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Abstract We study fermionic perturbations in the back-
ground of a two and five-dimensional dilatonic black holes.
Then, we compute the reflection and transmission coeffi-
cients and the absorption cross section for fermionic fields,
and we show numerically that the absorption cross section
vanishes in the low and high frequency limit. Also we find that
beyond a certain value of the horizon radius r0 the absorption
cross section for five-dimensional dilatonic black hole is con-
stant. Besides, we have find that the absorption cross section
decreases for higher angular momentum, and it decreases
when the mass of the fermionic field increases.

1 Introduction

The two-dimensional models of gravity are locally trivial and
it is necessary to incorporate extra fields to add richness to the
gravity model due to the two-dimensional Einstein–Hilbert
action is just a topological inviariant (Gauss–Bonnet term). In
this sense, the dilatonic field plays the role of the extra fields,
which naturally arises, for instance, in the compactifications
from higher dimensions or from string theory. These theories
also have black hole solutions which play an important role
in revealing various aspects of the geometry of spacetime
and quantization of gravity, and also the physics related to
string theory [1–3]. On the other hand, two-dimensional low-
energy string theory admits several black hole solutions. Fur-
thermore, technical simplifications in two dimensions often
lead to exact results, and it is hoped that this might helps to
address some of the conceptual problems posed by quantum
gravity in higher dimensions. The exact solvability of two-
dimensional models of gravity have proven to be a useful

a e-mail: rbecar@uct.cl
b e-mail: pablo.gonzalez@udp.cl
c e-mail: yvasquez@userena.cl

tool for investigations into black hole thermodynamics [4–
9]. Such investigations are hoped to provide a deeper under-
standing of key issues; including the microscopic origin of
black hole entropy [10–12], and the end point of black hole
evaporation via thermal radiation [13–15]. For an excellent
review about dilaton gravity in two dimensions see [16].

On the other hand, there is a growing interest in five-
dimensional dilatonic black holes in the last few years, since
it is believed that these black holes can shed some light
into the solution of the fundamental problem of the micro-
scopic origin of the Bekenstein–Hawking entropy. The area-
entropy relation SBH = A/4 was obtained for a class of five-
dimensional extremal black holes in Type II string theory
using D-brane techniques [17]. In [2], the author derived the
entropy for the two-dimensional black hole [3] by establish-
ing the U-duality between the two-dimensional black hole
and the five-dimensional one [2]. A similar work was carried
out in [18] using a different sequence duality transforma-
tions, this time in four dimensions and leading to the same
expressions for the entropy for two-dimensional black holes.
Besides, the issue about classical and quantum stability of
two dimensional and five dimensional dilatonic black holes
was carried out, for instance in [19–24].

Additionally, several studies have contributed to the scat-
tering and absorption properties of waves in the spacetime
of black holes. As the geometry of the spacetime surround-
ing a black hole is non-trivial, the Hawking radiation emitted
at the event horizon may be modified by this geometry, so
that when an observer located very far away from the black
hole measures the spectrum, this will no longer be that of a
black body [25]. The factors that modify the spectrum emit-
ted by a black hole are known as greybody factors and can be
obtained through the classical scattering; therefore its study
allows to increase the semiclassical gravity dictionary, and
also permits to gain insight into the quantum nature of black
holes and, thus, of quantum gravity, for an excellent review
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about this topic see [26]. Also, see for instance [27–29], for
decay of Dirac fields in higher dimensional black holes. In
the present work, the reflection and the transmission coeffi-
cients, and the greybody factors of two-dimensional stringy
black holes ([1,30]) and five-dimensional black holes [2] for
fermionic fields are computed.

This paper is organized as follows. In Sect. 2, we
study fermionic perturbations in the background of two-
dimensional dilatonic black holes, and in Sect. 3 we calcu-
late the reflection and the transmission coefficients, and the
absorption cross section. Then, in Sects. 4 and 5 we extend
our previous results to the five-dimensional dilatonic black
holes. Finally, our conclusions are in Sect. 6.

