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1 Introduction

Assuming that f(x),g(9) > 0, f,g € L2(R,) = {f; IIfl2 = (fy* [f(%)* dx)2 < 00}, [If 1 ligllz >
0, we have the following well-known Hilbert integral inequality and the equivalent form

(¢ [1]):

/ / T@ED) 1y < 21 ol w
o Jo x+y

=([*f@ Zf
([ w)s] <o

where the constant factor 7 is the best possible.

In 1925, by introducing a pair of conjugate exponents (p,q) (1% + % = 1), Hardy [2] gave
some extensions of (1) and (2) as follows: For p > 1, f(x),g(y) > 0, f € L’(R,), g € L1(R,),
1l igllg > O, we have the following Hardy-Hilbert integral inequality and the equivalent

form:
© [T fxg) T
dxdy < ———— ’ 5
fo /O ity V< G Iflpllglly 3)
% f) N TP o
odx) dy| < ———fllp W
0 o Xty sin(r /p)
where the constant factor -7 is the best possible. For p = g = 2, inequalities (3) and (4)

sin(zr /p)
reduce respectively to (1) and (2).
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Definition 1 If A € R = (—00,00), R, = (0,00), k; («,y) is a measurable function in R? =
R, x R,, satisfying for any ¢,x,y € R,, k. (tx, ty) = t "k, (x, y), then we call k; (x, y) homoge-
neous function of degree —X.

In 1934, by using a general non-negative homogeneous function of degree —1 as
ki(x,y), Hardy et al. [3] gave some extensions of (3) and (4) as follows: For p > 1, k, =

Jo ka(u, Vu? du e R, f(x),g(») = 0, f € LP(R,), g € L1(R,), |[flp, lglly > O, we have the
following Hardy-Hilbert-type integral inequality and the equivalent form:

/o / k() (g ) dxdy < ol gl 5)

[ /0 ( /0 kl(x,y)fu)dx) dy] <kl ©)

where the constant factor k,, is the best possible. Some applications of (5) and (6) are pro-
vided in [4].

In 1998, by introducing an independent parameter A € (0,1], Yang [5] gave an extension
of (3) with the homogeneous kernel of degree —A as W In 2009, by using a general non-
negative homogeneous function of degree —X as k; (x,y) and adding another pair of con-
jugate exponents (7, s) (% + % =1), Yang [6] gave some extensions of (5) and (6) as follows:
For p,r > 1, ®(x) = w131 U(y) = yq(l‘%)‘l (xy € R,), ku(r) = [ ku(u, Durldu € R,,

fx),g() =0,

fel,oR,)= {f, fllpo = </0°O @(x)V(x)‘pdx)p < oo},

g€ LyuR.), Ifllpes Igllgw > 0, we have the following Yang-Hilbert-type integral inequal-
ity and the equivalent form:

/0 /O i (6 9) (g0 dxdy < K () o gl g @)

(e} " oo p 1lj
[/ y's L </ k. (x, y)f (x) dx) dy} <k (M) If llp, > (8)
0 0

where the constant factor k; (r) is the best possible.
Remark1 (i) When A =1, r=gq, s = p, (7) and (8) reduce respectively to (5) and (6). (ii) By

(8), setting y = %, we have the following Yang-Hilbert-type inequality with the best possible
constant factor and a non-homogeneous kernel:

[e%e] 2 (o) p 117
[ / s ( / kk(xz,l)f(x)dx) dz] <kl (9)
0 0

Using (2), we may define Hilbert’s integral operator 7 : L*(R,) — L?(R,) as follows (cf.
[7]): For any f € L2(R,), there exists Tf € L?(R,) satisfying

Tf@):/w@dx (eR,).
o Xt)y
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Then by (2) we have || If||» < 7|f|l2, and T is a bounded linear operator satisfying
|T|| < 7. Since the constant factor in (2) is the best possible, we have || T|| = 7.

About the discrete forms of (1) and (2), in 1950, Wilhelm [8] gave an operator expres-
sion. In 2002, by using the operator theory, Zhang [9] gave some improvements of (2) and
the discrete form. In 2006 to 2009, [10] considered a new Hilbert-type operator and its
applications, and [11] and [12] gave some multiple Hilbert-type operator expressions.

By using (8), we can define the Yang-Hilbert-type integral operator T : L,¢(R,) —

L,»(R,) as follows (cf. [6]): For any f € L, »(R.), there exists Tf € L, »(R.) satisfying

TFy) =y /0 ﬁ%dx (eR,).

Then by (8) we have || If || ,,o < ki.(")||f ll5,», and T is a bounded linear operator satisfying
IT|| < k;.(r). Since the constant factor in (8) is the best possible, we have || T|| = k(7).

