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Abstract

Background: Principal component analysis (PCA) has been widely used to visualize high-dimensional metabolomic
data in a two- or three-dimensional subspace. In metabolomics, some metabolites (e.g., the top 10 metabolites)
have been subjectively selected when using factor loading in PCA, and biological inferences are made for these
metabolites. However, this approach may lead to biased biological inferences because these metabolites are not
objectively selected with statistical criteria.

Results: We propose a statistical procedure that selects metabolites with statistical hypothesis testing of the factor
loading in PCA and makes biological inferences about these significant metabolites with a metabolite set
enrichment analysis (MSEA). This procedure depends on the fact that the eigenvector in PCA for autoscaled data is
proportional to the correlation coefficient between the PC score and each metabolite level. We applied this
approach to two sets of metabolomic data from mouse liver samples: 136 of 282 metabolites in the first case study
and 66 of 275 metabolites in the second case study were statistically significant. This result suggests that to set the
number of metabolites before the analysis is inappropriate because the number of significant metabolites differs in
each study when factor loading is used in PCA. Moreover, when an MSEA of these significant metabolites was
performed, significant metabolic pathways were detected, which were acceptable in terms of previous biological
knowledge.

Conclusions: It is essential to select metabolites statistically to make unbiased biological inferences from
metabolomic data when using factor loading in PCA. We propose a statistical procedure to select metabolites with
statistical hypothesis testing of the factor loading in PCA, and to draw biological inferences about these significant
metabolites with MSEA. We have developed an R package “mseapca” to facilitate this approach. The “mseapca”
package is publicly available at the CRAN website.

Keywords: Principal component analysis, Statistical hypothesis testing of factor loading, Metabolite set
enrichment analysis
Background
Metabolomics is a science based on the exhaustive profiling
of metabolites. Various analytical technologies are used in
metabolomic research, including capillary electrophoresis–
mass spectrometry (CE–MS), liquid chromatography–MS,
gas chromatography–MS, and nuclear magnetic resonance.
The statistical analysis of the analytical data obtained has
been studied in chemometrics research [1]. Chemometric
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approaches that commence with a multivariate analysis,
such as principal component analysis (PCA) [2], partial
least squares [3], canonical correlation analysis [4], and so
on, have been predominantly applied in metabolomics.
PCA [2] is routinely used to visualize high-dimensional

metabolomic data in a two- or three-dimensional sub-
space. A scatter plot of PC score vectors (a “scores plot”)
can be used to detect outliers or to identify biologically in-
terpretable patterns. Typically, when a specific PC score is
found to be related to a phenotype of interest [5,6], such
as a time course or group information, the corresponding
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factor loading is evaluated to discern meaningful metabo-
lites from which to draw biological inferences.
In many metabolomic research articles [7-9], an eigen-

vector in PCA (Eq. 1–1) has been used as the factor load-
ing. To draw biological inferences, some metabolites
(e.g., the top 10 metabolites) are subjectively selected
using the eigenvector. However, this approach has sev-
eral problems. For example, many metabolites may
vary with phenotype in one study, whereas only a few
metabolites vary with phenotype in another study.
With the existing approach, which uses the eigen-
vector, this is equivalent to using the same number of
metabolites to draw biological inferences from these
different studies. Consequently, biological interpreta-
tions might be made using an insignificant metabolite
that varies irrelevantly with phenotype.
The eigenvectors for autoscaled data in PCA [10] are

proportional to the correlation coefficients between the
PC scores and the variables. This fact is well established
in the multivariate analysis literature [11], but does not
appear to be appreciated in metabolomic analyses. In the
present study, “factor loading” is defined as the correl-
ation coefficients between the PC scores and the vari-
ables. This definition can be used to perform statistical
hypothesis testing and to select significant metabolites
objectively using statistical criteria. The significance of
factor loading in PCA can also be computed with a re-
sampling approach, such as bootstrapping, although this
is not exact [12].
Significant metabolites are selected according to the

