
J
H
E
P
0
9
(
2
0
1
6
)
0
7
3

Published for SISSA by Springer

Received: August 24, 2016

Accepted: September 6, 2016

Published: September 12, 2016

On mirror symmetry for Calabi-Yau fourfolds with

three-form cohomology

Sebastian Greiner and Thomas W. Grimm

Max-Planck-Institut für Physik,
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1 Introduction

The derivation of four-dimensional low-energy effective actions arising from string theory

requires a detailed understanding of the geometries used as compactification spaces. Since

the early days of string theory much research has focused on the study of Calabi-Yau mani-

folds of complex dimension three. These threefolds were identified as valid compactification

backgrounds to four space-time dimensions and can yield to, for example when used in the

heterotic string theories, potentially phenomenologically interesting four-dimensional effec-

tive theories with the minimal amount of supersymmetry. In contrast, there is significantly

less known about the geometry of Calabi-Yau manifolds of complex dimension four. With

the advent of F-theory [1–3] it became clear that these fourfolds are relevant in obtaining

four-dimensional effective theories with the minimal amount of supersymmetry from Type

IIB string theory. It is therefore crucial to further our understanding of the geometry of

Calabi-Yau fourfolds and investigate the relation to couplings in the effective theories.
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In contrast to Calabi-Yau threefolds one finds that Calabi-Yau fourfolds admit three

non-trivial independent Hodge numbers that count the number of harmonic forms of dif-

ferent degree. In full analogy to threefolds, two of them encode the number of complex

structure and Kähler structure deformations of the geometry. When compactifying string

theory or M-theory on a Calabi-Yau fourfold, these deformations will appear as massless

fields, so-called moduli, in the effective action. The moduli space geometry has been studied

in various works [4–11]. The additional Hodge number on Calabi-Yau fourfolds is associ-

ated to the number of harmonic three-forms. In this work we will discuss in detail how

the presence of these three-forms affects the effective theory when compactifying Type IIA

string theory and M-theory on Calabi-Yau fourfolds. The effective theory will then admit

new scalars Nl with couplings non-trivially varying over both the complex structure and

Kähler structure moduli spaces. This was already observed for M-theory compactifications

in [12, 13], for Type IIA compactifications in [14], and for F-theory compactifications in [15].

We will show in this work that the moduli dependence at certain points in the moduli space

can actually be computed explicitly by using mirror symmetry for Calabi-Yau fourfolds.

Our first focus is on a refined understanding of the moduli variations of three-forms.

Therefore, we begin by introducing a basis of (2, 1)-forms on the fourfold that is convenient

when performing the dimensional reduction. The so-defined set of forms is adapted to the

underlying complex structure and it was pointed out in [15] that their variation with the

complex structure moduli can be captured by a holomorphic function fkl, with indices rang-

ing over the number of harmonic (2, 1)-forms. This holomorphic function can be used in the

compactification of Type IIA string theory, accessed via its low-energy supergravity theory,

on a Calabi-Yau fourfold. Such dimensional reductions of the Type IIA theory have already

been investigated in [14, 16, 17]. They are expected to yield two-dimensional effective the-

ories with N = (2, 2) supersymmetry describing the dynamics of chiral and twisted-chiral

multiplets. Without including three-forms the supersymmetry properties of such Type IIA

effective theories were already discussed in [17] by extending earlier results [18–20]. We will

consider the generalization of this result including the three-form scalars Nl and suggest

that it leads to a more general class of supersymmetric dilaton supergravities.