About the composition of two Hilbert-type operators, the main objective is to build the
expression ||T1T5|| = | T1]| - || T2||. Recently, [13] published a composition of two discrete
Hilbert-Hardy-type operators with particular kernels. Adiyasuren et al. [14] published a
composition of two half-discrete Hilbert-Hardy-type operators with some particular ker-
nels, and [15] and [16] published some composition of two Hilbert-Hardy-type integral
operators with particular kernels. These works are hard and interesting.

In this paper, applying the way of real and functional analysis and estimating the weight
functions, we build some lemmas and deduce some Hilbert-type and Hilbert-Hardy-type
integral inequalities with the best possible constant factors. The equivalent forms, the
reverses and the operator expressions are all considered. The composition formulas of
two Hilbert-Hardy-type integral operators and some examples are given, which are some
extensions of the results of [15] and [16].

2 Some lemmas

In the following, we agree on that p > 0 (p #1), }7 +=2=1

1
q
Lemma 1 (cf [17], Lemma 2.2.5) Suppose that A € A = (0,¢) (0 < ¢ < 00), ky)(x,y) are non-

negative homogeneous functions of degree —). in R?,
O(2Y o [T k90 )i _
k 5= k(e Du2"du  (s=1,2,3), (10)
0

there exists a constant 8 € (0, %) such that k(s)(% £ 80) € R,. Then, for any § € [0,8), we
have k(s)(% +48) e R, and

A )y
lim k<5>(— + 5) = k@(—) (s=1,2,3).
5—0* 2 2

With the assumptions of Lemma 1, we set the following conditions.

Condition (i) For A € A, there exist constants §; € (0,8¢) and L; > 0 such that

K, Dus* <L (ue(1,00)5=2,3). (11)
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Condition (ii) For A € (0,1) N A, there exists a constant L, > 0 such that
K1) -1 <L, (ne(1,00)s=2,3). (12)
Condition (iii) For A € (0,1) N A, there exist constants a € (0,1) and L3 > 0 such that
KD, D" <Ly (u€(0,00)). (13)

Example 1 For A € A =(0,00), s = 1,2, 3, the functions

1 1 Inu | Inz|f1
(u+1)* u* +1 v -1 (max{u,1})*

K (u, 1) = (B=1)

satisfy Conditions (i) and (iii). In fact, for b = % +8,0orb=ac(0,)),wefind
lim K (u, 1)u? = 1im & (u, 1)u® = 0.
u—0+ u—00

In view of the continuity, kis)(u, 1)u® (s =1,2,3) are bounded in (0, o0) and then satisfy (11)
and (13).

It is evident that for A € A = (0,1), the functions

k(1) =

T (u €(1,00);8 = 2,3)

satisfy Condition (ii).

Definition 2 With the assumptions of Lemma 1 and Condition (i), we define the following
two sequences of real functions:

Al
F)em |7 S K et 7,y e 1),
0, y € [1,00),
\ . (14)
Gy i 1T IR oy dy, xe(1,00)
, x€(0,1],
where k > max{‘qﬁ, p%sl} (keN={1,2,...}).
Setting u = x/y (0 <y < 1), we find
~ Ayl g % ) A
Fi(y) = y? ¥ K7 (u,D)u? 7% du
0
[o¢] o0
=y%+1’i’<71 (/ k;z)(u, l)u%rplfkf1 du —f k;z)(u, l)u%r!ﬁf1 du)
0 5
e (A LY g, (15)
2 pk

F(y) =yt f K2 Dud % i (y e (0,1)).

y
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(a) If kf) (u,1) satisfies Condition (i) (for A € A), then by (11) we have

o1 [ Aol Lyy2ta-t

0 <F(y) SL1y2+pk 1/ u—%—aluzwk L gy = ;3171 (ye (0,1)).
1 1 — =
y pk

(b) If £ (u,1) satisfies Condition (ii) (for A € (0,1) N A), then by (12) we have

1

Al A_ 1
ety [P uTET g Ly
0<Fp) <L 2*pk1f du"" 2" L H/ dv
<F@y) =Ly R AN Ay

L A—1 1 A1 L A—1
< (123’ )A/ A - 21 (ly v (ye(O,l)).
=¥ Jo 2 gk Y

Still setting u = x/y (x > 1), we obtain
o -2 [T Jadol
Gr(x) =x2 o / K7 (u,)u?" % du
0
A_1 e Al o0 ALl
=x7471</ /()(\3)(u,1)u7+q_rldu—/ k;?’)(u,nuf*q—kldu)
0 x

A_1_ A 1
i (4 2) - 6w,
2 gk

T R ) Aol
G(x) :=x2 4 k7, Du? % du (x € (1,00)).