2 Fermionic perturbations of two-dimensional dilatonic
black holes

In order to have a gravity theory with dynamical degrees
of freedom in two-dimensional spacetime, we consider the
gravity coupled to a dilatonic field described by the action

Sg = 1

2π

∫
d2x

√−ge−2φ
(

R + 4(∇φ)2 + 4λ2
)
. (1)

The field equations for the metric and dilaton are given by

βG
μν = Rμν + 2∇μ∇νφ = 0, (2)

βφ = �φ − 2 (∇φ)2 + 2λ2 = 0. (3)

A general static metric describing a black hole in this theory
can be written as

ds2 = − f (r)dτ 2 + dr2

f (r)
, (4)

where f (r) = 1 − e−φ and φ = (r − r0)/r0. The change
of coordinate x = r−r0

r0
, yields f (x) = 1 − e−x with the

horizon of the black hole located at x = 0. This solu-
tion represents a well-known string-theoretic black hole [1–
3,30]. The fermionic perturbations in the background of two-
dimensional dilatonic black holes are governed by the Dirac
equation

(
γ μ∇μ + m

)
ψ = 0, (5)

where the covariant derivative is defined as

∇μ = ∂μ + 1

2
ωab

μ Jab, (6)

and the generators of the Lorentz group Jab are

Jab = 1

4

[
γa, γb

]
. (7)

The gamma matrices in curved spacetime γ μ are defined by

γ μ = eμaγ
a, (8)

where γ a are the gamma matrices in flat spacetime. In order
to solve the Dirac equation we use the diagonal vielbein

e0 = √
f (r)dt, e1 = 1√

f (r)
dr. (9)

From the null torsion condition

dea + ωa
beb = 0, (10)

we obtain the spin connection

ω01 = f ′ (r)
2
√

f (r)
e0, (11)

Now, by using the following representation of the gamma
matrices

γ 0 = iσ 2, γ 1 = σ 1, (12)

where σ i are the Pauli matrices, along with the following
ansatz for the fermionic field

ψ = e−iωt
(
ψ1

ψ2

)
, (13)

we obtain the following equations

√
f ∂rψ1 + f ′

4
√

f
ψ1 + iω√

f
ψ1 + mψ2 = 0

√
f ∂rψ2 + f ′

4
√

f
ψ2 − iω√

f
ψ2 + mψ1 = 0. (14)

By decoupling the system of equations and using

ψ ′
1 = zα (1 − z)β F (z), (15)

where

z = 1 − e−φ, (16)

and

α = −
(

1

4
+ iωr0

)
, (17)

β = r0

√
m2 − ω2, (18)

we obtain the following equation for F (z)

z (1 − z) F ′′ (z)+(c − (1 + a + b) z) F ′ (z)−abF (z) = 0,

(19)
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whose solution is given by

ψ1 = C1zα (1 − z)β 2 F1 (a, b, c, z)

+C2z1/2−α (1 − z)β 2 F1(a − c

+1, b − c + 1, 2 − c, z), (20)

which has three regular singular points at z = 0, z = 1 and
z = ∞. Here, 2 F1(a, b, c; z) is a hypergeometric function
and C1, C2 are constants, and

a = 3

4
+ α + β, (21)

b = 1

4
+ α + β, (22)

c = 1 + 2α. (23)

Now, imposing boundary conditions at the horizon, i.e., that
there is only ingoing modes, implies that C2 = 0. Thus, the
solution can be written as