significance of factor loading or other methods of vari-
able selection in supervised learning approaches, such as
support vector machine, random forest, and so on, and
then biological inferences are drawn for these metabo-
lites by biologists. Biologists often draw these inferences
with respect to a biological functional unit, such as a
metabolic pathway (e.g., “glycolysis is notably activated”
or “amino acid metabolism is significantly suppressed”).
In gene expression analyses, gene set enrichment ana-
lysis (GSEA) has been used to identify significant gene
sets using gene ontology (GO) terms. In metabolomics,
metabolite set enrichment analysis (MSEA) [13,14] can be
used to identify significant metabolic pathways. MSEA has
been computed with several approaches, including over-
representation analysis (ORA) [15], Subramanian’s GSEA
[16], and the global test [17]. MSEA is a convenient
method for drawing biological inferences from metabolo-
mic data, but this approach has not been applied to me-
tabolites selected by factor loading in PCA. Recently, web
tools for MSEA have been developed [13,14]. However, no
tools that can perform our workflow, including the statis-
tical hypothesis testing of factor loading in PCA, have
existed in a single platform. In the present study, we per-
formed statistical hypothesis testing of the factor loading
in PCA for two metabolomic datasets from mouse liver
samples as case studies. This approach can be used to se-
lect significant metabolites when using factor loading in
PCA, and MSEA with an ORA approach can be applied
to these significant metabolites. We developed the R pack-
age “mseapca” to compute the sequence from the statis-
tical hypothesis testing of factor loading in PCA to MSEA.

Methods
Statistical hypothesis testing of factor loading in PCA
Consider a mean-centered data matrix X that has sam-
ples in each row and variables in each column. The
score vector is related to the data matrix by t =Xw,
where w is a vector of weights. PCA is formulated as the
optimization problem of maximizing the variance of the
score vector t:

maxvar tð Þ
subject to w′w ¼ 1

ð1� 1Þ

and the weight vector w is often used for factor loading.
After transformation, eq. (1–1) can be rewritten as the
eigenvalue problem:

1
n − 1

X′Xw ¼ λw ð1� 2Þ

The eigenvector w and eigenvalue λ of eq. (1–2) can
be computed using numerical computation libraries for
singular value decomposition. The eigenvalue λ corre-
sponds to the variance of the PC score vector formed
using the associated eigenvector as the weight vector.
The coefficient of the correlation between the PC

score and the p-th variable can be defined as:

corr t;xp
� � ¼ t′xp=n−1ffiffiffiffiffiffiffiffiffiffiffiffiffi

var tð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var xp

� �q ð1� 3Þ

where t' is the transpose of t. Introducing c as the col-
umn vector in which the p-th element is 1 and the
others are 0, so that xp =Xc, we have:

corr t;xp
� � ¼ w′X′Xc=n‐1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
var tð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var xp
� �q ð1� 4Þ

Transposing eq. (1–2) gives w′X′X/n − 1 = λw ', which
can be substituted in eq. (1–4), giving:

corr t;xp
� � ¼ λw′c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
var tð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var xp
� �q ð1� 5Þ

The variance of the score vector can then be replaced
with λ and the standard deviation of xp is replaced with
σp. Finally, the correlation between the PC score and the
variables can be written as:
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corr t;xp
� � ¼ λw′c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
var tð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var xp
� �q ¼ λwpffiffiffiffiffiffiffiffi

λσp
p ¼

ffiffiffiffiffiffiffiffi
λwp

p
σp

ð1� 6Þ
With data scaled to unit variance (autoscaling), the

weight wp is proportional to the correlation coefficient
between the PC score and variable xp because σp = 1 in
eq. (1–6). Thus, the factor loading can be defined as the
correlation coefficient in eq. (1–6). On the basis of this
definition, we can perform a statistical test for factor
loading in PCA, using the well-known fact that for a
correlation coefficient r, the statistic:

t ¼ r
ffiffiffiffiffiffiffiffi
n−2

p
ffiffiffiffiffiffiffiffiffiffi
1−r2

p ð1� 7Þ

has a t-distribution with (n – 2) degrees of freedom. We
can then select variables that have a statistically signifi-
cant correlation to the PC score and draw biological in-
ferences using these variables.

