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1 Introduction

The discovery and subsequent analyses of neutrino oscillation phenomena have revealed a

trove of valuable information concerning the mixing matrix UPMNS and the mass difference

squared in the neutrino sector. It is worth stressing that the mere presence of neutrino

masses as implied by the oscillation data [1] provides the first evidence of physics beyond

the Standard Model (BSM). What might be the origin of neutrino masses? Why are they so

tiny (mν < O(eV )) as compared with even that of the lightest of elementary particles: the

electron? Why is the leptonic mixing matrix UPMNS so different from VCKM of the quark

sector? Is there any chance that some of the physics that are responsible for the tininess of

the neutrino masses as well as their mixings could somehow be experimentally accessible

at the Large Hadron Collider (LHC) in the near future or even at the International Linear

Collider at a not-too-distant future?

The vast difference between neutrino masses and those of other elementary particles

is a big mystery. There could be several ways in which neutrinos can obtain masses, all
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of which go beyond the Standard Model. The most obvious one is to add right-handed

neutrinos which are singlets of the SM and couple them through Yukawa interactions with

the left-handed lepton doublets and the SM Higgs doublet. In this simplest Dirac mass

scenario, the Yukawa coupling would have to be unnaturally small i.e. gν . O(10−11) in

order to accommodate mν < O(eV ). A more elegant scenario is the quintessential see-

saw mechanism [2–10] where the right-handed neutrinos acquire a Majorana mass term

MRν
T
Rσ2νR in addition to a Dirac mass term mDν

†
LνR + H.c.. The diagonalization of

the mass matrix yields two eigenvalues whose magnitudes are approximately m2
D/MR and

MR for MR � mD. In a generic see-saw scenario, right-handed neutrinos are SM sin-

glets (e.g. in an SO(10) scenario) i.e. they are sterile, and typically mD ∝ O(ΛEW ) and

MR ∝ O(ΛGUT ) or O(MWR
). Although this generic scenario can elegantly “explain” the

smallness of neutrino masses, it goes without saying that the prospect of directly testing

the seesaw mechanism by searching for right-handed neutrinos is very remote, both from an

energetic point of view and from a production point of view. (Although it is very popular,

leptogenesis by itself is not such a direct test.)

One of us (PQH) has proposed a model [11–15] of electroweak-scale right-handed neu-

trinos in which (as we will briefly review below) νR’s belong to SU(2) doublets along with

mirror charged leptons. This has two distinct advantages: 1) νR’s are non-sterile and

couple to the Z and W bosons; 2) Since νR’s are members of doublets, a Majorana mass

term necessarily comes from the vacuum expectation value (VEV) of a triplet Higgs field

which spontaneously breaks SU(2) × U(1)Y (in addition to the Higgs doublet) and, as a

result, MR ∝ O(ΛEW ). In this scenario, the EW νR model, right-handed neutrinos can be

produced and searched for at the LHC or at the proposed ILC.

The EW νR model [11–15] keeps the same gauge group as the SM i.e. SU(3)C×SU(2)×
U(1)Y but increases its fermion as well as its Higgs content, all of which are listed below.

In a nutshell, for every left-handed fermion doublet there is a right-handed mirror fermion

doublet, and for every right-handed fermion SU(2) singlet, there is a left-handed mirror

fermion singlet. On the scalar sector side, the minimal EW νR model contains one Higgs

doublet, one complex triplet, one real triplet and one Higgs singlet. The role of these Higgs

fields in generating fermion masses will be discussed below. In particular, we will discuss

the importance of the Higgs singlet on the issue of neutrino masses.

Before moving on to the main discussion of this paper, namely UPMNS and its impli-

cations for fermion masses, a few remarks concerning the viability of the model concerning

the electroweak precision test and in light of the 125-GeV SM-like Higgs boson are in order.

It turns out that the EW νR model passes the electroweak precision data test very well

as shown in [16] due to the presence of the Higgs triplets. The positive contributions to

the S-parameter from the mirror fermions get partially cancelled by those coming from

the Higgs triplets. As for the 125-GeV SM-like Higgs boson, the minimal EW νR model

contains a CP-odd state that could, in principle, be that 125-GeV candidate. However, a

likelihood analysis [17] indicated that the 125-GeV SM-like Higgs boson is more likely to

be a CP-even state. A minimal extension of the EW νR model to include a second Higgs

doublet has revealed an interesting aspect of the nature of the 125-GeV object which is

extensively discussed in [18].
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The plan of the paper will be as follows. First we give a brief summary of the EW

νR model, in particular its Yukawa sector. Next, we present a summary of the results

obtained in [16] and [18]. We then discuss the motivation for using the non-Abelian discrete

symmetry A4 [25] to describe the Dirac part of the neutrino mass matrix which, in the EW

νR model, is generated by the Higgs singlets. In this paper, we increase the number of Higgs

singlets from one (the number in the original model) to four without any consequence as

far as the 125-GeV SM-like Higgs boson is concerned. The number of non-singlet Higgs

fields is kept unchanged in view of the tight constraints coming from the properties of the

125-GeV object as discussed in [18].

