̄+), where the

comma indicates that χ are linear combinations of those two Dirac fermions.
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where the L, R subindices mean that we take the left- or right-handed components of the

corresponding Dirac field. Indices running over fields of the same charge are implied and

the matrix Q35 in the last term is the rotated charge-matrix

Q35 = V







−3

−3

−5






V† . (2.10)

Since this matrix is nondiagonal, generically, two of the χ fermions in the 345-sector, say χ2

and χ3, are unstable; decaying for example into a lighter χ field and a νcν̄c pair via B̃ boson

exchange. This B̃ boson can be on- or off-shell depending on the masses of the χi. Also

notice that the stable, lightest χ-particle, χ1, couples to B̃ with a right-handed coupling

−4gν and a left-handed coupling (−3 + (−5 + 3)|Vχ5|2)gν , where |Vχ5|2 is the probability

that a χ1 state will interact as a charge −5 object. The scattering cross-section of an

unpolarized χ1 beam via B̃ exchange will be proportional to an effective charge-squared

Q2
χ =

1

2

(

42 +
[

(3 + 2|Vχ5|2
]2
)

∈ [12.5, 17], (2.11)

which will come in handy later.

After all the smoke has cleared, LDS contains four accidental global U(1) symmetries,

U(1)χ × U(1)N1 × U(1)N2 × U(1)νc and hence four stable particles. More structure in the

DS will, in general, reduce the accidental global symmetry of the Lagrangian. For example,

if there is a second U(1)ν charged scalar field φ′, also with charge +1, the U(1)4 global

symmetry would be, in general, reduced to U(1)χ×U(1)12, where 12 refers to the fields with

charges +1,−2. In this case, only the lightest χ field would be absolutely stable, along with

the massless νc state. Ultimately, we will associate the lightest χ field with dark matter,

while νc will play the role of the left-handed antineutrino SM gauge singlet field.

Before proceeding, it is interesting to establish a parallel between the DS and the SM.

In the SM, assuming only one generation and “turning off” the strong and the charged-

current weak interactions, there are 7 massive Dirac fermions (u × 3, d × 3, e) and one

massless left-handed Weyl fermion (the neutrino component of L, νL). There is also a very

large accidental classical global symmetry, U(1)8 (“green up-quark number,” “electron

number,” “neutrino number,” “red down-quark number, etc). The charged-current weak

interactions explicitly break this down to U(1)3q ×U(1)ℓ for quarks (one for each color) and

leptons, respectively.

In summary, the chiral U(1)ν model described here accommodates new stable massive

fermions whose masses are proportional to a new mass scale, which we will associate with

the dark matter. As we will discuss in section 5, the new gauge interaction, combined with

the interactions between the DS and the SM discussed in the next section, is sufficient to

predict the dark matter relic density. In order to render the neutrinos massive, however,

one is required to add new mediator fields charged under both the SM and U(1)ν , and a

new mass scale, described in LMed. We deal with this issue in section 4

– 5 –
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3 The mediator sector, U(1)ν interactions and kinetic mixing

We postulate the existence of heavy nonchiral degrees of freedom charged under the gauge

symmetries of both the SM and the DS. For concreteness, let us choose a very simple

possibility: one vector-like Dirac fermion X with mass Λ. X is a weak doublet with

hypercharge +1/2 and U(1)ν-charge −1 whose renormalizable Lagrangian reads (we define

XT ≡ (x, x̄c), where x, xc are left-handed Weyl fermions):

LMed = iX̄ /DX + ΛX̄X −
(

κLLxφ+ κi1
i
+xH̃ + h.c.

)

, (3.1)

where

/D = /∂ − i
g

2
/W

a
T a − i

g′

2
/B + igν /̃B , (3.2)

T a are the Pauli matrices, and LT = (νL, ℓL) is the SM lepton doublet. We will discuss

most of the consequences of this part of the Lagrangian in the next section. Before doing

that, we need to address the new gauge interactions.

The fact that L is invariant under U(1)Y × U(1)ν implies that one must also take

kinetic mixing between the two U(1) field strengths into account:

LKin-Mix = −sin η

2
BµνB̃µν , (3.3)

where Bµν represents the hypercharge field strength. In the next sections we will argue

that phenomenological considerations impose a bound gν sin η . 10−3. We now show that

this value is natural in the sense that quantum corrections do not destabilize it.

If the kinetic mixing is set to zero at some scale, quantum corrections give rise to

a nonvanishing η. These effects appear as a consequence of the mediator sector, which

couples to both the SM and the DS U(1)s, and generates a nonzero sin η at the one-loop

level. This one-loop correction to sin η is given by

∆ sin η = Cη
g′gν
16π2

log

(

Λ

µ

)

, (3.4)

where g′ is the hypercharge gauge coupling, µ is the renormalization scale and Cη is an O(1)

coefficient that depends on the renormalization conditions. Taking for the combination

Cηg
′gν ∼ 0.1, eq. (3.4) implies that sin η ∼ 10−3 is natural.

After electroweak and U(1)ν symmetry breaking, the physical gauge bosons Aµ, Zµ

and Z̃µ are related to Bµ, W
3
µ , B̃µ by the following nonunitary linear transformation [25]:







Bµ

W 3
µ

B̃µ






=







cW − cos ξsW − tan η sin ξ sin ξsW − tan η cos ξ

sW cos ξcW − sin ξcW
0 sin ξ sec η cos ξ sec η













Aµ

Zµ

Z̃µ






, (3.5)

where cW and sW are, respectively, the sine and cosine of the weak mixing angle, while the

angle ξ can be succintly written in the limit η → 0, MZ ≪ MZ̃ as [25]

sin ξ ≃ −M2
Z

M2
Z̃

sW sin η . (3.6)
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Unless otherwise noted, we will mostly be interested in the limit in which eq. (3.6) holds.