ψ1 = C1zα (1 − z)β 2 F1 (a, b, c, z), (24)

and by using the integrating factor e
− ∫ ( 1

4 −iωr0
z + iωr0

1−z

)
dz

, in
Eq. (66), we get the solution

ψ2 = −C1mr0z− 1
4 +iωr0 (1 − z)−ωr0

×
∫

z′c−1 (
1 − z′)a−c−1

2 F1
(
a, b, c, z′) dz′. (25)

So, if we consider the relation

∫
zc−1 (1 − z)a−c−1

2 F1 (a, b, c, z) dz

= (1 − z)a−c zc 2 F1 (a, b + 1, c + 1, z)

c
, (26)

ψ2 can be rewritten as

ψ2 = −C1mr0z
1
4 −iωr0(1 − z)r0

√
m2−ω2

1
2 − 2iωr0

2 F1(a, b

+1, c + 1, z). (27)

3 Reflection coefficient, transmission coefficient and
absorption cross section of two-dimensional diatonic
black hole

The reflection and transmission coefficients depend on the
behaviour of the radial function both, at the horizon and at
the asymptotic infinity and they are defined by

R :=
∣∣∣∣∣
Fout

asymp

F in
asymp

∣∣∣∣∣ ; T :=
∣∣∣∣∣

F in
hor

F in
asymp

∣∣∣∣∣ , (28)

where F is the flux, and is given by

F = √−gψ̄γ rψ, (29)

where, γ r = er
1γ

1, ψ̄ = ψ†γ 0,
√−g = 1, and er

1 = √
f (r),

which yields

F = √
f (r)

(
|ψ1|2 − |ψ2|2

)
. (30)

The behaviour at the horizon is given by (24), and using (30),
we get the flux at the horizon

F in
hor = |C1|2. (31)

To obtain the asymptotic behaviour of ψ1(r) and ψ2(r), we
use f (r) → 1, when r → ∞ in (66). Thus, we obtain the
following solutions

ψ1,2(r) = C1,2er
√

m2−ω2 + D1,2e−r
√

m2−ω2
. (32)

Thus, the flux (30) at the asymptotic region is given by

Fasymp = |C1|2 + |D1|2 − |C2|2 − |D2|2 . (33)

where ω2 ≥ m2. On the other hand, by replacing the Kum-
mer’s formula [31], in (24) and (27),

2 F1 (a, b, c, z) = � (c) � (c − a − b)

� (c − a) � (c − b)
2 F1(a, b, a + b

−c, 1 − z)+ (1 − z)c−a−b

×� (c) � (a + b − c)

� (a) � (b)
2 F1(c − a, c

−b, c − a − b + 1, 1 − z), (34)

and by using Eq. (30) we obtain the flux

Fasymp = |A1|2 + |A2|2 − |B1|2 − |B2|2 . (35)

where,

A1 = C1
� (c) � (c − a − b)

� (c − a) � (c − b)
,

A2 = C1
� (c) � (a + b − c)

� (a) � (b)
,

B1 = −C1mr0
� (c) � (c − a − b)

� (c + 1 − a) � (c − b)
,

B2 = −C1mr0
� (c) � (a + b − c)

� (a) � (b + 1)
. (36)
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Fig. 1 The reflection coefficient R (solid curve), the transmission coef-
ficient T (dashed curve), R + T (thick curve), and the absorption cross
section σabs (dotted curve) as a function of ω, (1 ≤ ω); for m = 1

Therefore, the reflection and transmission coefficients are
given by

R = |B1|2 + |B2|2
|A1|2 + |A2|2 , (37)

T = |C1|2
|A1|2 + |A2|2 , (38)

and the absorption cross section σabs, becomes

σabs = 1

ω

|C1|2
|A1|2 + |A2|2 . (39)

Now, we will carry out a numerical analysis of the reflection
coefficient (37), transmission coefficient (38), and absorption
cross section (39) of two-dimensional dilatonic black holes,
for fermionic fields. So, we plot the reflection and transmis-
sion coefficients and the absorption cross section in Fig. 1,
for fermionic fields with m = 1. Essentially, we found that
the reflection coefficient is one in the low frequency limit,
that is ω ≈ m, and for high frequency limit this coefficient is
null, being the behavior of the transmission coefficient oppo-
site, with R + T = 1. Also, the absorption cross section is
null in the low and high-frequency limit, but there is a range
of frequencies for which the absorption cross section is not
null, and also it has a maximum value, see Fig. 1.