2 A brief review of the EW νR model [11–15]

2.1 Gauge group

The gauge group of the EW νR model stays the same as that of the SM, namely:

SU(3)C × SU(2)×U(1)Y .

2.2 Particle content

Leptons and quarks (generic notations):

• Doublets

– SM: lL =

(
νL
eL

)
; qL =

(
uL
dL

)

– Mirror: lMR =

(
νMR
eMR

)
; qMR =

(
uMR
dMR

)
• Singlets

– SM: eR; uR, dR

– Mirror: eML ; uML , d
M
L

Higgs fields:

• A singlet scalar Higgs φS with 〈φS〉 = vS .

• Doublet Higgses:

Φ2 =

(
φ+2
φ02

)
with 〈φ02〉 = v2/

√
2.

In the original version [11–15], this Higgs doublet couples to both SM and mirror

fermions. An extended version was proposed [16] in order to accommodate the 125-

GeV SM-like scalar and, in this version, Φ2 only couples to SM fermions while another

doublet Φ2M whose VEV is 〈φ02M 〉 = v2M/
√

2 couples only to mirror fermions. Since

this paper focuses only on SM fermions, we will concentrate only on Φ2.
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• Higgs triplets

– χ̃ (Y/2 = 1) = 1√
2
~τ .~χ =

(
1√
2
χ+ χ++

χ0 − 1√
2
χ+

)
with 〈χ0〉 = vM .

– ξ (Y/2 = 0) in order to restore Custodial Symmetry with 〈ξ0〉 = vM .

– VEVs:

v22 + v22M + v2M = v2 ≈ (246 GeV)2

2.3 Dirac and Majorana neutrino masses

For simplicity, from hereon, we will write νMR simply as νR.

• Dirac Neutrino Mass

The singlet scalar field φS couples to fermion bilinear

LS = gSl l̄L φS l
M
R + h.c. (2.1)

= gSl(ν̄L νR + ēL e
M
R ) φS + h.c. .

From (2.1), we get the Dirac neutrino masses mD
ν = gSl vS .

• Majorana Neutrino Mass

LM = gM lM,T
R σ2τ2χ̃l

M
R (2.2)

= gMν
T
Rσ2νRχ

0 − 1√
2
νTRσ2e

M
R χ

+ − 1√
2
eM,T
R σ2νRχ

+ + eM,T
R σ2e

M
R χ

++ .

From (2.2), we obtain the Majorana mass MR = gMvM .

3 Review of results of the EW νR model as discussed in [16] and [18]

In this review section, we will discuss two sets of results for the EW νR model obtained

in [16] (the electroweak precision constraints) and [18] (constraints from the 125-GeV SM-

like scalar).

3.1 Electroweak precision constraints on the EW νR model [16]

The presence of mirror quark and lepton SU(2)-doublets can, by themselves, seriously

affect the constraints coming from electroweak precision data. As noticed in [11–15], the

positive contribution to the S-parameter coming from the extra right-handed mirror quark

and lepton doublets could be partially cancelled by the negative contribution coming from

the triplet Higgs fields. Ref. [16] has carried out a detailed analysis of the electroweak

precision parameters S and T and found that there is a large parameter space in the model

which satisfies the present constraints and that there is no fine tuning due to the large size

of the allowed parameter space. It is beyond the scope of the paper to show more details

here but a representative plot would be helpful. Figure 1 shows the contribution of the

scalar sector versus that of the mirror fermions to the S-parameter within 1σ and 2σ.
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Figure 1. Constrained S̃S versus S̃MF .

In the above plot, [16] took for illustrative purpose 3500 data points that fall inside

the 2σ region with about 100 points falling inside the 1σ region. More details can be found

in [16].