Notice that in this limit ξ ≪ η.

In general, we find that DS particles acquire an O(ξ) small coupling to the physical

Z boson while SM particles acquire an O(η) coupling to the physical Z̃ gauge boson.

These couplings are important because they represent the main SM-DS interaction and

can be potentially probed experimentally. On the other hand, no coupling of the DS to

the photon appears as it is expected since electromagnetism remains unbroken. Explicitly,

the couplings of the DS particles to the Z are

gν sin ξ
(

ν̄cσ̄µν
c − N̄Rγ

µNR − 2N̄Lγ
µNL − 4χ̄Rγ

µχR + χ̄LQ35γ
µχL

)

Zµ . (3.7)

The SM particles also interact with the physical Z̃. In the same approximation as

before — η ≪ 1, MZ ≪ MZ̃ — the interaction can be written as

e sin ξZ̃µ

∑

f

[

tan θW

(

1+
M2

Z̃

s2WM2
Z

)

Y (f)+
I
(f)
3

2
cot θW

]

f̄γµf≃−e sin η

cW
Z̃µ

∑

f

Y (f)f̄γµf ,

(3.8)

where the sum runs over all chiral SM fermions and I
(f)
3 and Y (f) are the weak isospin

and hypercharge of the fermion field f = uL, uR, dL, dR, . . .. For M2
Z ≪ M2

Z̃
the term

proportional to Y (f) dominates.

There is also mixing in the scalar sector. Again, assuming that the coefficient λφH

of the λφH |φ|2|H|2 term vanishes at tree level, a coupling λφH would be generated at the

one-loop level of order

λφH ∼ κ2L(
∑

i κ
2
i )

16π2
log

(

Λ

µ

)

, (3.9)

where we ignore a Z− B̃ one-loop diagram proportional to sin2 ξ (which can be considered

a three-loop effect). We take the value in eq. (3.9) to be the “natural” value for λφH . For

small κL and κi, λφH is naively more suppressed than sin η. Moreover, as we will briefly

argue in the concluding section, if one were interested in avoiding large finite corrections

from the mediator scale Λ to the scalar masses-squared, one would be forced to impose

κL, κi . 10−4. Henceforth, we will assume for simpliciy that kinetic mixing effects are

more significant than those related to scalar mixing.

4 Neutrino masses

The mediator Lagrangian in eq. (3.1) explicitly breaks the U(1)N1×U(1)N2×U(1)νc×U(1)ℓ
down to U(1)L — what is normally referred to as lepton-number. That is, the introduction

of new, heavy degrees of freedom necessarily renders all neutrinos and DS particles massive,

but does it in a way that lepton number remains a good quantum number [18]. Examples

of recent models that make use of this idea are [26, 27].

– 7 –
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Upon integrating out the X field,3 one generates the following dimension-five effective

operator, assuming only one generation of SM leptons:

κLκi
Λ

(

1i+L
)

(Hφ) + h.c.. (4.1)

It is important to note that the mediator sector we have chosen is an example. Any

UV-completion that implements the symmetry breaking pattern described above would

also lead to the operator in eq. (4.1). After symmetry breaking, this operator manifests

itself as a Dirac mass between the 1+ fields and νL,

mD
i =

κLκivvφ
Λ

. (4.2)

where v is the vev of the Higgs field, v ∼ 102GeV. In more detail, after U(1)ν symmetry

breaking, the three pairs of Weyl fields (νL, 2
1,2
− ) and 10,1,2+ combine into three massive

Dirac fermions, with mass matrix

(Mν)ij = f ′
ijvφ, (4.3)

where f ′
ij = fij for i = 0, 1, 2 and j = 1, 2, while f ′

i0 ≡ mD
i for i = 0, 1, 2. In the basis

where MνN , defined in eq. (2.7), is diagonal,

Mν =







mD
0 0 0

mD
1 M1 0

mD
2 0 M2






, (4.4)

whereM1, M2 are the eigenvalues ofMνN , naively of order vφ. The massesmD, on the other

hand, are parametrically smaller than M1,2 by a factor v/Λ. In the limit M1,2 ≫ mD
0,1,2,

the eigenvalues of Mν are simply mD
0 , M1, M2. With respect to the SM weak interactions,

the three massive Dirac fermions are a mostly active neutrino ν and two mostly sterile

neutrinos N1,2.

The fact that there are three generations of weakly interacting neutrinos in the SM,

two of which are known to be massive, implies that the number of DS “families” Nf is at

least two. For Nf = 2, there are three mostly active neutrinos, one of which is massless,

and four mostly sterile states. All massive states are Dirac fermions. If all mostly active

neutrinos are massive, Nf ≥ 3 and there are at least six mostly sterile massive states.

For Nf > 3, there is a mismatch between the number of νL and νc states, and Nf − 3

antineutrinos remain massless.