X

(o) If kf)(u, 1) satisfies Condition (i) (for A € A), then by (11) we have

A
A1 [ Ayl Lyx2~01
0<Gx) <L x2 @k Wiy a gy o T x € (1,00)).
=< <L 5 — L ’

(d) If £ (1,1) satisfies Condition (ii) (for A € (0,1) N A), then by (12) we have

A_1 o0 M%Jrqlk_l 1 V%_ql_k_l
0 < G(x) §L2x7_‘7’<_1f —du V:ﬁ”sz’\’I/ —
x (w-1)7* o (x—-v)?*
a1l pl -1
5 Lyx k/ V%—#—ldvz# (x € (1,00)).
(x_l) 0 5—%)(96—1)

Remark 2 In view of the results of (a)-(d), there exists a large constant L > 0 such that

() F(y) < Ly?*51 (ye (0,1); 1 € A);

(b) FO) <L (y€ (0,1 1 € (0,1) NA);
(c) Gx) < L3811 (xe(1,00); 1 €A);

d) Gx) < L% (x € (1,00); A € (0,1) N A).

Lemma 2 With the assumptions of Lemma 1, (1) k;z)(u, 1) (kf\?’)(u, 1)) satisfies Condition (i)
or Condition (ii); (2) ifkis)(u, 1) (s = 2,3) only satisfy Condition (i), then ) € A; otherwise,

A €(0,1) NA. Then we have

~ 1 [ [ ~ ~ 3 o
Li=7 /0 /0 k;”(xy,l)Fk(y)Gk(x)dydxz];[/&(5)+o(1) (k — 00). 17)

Page 50of 18
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Proof In view of (15) and (16), we have

z—lfoofl’““ Dy EUE (24 2 ) < Fo)
k—k1 OS\xJ’; v i 2+pk
et 1
x |2 &k —+% - Gx)|dydx=15 -5 - 13 + 14, (18)

2

where we define

Lot et 1
I := kk’\ (2+pk>k’\ 2+qk
o0 1
X/1 (/0 kﬁl)(xy,l)y%%k_ldy)x%_ql_k_ldx,
1 A1 %/ rl A1
=tk (G o) [ ([ K ororay st a
1 o1 o/t Lyl
L=k?(Z+—= f /k“) 1)y 5 dy ) Gx) d,
3 k)‘(2+pk> VA 5 ey, )y k" dy ) G(x) du
1 [o¢] 1 (1)
Li=p / ( / K (xy,nF(y)dy)G(x)dx.
1 0

It is evident that
L-L-L<Li<I+I. (19)

By Fubini’s theorem, we obtain that (cf [18])

*© ! [0 Ayl AL g
/ / k7 (xy, 1)y2 7% dy |x2 & dx
1 0
wsry [0 [* ) ek g
= K7, Du? 7 du Jx"k dx
1 0
(o Ayl 1
:/ / k7 (u, D)u? P du |ak dx
1 0
oo X
+/ (/ kﬁ”(u,l)u%*#ldu)x%ldx
1 1

! ) Aed
:k/ k7 (u, D)u? Pk du
0

+/ (/ xildx>kf\l)(u,1)u%+l%k_ldu
1 u

1 00 3
:k(/ l<f\1>(u,1)u%+1ﬁ_ldu+/ kil)(u,l)ufqlk_ldu).

0 1

1
Since {kil)(u, l)u%Jrﬂ_l},fZ1 (u € (0,1)) is increasing, by Levi’s theorem (cf. [18]), it follows
that

1 1
/ K, i 5 g / KO, Dt du (k- o0).
0 0
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A_ 1
Since k" (u, 1)ue? "7 " < kM (w, )17 (u € (1,00)) and
W L481-1 y(*
05/ k7 (u, Du2*1" du < k® §+81 < 00,
1
then by the Lebesgue convergence control theorem (cf. [18]), we have
e -1 =W a1
/ k7 (u,D)u?" o du—>/ k7 (u,Du2" du  (k— o0).
1 1

Hence, by Lemma 1, we find, for kK — oo,

A1 A1
[ ] R VO

_ Ayl < A1 3 A
X (f k7 (u, 1)u? " ok du+/ k7 (u, D)u? o du) —>1_[k(5)<—). (20)
0 2

1 s=1

(1) We estimate I.
(a) If kl(xz) (u,1) satisfies Condition (i) for A € A, then by Remark 2(a) we have

o) 1 o A1
I ::/ (/ ky (xy,l)F(y)dy)x2 * " dx
1 0

(7w k-1 541
Lf (/ k7 (xy, L)y2 1" dy)x2 & dx
1 0

u=x o0 o0 i 1
;yL/ (/ KD, 1)u s 171 du)x_sl_qk_l dx
1 0

Lk +8)
= —— < 0OQ.