3.2 Review of the scalar sector of the EW νR model in light of the discovery

of the 125 GeV SM-like scalar [18]

In light of the discovery of the 125-GeV SM-like scalar, it is imperative that any model

beyond the SM (BSM) shows a scalar spectrum that contains at least one Higgs field with

the desired properties as required by experiment. The present data from CMS and ATLAS

only show signal strengths that are compatible with the SM Higgs boson. The definition

of a signal strength µ is as follows

σ(H-decay) = σ(H-production)×BR(H-decay) , (3.1)

and

µ(H-decay) =
σ(H-decay)

σSM (H-decay)
. (3.2)

To really distinguish the SM Higgs field from its impostor, it is necessary to measure

the partial decay widths and the various branching ratios. In the present absence of such

quantities, the best one can do is to present cases which are consistent with the experimental

signal strengths. This is what was carried out in [18].

The minimization of the potential containing the scalars shown above breaks its global

symmetry SU(2)L × SU(20R down to a custodial symmetry SU(2)D which guarantees at

tree level ρ = M2
W /M

2
Z cos2 θW = 1 [18]. The physical scalars can be grouped, based on

their transformation properties under SU(2)D as follows:

five-plet (quintet) → H±±5 , H±5 , H
0
5 ;

triplet → H±3 , H
0
3 ;

triplet → H±3M , H
0
3M ;

three singlets → H0
1 , H

0
1M , H

0′
1 . (3.3)
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R

νEW
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H
~m
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R

νEW

 = 125.6 GeV
H
~m
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R

νEW

 0.29± = 1.00 µCMS: 
 ZZ               →H 

 0.21± = 0.83 µCMS: 
            

-
W

+
 W→H 

 0.24± = 1.13 µCMS: 

   γγ →H 

 0.27± = 0.91 µCMS: 
   ττ →H 

 0.49± = 0.93 µCMS: 
               b b→H 

 / ZZ
-

W
+

 W→ H
~

f f → H
~

γγ → H
~

Figure 2. Figure shows the predictions of µ(H̃ → bb̄, τ τ̄ , γγ, W+W−, ZZ) in the EW νR model

for examples 1 and 2 in Dr. Jekyll and example 1, 2 and 3 in Mr. Hyde scenarios as discussed

in [18], in comparison with corresponding best fit values by CMS [19–22].

The three custodial singlets are the CP-even states, one combination of which can be the

125-GeV scalar. In terms of the original fields, one has H0
1 = φ0r2 , H0

1M = φ0r2M , and

H0′
1 = 1√

3

(√
2χ0r + ξ0

)
. These states mix through a mass matrix obtained from the

potential and the mass eigenstates are denoted by H̃, H̃ ′, and H̃ ′′, with the convention

that the lightest of the three is denoted by H̃, the next heavier one by H̃ ′ and the heaviest

state by H̃ ′′.

To compute the signal strengths µ, ref. [18] considers H̃ → ZZ, W+W−, γγ, bb̄, τ τ̄ .

In addition, the cross section of gg → H̃ related to H̃ → gg was also calculated. A scan

over the parameter space of the model yielded two interesting scenarios for the 125-GeV

scalar: 1) Dr Jekyll ’s scenario in which H̃ ∼ H0
1 meaning that the SM-like component

H0
1 = φ0r2 is dominant ; 2) Mr Hyde’s scenario in which H̃ ∼ H0′

1 meaning that the SM-like

component H0
1 = φ0r2 is subdominant. Both scenarios give signal strengths compatible with

experimental data as shown below in figure 2.

As we can see from figure 2, both SM-like scenario (Dr Jekyll) and the more interesting

scenario which is very unlike the SM (Mr Hyde) agree with experiment. As stressed in [18],

present data cannot tell whether or not the 125-GeV scalar is truly SM-like or even if it

has a dominant SM-like component. It has also been stressed in [18] that it is essential to

measure the partial decay widths of the 125-GeV scalar to truly reveal its nature. Last

but not least, in both scenarios, H0
1M = φ0r2M is subdominant but is essential to obtain the

agreement with the data as shown in [18].
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As discussed in detail in [18], for proper vacuum alignment, the potential contains a

term proportional to λ5 (eq. (32) of [18]) and it is this term that prevents the appearance

of Nambu-Goldstone (NG) bosons in the model. The would-be NG bosons acquire a mass

proportional to λ5.

An analysis of CP-odd scalar states H0
3 , H

0
3M and the heavy CP-even states H̃ ′, and H̃ ′′

was presented in [18]. The phenomenology of charged scalars including the doubly-charged

ones was also discussed in [23].