Experimentally, neutrino masses are known to be of order 10−1 eV or less which implies

κLκ0vφ
Λ

. 10−11 . (4.5)

The smallness of the neutrino masses can be attributed to Λ ≫ vφ or κLκ0 ≪ 1. Unless

otherwise noted, we will assume that vφ ∼ v ∼ 102GeV so if κ0κL ∼ 1, Λ ∼ 1013GeV is

3We will mostly be interested in the physics at energy scales well below the mass of these mediator fields

and could also introduce their effects by adding higher-dimensional operators to LSM +LDS. We find that

the introduction of a concrete model renders the discussion more transparent.
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required in order to “explain” the small neutrino masses. On the other hand, if Λ ∼ 1TeV,

small neutrino masses can be “explained” if κ0κL ∼ 10−10. This is, qualitatively speaking,

not different from the standard Type-I seesaw mechanism [5–10]. It is amusing to note

that, in the limit κL = κ0 and v = vφ, the expression for small Dirac neutrino masses

we obtain here, eq. (4.2), is identical to the one for small Majorana neutrino masses from

the Type-I seesaw if we identify Λ with the right-handed neutrino masses and κ with the

neutrino Yukawa coupling.

It is easy to diagonalize Mν ,4 in the limit M1,M2 ≫ mD
0 ,m

D
1 ,m

D
2 . M

ν = URM
ν
diagU

†
L,

where

UL =







1 mD
1 /M1 mD

2 /M2

−mD
1 /M1 1 0

−mD
2 /M2 0 1






+O

(

mD
i

Mk

)2

, (4.6)

UR =







1 0 0

0 1 0

0 0 1






+O

(

mD
i

Mk

)2

, (4.7)

Mν
diag =







mD
0 0 0

0 M1 0

0 0 M2






. (4.8)

In the case of Mν
diag, we also only keep the leading order mD

i /Mk terms. In the mass basis,

the gauge interactions will couple the heavy, sterile states N to the active ν state. In more

detail, the following interactions appear after diagonalization of Mν :

− mD
1

M1
ν̄L

(

g

2cW
/Z − 2gν /̃Z

)

N1L − mD
2

M2
ν̄L

(

g

2cW
/Z − 2gν /̃Z

)

N2L + h.c. , (4.9)

describing the potential decays Nk → Zν, B̃ν. Moreover, from the standard weak couplings

to the W -boson, we find

g√
2

(

−mD
1

M1
ℓ̄L /W

−
N1L − m2

MD
2

ℓ̄L /W
−
N2L

)

+ h.c. , (4.10)

which allow for the interesting decays of the DS N particles into charged leptons, Nk →
ℓW (∗). The strength of the coupling of Ns to the SM gauge bosons, proportional to the

ratio between the neutrino masses and the masses of the sterile neutrinos, is a generic

feature of these models.

In the case in which the N particles are heavier than the weak bosons, the decay rate

of, say, N1 → ℓW is given by

ΓN1→ℓW =
GF (m

D
1 )

2M1

8π
√
2

+O
(

M2
W

M2
1

)

(4.11)

from which we obtain ΓN1→ℓW ∼ 0.4 s−1 for mD
1 = 0.1 eV, M1 = 1TeV. On the other

hand, if the SM gauge bosons are heavier than the Ni fields, these decay to SM fields

4We restrict the discussion to one generation of DS and SM fields. The extension to three SM families

and Nf DS families is straightforward.
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via off-shell W -bosons and Z-bosons. In this case, the decay width of N → SM scales

like M3
i — a factor of M5

i from kinematics times the “mixing parameter” squared, pro-

portional to (mD
i /Mi)

2. For very light sterile neutrino masses — masses below 1MeV —

at the tree-level, only the N → νν̄ν decays are kinematically available, and the one-loop

suppressed decay N → νγ also becomes relevant. The couplings associated to these de-

cays are again proportional to mD/M . In summary, assuming all mD
i are of order the

active neutrino masses, the sterile neutrino lifetimes range between tenths of milliseconds

for MN ∼ 1 10TeV to order 105 years for MN ∼ 100MeV and much longer than the age

of the universe for lighter sterile neutrinos.

It is intriguing that for sterile neutrino masses of order 10 keV, the active-sterile mixing

angle squared (mD/M)2 is of order 10−10, in agreement with the recent “sterile-neutrino-as-

dark-matter” interpretations of the 3.5 keV line [29]. Here, however, one needs to revisit

the issue with some care since, in the early universe, the sterile neutrinos are kept in

thermal equilibrium with the photons via flavor-diagonal Z and Z̃ interactions, discussed

in some detail in the previous section. These interactions determine their relic abundance,

as opposed to the standard Dodelson-Widrow mechanism [30], where active-sterile mixing

determines the relic abundance of the mostly sterile states (for other possibilities see, for

example, [31]). We discuss early-universe related issues in more detail in section 5.

Sterile neutrinos can be produced in the laboratory mostly via their coupling to the

Z and the Z̃ (Z(∗), Z̃(∗) → NiN̄i), or the scalar fields associated to spontaneous symmetry

breaking. The associated phenomenology and potential current constraints will depend on

the mass of the sterile neutrinos but, for most masses, as discussed above, the Ni particles

are effectively stable when compared to the time-scales of laboratory experiments and will

manifest themselves as missing energy.