Sample preparation, metabolomic analysis, and
data processing
BKS.Cg-m+/m+/Jcl (normal) mice, 12 h-fasted normal
mice, BKS.C − +Leprdb/+Leprdb/Jcl (db/db) mice, and
db/db mice orally administered pioglitazone for 10 days
were used. The mice were 7-week-old males, and were
given unlimited access to food and water, except those
on the 12 h fast. The concentration of pioglitazone ad-
ministered was 100 mg/10 mL per kg. The pioglitazone
was purchased from Takeda Pharmaceutical Co. Ltd
(Doshomachi, Osaka, Japan), and was purified by the
NARD Institute Ltd (Amagasaki, Hyogo, Japan). After
sampling, the livers were excised and stored at −80°C.
All experiments, from the purchase and breeding of the
mice to the collection of their liver samples, were per-
formed at Kitayama Labes Co. Ltd (Ina, Nagano, Japan).
The sample preparation procedure used to extract the
metabolites has been described by Ooga et al. [18].
The metabolite extracts were measured with CE–time-

of-flight MS (CE–TOFMS) using the Agilent Capillary
Electrophoresis System equipped with an Agilent 6210
time-of-flight mass spectrometer, an Agilent 1100 iso-
cratic high-performance liquid chromatography pump,
an Agilent G1603A CE–MS adapter kit, and an Agilent
G1607A CE–ESI–MS Sprayer Kit (Agilent Technologies,
Waldbronn, Germany). The system was controlled with
the G2201AA ChemStation Software version B.03.01 for
CE (Agilent Technologies). Modified analytical methods
for the measurement of cationic [19] and anionic metab-
olites [20] were used. The measurement data were proc-
essed with peak processing software [21]. The signal
peaks corresponding to isotopomers, adduct ions, and
other product ions of known metabolites were excluded.
All signal peaks potentially corresponding to authentic
compounds were then extracted, and their migration
times (MTs) were normalized using those of the internal
standards (methionine sulfone and D-camphor-10-sul-
fonic acid for cations and anions, respectively). The
peaks were then aligned according to their m/z values
and normalized MT values. Finally, the peak areas were
normalized against those of the internal standards. The
resultant relative area values were further normalized by
the sample weight. Annotation tables were produced
from the CE–TOFMS measurements of standard com-
pounds, and were aligned with the datasets according to
their similar m/z values and normalized MT values.

Statistical analysis
In this study, all computations were performed with R
[22] and the “mseapca” [23] package. A value of 0 was
imputed to missing values for the computation of PCA.
A metabolite set list was created with reference to the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
[24], which was partly modified by manual curation. The
xml file of the metabolite set list used in this study is in-
cluded in the “mseapca” package.

Software
Figure 1 show our analytical workflow used to perform
the statistical hypothesis testing of the factor loading in
PCA and the MSEA with the “mseapca” package. The R
package “mseapca” [23] has three major features. The
first creates a list of metabolic pathways. This can be
generated from two file formats, csv or KEGG’s tar.gz.
The csv file is used when your own metabolite set list,
created by yourself, is used and KEGG’s tar.gz is used
when a metabolite set originating from KEGG’s meta-
bolic pathway is used. A csv file, in which the first col-
umn is the name of the metabolic pathway and the
second column is the metabolite IDs, is manually cre-
ated and converted to the list format with the “csv2list”
function. A “pathway_class” function converts KEGG’s
tar.gz files (e.g., hsa.tar.gz in Homo sapiens) to the list
format of the metabolic pathway. KEGG’s tar.gz files can
be downloaded from KEGG FTP, with your own license.
The “mseapca” package can save a list of metabolic path-
ways as xml files for future reuse and feature expansion.
The “list2xml” function converts the list format of the
metabolic pathways to the xml format. This xml format
can be saved as an xml file using the “saveXML” func-
tion in the “XML” package. The “read_pathway” function
can read the created xml file and convert it to a list of
metabolic pathways for the computation of MSEA.
The second feature is the “pca_scaled” function, with

which to perform PCA. A data frame constructed from
metabolite IDs and a metabolome data matrix is input
for the “pca_scaled” function. Metabolite IDs should be
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Figure 1 Analytical workflow for performing statistical hypothesis testing of factor loading in PCA and MSEA with the “mseapca” package.
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matched with those in the metabolite set list. With this
function, the data matrix is automatically scaled to a
zero mean and unit variance (autoscaling) for each me-
tabolite. This function can output the PC scores, factor
loadings, and p-values and q-values of Benjamini and
Hochberg [25], which are the results of the statistical hy-
pothesis testing of factor loading. In this function, “fac-
tor loading” is defined as the correlation coefficient
between the PC score and each metabolite level.
The third feature is the performance of MSEA. The