The phenomenology of mirror quarks and leptons was briefly discussed in [11–15] and

a detailed analysis of mirror quarks will be presented in [24]. It suffices to mention here

that mirror fermions decay into SM fermions through the process qM → qφS , lM → lφS
with φS “appearing” as missing energy in the detector. Furthermore, the decay of mirror

fermions into SM ones can happen outside the beam pipe and inside the silicon vertex

detector. Searches for non-SM fermions do not apply in this case. It is beyond the scope

of the paper to discuss these details here.

This concludes the brief summary of the EW νR model [11–15]. The original minimal

model contains just one singlet Higgs field φS . As we shall see below, the A4 symmetry

that we will be using will necessitate an extension to four Higgs singlet fields with no

phenomenological constraints at the present time. We will come back to this point below.

4 Model of neutrino masses in the EW-νR model

It is a big puzzle why the quark mixing matrix, the so-called CKM matrix [26]

|VCKM | =

 0.9743± 0.0002 0.2255± 0.0024 (5.10± 0.47)× 10−3

0.230± 0.011 1.006± 0.023 (40.9± 1.1)× 10−3

(8.4± 0.6)× 10−3 (42.9± 2.6)× 10−3 0.89± 0.07

 (4.1)

(which is not too different from the unit matrix) differs so much from the leptonic one, the

so-called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [26]

|UPMNS | =

 0.779 . . . 0.848 0.510 . . . 0.604 0.122 . . . 0.190

0.183 . . . 0.568 0.385 . . . 0.728 0.613 . . . 0.794

0.200 . . . 0.576 0.408 . . . 0.742 0.589 . . . 0.775

 . (4.2)

Although the precise mass mechanism is far from being understood, it is not too unrea-

sonable to speculate that the aforementioned big difference arises from the way neutrinos

obtain masses as compared with the way charged fermions obtain theirs. In this section,

we will present a model in which it is the Dirac mass matrix of the neutrinos that is ob-

tained by incorporating an A4 symmetry into the model. In a nutshell, the A4 group is a

non-Abelian discrete group [25] with four irreducible representations: 1, 1′, 1′′, 3, and with

the product rule given by (using the notation of [27–29]):

3× 3 = 1(11 + 22 + 33) + 1′(11 + ω222 + ω33) + 1′′(11 + ω22 + ω233) (4.3)

+3(23, 31, 12) + 3(32, 13, 21) .

– 7 –
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Here

ω = ei2π/3 . (4.4)

Which particles are assigned to which representations of A4 is a question which depends

entirely on the model one is dealing with. Below we briefly summarize two popular A4

models in order to show the contrasts with ours.

A4 has widely been used to produce the tribimaximal form of the PMNS matrix [27–

29]. In a nutshell, as summarized nicely in [27–29], the A4 symmetry is usually applied

to the charged lepton mass matrix with the result being that the unitary matrix which

diagonalizes the charged lepton mass matrix takes on the form of the PMNS that was first

proposed by Cabibbo and Wolfenstein [30, 31], namely

UCW =
1√
3

 1 1 1

1 ω ω2

1 ω2 ω

 . (4.5)

In popular versions of A4-inspired models of neutrino mass and mixing, UCW is identified

with the unitary matrix UlL which diagonalizes the charged lepton mass matrix.

In one version [27–29], the left-handed lepton doublets are assigned to 3 while the

right-handed SU(2)-singlet charged leptons are assigned to 1, 1′, 1′′. There are three Higgs

doublets belonging to 3. In another version, there are 4 Higgs doublets and the right-

handed charged leptons belong to a 3. As described in [27–29], the main feature of these

models is the diagonalization of the charged lepton mass matrix by UCW in eq. (4.5) and

the presence of three or four Higgs doublets. We shall make some remarks concerning the

implication of the 125-GeV SM-like boson on models with extended Higgs sectors.

In [32], a supersymmetric model was written which now includes three families of

SU(2)-singlet vector-like heavy quarks and leptons, two Higgs doublets transforming as 1

and three Higgs singlets that transform as 3 of A4. Here the SM right-handed fermions

transform like 1, 1′, 1′′. Just as with the models mentioned above [27–29], the construction is

such that UCW in eq. (4.5) is the matrix which diagonalizes the charged lepton mass matrix.

The two examples discussed above are two of several scenarios making use of the A4

symmetry. It is beyond the scope of this paper to compare our approach with all others that

are present in the literature. The main point we would like to stress here is that the most

popular scenario is one in which the A4 symmetry is used to generate UCW in eq. (4.5)

for the charged lepton sector. Also, right-handed neutrinos in most generic models are

SM-singlets and their Majorana masses are expected to be much larger than the EW scale.