The two-dimensional N = (2, 2) effective action is expected to be invariant under the

action of mirror symmetry. More precisely, considering Type IIA string theory on two

Calabi-Yau fourfolds that are mirror manifolds to each other, the resulting two effective

actions should admit an identification under an appropriate mirror map. This map identi-

fies complex coordinates and couplings at special points in moduli space. Mirror symmetry

exchanges complex structure and Kähler structure deformations, but preserves the number

of non-trivial three-forms and thus the number of three-form scalars Nl. It also maps chiral

to twisted-chiral multiplets. Therefore, we are forced to perform an appropriate duality

transformation for the three-form scalars appearing in pairs of effective actions arising from

mirror manifolds. In both effective actions the dynamics of the three-forms are described

by two holomorphic functions fkl and hkl . The former is holomorphic in the complex struc-

ture moduli, while the latter is holomorphic in the complexified Kähler moduli. These

functions are exchanged by mirror symmetry and we are able to derive the complex struc-

ture dependence of fkl in the large complex structure limit by using the results of a large

volume compactification on the mirror geometry.

– 2 –
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Our results have several interesting applications, in particular, when using the Calabi-

Yau fourfolds with non-trivial three-forms as F-theory backgrounds. To determine the

four-dimensional F-theory effective actions for such configurations one uses the duality with

M-theory [1, 2, 15]. It was shown in [15] that the function flm can either lift to a gauge

coupling function of R-R vector fields or to the metric of a special set of complex scalars.

In both cases it is desirable to explicitly compute the moduli dependence of their coupling

function. For example, the three-form scalars lifting to four-dimensional scalars naturally

admit real shift symmetries or even a generalized Heisenberg symmetry and might be of

profound phenomenological interest (see, for example, [21–23]). Furthermore, considering

the weak string coupling limit of the F-theory setting following [24, 25] the resulting effective

theory should match with the orientifold effective actions [26, 27]. In the case that such a

limit exists one can associate a Calabi-Yau threefold to the F-theory Calabi-Yau fourfold.

We are then able to show that our result for fkl obtained by fourfold mirror symmetry is

consistent with the weak coupling analog obtained from threefold mirror symmetry.

This paper is organized as follows. In section 2 we recall some basics about Calabi-

Yau fourfolds and discuss a convenient basis of (2, 1)-forms parametrized by a holomorphic

function flk. We dimensionally reduce Type IIA supergravity on a Calabi-Yau fourfold in

section 3. This allows us to investigate the N = (2, 2) supersymmetric structure of the

effective theory and perform a set of important dualizations to interchange chiral multiplets

and twisted-chiral multiplets. In section 4 we discuss mirror symmetry with a focus on the

(2, 1)-form sector. This allows us to determine flm in the large complex structure limit.

We use these results in an F-theory compactification on an elliptically fibered Calabi-Yau

fourfold in section 5. Moving to the weak string coupling limit, we find compatibility of

our result for flm with the answers predicted by mirror symmetry of Calabi-Yau threefolds.

This work has two appendices with useful computational results. In appendix A we perform

the circle reduction of a general three-dimensional un-gauged N = 2 supergravity theory

with focus on the bosonic action. We find interesting conditions on the kinetic potential

to match the proposed N = (2, 2) action in two dimensions. The dualization of chiral

to twisted-chiral multiplets in the bosonic sector is performed in appendix B. We again

find conditions on the kinetic potential in order that this dualization can be performed.

The results of both appendices are immediately applicable to Calabi-Yau fourfold effective

actions of Type IIA string theory and M-theory.

2 On the geometry of Calabi-Yau fourfolds with three-form cohomology

In this section we introduce important facts about the geometry of Calabi-Yau fourfolds

Y4. A brief summary of some basics about their differential structure and topology will

be given in section 2.1. The focus of section 2.2 will be to introduce relevant properties of

the three-form cohomology of Y4. We argue that an appropriate definition of three-forms

of Hodge-type (2,1) can be given in terms of a function fmn holomorphic in the complex

structure moduli. This function will be of key interest throughout this work.
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2.1 Some basic properties of Calabi-Yau fourfolds

We define a compact real eight-dimensional manifold Y4 to be a Calabi-Yau fourfold if its

holonomy group is exactly SU (4). Such manifolds are Kähler, i.e. admit a closed Kähler

two-form J , and possess a unique Ricci-flat metric within the class of J . Furthermore,

one can introduce a non-trivial closed (4, 0)-form Ω on Y4 that is unique up to constant

rescalings. Note that J and Ω can be used to form a top-form on Y4 and one has

1

4!
J ∧ J ∧ J ∧ J = |Ω|−2 Ω ∧ Ω̄ , |Ω|2 =

1

V

∫
Y4

Ω ∧ Ω̄ , (2.1)

where V is the total volume of Y4. The SU (4) holonomy also allows one to introduce one

complex covariantly constant and no-where vanishing spinor of definite chirality. The forms

J and Ω are obtained as bilinear contractions using this spinor.