5 Early universe cosmology and dark matter

Here we provide a brief discussion of the thermal history of the universe described by the

Lagrangian in eq. (2.1). As discussed in section 2, in the scenario under investigation

there are a number of accidental global symmetries that ensure the presence of stable

particles. If there were no mediator states X, for every generation of new fermions, the

corresponding N1, N2 would be stable, along with the massless “left-handed antineutrinos”

νc. Furthermore, χ1, the lightest of the χi fields, is also stable. The mediator interactions

discussed above, other than rendering the N1,2 unstable on cosmological time-scales do not

play a significant role at temperatures much smaller than Λ. In what follows, we estimate

the current constraints on the DS from cosmological measurements, and discuss whether

the χ particles can explain the dark matter puzzle. For concreteness, we will use the

following values for the DS parameters in our estimates:

M1 ∼ M2 ∼ 1TeV , Mχ ∼ 5TeV , MZ̃ ∼ 500GeV , gν ∼ 0.1 . (5.1)

We denote the temperatures of the SM and DS plasmas by T and T̃ respectively. The

distinction is only relevant below a certain temperature Tdec at which the interactions that

couple the two sectors fall out of thermal equilibrium. Above Tdec there is a single plasma
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composed of SM and DS states. Also, let g
∗ represent the effective number of relativistic

degrees of freedom at temperatures greater than Tdec while g
∗ and g̃∗ represent the degrees

of freedom below Tdec for the SM and DS plasmas respectively. To simplify things we

assume that no reheating takes place at the time of decoupling so that at Tdec we have the

matching condition:

g
∗
dec = g∗dec + g̃∗dec . (5.2)

The thermal history of this model proceeds as follows [32]. As the universe cools

down, DM becomes nonrelativistic and freezes out eventually, leaving a thermal relic of χ1

particles. Annihilations of the heavy, stable χ1 particles into lighter νc or Ni dominate over

annihilations into SM states and are the main processes that determine the relic density.

Shortly after freeze-out, all the states in the DS are nonrelativistic except for the νc.5

These remain coupled to the SM plasma up to Tdec. From this point on, T is no longer

necessarily equal to T̃ and the two gases must be treated independently. After the time of

decoupling, adiabaticity of the evolution of the two sectors then imposes the constraint

g̃∗T̃ 3

g∗T 3
=

g̃∗dec
g∗dec

. (5.3)

We start by estimating Tdec and how it is constrained by observations. Given the

choice of parameters eq. (5.1), this occurs at temperatures well below the electroweak and

U(1)ν phase transitions. At temperatures T = T̃ . 100GeV, the only relativistic state

in the DS plasma are the νc. The presence of new, light particles in thermal equilibrium

with the SM gas is contrained by a variety of observations. This is true of the antineutrino

fields νc, which are effectively massless. These degrees of freedom persist throughout the

thermal history of the universe and contribute to its expansion rate, especially when the

universe is radiation dominated. More concretely, they contribute to the parameter Neff ,

which parameterizes the number of relativistic degrees of freedom:

Neff = NSM
eff +∆Neff , ∆Neff =

ρeR
ρν

. (5.4)

Here NSM
eff is the SM contribution while ∆Neff comes from new physics and is defined as

the ratio between the energy density of extra radiation ρeR and that of one SM neutrino ρν .

The SM particle content and interactions translate into NSM
eff = 3.045. Measurements

constrain Neff at the time of big-bang nucleosynthesis (BBN) and at the surface of last

scattering. In particular, if the gas of νc states were at the same temperature as the active

neutrino gas at the time of BBN, they would contribute ∆Neff = Nf . Since we need at

least two DS generations in order to account for two massive neutrinos, we have Nf ≥ 2, a

possibility that would be in tension with the current bounds if it were to translate directly

into ∆Neff . Measurements of ∆Neff come from BBN and the cosmic microwave background

5For masses of the sterile neutrinos M1, M2 ∼ 1TeV, their lifetimes are a fraction of a second and

hence “safe” with respect to constraints from big-bang nucleosynthesis, since the injected particles have

sufficient time to thermalize. We assume therefore that the sterile neutrinos are mostly harmless as far as

cosmological observables are concerned and ignore them henceforth, unless otherwise noted.

– 11 –



J
H
E
P
1
0
(
2
0
1
5
)
0
4
6

(CMB). The Planck collaboration has recently published values Neff = 3.15± 0.46 at 95%

C.L. [33] while in [34] the bound ∆NBBN
eff < 1.5 at the time of BBN was found.

On the other hand, if the DS gas decouples early enough from the SM its temperature

T̃ at the time of big bang nucleosynthesis can be significantly lower than that of the active

neutrinos T . If that is the case,

∆Neff =
4g̃∗

7

T̃ 4

T 4
=

4g̃∗

7

(

g∗ g̃∗dec
g∗dec g̃

∗

)4/3

, (5.5)

where we have used eq. (5.3). Assuming Nf = 3 generations in the dark sector g̃∗ = g̃∗dec =

6, and taking for g∗ its value at the time of neutrino decoupling g∗ = 10.75, we find that

in order to satisfy ∆Neff < 1, it is enough to have g∗dec & 27. Hence, it suffices that the

νc’s decouple before the QCD phase transition, which corresponds to g∗dec = 61.75, in order

to satisfy the bounds comfortably. In that case we find ∆Neff = 0.33, in agreement with

Plack bounds.