Before discussing our approach based on A4, we would like to point out the main

differences with the aforementioned scenarios: 1) The conjugate of the matrix as shown

in eq. (4.5) is the one that diagonalizes the neutrino Dirac mass matrix ; 2) Right-handed

neutrinos belong to SU(2) doublets along with mirror charged leptons as espoused in [11–

15] and are therefore non-sterile. Their Majorana masses are proportional to the EW

symmetry breaking scale.

Let us first start out with assignments of the EW νR model’s content under A4.

Notice that had the singlet Higgs fields belonged to 1, 1
′
, and 1

′′
only, the neutrino

Dirac mass matrix would be diagonal which is not a desired scenario.

– 8 –
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Field (ν, l)L (ν, lM )R eR eML φS φ̃S Φ

A4 3 3 3 3 1 3 1

Table 1. A4 assignments for leptons and Higgs fields.

4.1 Neutrino Dirac mass matrix

As shown in [11–15], the neutrino Dirac mass in the EW νR model comes from the generic

Yukawa term gSl l̄L φS l
M
R +H.c. (2.1). With the A4 assignments shown in table 1, we can

write the following Yukawa interactions

LS = l̄L (g0Sφ0S + g1Sφ̃S + g2Sφ̃S) lMR +H.c. , (4.6)

where g1S and g2S reflect the two different ways that φ̃S couples to the product of l̄L and

lMR as shown in eq. (4.3). We obtain the following neutrino Dirac mass matrix:

MD
ν =

 g0Sv0 g1Sv3 g2Sv2
g2Sv3 g0Sv0 g1Sv1
g1Sv2 g2Sv1 g0Sv0

 , (4.7)

where v0 = 〈φ0S〉 and vi = 〈φiS〉 with ı = 1, 2, 3. Notice that this form of MD
ν is the same

as the one used by [27–29] for the charged lepton mass matrix.

When v1 = v2 = v3 = v, MD
ν can be diagonalized as follows (using 1 + ω+ω2 = 0 and

ω2 = ω∗)

U †νM
D
ν Uν =

m1D 0 0

0 m2D 0

0 0 m3D

 , (4.8)

where

Uν =
1√
3

 1 1 1

1 ω2 ω

1 ω ω2

 . (4.9)

Notice that our Uν defined in eq. (4.9) is just Uν = U †CW . At this point, we would like

to establish our notations for what will follow. Notice that, in general, a mass matrix is

diagonalized by two unitary matrices UL and UR i.e.

U †LMUR =MD , (4.10)

where MD is a diagonal mass matrix. A mass term of the form f̄0LMf0R can be rewritten

as f̄0LULU
†
LMURU

†
Rf

0
R = f̄LMDfR where f̄0LUL = f̄L and U †Rf

0
R = fR.

From eq. (4.8), it is clear that

UνL = UνR = Uν . (4.11)

A remark is in order at this point. As we will see below, UPMNS is defined as UPMNS =

U †νLUlL = U †νUlL. What UlL might be will be the subject of the section on the charged

lepton mass matrix.

– 9 –
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The neutrino Dirac masses are

m1D = g0Sv0 + g1Sv + g2Sv (4.12)

m2D = g0Sv0 + g1Svω
2 + g2Svω (4.13)

m3D = g0Sv0 + g1Svω + g2Svω
2 . (4.14)

Reality of the masses require that

g2S = g∗1S , (4.15)

where we have used ω2 = ω∗. Making use of 1 + ω + ω2 = 0, ω3 = 1 and eq. (4.15), we

obtain the following sum rules

m1D +m2D +m3D = 3g0Sv0 , (4.16)

m2
1D +m2

2D +m2
3D = 3g20Sv

2
0 + 6|g1S |2v2 . (4.17)

4.2 Neutrino Majorana mass matrix

From the Lagrangian

LM = gM (lM,T
iR σ2)(i τ2 χ̃) lMjR +H.c. (4.18)

In order to make the Lagrangian invariant under A4, we need χ̃ to transform as 1 or 3. For

reasons outlined in [18] having to do with the constraints coming from the presently known

properties of the 125-GeV SM-like boson, it is preferable that the Higgs triplet transforms

as 1. We recall that

χ̃ =
1√
2
~τ · ~χ =

(
1√
2
χ+ χ++

χ0 − 1√
2
χ+

)
. (4.19)