“msea_ora” function can perform MSEA with ORA [15].
With this function, statistical hypothesis testing of the
cross-tabulation is performed with the one-sided Fisher’s
exact test. The “msea_sub” function performs MSEA in
the same way as GSEA is implemented by Subramanian
et al. [16]. Subramanian’s GSEA has two types of ran-
dom permutation. In one, the class label is randomly
permuted and in the other, the metabolites in the metab-
olite set list are randomly selected to generate the null
distribution of the enrichment score. The p-value for the
enrichment score can then be computed with both ap-
proaches. In the “msea_sub” function, the latter ap-
proach is implemented. This procedure corresponds to
the “gene set” of the permutation type in the GSEA-P
software [26]. A leading-edge subset analysis is also
undertaken following the GSEA procedure [25].
The R package “mseapca” is freely available from

the CRAN website [23]. See the reference manual for
“mseapca” at the CRAN website [23] for more information.
Results
Case study 1: a comparative study of control and
12 h-fasted mice
We describe the use of the statistical hypothesis testing
of factor loading in PCA using metabolome data from
two studies. The first case study is a comparative ana-
lysis of normal and 12 h-fasted mice. Five liver samples
each from the control and 12 h-fasted mice were used
for the metabolomic analysis and 282 metabolites were
identified.
A PCA of these metabolomic data was performed after

they had been preprocessed by autoscaling. The scores
plot of the PCA (Figure 2(A)) showed that the PC1
scores of the control and fasted mice were negative and
positive, respectively. This result suggests that the PC1
score is positively related to the fasting effect. In this
case, metabolites that have large positive factor loadings
in PC1 tend to increase and those with negative factor
loadings tend to decrease during the 12 h fast.
Statistical hypothesis testing for factor loading in PC1

was performed, and 136 metabolites were statistically
significant at p < 0.05 (Additional file 1: Table S1). An
MSEA with ORA for factor loading was performed inde-
pendently for the significantly positive and negative me-
tabolites (Table 1). Purine metabolism was significantly
activated in the 12 h-fasted mice at p < 0.05. Glycolysis was
significantly suppressed at q < 0.05 and the pentose phos-
phate pathway tricarboxylic acid (TCA) cycle, cysteine me-
tabolism, and polyamine metabolism were significantly
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Figure 2 Results of PCA in a comparative study of normal and 12 h-fasted mice. (A) Scores plot of PC1 and PC2. Symbols: (○) control mice;
(●) 12 h-fasted mice. (B) Factor loading plot for PC1. Metabolites are sorted in ascending order of the value for factor loading. The dotted line
shows the significance level at p < 0.05.

Table 1 Results of MSEA in a comparative study of normal and 12 h-fasted mice

ORA Subramanian's approach

Positive correlation with PC1 Negative correlation with PC1 Positive correlation with PC1

p-value q-value p-value q-value NES p-value q-value

Glycolysis 1.0000 1.0000 0.0001* 0.0036** −2.0048 0.0000* 0.0074**

Pentose phosphate pathway 1.0000 1.0000 0.0308* 0.2000 −1.6040 0.0283* 0.1781

TCA cycle 1.0000 1.0000 0.0040* 0.0519 −1.6208 0.0165* 0.2433

Glutamic acid and glutamine metabolism 1.0000 1.0000 0.4901 0.9801 −1.0936 0.3497 0.5193

Alanine, aspartic acid and asparagine metabolism 0.8254 1.0000 0.2878 0.8313 −1.1897 0.2625 0.4379