For later use, it proves useful to define the ratio between the DS and SM tempera-

tures today (indicated by the subscript ‘0’) which has remained constant after the photon

reheating by electron-positron annihilation:. Using eq. (5.3) we find:

r0 ≡
T0

T̃0

. 0.56 . (5.6)

Imposing that the DS should decouple from the SM before the QCD phase transition

translates into bounds on the couplings of the νc and SM fermionic currents to the Z and

Z̃ bosons respectively. We note that νc thermal equilibrium with the SM is very similar

to the thermal equilibrium of active neutrinos since these also interact with the rest of

the SM gas via weak interactions. Since the decoupling temperature of active neutrinos is

proportional to G
−2/3
F , we roughly estimate the decoupling temperature of the νc from the

SM gas, for MZ ≪ MZ̃ , as follows:

T dec
νL

T dec
∼

(

GνGF

G2
F

)1/3

∼
(

MZgν
MZ̃g

sin η

)2/3

, (5.7)

where Gν has been obtained from eqs. (3.7), (3.8),

Gν ∼ sin2 ξ g2ν
M2

Z

. (5.8)

Requiring that the νc decouple from the SM gas before the QCD phase transition,

T dec
νL

/T dec . 0.01, we obtain sin η . 10−3. This matches the discussion in section 3,

where we argued that sin η ∼ 10−3 is natural (see eq. (3.4)).

We proceed to estimate the DM relic density given the values of the parameters listed

in eq. (5.1). Define as usual the time variable x = Mχ1
/T and let xfo be its value at

the freeze-out temperature (we will show that Tfo = T̃fo). xfo can be obtained from the

Boltzmann equation and is typically of order

xfo ≡
Mχ1

Tfo
∼ 10 . (5.9)
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It is well known that the contribution of χ1 to the energy budget of the universe today Ωχ,

is inversely proportional to its thermally-averaged annihilation cross-section, 〈σannv〉. For

s-channel annihilations we have:

〈σannv〉 ∼ σ(χ1 + χ̄1 → νc + ν̄c) ∼ NfQ
2
χ

g4ν
8πM2

χ1

, (5.10)

where Q2
χ = O(10) was defined in eq. (2.11) and Nf is the number of dark flavors. Putting

in some numbers we find

〈σannv〉 ∼ 3× 10−2 pb×
(

1 TeV

Mχ1

)2
(

NfQ
2
χ

20

)

( gν
0.1

)4
. (5.11)

For a DM number density nχ1
, the DM fraction today is defined, as usual, as

Ωχ0 =
ρχ0
ρcr

=
Mχ1

Y∞T̃ 3
0

ρcr

(

a∞T̃∞

a0T̃0

)3

=
Mχ1

Y∞T̃ 3
0

ρcr

(

a∞T̃∞

adecT̃dec

)3(

adecT̃dec

a0T̃0

)3

=
Mχ1

Y∞T̃ 3
0

ρcr

(

a∞T∞

adecTdec

)3

=
Mχ1

Y∞T̃ 3
0

ρcr

g
∗
dec

g∗∞

(5.12)

where Y = nχ1
/T̃ 3 and the ∞ subscript refers to its asymptotic value. In the above

equations we have used that Tdec = T̃dec and T∞ = T̃∞. Also, notice that no reheating

event occurs in the DS after T̃dec and hence adecT̃dec = a0T̃0.

A good approximation for Y∞ is

Y∞ ∼ xfoH(x = 1)

M3
χ1
〈σannv〉

, (5.13)

where the Hubble rate at x = 1 is given by

H(x = 1) =

√

8πGρ(x = 1)

3
=

√

4π3Gg∗(x = 1)

45
T 2 =

√

4π3Gg∗(x = 1)

45
M2

χ1
. (5.14)

Plugging this into eq. (5.12) we obtain

Ωχ0 ∼
√

4π3Gg∗(x = 1)

45

xfoT
3
0 r

3
0

〈σannv〉ρcr
g
∗
dec

g∗∞

. (5.15)

Numerically,

Ωχ0 ∼
10−2

〈σannv〉
pb. (5.16)

Given the value for the thermally-averaged cross-section, estimated above (eq. (5.11)), Ωχ

can be made to agree with the cold dark matter contribution to the energy budget of the

universe, Ωch
2 = 0.1188± 0.0010 [33].

The χ1 particles scatter off of ordinary matter via both Z and Z̃ exchange, both

couplings (i.e., the coupling of χ1 to the Z-boson and that of the SM fermions to the Z̃-

boson) suppressed by the small kinetic mixing parameter. The cross-section for χ1-nucleus
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scattering is, in the limit that the dark matter is much heavier than the scattered nucleus

and M2
Z̃
≫ M2

Z [35, 36]6

σ(χ1 +N → χ1 +N) = α
m2

N

M4
Z

g2ν sin
2 ξQ2

V

sin2 θW cos2 θW
(1− sin2 θW )2Z2, (5.17)

where α is the fine-structure constant, Q2
V = (4 + [(3 + 2|Vχ5|2])2, 49 ≤ Q2

V ≤ 64 is the

square of two times the U(1)ν vector-charge of the dark matter candidate and mN is the

mass of the nucleus with atomic number Z. It is interesting to note that in the usual WIMP

scenario, the direct detection cross section is dominated by scattering off neutrons while

in this case, the proton contribution is the most relevant one. For xenon, the cross-section

per nucleon, defined as σχp ≡ σ(χ1 + Xe → χ1 + Xe)m2
p/m

2
XeA

2, where mp is the nucleon

mass, is

σχp = 1.4× sin2 ξ

(

g2ν
10−2

)

Q2
V

50
× 10−38 cm2. (5.18)

ForMχ = 5TeV, the LUX experiment constrains σχp < 6×10−44 cm2 at the 90% confidence

level [37], which translates into

sin2 ξ < 4.5× 10−6 ×
(

50

Q2
V

)(

10−2

g2ν

)

. (5.19)

The next round of direct-detection experiments, assuming that WIMPs are not detected,

will start to seriously constrain χ1 as the dark matter. The estimates for the relic den-

sity and constraints from direct detection are in agreement with more general results for

“electroweakly coupled” DM [38].