When
〈
χ0
〉

= vM one obtains the following right-handed Majorana mass

MR =

 gM
〈
χ0
〉

0 0

0 gM
〈
χ0
〉

0

0 0 gM
〈
χ0
〉
 = gMvM I . (4.20)

Therefore, the neutrino mass matrix is

Mν =

(
0 MD

ν

MD
ν MR

)
. (4.21)

Here the 3× 3 see-saw mass matrix for the light neutrinos (νe, νµ, ντ ) becomes

mν ∼ −MD
ν M

−1
R MD,T

ν . (4.22)
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5 Toward UPMNS

5.1 The search for UlL

As mentioned above, we define the diagonalization of a mass matrix by eq. (4.10). The

charged current interaction gν̄0Lγ
µl0LW

+
µ can be written in terms of mass eigenstates as

gν̄0LUνLU
†
νLγ

µUlLU
†
lLl

0
LW

+
µ = gν̄LUPMNSγ

µlLW
+
µ , where νL and lL are mass eigenstates

and where

UPMNS = U †νLUlL = U †νUlL . (5.1)

Notice that, by looking at UPMNS as determined from experiment (4.2), one can safely

say that UPMNS 6= U †ν . One needs UlL to be different from the unit matrix. But could

UlL be? What does the Yukawa coupling of the charged leptons to Φ2 tell us about UlL?

(There is a coupling between the mirror and SM charged leptons with the Higgs singlets

but its contributions to the masses are negligible as shown in [11–15]. We will ignore this

contribution here.)

The SM Yukawa coupling is

LY = gl l̄LΦ2 eR +H.c. (5.2)

where Φ2 =

(
φ+

φ0

)
,
〈
φ0
〉

= v2√
2

From table (1), we have the following A4 assignments: lL ∼ 3; eR ∼ 3; Φ2 ∼ 1. It

can be seen that (5.2) is A4-invariant. From the product rule (4.3), one can see that this

A4-invariant Yukawa term gives a degenerate spectrum for the charged leptons, namely

Ml = gl
v2√

2

 1 0 0

0 1 0

0 0 1

 . (5.3)

With this one would have UlL = I. This is unacceptable for two reasons: 1) me � mµ < mτ ;

2) UlL would be a unit matrix and one would obtain UPMNS = U †νL in disagreement with

experiment.

It is then clear that the A4 symmetry which is respected by the Yukawa interactions

eq. (4.6) giving rise to the neutrino Dirac mass matrix has to be broken in the charged

lepton sector. In what follows, we will use a phenomenological approach toward this A4

breaking, namely through an ansätz for UlL.

5.2 Ansätz for UlL

As discussed above, strict A4 symmetry in the charged lepton sector would imply that

UlL = I. We will parametrize the breaking of A4 by assuming a form which deviates from

the unit matrix by a small amount and which is unitary. Using UPMNS and Uν , one can

then determine UlL. As we shall see below, once UlL is known, one can reconstructMlM†l .
In this sense, our approach is semi phenomenological because we do not use a specific

symmetry assumption to construct the charged lepton mass matrix.
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We propose the following ansätz

UlL =

 1− λ2l
2 λl Alλ

3
l (ρl − iηl)

−λl 1− λ2l
2 Alλ

2
l

Alλ
3
l (1− ρl − iηl) −Alλ2l 1

 (5.4)

where Al, ρl, ηl are real parameters of O(1) [33]. The subscript l indicates that A, ρ, η

belong to charged leptons.

We can now constrain λl, Al, ρl, ηl based on experimental data of UPMNS and unitarity

conditions.

We have

U = UPMNS = U †νUlL =
1√
3

 1 1 1

1 ω2∗ ω∗

1 ω∗ ω2∗


 1− λ2l

2 λl Alλ
3
l (ρl − iηl)

−λl 1− λ2l
2 Alλ

2
l

Alλ
3
l (1− ρl − iηl) −Alλ2l 1

 .

Recall that ω = ei2π/3 so ω∗ = ω2 and ω2∗ = ω. Therefore,

U=
1√
3

 1 1 1

1 ω ω2

1 ω2 ω


 1− λ2

l

2 λl Alλ
3
l (ρl−iηl)

−λl 1− λ2
l

2 Alλ
2
l

Alλ
3
l (1−ρl−iηl) −Alλ2l 1

 (5.5)

=
1√
3


Alλ

3
l (1−ρl−iηl)−

λ2
l

2 −λl+1 −
(
Al+

1
2

)
λ2l +λl+1 Alλ

3
l (ρl−iηl)+Alλ

2
l +1

ω2Alλ
3
l (1−ρl−iηl)−

λ2
l

2 −ωλl+1 −
(
ω2Al+

ω
2

)
λ2l +λl+ω Alλ

3
l (ρl−iηl)+ωAlλ

2
l +ω2

ωAlλ
3
l (1−ρl−iηl)−

λ2
l

2 −ω
2λl+1 −

(
ωAl+

ω2

2

)
λ2l +λl+ω

2 Alλ
3
l (ρl−iηl)+ω2Alλ

2
l +ω

 .