1
81+%

o
IA

IA

(b) If kiz)(u, 1) satisfies Condition (ii) for A € (0,1) N A, then by Remark 2(b) we have

0 J. Lfl(/ool(l)( 1) %_Lk—ld ) y)ﬁl d
< L < G (xy, a2~ 4% dx
==L\ i’ 1-y" Y
1 0 2tk
u=xy (1) ALl 4 ye 4
= L/ (/ k7 (u,)u? o du)—d
o \o 7 Q-y* Y

o1 A1
= L-kY[Z- = )B[1-14Z+— )<
2 gk 2 gk

Therefore, in view of (a) and (b), we have I, — 0 (k — 00).
(2) We estimate I3.
(c) If kf)(u, 1) satisfies Condition (i) for A € A, then by Remark 2(c) we have

(o] 1 O A+
J3 :=/ (/ k. (xy,1)y?" P
1 0

1 0

I

o
IA

B dy) G(x)dx

IA



Yang and Chen Journal of Inequalities and Applications (2015) 2015:100 Page 8 of 18

u=xy * Oo @) Ae Ll - -1
= L/ / k. (u, 1)u? PR dy | KT dx
1 0

M L 1
L-k (2+p/<)
= — " <

1
81+p_/<

(d) If kf’)(u, 1) satisfies Condition (ii) for A € (0,1) N A, then by Remark 2(d), we have

Therefore, in view of (c) and (d), we have I3 — 0 (k — o0).
By (19) and the above results, we have (17). a

Lemma 3 Suppose that (1) A € A =(0,¢) (0 < ¢ < 00), k;s) (x,y) are non-negative homoge-

neous functions of degree —) in R2,

)\‘ 0]
k(s)(i) =/ KO )b du (s=1,2,3),
0

there exists a constant 8 € (0, %) such that k(s)(% +680) € Ry; (2) k,(\z)(u, 1) (kf’)(u, 1)) satisfies
Condition (i) or Condition (ii); (3) if both kiz)(u, 1) and kf)(u, 1) satisfy Condition (ii), then
kil)(u, 1) satisfies Condition (iii); (4) ifkl(\s)(u, 1) (s = 2,3) only satisfy Condition (i), then A €
A; otherwise, A € (0,1) N A. Then we have the reverse of (17), namely

~ 1 [ [ AAY-
Ly = %/ / K (9, V() Gix) dy dx
0 0

3
- Hk‘”(%) +o(l) (k- o0). (21)

s=1

Proof We have four cases to show that in any case, Iy — 0 (k — 00).
Case (i). L € A, F(y) < Ly%"al’l (y€(0,1)), G(x) < Lx3~971 (x € (1,00)). We have

00 1
i ([ K0 mrna)owas

[e¢} o0 i i
2 / ( / KD (xy, 1)y2 011 dy)x7511 dx
1 0

o) o
u=xy 12 / (f k;l)(u’ Du % +81-1 du>x2611 dx
1 0

1? A
= kD248 ) <0
261 2

IA
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Case (ii). % € (0,1) NA, F(j) < Ly} (y € (0,1)), G(x) < L7 (x € (1,00)). We have

A-1

[o¢] o0
L2 (1) 1 %Jrél—ld X d
o= ([ Kemit ) s

2_s5-1

U= X}’ / (/ kl)(u 1)M2+81 1dl/£>( 2_ l)k d
A
= L2k(1)<— + 81>B(1 —A, — + 81) <00
2 2

Case (iii). € (0,1) N A, F(y) < Lﬁ (y € (0,1)), G(x) < Lx5~4171 (x € (1, 00)). We have

A—l

(1) s
Jo = LZ/ </ ki (xy, 1w ”d")a— 7
1 00 , 2 181-1
u::xyLQ/ / ) 1 251 yz
AV k7 (u,1)u? du - )/\
= sz(”@ - 81>B(1 - o 51) <00
2 2

Case (iv). A € (0,1) N A, Fi(y) < L y aor (ye (0,1)), G(x) <L = (xe 1, 00)), k (u,l)
satisfies Condition (iii). We have

A-1

2 a X
Jo < L°Ls / < / (xy)™ (1 oy dy) - 1)A

A—a—1 A—a-1
- 1%L f ( 4 d) Y ix
* )i o A-p* 4 (x—1)*

= L*LsB(1- A A —a)B(l - A, a) < 0o.