4 Fermionic perturbations of five-dimensional dilatonic
black holes

The metric for five-dimensional dilatonic black holes can
be written as the product of two completely decoupled parts,
namely an asymptotically flat two-dimensional geometry that
describes a two-dimensional dilatonic black hole (4) and a
three-sphere with a constant radius r0. The metric can be
written as [2]

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2

0 d�3
2. (40)

Now, in order to solve the Dirac equation (5), we use the
diagonal vielbein

e0 = √
f (r)dt, e1 = 1√

f (r)
dr, em = r0ẽm, (41)

and from the null torsion condition (10) the spin connection
yields

ω01 = f ′ (r)
2
√

f (r)
e0, ωmn = ω̃mn, (42)

where ω̃mn is the connection of the base manifold. Also, by
using the following representation of the gamma matrices

γ 0 = iσ 2 ⊗ 1, γ 1 = σ 1 ⊗ 1, γm = σ 3 ⊗ γ̃m, (43)

whereσ i are the Pauli matrices, and γ̃m are the Dirac matrices
in the base manifold�3, along with the following ansatz for
the fermionic field

ψ = e−iωt
(
ψ1

ψ2

)
⊗ η, (44)

we obtain the following equations

√
f ∂rψ1 + f ′

4
√

f
ψ1 + iω√

f
ψ1 +

(
m − iκ

r0

)
ψ2 = 0

√
f ∂rψ2 + f ′

4
√

f
ψ2 − iω√

f
ψ2 +

(
m + iκ

r0

)
ψ1 = 0, (45)

where iκ = ±i(l + 3/2) is the eigenvalue of the Dirac oper-
ator on the three-sphere. By decoupling the system of equa-
tions and using

ψ ′
1 = zα (1 − z)β F (z), (46)

where

z = 1 − e−φ, (47)

and

α = −
(

1

4
+ iωr0

)
, (48)

β = r0

√
m2 + κ2

r2
0

− ω2, (49)
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we obtain (19), whose solution is given by

ψ1 = C̄1zα (1 − z)β 2 F1 (a, b, c, z)

+C̄2z1/2−α (1 − z)β 2 F1(a − c + 1, b − c

+1, 2 − c, z), (50)

which has three regular singular points at z = 0, z = 1 and
z = ∞. Here, 2 F1(a, b, c; z) is a hypergeometric function
and C̄1, C̄2 are constants, and

a = 3

4
+ α + β, (51)

b = 1

4
+ α + β, (52)

c = 1 + 2α. (53)

Now, imposing boundary conditions at the horizon, i.e., that
there is only ingoing modes, implies that C̄2 = 0; and in
a similar way to two-dimensional dilatonic black holes, we
obtain the following solution for ψ1 and ψ2:

ψ1 = C̄1zα (1 − z)β 2 F1 (a, b, c, z), (54)

ψ2 = − C̄1(m + iκ
r0
)r0z

1
4 −iωr0(1 − z)

r0

√
m2+ κ2

r2
0

−ω2

1
2 − 2iωr0

2 F1(a, b

+1, c + 1, z). (55)

5 Reflection coefficient, transmission coefficient and
absorption cross section of five-dimensional dilatonic
black holes

As we mentioned, the reflection and transmission coefficients
depend on the behaviour of the radial function both, at the
horizon and at the asymptotic infinity and they are defined
by (28) where F is the flux, and is given by (29), and yields

F ∝ √
f (r)

(
|ψ1|2 − |ψ2|2

)
, (56)

where we have used γ r = er
1γ

1, ψ̄ = ψ†γ 0, and er
1 =√

f (r). The behaviour at the horizon is given by (54), and
using (56), we get the flux at the horizon up to an irrelevant
factor from the angular part of the solution