Lysine metabolism 0.8567 1.0000 0.8681 1.0000 −0.8172 0.7078 0.8274

Valine, leucine and isoleucine metabolism 1.0000 1.0000 0.7735 1.0000 −0.9392 0.5636 0.7311

Glycine, serine and threonine metabolism 0.7434 1.0000 0.0720 0.2445 −1.2557 0.1803 0.3704

Cysteine metabolism 0.6489 1.0000 0.0412* 0.2142 −1.3259 0.1611 0.3371

Methionine metabolism 0.6178 1.0000 0.8444 1.0000 0.8697 0.6147 0.7197

Shikimic acid metabolism 1.0000 1.0000 0.4901 0.9801 −1.2676 0.1745 0.3901

Histidine metabolism 0.5434 1.0000 1.0000 1.0000 1.8978 0.0080* 0.0520

Urea cycle 0.8567 1.0000 0.0507 0.2197 −1.3352 0.1524 0.3705

Proline metabolism 1.0000 1.0000 0.6001 1.0000 −1.1524 0.3041 0.4619

Polyamine metabolism 1.0000 1.0000 0.0308* 0.2000 −1.5785 0.0309* 0.1581

Tryptophan metabolism 0.7413 1.0000 0.9269 1.0000 −0.7141 0.8260 0.8764

Tyrosine metabolism 1.0000 1.0000 0.0752 0.2445 −1.3601 0.1176 0.3820

beta-alanine metabolism 0.2111 1.0000 0.8616 1.0000 0.9218 0.5531 0.7578

Taurine metabolism 1.0000 1.0000 0.3721 0.9675 −1.4114 0.1010 0.3535

Creatine metabolism 0.7874 1.0000 0.4705 0.9801 −0.8041 0.7093 0.7984

Purine metabolism 0.0285* 0.7411 0.9983 1.0000 1.6391 0.0220* 0.1290

Pyrimidine metabolism 0.9649 1.0000 0.9860 1.0000 0.7965 0.7355 0.7258

Ribonucleotide metabolism 0.3473 1.0000 1.0000 1.0000 1.1184 0.2800 0.6998

Deoxyribonucleotide 1.0000 1.0000 1.0000 1.0000 −0.6743 0.9776 0.8725

Conjugated bile acid 0.5361 1.0000 1.0000 1.0000 1.0384 0.3671 0.6834

Nicotinic acid metaboilsm 0.3473 1.0000 0.5357 0.9949 −0.8360 0.6536 0.8510

*p < 0.05, **q < 0.05.
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suppressed in the 12 h-fasted mice at p < 0.05. MSEA using
Subramanian’s approach was also performed as a reference
(Table 1). Histidine metabolism and purine metabolism
had negative normalized enrichment scores (NESs), so
were significantly activated in the 12 h-fasted mice at p <
0.05. Glycolysis had a positive NES, so was significantly
suppressed at q < 0.05 and the pentose phosphate pathway,
TCA cycle, and polyamine metabolism were significantly
suppressed in the 12 h-fasted mice at p < 0.05. These re-
sults suggest that these two MSEA approaches are largely
consistent.
The results of the MSEA of factor loading in PC1 sug-

gested that the processes of energy metabolism, includ-
ing glycolysis and the TCA cycle, decreased during the
12 h fast. The suppression of these metabolic pathways
suggests that glycogen is drained and glucose supple-
mentation is restricted in the mouse liver during a 12 h
fast. The mean bodyweight of the normal mice was
22.20 ± 0.84 g (mean ± SD) and that of the 12 h-fasted
mice was 20.0 ± 0.71 g, indicating a statistically signifi-
cant reduction (p = 0.0021) during the 12 h fast, accord-
ing to Welch’s t test. This result suggests that the
suppression of energy metabolism results in a reduction
in bodyweight.