Recall the standard parametrization of PMNS matrix ([34, 35])

U = V

 1 0 0

0 ei
α21
2 0

0 0 ei
α31
2

 (5.6)

V =

 c12 c13 s12 c13 s13 e
−iδ

−s12 c23 − c12 s23 s13 eiδ c12 c23 − s12 s23 s13 eiδ s23 c13
s12 s23 − c12 c23 s13 eiδ −c12 s23 − s12 c23 s13 eiδ c23 c13

 (5.7)

where sij ≡ sin(θij), cij ≡ cos(θij), θij =
[
0 , π

2

]
.

For the purposes of this paper, the Majorana phases will not be taken into account,

i.e. we can set these phases to be equal to zero. Therefore, our PMNS matrix really has

the form of V which contains the Dirac phase.

Let us compare eq. (5.5) with experimental data [26]

|U | =

 0.779 . . . 0.848 0.510 . . . 0.604 0.122 . . . 0.190

0.183 . . . 0.568 0.385 . . . 0.728 0.613 . . . 0.794

0.200 . . . 0.576 0.408 . . . 0.742 0.589 . . . 0.775

 (5.8)
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we have the following constraints

(i) 0.779 <
1√
3
|Alλ3l (1− ρl − iηl)−

λ2l
2
− λl + 1| < 0.848 (5.9)

(ii) 0.510 <
1√
3
|−
(
Al +

1

2

)
λ2l + λl + 1| < 0.604

(iii) 0.122 <
1√
3
|Alλ3l (ρl − iηl) +Alλ

2
l + 1| < 0.190

(iv) 0.183 <
1√
3
|ω2Alλ

3
l (1− ρl − iηl)−

λ2l
2
− ωλl + 1| < 0.568

(v) 0.385 <
1√
3
|−
(
ω2Al +

ω

2

)
λ2l + λl + ω| < 0.728

(vi) 0.613 <
1√
3
|Alλ3l (ρl − iηl) + ωAlλ

2
l + ω2| < 0.794

(vii) 0.200 <
1√
3
|ωAlλ3l (1− ρl − iηl)−

λ2l
2
− ω2λl + 1| < 0.576

(viii) 0.408 <
1√
3
|−
(
ωAl +

ω2

2

)
λ2l + λl + ω2| < 0.742

(ix) 0.589 <
1√
3
|Alλ3l (ρl − iηl) + ω2Alλ

2
l + ω| < 0.775 .

Solving these equations up to O(λ2) we get

−4.8517 < Al < −4.4580 (5.10)

−0.2404 < λl < −0.1882

−5.6339 < ρl < −5.5712

−4.7160 < ηl < 4.8912 .

6 Toward MlMl
†

The knowledge of UlL alone does not allow us to determine the charged lepton mass matrix

Ml for we need also UlR. On the other hand, we can use UlL to diagonalize MlMl
† as

follows.

UlL
†MlMl

†UlL =

me
2 0 0

0 mµ
2 0

0 0 mτ
2

 (6.1)

giving

MlMl
† = UlL .

me
2 0 0

0 mµ
2 0

0 0 mτ
2

 . UlL
† . (6.2)
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Up to the order of λ2 we can approximate MlMl
† to be of the form

MlMl
† =

 (1− λ2l ) me
2 + λ2l mµ

2 λl(mµ
2 −me

2) 0

λl(mµ
2 −me

2) λ2l me
2 + (1− λ2l ) mµ

2 Alλ
2
l (mτ

2 −mµ
2)

0 Alλ
2
l (mτ

2 −mµ
2) mτ

2

 . (6.3)

From eq. (6.3), we can see that MlMl
† is determined completely by the experimental

values of me, mµ, mτ , λl and Al. Notice that, in the degenerate case me = mµ = mτ = m,

MlMl
† is reduced to a diagonal matrix MlMl

† = m2I as one should expect.