F in
hor = |C̄1|2. (57)

Now, in order to obtain the asymptotic behaviour of ψ1(r)
and ψ2(r), we use f (r) → 1, when r → ∞ in (45). Thus,
we obtain the following solutions

ψ1,2(r) = C̄1,2e
r
√

m2+ κ2

r2
0

−ω2

+ D̄1,2e
−r

√
m2+ κ2

r2
0

−ω2

, (58)

and the flux (56) at the asymptotic region is given by

Fasymp = ∣∣C̄1
∣∣2 + ∣∣D̄1

∣∣2 − ∣∣C̄2
∣∣2 − ∣∣D̄2

∣∣2
, (59)

up to an irrelevant factor from the angular part of the solution,
for m2 + κ2

r2
0

− ω2 < 0. On the other hand, by replacing

the Kummer’s formula (34), in (54) and (55), and by using
Eq. (56) we obtain the flux

Fasymp = |A1|2 + |A2|2 − |B1|2 − |B2|2 . (60)

where,

Ā1 = C̄1
� (c) � (c − a − b)

� (c − a) � (c − b)
,

Ā2 = C̄1
� (c) � (a + b − c)

� (a) � (b)
,

B̄1 = −C̄1(m + iκ

r0
)r0

� (c) � (c − a − b)

� (c + 1 − a) � (c − b)
,

B̄2 = −C̄1(m + iκ

r0
)r0
� (c) � (a + b − c)

� (a) � (b + 1)
. (61)

Therefore, the reflection and transmission coefficients are
given by

R = |B̄1|2 + |B̄2|2
| Ā1|2 + | Ā2|2

, (62)

T = |C̄1|2
| Ā1|2 + | Ā2|2

, (63)

and the absorption cross section σabs, becomes

σabs = 1

ω

|C̄1|2
| Ā1|2 + | Ā2|2

. (64)

Now, as in Sect. 3, we will carry out a numerical analysis of
the reflection coefficient (62), transmission coefficient (63),
and absorption cross section (64) for five-dimensional dila-
tonic black holes, and we plot the reflection and transmission
coefficient, and the absorption cross section in Figs. 2, 3, for
fermionic fields with m = 1, r0 = 1, and l = 0, 1, respec-
tively. Essentially, we have found the same behavior that
two-dimensional dilatonic black holes for the coefficients,
the reflection coefficient is one in the low frequency limit
and for high frequency limit this coefficient is null, being
the behavior of the transmission coefficient opposite, and
R + T = 1 occurs in all cases. The absorption cross sec-
tion is null in the low and high-frequency limit, but there is a
range of frequencies for which the absorption cross section
is not null. Then, in Figs. 4, 5, we show the variation of the
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Fig. 2 The reflection coefficient R (solid curve), the transmission coef-
ficient T (dashed curve), R + T (thick curve), and the absorption cross
section σabs (dotted curve) as a function of ω, (1.5 ≤ ω); for m = 1,
r0 = 1, and l = 0

Fig. 3 The reflection coefficient R (solid curve), the transmission coef-
ficient T (dashed curve), R + T (thick curve), and the absorption cross
section σabs (dotted curve) as a function of ω, (3.693 ≤ ω); for m = 1,
r0 = 1, and l = 1

Fig. 4 The absorption cross section σabs as a function of r0, for m = 1,
l = 0, ω = 1.803 (thin curve), ω = 1.9 (dashed curve), ω = 2 (thick
curve), and ω = 3 (dotted curve)

absorption cross section as a function of the horizon radius r0

for l = 0 and l = 1 respectively, in this sense the absorption
cross section increase if r0 increase. However, beyond a cer-
tain value of the horizon r0 the absorption cross section for
five-dimensional dilatonic black holes is constant. Besides,
we observe that the absorption cross section decreases for
higher angular momentum Fig. 6. Furthermore, we observe
that the absorption cross section decreases when the mass of
the fermionic field increases Fig. 7.