Case study 2: a comparative study of diabetic model mice
with and without pioglitazone treatment
The db/db mouse is a model of obesity, diabetes, and
dyslipidemia, in which leptin receptor activity is deficient
because the mice are homozygous for a point mutation
in the leptin receptor gene [27]. Pioglitazone reduces in-
sulin resistance in the liver and reduces glucose levels in
the blood [28,29]. Therefore, it is used for the treatment
of diabetes.
We compared the metabolomic data for mouse liver

samples from db/db mice treated with or without
pioglitazone to examine the effects of administering
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Figure 3 Results of PCA in a comparative study of db/db mice treated
Symbols: (○) diabetic model mice (db/db mice) without pioglitazone; (●) db
Metabolites are sorted in ascending order of the value for factor loading. T
pioglitazone to diabetic mice. Five liver samples from
the untreated db/db mice and five from db/db mice ad-
ministered pioglitazone were used for the metabolomic
analysis and 275 metabolites were identified.
We performed PCA on data preprocessed with auto-

scaling in a comparative study of the db/db mice treated
with and without pioglitazone. The scores plot is shown in
Figure 3(A). A perfect separation between the groups was
achieved on the first PC axis, and we therefore focused on
this axis. The PC1 scores for the db/db mice with and
without pioglitazone treatment showed positive and nega-
tive values, respectively, suggesting that the PC1 score is
positively related to the effect of pioglitazone.
Statistical hypothesis testing of the factor loading in

PC1 was performed, and 66 metabolites were statistically
significant at p < 0.05 (Additional file 1: Table S2). An
MSEA of factor loading was performed as in the previ-
ous section (Table 2). In both MSEA with ORA and
using Subramanian’s approach, glycolysis was the only
statistically significant factor activated by pioglitazone
at p < 0.05. Pioglitazone is a peroxisome proliferator-
activated receptor (PPAR)-activating agent. Lee et al.
[30] suggested that PPARδ ameliorates hyperglycemia
by increasing the glucose flux through the regulation of
gene expression. The administration of pioglitazone is
known to reduce glucose levels in the blood [28,29].
In the present study, the glucose blood level was

369.6 ± 64.8 mg/dL (mean ± SD) in the db/db mice and
332.8 ± 131.9 mg/dL in the db/db mice administered pi-
oglitazone. The reduction in blood glucose was not signifi-
cant (p = 0.596) after the administration of pioglitazone,
according to Welch’s t test. This result suggests that a
metabolomic analysis can detect subtle changes in the gly-
colysis pathway caused by the administration of pioglita-
zone, although confirmatory experiments (e.g., evaluating
the expression levels of PPARα) might be required to con-
firm our biological inferences.
-1
.0

-0
.5

0.
0

0.
5

1.
0

Metabolites

Fa
ct

or
 lo

ad
in

g

(B)

with and without pioglitazone. (A) Scores plot of PC1 and PC2.
/db mice administered pioglitazone. (B) Factor loading plot for PC1.
he dotted line shows the significance level at p < 0.05.



Table 2 Results of MSEA in a comparative study of db/db mice treated with and without pioglitazone

ORA Subramanian’s approach

Positive correlation with PC1 Negative correlation with PC1 Positive correlation with PC1

p-value q-value p-value q-value NES p-value q-value

Glycolysis 0.0090* 0.2250 0.7982 1.0000 1.6888 0.0198* 0.3485

Pentose phosphate pathway 1.0000 1.0000 1.0000 1.0000 1.3813 0.1378 0.9520

TCA cycle 1.0000 1.0000 1.0000 1.0000 −1.4237 0.0916 0.8261

Glutamic acid and glutamine metabolism 1.0000 1.0000 0.5471 1.0000 −1.2740 0.2062 0.4203

Alanine, aspartic acid and asparagine metabolism 0.5531 1.0000 1.0000 1.0000 0.7161 0.8049 1.0000

Lysine metabolism 1.0000 1.0000 1.0000 1.0000 −0.6892 0.8152 0.9603

Valine, leucine and isoleucine metabolism 0.3294 1.0000 1.0000 1.0000 0.8275 0.6150 0.9834

Glycine, serine and threonine metabolism 0.1405 0.7024 0.8617 1.0000 1.1241 0.2699 0.9823