With our definition of a Calabi-Yau fourfold, we can also constrain the Hodge numbers

hp,q(Y4) = dim(Hp,q(Y4,C)). There are three independent Hodge numbers on Y4: h1,1(Y4),

h3,1(Y4), and h2,1(Y4). The significance of h1,1(Y4) and h3,1(Y4) in the dimensional reduction

are very similar to the case of a Calabi-Yau threefold (see e.g. [28]). On the one hand, the

number h1,1(Y4) counts the allowed Kähler structure deformations, which we will denote

by vA. On the other hand, the number h3,1(Y4) counts the complex structure deformations

denoted by zK . Both turn out to become moduli fields in the effective theory obtained by

dimensional reduction on Y4 and will be discussed in more detail in section 3.1. The Hodge

number h2,1 has no threefold analog and understanding the geometries with h2,1(Y4) > 0

will be the main focus of this work. Having three independent Hodge numbers, the Hodge

diamond takes the form

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h4,0 h3,1 h2,2 h1,3 h0,4

h4,1 h3,2 h2,3 h1,4

h4,2 h3,3 h2,4

h4,3 h3,4

h4,4

=

1

0 0

0 h1,1 0

0 h2,1 h2,1 0

1 h3,1 h2,2 h3,1 1 ,

0 h2,1 h2,1 0

0 h1,1 0

0 0

1

@@

@@

@@

@@

@@

@@

@@

where we have indicated for later use the action of mirror symmetry on the Hodge numbers.

More precisely, mirror symmetry identifies two Calabi-Yau geometries with Hodge numbers

mirrored along the dashed line. A more detailed discussion of mirror symmetry will be

presented in section 4. In addition, one finds the formulas [6]

h2,2(Y4) = 2(22 + 2h1,1 + 2h3,1 − h2,1) , χ(Y4) = 6(8 + h1,1 + h3,1 − h2,1) (2.2)

where χ =
∑

p,q(−1)p+qhp,q is the Euler characteristic of Y4.
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2.2 Non-trivial three-forms on Calabi-Yau fourfolds

Of key importance in this work is the inclusion of non-trivial three-forms in the dimensional

reduction and discussion of mirror symmetry. In this subsection we summarize some basic

properties of such three-forms that will be useful throughout the later sections.

To begin with, we comment on the moduli dependence of three-forms when choosing

them to represent elements of H2,1(Y4). In order to do that, recall that the Hodge fil-

tration of the three-cohomology H3(Y4,C) is given by the holomorphic bundles F p(Y4) =⊕3
j=pH

j,3−j over the complex structure moduli space. Since H3,0(Y4) is trivial, this en-

ables us to find a basis ψl of F 2(Y4) = H2,1(Y4), which varies holomorphically with the

complex structure moduli zK , i.e. one has

∂

∂z̄K
ψl = 0, l = 1, . . . , h2,1(Y4) , (2.3)

where K = 1, . . . , h3,1(Y4) labels the complex structure moduli. Note that in the dimen-

sional reduction we can think of ψl to be the harmonic representative in each class of

H2,1(Y4). At a given point in the complex structure space we can write this basis in

the form

ψl = αl + iflm(z)βm ∈ H2,1(Y4) , (2.4)

where (αl, β
m) comprise a real moduli-independent basis of H3(Y4,R).1 Holomorphicity

of the forms ψl translates to the fact that flm(z) is a holomorphic function of the complex

structure moduli zK . Furthermore, we assume that (αl, β
m) is chosen such that Reflm is

a positive definite and invertible matrix.2

After performing the dimensional reduction on Y4 in section 3, we aim to find the

proper complex fields that are compatible with two-dimensional supersymmetry. For the

zero-modes arising from the ψl it turns out that a further normalization is useful, i.e. we

introduce the (1,2)-forms

Ψl =
1

2
(Ref)lmψ̄m =

1

2
(Ref)lm(αm − if̄mn(z̄)βn) ∈ H1,2(Y4) . (2.5)

In this expression we have multiplied by the inverse (Ref)lm of the real part of flm, i.e.