Fig. 5 The absorption cross section σabs as a function of r0, for m = 1,
l = 1, ω = 2.693 (thin curve), ω = 2.8 (dashed curve), ω = 4 (thick
curve), and ω = 5 (dotted curve)

Fig. 6 The behaviour of σabs as a function of ω, for m = 1, r0 = 1
and l = 0, 1, 2

Fig. 7 The behaviour of σabs as a function of ω, for l = 0, r0 = 1 and
m = 1, 2, 3

6 Conclusions

The greybody factor for scalar and fermionic field pertur-
bations in the background of black holes has received great
attention. In this context, it was shown that for all spher-
ically symmetric black holes the low energy cross section
for massless minimally-coupled scalar fields is always the
area of the horizon, where the contribution to the absorp-
tion cross section comes from the mode with lowest angu-
lar momentum [32–34]. However, for asymptotically AdS
and Lifshitz black hole, was observed that at low frequency
limit there is a range of modes with highest angular momen-
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tum, which contribute to the absorption cross section apart
of the mode with lowest angular momentum [35–38]. Also,
was observed that the absorption cross section for the three
dimensional warped AdS black hole is larger than the area
even if the s-wave limit is considered, [39], and recently
was found that the zero-angular-momentum greybody factors
for non-minimally coupled scalar fields in four-dimensional
Schwarzschild-de Sitter spacetime tends to zero in the zero-
frequency limit [40]. On the other hand, for fermionic fields
it was shown that the absorption probability for bulk mas-
sive Dirac fermions in higher-dimensional Schwarzschild
black hole increases with the dimensionality of the space-
time and decreases as the angular momentum increases. For
this spacetime it was also revealed that the absorption prob-
ability depended on mass of the emitted field, that is, the
absorption probability decreases or increases depending on
the range of energy when the mass of the field increases.
Also, was observed that the absorption probability increases
for higher radius of the event horizon [29].

In this work we have studied fermionic perturbations in
the background of two and five-dimensional dilatonic black
holes, and we have computed the reflection and transmission
coefficients, and the absorption cross section, and we have
shown numerically that the absorption cross section vanishes
at the low and high frequency limit in both cases. Therefore, a
wave emitted from the horizon, with low or high frequency,
does not reach infinity and is totally reflected, due to the
fraction of particles penetrating the potential barrier vanishes.
However, we have shown that there is a range of frequencies
where the absorption cross section is not null. The reflection
coefficient is one in the low frequency limit and for high
frequency limit this coefficient is null, being the behavior of
the transmission coefficient opposite, with R + T = 1. Also,
for five-dimensional dilatonic black holes we have shown
that the absorption cross section increases if the horizon r0

increases; however, beyond a certain value of the horizon r0

the absorption cross section is constant. It is worth to mention
that these results, greybody factors, are consistent with other
geometries of dilatonic black holes [41,42]. Besides, we have
shown that the absorption cross section decreases for higher
angular momentum, and it decreases when the mass of the
fermionic field increases.

It is worth to mention that the Dirac equation may be
written by making use of the properties of the Dirac oper-
ator under conformal transformations [43]. In this case the
fermionic field

ψ = 1

f
1
4 r

3
2

0

e−iωt
(
ψ̄1

ψ̄2

)
⊗ η, (65)

allows to reduce the Dirac equation to the following system
of differential equations

√
f ∂r ψ̄1 + iω√

f
ψ̄1 +

(
m − iκ

r0

)
ψ̄2 = 0

√
f ∂r ψ̄2 − iω√

f
ψ̄2 +

(
m + iκ

r0

)
ψ̄1 = 0. (66)

One advantage of this method is to obtain more simple equa-
tions, however the physic results, that is, the absorption cross
section and the coefficients are the same.
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