Cysteine metabolism 0.7041 1.0000 0.2461 1.0000 −0.9727 0.4840 0.8845

Methionine metabolism 1.0000 1.0000 1.0000 1.0000 1.0388 0.4167 0.9189

Shikimic acid metabolism 0.3294 1.0000 1.0000 1.0000 1.1493 0.3098 1.0000

Histidine metabolism 1.0000 1.0000 1.0000 1.0000 0.7463 0.7770 1.0000

Urea cycle 1.0000 1.0000 1.0000 1.0000 0.6208 0.9293 0.9238

Proline metabolism 0.5051 1.0000 1.0000 1.0000 0.6493 0.8869 1.0000

Polyamine metabolism 0.1344 0.7024 0.2701 1.0000 1.0695 0.3818 0.9813

Tryptophan metabolism 0.1018 0.7024 1.0000 1.0000 1.2380 0.2247 1.0000

Tyrosine metabolism 0.4521 1.0000 1.0000 1.0000 0.9319 0.5367 0.8548

beta-alanine metabolism 0.3893 1.0000 0.6321 1.0000 0.6450 0.8899 0.9596

Taurine metabolism 0.0577 0.7024 0.4410 1.0000 0.9952 0.4654 0.8048

Creatine metabolism 1.0000 1.0000 0.7206 1.0000 −0.7887 0.7230 0.9414

Purine metabolism 1.0000 1.0000 0.2583 1.0000 −1.3788 0.0947 0.5203

Pyrimidine metabolism 1.0000 1.0000 0.9252 1.0000 −0.7940 0.7196 1.0000

Ribonucleotide metabolism 1.0000 1.0000 0.2461 1.0000 −1.3605 0.1215 0.3792

Conjugated bile acid 1.0000 1.0000 0.4687 1.0000 −0.5472 0.9689 0.9709

Nicotinic acid metaboilsm 0.3161 1.0000 0.5431 1.0000 0.9991 0.4427 0.8973

*p < 0.05.
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Discussion
Metabolite selection by statistical hypothesis testing of
the factor loading in PCA has several advantages. This
approach was applied to metabolomic data in two case
studies of mouse liver samples. In the first case study,
136 of 282 metabolites correlated significantly with the
PC1 score associated with the groups, and in the second
study, 66 of 275 metabolites showed such a correlation.
Thus, the number of significant metabolites was two-
fold higher in the first case study than in the second case
study. This suggests that to set a previously determined
number of metabolites (e.g., the top 10 metabolites) is
inappropriate because the number of significant metabo-
lites differs in each study. We also note the relationship
between the contribution ratio and the number of sig-
nificant metabolites for factor loading in PCA. The ratio
of the number of significant metabolites to all the de-
tected metabolites was 0.482 (= 136/282) in the first case
study and 0.24 (= 66/275) in the second case study. The
contribution ratio in PC1 was 40.5% in the first case
study and 24.2% in the second case study. This result
suggests that an implicit relationship exists between the
contribution ratio and the number of significant metabo-
lites in samples of the same size.
In both case studies, we focused on PC1 (Figure 2 and

Figure 3), which differed between the groups. We then
compared this approach with ordinary statistical hypoth-
esis testing, such as with a t test. According to Welch’s t
test, 122 metabolites were significant in the first case
study and 56 metabolites were significant in the second
case study. When we compared the metabolites selected
with Welch’s t test and those selected with the statistical
test of factor loading, 112 metabolites and 47 metabo-
lites in case studies 1 and 2, respectively, were common
to both studies. Most significant metabolites were se-
lected with both approaches. This fact suggests that the
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statistical testing of factor loading in PCA can be readily
used to select metabolites as a special case of the two-
sample test when the difference between the groups
appears in the PC score. The result of MSEA for statisti-
cally significant metabolites with positive t statistics on
Welch’s t test showed that purine metabolism was statis-
tically significant at p < 0.05, and the negative t statistics
showed that glycolysis and the pentose phosphate path-
way were statistically significant at p < 0.05 (Additional
file 1: Table S3). In a positive case, the statistically sig-
nificant metabolic pathway identified by MSEA was con-
sistent with both approaches. In a negative case, the
statistically significant metabolic pathway was partly
consistent, but the number of statistically significant
metabolic pathways was fewer with Welch’s t test than
with the statistical hypothesis testing of factor loading in
PCA. These results depend on the result that the num-
ber of significant metabolites was almost same with
Welch’s t test (51 metabolites) and with statistical hy-
pothesis testing of factor loading in PCA (49 metabo-
lites) in positive cases, but was fewer with Welch’s t test
(71 metabolites) than with the statistical hypothesis test-
ing of factor loading in PCA (87 metabolites) in negative
cases.
In metabolomics, complex studies (e.g., the fermenta-