Hence, in any case, Iy = %]4 — 0 (k — 00).
Therefore, by (19) and (20), we have the reverse of (17), and then (21) follows. O

3 Some equivalent Hilbert type inequalities
We set functions ¢(x) := 2?7271 v (y) := 5)-1 (x,y € R,) in the following theorem.

Theorem 1 Suppose that (1) A € A =(0,¢) (0 < ¢ < 00), kf) (x,y) are non-negative homoge-

neous functions of degree —\ in R?,
)\. o0
k(3)<§> =f kf\s)(u, 1)14%_1 du (s=1,2,3),
0

there exists a constant 8 € (0, %) such that k(s)(% +8p) eRy; (2) kf (u,1) (/(ig)(u 1)) satis-
fies Condition (i) or Condition (ii); (3) if both k (@) ( 1) and k ( 1) satisfy Condition (ii),
then ki (u,1) satisfies Condition (iii); (4) lfk ( 1) (s = 2,3) only satisfy Condition (i),
then A € A; otherwise, A € (0,1) NA. For p > 1, f(x),G(y) = 0, f € L,,(R,), G € Ly (R,),
Ifllper 1Gllgy >0, and

—1 [0 71(2) .
Ey) = y 1f0 k7 (x,9)f(x)dx, ye{y>0;f(y)>0}, 22)
0, ye{y>0;f(y) =0},
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we have the following equivalent inequalities:

/ / k xy’ FA()’)G(JC d)’dx<1_[k ( )”.f”p(p”G”qdf;

o9 " o0 p i 2 A
. [/0 xT(fO ki“(xy,l)a(y)dy) dx]”<1‘[k“>(5)|m|w
s=1

where the constant factor [ |-, k(%) is the best possible.

In particular, for g(y) > 0, g € L, (R.), ligllgy > 0, and

P kf\?’)(x,y)g(y) dy, x¢€{x>0;g(x) >0},

Gx) =G, (x) := {O, xe{x>0;g(x)=0};

we have the following inequality:

A
/ / Dy, DE() G (x) dydx<]_[/< (2)uf||p,¢ng||q,,,,,

where the constant factor ]—[S 1k (%) is still the best possible.

Proof By (9) and (8) (for r = s = 2), we have

1:[ / y2—1< f kﬁ“(xy,l)a(x)dx) dy}psk“’(g)nanw,
0 0

o0 P »
1Bl = [/ - ( [ kf)(x,yy(x)dx) dy}

:[/ ——1(/ K (x,y)f(x)dx) dy]l
(2)(§)|Lfllp,w-

Then we have (24).
By Holder’s inequality (cf. [19]), we have

I= / (x
0
Then by (24) we have (23).
On the other hand, suppose that (23) is valid. Setting

D>

y / ki”(xy,na(y)dy) (v 3 GW)) dx < J|1Gllyy-
0

N 00 p-1
Gx):=yz! < /0 kP (xy, 1)F, (x) dx> (xeR,),

Page 10 of 18

(23)

(24)

(25)

(26)

(27)

(28)

(29)

we find ||G||qw JP. 1f J = 0, then (24) is trivially valid; if / = oo, then by (27) we have
lF3llp,e = 00, which contradicts the fact of (28). Assuming that 0 <J < 0o, then by (23) we
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have

2
A
IGI7, =) =1 < ]_[k<s>(§> Ul Gl
s=1

2
_ A
IGIE, =7 <[4 (§> f 115
s=1

then we have (24), which is equivalent to (23).
Since we find similar to (28) that

* 1-2)-1{ a1 > 3) ! ?
1Gs g = / 2051 f KO g0)dy ) dx
0 0

g ) ! ; *
=[ | x21< [ (x,y)g()’)dy) dy] <’<(3)(§>”g”“”
0 0

setting G(x) = Gy (x) in (23), we have (26).
For any k > max{‘qﬁ, 17%31} (k € N), we set

~ 5oL 0, 0,1],
f(x)={“ ., xe(0,1), §(V)={y;ql1 ye(0,1]

0, x € [1,00),
Then we have

A1
P kP ) dx, y e (0,1),

Ei(y) =
) { 0, ye(l,00)

[P P @ dn ye > 070) >0,
0, ye{y>0;f()’)=0};

A 1
KD e y)y? F  dy, x e (1,00),

Gi(x) :=
) [o, xe(0,1]

@0 dy, x> 033@) > 0},
o, x € {x > 0;g(x) = 0}.