Finally, the model also predicts signals for indirect detection experiments. In regions

where the density of χ1 particles is large, they can annihilate into light SM particles,

right-handed neutrinos, or sterile neutrinos. In the limit discussed above, Mχ ≫ MZ ,MZ̃ ,

we expect the νcν̄c and, if kinematically accessible, NN̄ final states to dominate. Right-

handed neutrinos are virtually invisible. At high energies, the νc states are, for all prac-

tical purposes, massless, and interact with ordinary matter via Z and Z̃ exchange, both

cross-sections suppressed by sin2 ξ relative to that of ordinary high energy neutrino-matter

scattering. The NN̄ final states are more interesting, given that the N particles will de-

cay into high energy neutrinos and charged-leptons, as discussed in section 4. Hence, the

process χ1χ̄1 → NN̄ is expected to yield high energy (energies . Mχ) electrons, positrons,

and neutrinos.

6 Abelian gauge theories with chiral fermions

In this section we describe a general method for producing models of a Dark Sector with a

fermion content that is chiral and anomaly-free (i.e. models in which there does not exist a

right-handed partner with opposite charge for every left-handed particle). This issue was

also studied in detail in [22]. Some of the results presented here were also discussed in [22].

6Even if one is interested in the limit M2

Z̃
≫ M2

Z , Z̃-boson exchange is still comparable to Z-boson

exchange in the limit where the momentum transfers are much less than M2
Z , as discussed in section 3.
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Let G be a simple Lie group and H be its Cartan subalgebra. Any H ∈ H defines

a U(1) subgroup of G . The states in an arbitrary representation r transform under this

U(1) with charges given by the eigenvalues of Hr, the Cartan generator written in the

representation r.

A sufficient condition for a gauge U(1) to be anomaly free is to impose that charges

and field content are in correspondence with the eigenvalues of Hr for a group G that is

anomaly-free. It is well known that the classical groups SU(2), SO(n) for n 6= 6, Sp(2n), G2,

F4, E7 and E8 are all anomaly-free. For G any of these groups, a choice of representation

r and Cartan generator H determines a U(1) gauge theory that is anomaly free.

If we demand such gauge theory to be also chiral, the set of possible groups and

representations is reduced considerably. All of the above groups except for those of the

form SO(4n+2) only have real representations. For a real representation, the matrices Hr

and −H∗
r are similar, Hr = U(−H∗

r )U
† for some U in G . Hence, the eigenvalues of Hr and

−H∗
r must be equal. Since Hr is hermitian, its eigenvalues are real. From here we conclude

that if λ is an eigenvalue of Hr, then −λ also is. Hence, real representations do not lead

to chiral models.

In order to generate anomaly free chiral models one needs a group with complex repre-

sentations that is anomaly free. SO(10) is the smallest such group since SO(6) is anomalous.

The smallest complex representation of SO(10) is the spinorial 16. A generator belonging

to the SO(10) Cartan subalgebra in this representation has the general form

H(a, b, c, d, e) =
1

N
diag{a+ b+ c+ d+ e, −a+ b+ c+ d− e,

a− b+ c+ d− e, −a− b+ c+ d+ e,

a+ b− c+ d− e, −a+ b− c+ d+ e, a− b− c+ d+ e,

− a− b− c+ d− e,

a+ b+ c− d− e, −a+ b+ c− d+ e, a− b+ c− d+ e,

− a− b+ c− d− e,

a+ b− c− d+ e, −a+ b− c− d− e,

a− b− c− d− e, −a− b− c− d+ e} (6.1)

where a, b, c, d and e are arbitrary real numbers and N is a normalization factor. Two

cases can be distinguished:

• At least one of a, b, c, d or e vanishes. Then, −H also belongs to the Cartan

subalgebra.

• None of a, b, c, d or e vanishes. In this case, −H is not a generator in this represen-

tation.

In any case, since SO(10) is anomaly free, we have

Tr [H] = Tr
[

H3
]

= 0 , (6.2)
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as promised. That is, as long as none of a, b, c, d or e vanishes, the elements in the diagonal

above are chiral solutions to the anomaly equations

16
∑

i=1

qi = 0 ,
16
∑

i=1

q3i = 0, (6.3)

where the qi are U(1) charges with respect to a U(1) gauge group.

Without too much loss of generality, we restrict the rest of our discussion to integer

charges. From this requirement, either none, two, or four out of a, b, c, d and e can be

half-integers, the rest must be integers. Now, notice that

H(−a, b, c, d, e) = H(a,−b, c, d, e) = H(a, b,−c, d, e)

= H(a, b, c,−d, e) = H(a, b, c, d,−e) = −H(a, b, c, d, e) . (6.4)

Hence, up to an overall minus sign in all charges, it is enough to consider a, b, c, d, e

strictly positive. The largest U(1) charge in this case is given by a + b + c + d + e and

notice that it appears only once. The absolute values of all other charges is necessarily

smaller. Hence, for any anomaly-free model derived in this way, there can be only one state

with the highest U(1) charge. In particular, this state cannot be charged under any extra

nonabelian gauge symmetries that commute with the U(1) in question. In the SM, that

state is the left-handed anti-electron ec, which has hypercharge 6 in units of the smallest

known hypercharge, that of the doublet quark field Q. Note that ec is not charged under

color SU(3) or electroweak SU(2).