tion process by a microorganism [31]) can involve various
time points or groups, or the administration of drugs at
various concentrations under various conditions [32]. In
these complex studies, a statistical method for testing
should be selected from various methods, such as analysis
of variance and multiple comparison procedures, depend-
ing on the situation. In our analytical workflow of PCA, a
specific PC score was selected and we simply performed
the statistical hypothesis testing for factor loading corre-
sponding to this selected PC under any circumstances.
The statistical testing of factor loading in PCA can be
widely used, not only in two-sample studies but also in
various studies when an association between the PC score
and the phenotype can be found.
MSEA was performed for significant metabolites and ac-

ceptable biological inferences were drawn in the two case
studies. With the conventional approach, a previously de-
termined number of metabolites (e.g., 10 metabolites) from
which to draw biological inferences is subjectively selected.
Using this approach, MSEA was performed for the top 10
metabolites with large negative factor loadings in the first
case study. No significant metabolic pathway was detected
at p < 0.05 (data not shown). In this case, 10 metabolites
was too small a sample from which to draw acceptable bio-
logical inferences. Even if significant metabolic pathways
are detected when MSEA is applied to insignificant metab-
olites, it is doubtful whether these metabolic pathways are
statistically or biologically meaningful. To draw unbiased
biological inferences using a statistical analysis, significant
metabolites must be selected with statistical tests of factor
loading when using PCA.
In this study, two MSEA methods were used, with ei-

ther ORA or Subramanian’s approach. As a way of using
factor loading for GSEA, Fehrmann et al. [33] designated
the PC score associated with phenotype as the “tran-
scriptional system regulator” (TSR) score, and factor
loading corresponding to the TSR score is used for
GSEA with Subramanian’s approach. This method dir-
ectly uses factor loading, but does not use the results of
statistical hypothesis testing of factor loading. As far as
we know, an approach combining GSEA or MSEA with
the results of statistical hypothesis testing of factor load-
ing in PCA has not been reported until now.
The results of both MSEA with ORA or Subrama-

nian’s approach produced almost the same results in our
two case studies. In a comparison of the computational
time required by the two MSEA approaches, the first
case study required 441.43 seconds using Subramanian’s
approach and 0.83 seconds with ORA. This result shows
that MSEA with ORA has the advantage of lower com-
putational cost. Conventionally, PCA and MSEA can be
computed independently in different steps or with differ-
ent software. There has been no software that can com-
pute the sequence from PCA and statistical hypothesis
testing of factor loading to MSEA. Therefore, we devel-
oped the R package “mseapca” to compute the whole se-
quence from the statistical hypothesis testing of factor
loading in PCA to MSEA.

Conclusions
In metabolomics, the targeted metabolites from which
biological inferences are drawn are selected subjectively
when factor loading is used in PCA. We have proposed
a statistical procedure to select metabolites using the
statistical hypothesis testing of factor loading in PCA.
These significant metabolites are then used to identify
significant metabolic pathways with MSEA. We applied
this approach to two metabolomic datasets from mouse
liver samples, with acceptable results in terms of previ-
ous biological knowledge. We developed an R package
“mseapca” to allow the ready use of our approach. Many
researchers use PCA in metabolomics. Our approach
can improve the existing use of PCA in this field and is
expected to be widely applicable to other omics data, in-
cluding gene expression and proteomic data.
Additional file

Additional file 1: Table S1 and S2. Results of statistical hypothesis
testing of factor loading in PC1 and Welch’s t test and MSEA for the two
case studies. Table S3. Result of MSEA using ORA for significant metabolites
selected by Welch's t-test in a comparative study of normal and 12 h-fasted
mice.
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