If there exists a positive constant K < 1_[?:1 k(s)(%) such that (26) is valid when replacing
]_[f:1 k(s)(%) by K, then, in particular, we have

- 1 00 poo " N 1 - N
Te=p / / KD 3 DE) Gl dy s < LKl Zlg = K.
0 0

By (17), we find ]_[g’:1 k(s)(%) +0(1) < Lx < K, and then ]_[f:1 k(s)(%) < K (k — o0). Hence
K= ]_[53:1 k(s)(%) is the best possible constant factor of (26).

The constant factor in (23) is the best possible. Otherwise, setting G(x) = @A(x), we
would reach a contradiction that the constant factor in (26) is not the best possible. By
the equivalency, if the constant factor in (24) is not the best possible, then by (29) we
would reach a contradiction that the constant factor in (23) is not the best possible. O
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Theorem 2 Suppose that (1) . € A =(0,¢) (0 < ¢ < 0), kis) (x,y) are non-negative homoge-

neous functions of degree —i in R?,

A > )
N(E) - [ K =12,

0

there exists a constant 8y € (0, %) such that k(s)(% +38y) € R,;(2) /(iz)(u, 1) (k)(\g)(u, 1)) satisfies
Condition (i) or Condition (ii); (3) if both k)(\z)(u, 1) and kf\g)(u, 1) satisfy Condition (ii), then
kil)(u, 1) satisfies Condition (iii); (3) ifkl(\s)(u, 1) (s = 2,3) only satisfy Condition (i), then . €
A; otherwise, . € (0,1) NA. For 0<p<1,f(x),G(y) >0, f € L,,(Ry), GeLyy Ry, Ifllpe
IGllgy >0, and Fy(y) being as (22), we have the equivalent reverses of (24) and (25) with
the best possible constant factor H52=1 k(s)(%).

G,.(x) as (25), we have the
(%)

In particular, for g(y) > 0, g € L,y (R,), ligllgy > 0, and G(x)
reverse of (26) with the best possible constant factor ]_[ k)

N ”

Proof By the reverse Holder inequality (cf [19]), we obtain the reverses of (27) and (28).
Then we deduce the reverse of (24).

By the reverse Holder inequality, we have

A

1=/ ( ¥ f K xy,l)a(y)dy>( 0 G0) dx 2 TGl o0

Then by the reverse of (24), we obtain the reverse of (23).

On the other hand, suppose that the reverse of (23) is valid. Setting G(x) as (25), we find
[I G||q v =JF If] = oo, then the reverse of (24) is trivially valid; if / = 0, then by the reverse of
(27), we have ||F, ||, = 0, which contradicts the reverse of (28). Assuming that 0 <J < o0,
by the reverse of (23), we have

2
A
IGne, = =1>x (E) 1 1o |Gl g,
s=1

I1GIL =] > l"[k‘s (5) s

and then the reverse of (24) follows, which is equivalent to the reverse of (23).

For g < 0, since we find similar to the reverse of (28) that

= g g [T ! g
G lgw = f x0T x / ki (xy)g)dy | dx
0 0
U B e ak @+
= f xZ / k7 (gl dy ) dy| >k 5 Igllgw
0 0

setting G(x) = Gy (x) in the reverse of (23), we have the reverse of (26).
pial} (ke N),we setf(x), 2(y) as Theorem 1. If there exists a positive

For any k > max{ Iqﬁ’
tant K > []>, k(%) such that th f (26) is valid wh lacing [T>_, k©(2
constant K > []/_; K¥(5) such that the reverse of (26) is valid when replacing [],_, k(%)



Yang and Chen Journal of Inequalities and Applications (2015) 2015:100 Page 13 of 18

by K, then, in particular, we have
S N T T 1 =
Li=~ ks, (%, 1) Fie(y) G () dly dx > zKllpr,wllgllq,x/, =K.
0o Jo

By (21), we find ]_[53:1 k(s)(’%) +0(1) = L; > K, and then 1_[3:1 k(s)(%) > K (k — o0). Hence
K= Hil k(s)(%) is the best possible constant factor of the reverse of (26).

The constant factor in the reverse of (23) is the best possible. Otherwise, setting G(x) =
G (x), we would reach a contradiction that the constant factor in the reverse of (26) is not
the best possible. By the equivalency, if the constant factor in the reverse of (24) is not the
best possible, then by (30) we would reach a contradiction that the constant factor in the

reverse of (23) is not the best possible. O

4 Some corollaries on Hilbert-Hardy-type inequalities
In the following sections, if the best possible constant factor in a Hilbert-type inequality
is related to kl@(%) (s =1,2,3,j=0,1,2) defined as follows, then we call this inequality
Hilbert-Hardy-type inequality. The related operator is called Hilbert-Hardy-type opera-
tor.