The following values

a = b = c = d =
1

2
, e = 1 , (6.5)

yield a solution for the anomaly equations with the smallest highest charge possible, equal

to 3 units in the normalization defined above, in which all charges are integers. Discard-

ing nonchiral pairs (i.e., charges which are equal in magnitude and opposite in sign) and

vanishing charges, this solution has the following particle content:

3× 1 , −2× 4 , 1× 5, (6.6)

where n×m means m particles of charge n. All together there are ten chiral fields. It can

be quickly checked that the anomaly conditions are satisfied.

With highest charge equal 4 we can take the a, b, c, d, e combinations {1/2, 1/2, 1, 1, 1},
{1/2, 1/2, 1/2, 1/2, 2} or {1/2, 1/2, 1/2, 3/2, 1}. The last of these yields a particularly sim-

ple particle content (only 7 states):

4× 1 , −3× 3 , 2× 2 , 1× 1 . (6.7)

With highest charge equal to 5 an even simpler particle content is obtained (6 fields):

5× 1 , −4× 2 , 1× 3 . (6.8)
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Then, what is the minimum particle content possible that is chiral and allows for at

least one anomaly-free U(1) gauge symmetry? The following solution of eqs. (6.3) with

highest charge 10 requires only five fields:

10× 1 , −9× 1 , −7× 1 , 4× 1 , 2× 1 . (6.9)

On the other hand, there are no solutions to eqs. (6.3) with three fields due to Fermat’s

Last Theorem. It is also relatively easy to prove that for four fields only nonchiral solutions

exist.7 Hence five chiral fields is minimal.

The model we explore in the previous sections is not minimal — ten fields, highest

charge 5 — according to the two criteria defined above. It, however, still “more minimal”

than the SM, which has fifteen chiral fields per generation and highest charge 6.

The model associated with eq. (6.6), if one assumes a Higgs-like field with charge +1

and a nonzero vacuum expectation value, would, in general, contain four Dirac fermions and

two massless chiral fermions (linear combinations of the one 3 and five 1 states). Similarly,

the model associated with eq. (6.7), if one assumes a Higgs-like field with charge +1 and a

nonzero vacuum expectation value would, in general, describe three massive Dirac fermions

and a massless chiral fermion, 1. This model is similar to the one described in detail in

the previous sections, minus the Dirac “sterile” neutrino states.

It is amusing that in the case of the smallest model (five fields), associated to eq. (6.9)

one needs more than one Higgs-like field in order to render more than one pair of chiral

fermions massive. If one were to add scalar fields with charge +1 and +6 one would end

up with two massive Dirac fermions and one massless state, −7.

7 Comments and outlook

The fermion content of the SM is chiral and before EWSB, all masses are identically zero.

Only after the spontaneous breaking of the gauge symmetry does the theory allow for

massive fermions and all masses are proportional to the same mass-scale. A side-effect of

the chiral nature of the SM fermion content is that some fermions end up massless (i.e., the

neutrinos) and some of the massive objects in the theory are, thanks to accidental global

symmetries, stable (i.e., the proton). Inspired by the SM, we posit that all “light” fermions

must be chiral as far as some gauge symmetry is concerned and therefore massless for as

long as the symmetry is manifest. Masses for all such fermions should come as the result of

a Higgs mechanism that spontaneously breaks the gauge symmetry at some energy scale.

The scenario described above invites two main questions. First, can one construct

models within this paradigm generically and systematically? How? Second, are these

7We write eq. (6.3) in such a way that all qi are positive. Then there are essentially two cases:

1. q1 = q2 + q3 + q4. Hence

q
3
1 = (q2 + q3 + q4)

3
> q

3
2 + q

3
3 + q

3
4

so there can be no solutions in this case.

2. q1 + q2 = q3 + q4 and q31 + q32 = q33 + q34 . Then, one must also have q1q2 = q3q4. Any solution to this

set of equations involves two pairs of equal charges.
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models useful to address outstanding puzzles in fundamental physics, including the dark

matter puzzle and the origin of nonzero neutrino masses? In the bulk of this paper, we

dealt with the second question. We fleshed out a model of a dark sector (DS), consisting of

a new, spontaneously broken U(1)ν , along with chiral fermions charged under U(1)ν . This

model indeed leads to a candidate DM particle in the form of a new WIMP-like massive

stable state. A relic abundance for that state appears as a result of a standard thermal

freeze-out mechanism occuring in the DS. We showed that the U(1)ν breaking scale can be

chosen such that the relic density of the WIMP-like object is consistent with the evidence

for dark matter in the universe.

The sample-model also contains massless chiral fermions, which as far as the SM gauge

group is concerned, look like right-handed neutrinos. Nonzero neutrino masses require the

introduction of a new, potentially very heavy, mediator mass scale that connects these states

with the massless left-handed neutrinos of the SM. We discussed in detail an ultraviolet

complete scenario that preserves lepton number but nonetheless leads to parametrically

small Dirac neutrino masses. U(1)ν anomaly constraints also require the existence of at

least four mostly sterile Dirac neutrinos — two sterile neutrinos are required per generation

of new fermions, and the neutrino data require at least two of these generations — that

mix with the SM neutrinos. The mixing between active and sterile neutrinos is related,

qualitatively, to the observed nonzero active neutrino masses.