A few remarks are in order here. One can view eq. (6.3) as a constraint equation on

the charged lepton mass matrix Ml. This constraint equation on MlMl
† satisfies the ex-

perimental constraints on UPMNS as long as λl and Al are within the allowed ranges (5.10).

To be able to determine the form of Ml, it is clear that one has to impose some kind of

symmetry or at the very least make an ansätz on Ml itself as long as MlMl
† satisfies

eq. (6.3).

Based on the above discussion, it is tempting to propose a similar ansätz for the

quark sector for the following reason. The charged leptons as well as the quarks obtain

their masses through the couplings with the Higgs doublet Φ2. It might not be unreasonable

to speculate that whatever mechanism giving rise to mass mixings in mass matrices could

be similar for both quarks and charged leptons. One might have

UlL → UdL (6.4)

λl, Al, ρl, ηl → λd, Ad, ρd, ηd

UlL → UuL (6.5)

λl, Al, ρl, ηl → λu, Au, ρu, ηu .

With the knowledge of VCKM = U †uLUdL [36, 37], one can constraint the above parameters.

Furthermore, MuMu
† and MdMd

† could have similar forms to the right-hand side of

eq. (6.3) with the replacements λl, Al → λu, Au, me,mµ,mτ → mu,mc,mt and λl, Al →
λd, Ad, me,mµ,mτ → md,ms,mb respectively. It is beyond the scope of this paper to go

into details of this possibility. This will be treated elsewhere.

One important remark is in order here. Since the sources of masses for the neutrinos

(Higgs singlets and triplet) and for the charged leptons and quarks (Higgs doublet) are

very different from each other, it might not be surprising, within the context of this paper,

that UPMNS is very different from VCKM .

7 Conclusion

We have presented in this manuscript a model of neutrino masses and mixings based on

the discrete symmetry group A4 as applied to the electroweak(EW)-scale right-handed

neutrino model of [11–15]. In particular, this A4 symmetry is applied to the Higgs singlets

which are responsible for the neutrino Dirac masses of the EW-scale νR model with the

aim of obtaining a particular form of matrix namely UCW (eq. (4.5)), which plays a crucial

role in UPMNS . The Higgs singlet was introduced in [11–15] in order to give the Dirac
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part of the neutrino masses. By applying the A4 symmetry to this sector, we found that

the Higgs singlet is increased from one in the original model to four i.e. 1 + 3 of A4. The

diagonalization of the neutrino Dirac mass matrix generated by the Yukawa coupling of

the left-handed doublets (νL, eL) ∼ 3, the right-handed doublets (νR, e
M
R ) ∼ 3 with these

four Higgs singlets is found to be realized by the matrix Uν = U †CW (eq. (4.9)). This is

in contrast with many popular A4-based models where this type of matrix is the one that

diagonalizes the charged lepton mass matrix. This is our first step in getting to UPMNS

namely UPMNS = U †νUlL. In obtaining Uν , we also derive a couple of sum rules concerning

the Dirac masses of the neutrinos. These might turn out to be useful in future studies of

neutrino oscillations.

One particular interesting feature of this scheme is the fact that Uν is generated by the

Higgs singlets which do not affect the known properties of the newly discovered 125-GeV

SM-like scalar [18]. Notice that scenarios involving more than two Higgs doublets might

encounter very very tight constraints which may be hard to satisfy.

The second piece of UPMNS , namely UlL, comes from the breaking of the A4 symmetry

in the charged lepton sector as we have shown. It is proportional to the unit matrix in the

exact symmetry case (degenerate charged leptons). We take a phenomenological approach

by parametrizing the deviation from the unit matrix in terms of a Wolfenstein-like unitary

matrix (eq. (5.4)). We obtain constraints on the parameters of that matrix by using the

experimental values of UPMNS . Since UlL diagonalizes the lepton mass matrix “squared”,

namely UlL
†MlMl

†UlL, we obtain an equation for MlMl
† (eq. (6.3)) whose right-hand

side is determined entirely by experimental values of the charged lepton masses and the

phenomenologically extracted parameters of UlL.

As shown in [11–15] and in this manuscript, the sources of masses for the neutrinos and

for the charged leptons are entirely different from each other: Higgs singlets and triplet for

the neutrinos and Higgs doublet for the charged leptons. Since the quarks also obtain their

masses from the Higgs doublet and since VCKM deviates a “little” from the unit matrix,

we postulate that UuL and UdL which appear in VCKM = U †uLUdL have the same form as

UlL but endowed with their own parameters. In this context, it is very appealing to see

why UPMNS is very different from VCKM .
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