Assuming that k" (xy,1) = 0 (0 < 1 <y), we find k" (,1) = 0 (« > 1), and

1
k(”(&) =k}”(&) = / KD (0, 1) d. (31)
2 2 0

By Theorem 1 and Theorem 2, we have the following.

Corollary1 With the assumptions of Theorem 1, for p > 1, kil)(%) € R,, we have the follow-

ing equivalent inequalities:
o P o * A
/ G) / /(§)<xy,1>ﬂ(y)dydx<ki)(§>k‘2)<5>|U‘||p,¢||G||q,w, (32)
0 0

[ / T ( / " K0 (e, DE, () dy)pdx]p < kil)@)k‘” (5> 1 Nl s (33)
0 0 2 2

where the constant factor kfl)(%)k(z)(%) is the best possible.

In particular, for g(y) > 0, g € L,y (R.), lIgllgy > 0, G(x) = G,.(x) as (25), we have the
following inequality:

1 3
R A A
/ / k/(\l)(xy, 1)E.(y)G,(x) dydx < kﬁl) (§> l—[k(s) <5> I Nl llgll g (34)
0 0 s=2

where the constant factor k{l)(%) H?:z k(s)(%) is still the best possible.

Corollary 2 With the assumptions of Theorem 2, for 0 < p <1, kfl)(%) € R,, we have the
equivalent reverses of (32) and (33), where the constant factor k{l)(%)k(z)(%) is the best pos-
sible.
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In particular, for g(y) > 0, g € L,y (R,), llgllgy > 0, G(x) = G,.(x) as (25), we have the
reverse of (34) with the best value k{l)(%) ]_[5’:2 k(s)(%).
Assuming that kil)(xy, 1)=0(0<y< }6), then we find lg(\l)(u, 1)=0(0<u<1),and

k(”(%) =k§”<%) = / KD (4, 1)u 2 du. (35)
1

By Theorem 1 and Theorem 2, we have the following.

Corollary 3 With the assumptions of Theorem 1, for p > 1, kél)(%) € R,, we have the fol-
lowing equivalent inequalities:

o0 o A A
/ Glx) / K (9, 1)F, (y) dy dx < kél)(§>k(2)<§>|lf||p,w||G||q,vn (36)
0 %

[/wx%‘—l (ﬁw k;l)(xy, 1)F, () dy)p dx]ﬁ < kél)(%>k(2)<%)|lf”p«w (37)
0 x

where the constant factor kél) (%)k(Z)(%) is the best possible.

In particular, for g(y) > 0, g € L, 4 (R.), llgll4y > 0, and G(x) = Gy (x) as (25), we have the
following inequality:

3
oo oo )\’ 5 )\‘
[ ow [ Ko<k ()65 Wbslias 68

where the constant factor kél)(%) ]_[;9’=2 k(s)(%) is still the best possible.

Corollary 4 With the assumptions of Theorem 2, if 0 < p <1, kél)(’%) € R,, we have the
equivalent reverses of (36) and (37), where the constant factor kg)(%)k(z)(%) is the best pos-
sible.

In particular, for g(y) > 0, g € L, (R.), llgllgv > 0, and G(x) = Gy (x) as (25), we have the
reverse of (38) with the best value kg)(%) ]_[SB:2 k(s)(%).

Remark 3 For x > 0, we set A, := (0,00), Ay := (0, %), Ay = (;lc,oo). By (24), (33) and

(37), putting k(()l)(%) = kW (%), for i = 0,1,2, we have the following Hilbert-Hardy-type in-
equalities:

oo A 4 >
|:/ x%_l( kil)(xy,l)Fx(y)dy) dx]p <k§1)<%)k(2)<%>|lf||w’ (39)
0 Ay

where the constant factor k;l) (%)k(Z)(%) (i =0,1,2) is still the best possible.

For x > 0, we set some sets B, := (0,00), By := (x,00), By := (0,%). If k&z)(x,y) =0(ye
R, \B,,), then we find k?(1,1) = 0 (u > 1), and

1
k<2><5> :kf)(&) :=/ K2 (1, 1)u 3™ du
2 2 o
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if kP (x,9) = 0 (y € R, \B,), then we find & (1,1) = 0 (0 < u < 1), and

k(2)<%> :kf)(%) ::/I K2 (u, D .