Some extra features of the model might be considered appealing. The scalar sector of

the DS is minimal in the sense that one field is enough to give mass to all the DS particles

except for the RH neutrino. Moreover, the fermion content is also minimal in the sense that

only two states are stable on cosmological scales, the DM and the RH neutrino. Thus, the

only stable particle that the model adds to the SM ones is the DM fermion. All in all, this

model is rich enough to provide DM, neutrino masses and some interesting phenomenology,

and yet it is simple enough not to modify the SM dramatically.

For the sake of concreteness, we brushed aside several possibilities that may be worthy

of further exploration. For this model, we chose a mediator sector that consisted of a

new vector-like fermion charged under both the SM and the U(1)ν gauge symmetries. A

different mediator sector would lead to other sources for nonzero masses for both the SM

and the DS “neutrinos,” including some that would render all of these particles massive

Majorana fermions. Different possibilities can be explored qualitatively by appreciating

that there are two dimension-five operators other than eq. (4.1) one can construct, given the

particle content and the gauge symmetries discussed in detail here. Explicitly, one may have

(LH)(LH), the so-called Weinberg operator, and (1+φ)(1+φ). The former leads to nonzero

Majorana masses for the active neutrinos, proportional to v2/M/L while the latter leads

to “right-handed neutrino” masses proportional to v2φ/M/L, where M/L is the generalized

lepton-number-breaking scale. This possibility was considered recently in [39]. The scale

M/L is, in general, not related to Λ, the mass of the mediator field X. If M/L ≫ Λ, the

results discussed here remain valid. This would happen, for example, for M/L ∼ 1016GeV,

the grand-unification scale. In this case, both left-handed and right-handed neutrinos

receive nonzero Majorana masses, but these are much smaller than the Dirac masses and

the neutrinos would be pseudoDirac fermions that, for most experimental purposes, “look

like” Dirac neutrinos.
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More speculatively, while we extended the SM gauge symmetry with a new U(1)ν , more

complicated DS gauge symmetries are also a possibility worthy of pursuit. In particular,

it is easy to check that in the model discussed in detail in this paper, one can add a

new, nonanomalous8 SU(2)ν gauge symmetry, under which (11+,1
2
+), (2

1
−,2

2
−), (3

1
−,3

2
−),

(41+,4
2
+) all transform as doublets. This SU(2)ν is not spontaneously broken by vφ, since

φ is an SU(2)ν singlet. There would be, nonetheless, four massive Dirac fermions per DS

generation, pairwise degenerate due to the unbroken SU(2)ν symmetry. At low energies

and for a small enough number of dark matter generations, the SU(2)ν interaction would

confine and those states charged under it would manifest themselves as dark “mesons” or

“baryons”. In particular, the lightest, stable such state could be the dark matter.9 Note

that this SU(2)ν cannot be naively identified as the SM SU(2)L since, if this were the case,

all members of DS doublets would acquire electric charge ±1/2 after EWSB.

It is interesting to enquire whether the model proposed here is natural, at least as far as

it is defined in, for example, [40, 41]. In more detail, naturalness in this context translates

into requiring that finite loop-corrections to the masses of H and φ do not supersede the

masses themselves. The presence of the messenger field X, for example, can lead to very

large corrections to the masses of both scalars. At the one loop-level, naturalness translates

into, roughly,
κ2L
8π2

Λ2,
κ20
8π2

Λ2 . (100 GeV)2. (7.1)

According to this criterium, keeping in mind that the active neutrino masses, of order

10−1 eV, are proportional to κ0κL/Λ, the theory is natural — in the sense that the Λ

mass scale does not destabilize the electroweak and U(1)ν breaking scales — as long as

Λ . 107GeV (assuming κL ∼ κ0 and v ∼ vφ ∼ 102GeV).

Independent from the mediator sector, the presence of two mass-scales, v and vφ is

“unnatural” [40, 41] unless v ∼ vφ or if the coupling λφH between the two sector is very

small. Naturalness from the neutrino sector naively requires, as discussed above, κi,L .

10−4, and one can hence argue that tiny λφH values are, in some sense, expected (see

discussion in section 3 and eq. (3.9)). This implies that even if one takes naturalness

considerations into account, v can be significantly smaller (or larger) than vφ.

Many other potential consequences of the model were not discussed here. Since the neu-

trinos are Dirac fermions, standard leptogenesis does not work. It is, therefore, reasonable

to ask whether the scenario discussed here can accommodate a baryogenesis mechanism.

For example, would Dirac leptogenesis [42] work? We also did not consider the possibility

that the U(1)ν gauge boson is light (MZ̃ . 1GeV) or very light (MZ̃ ≪ 1MeV), nor did

we explore the consequences of postulating that the dark matter is light. We also did not

consider the possibility that the sterile neutrino states — whether they be hot, cold, or

warm — could make up most or part of the dark matter.

Finally, we return to the first question posed above: how to construct such models

generically and systematically? In section 6, we discussed a simple yet powerful way

8As far as the SU(2)ν is concerned, the fermions are vector-like.
9The case where the SU(2)ν is infrared free is probably ruled out by the fact that long-range dark matter

self-interactions are excluded by observations.

– 19 –



J
H
E
P
1
0
(
2
0
1
5
)
0
4
6

of generating an infinite number of chiral, anomaly-free U(1) gauge theories, of which

our model is only one example. Each model found by this method will have its own

idiosyncrasies and many should allow one to address the current puzzles in particle physics.

It also seems more-or-less straightforward to use the same SO(10)-inspired mechanism in

order to identify anomaly-free theories with chiral fermions that are invariant under larger

gauge symmetries, like the SM.
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