Assuming that k(()z)(%) = k(z)(%), k;”(%), kl.(z)(%) €R,, fori,j=0,1,2, setting

Py, KD @y @ dx, v e fy €Riif() >0},

F, i(y):=
1) {0’ y€{yeR;f(y) =0},

then it follows that F o(y) = F,.(y), and by (39) we have the following united expression of
Hilbert-Hardy-type inequalities:

~ p : A A
[ (] oo o (oG oo
0 Ay,i

where the constant factor k; M2 ( )k ( ) (i,j = 0,1,2) is the best possible.
In the same way, we still can find by (27) and (28) that

0 P z
|:/ x71 (/ kil)(xy, 1)F5.;(y) d)’) dx:| k(l ( )”FM”p "z (41)
0 Ay

A ..
1Esllpgp <k <§> llpe (j=0,1,2), (42)
where the constant factors kfl)(%) and k;z)(%) are the best possible.

Example 2 (i) For k% (x,5) = 122 (3,50, > 1; s =1,2,3), we find

(max{x,y}) Y

N b gy [l
(s) (s) 1 '
M 1 | (maxtm 1D~
ko <2) /0 (s 1wz du /0 (maxtu, 1y

1 Y
_2/( Inu)?us™ du
B
- / R 2<§> r(p),

(ii) For kis)(x,y) = Ix—lyl)‘ (0<Ai<1;5=1,2,3), we find

A oo N o 1 A
) ) 31 2t
$(5)- [ et [T
1 1 1
-9 27 du=2B(1-A,

/0 (l—u)* e ( 2>

ka)(&) :B(l_)\" &) (l: 1,2).
2 2

=1,2).
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5 A composition of two Hilbert-Hardy-type operators
For F € L, (R,), we set J(x) :=*71 [ kP (xy, 1)E(y) dy (x € Ry; i = 0,1,2). Then by (41)
we have

A
”h ”p(p =< k (§>”F||p,w- (43)

Definition 3 With the assumptions of Theorem 1, foranyi = 0,1, 2, kfl)(%) € R,, wedefine
a Hilbert-Hardy-type operator Tl(’) :Lyo(Ry) = Ly, (R,) as follows: For any F € L (p(R+)
there exists a unified expression Tl(’)F =h; € L, ,(R,) such that for any x e R,, T F(x) =
h,(x)

By (43), we have || Tl(i)FHp 0 < ) (%) I F| 5,0 Hence, Tl(i) is a bounded linear operator with

l

(@)
; T"F A
IO = sup e </<f’< )
F(#0)eLp,p(Ry) ||F||p,<p 2

Since the constant factor in (43) is the best possible, we have || Tl(i) I = kfl)(%).

Definition 4 With the assumptions of Theorem 1, forany; =0,1,2, k@)(&) € R,, wedefine

a Hilbert-Hardy-type operator T(’ Lp(p(RJr) — L,,(R,) as follows: For any f € pr(RJ,)
there exists a unified expression T f F,j€ L,,(R,) such that for any y e R,, T, f(y

Fy.j(y).

By (42), we have ||Tg)f||p,¢ = [Fajllpe < k;z)(%)Hpr,(p. Hence, Tg) is a bounded linear
operator with

, T, A
)= ap VTl (%)
F#elpe®) I llpg 2

Since the constant in (42) is the best possible, we have || Tg) I = k;z)(%).

Definition 5 With the assumptions of Theorem 1, for any i,j € {0,1,2}, kfl)(%),k,@)(%) 1S
R,, we define a Hilbert-Hardy-type operator Tj;: L,,(R,) = L,,(R,) as follows: For any
f € Lpy(R,), there exists a unified expression T;;f = Tl(l)FM € L, (R,) such that for any
xeR,,

1) = TE 0 =2 [ Ky 15, )y

It is evident that T;;f = TF,; = TNTYf) = (TP TY)f, and then Ti; = TV T{. Hence,
T;; is the composition of Tl(l) and Té’), and (cf. [20])

o , . A A
Tl = |T0T) < 7011701 =60 (5 )67(5 )

By (40), we have

i A A
(i) 1) (2)
1Tef oo = | T2 Fos, < i (5)/9 (§)uf||,w.

Since the constant factor in (40) is the best possible, then the theorem follows.
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. . . .. @ ry 2.2 a
Theorem 3 With the assumptions of Theorem 1, if for any i,j € {0,1,2}, k;"(3),k;7(5) €
R,, then we have the composition formula of two Hilbert-Hardy-type operators as follows:

i = 10T = 0] 179 =40 (3 ) (5, (9

Example 3 For k)(\l)(xy, 1) = Ixyill“ kf)(x,y) = % (B = 1), » €(0,1), by Example 2
and (44), we have

1Tooll = | 71737 = |71] - | 757] = 43(1 "
1o = |77 = |70 - | 7£] =28(1 -5,
1Tooll = [ 70T = |70 - | 787 = 23(”’

N 4 , A\ /2\P
Tl = 707 = 701 |7 =8 (1= 5 ) (5) ) =12
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