(Ref)lm (Ref)mk = δlk. This definition allows to give a simple expressions for Im Ψl and

the derivative of Ψl with respect to the complex structure moduli:

Ψ̄l −Ψl = iβl , ∂zKΨl = −Ψk (Ref)lm ∂zK (Ref)mk , (2.6)

and accordingly ∂zKΨl = ∂zK Ψ̄l. Note that Ψl is a (1, 2)-form and therefore satisfies

∗Ψl = −iJ ∧Ψl , (2.7)

where ∗ is the Hodge-star for the Calabi-Yau metric on Y4.

1It might be natural to chose (αl, β
m) to be a basis of H3(Y4,Z), but quantization of the coefficients

will not be important in this work.
2While we have no complete proof that this is always possible, we note that H2,1(Y4)/H3(Y4,Z) is

actually a complex torus. flm sets the complex structure on this torus.
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To evaluate the integrals appearing in the dimensional reduction we impose one further

condition on the basis (αl, β
m). More precisely, we demand

βl ∧ βm = 0 , ∀ l,m = 1, . . . , h2,1(Y4) , (2.8)

which is supposed to hold in cohomology.3 Introducing a basis ωA of H1,1(Y4) we thus

find that ∫
Y4

ωA ∧ βl ∧ βm = 0 , ∀ A = 1, . . . , h1,1(Y4) . (2.9)

The remaining integrals are in general non-trivial and denoted by

CAm
k =

∫
Y4

ωA ∧ αm ∧ βk , CAmk =

∫
Y4

ωA ∧ αm ∧ αk . (2.10)

Using a basis (αm, β
k) satisfying (2.9) one checks that the metric

∫
Ψl ∧ ∗Ψ̄k is symmetric

in the indices l, k and real. This property will be crucial in determining a kinetic potential

for this metric.

3 Dimensional reduction of Type IIA supergravity

In this section we perform the dimensional reduction of Type IIA supergravity on a Calabi-

Yau fourfold Y4. Such reductions have already been performed in [12–14, 17]. Our analysis

follows [12–14], but we will apply in addition the improved understanding about the three-

form cohomology of section 2.

3.1 The effective action from a Calabi-Yau fourfold reduction

The Kaluza-Klein reduction of Type IIA supergravity can be trusted in the limit in which

the typical length scale of the physical volumes of submanifolds of Y4 are sufficiently large

compared to the string scale. This limit is referred to as the large volume limit. Fur-

thermore, these typical length scales set the Kaluza-Klein scale which we assume to be

sufficiently above the energy scale of the effective action. We therefore keep only the

massless Kaluza-Klein modes in the following reduction.

Our starting point will be the bosonic part of the ten-dimensional Type IIA action in

string-frame given by4

S
(10)
IIA =

∫
e−2φ̌IIA

(
1

2
Ř ∗̌1 + 2dφ̌IIA ∧ ∗̌dφ̌IIA −

1

4
Ȟ3 ∧ ∗̌Ȟ3

)
− 1

4

∫ (
F̌2 ∧ ∗̌F̌2 + F̌4 ∧ ∗̌F̌4 + B̌2 ∧ F̌4 ∧ F̌4

)
. (3.1)

where φ̌IIA is the ten-dimensional dilaton, Ȟ3 = dB̌2 is the field strength of the NS-NS

two-form B̌2, and F̌p = dČp are the field strengths of the R-R p-forms Č1 and Č3. We also

3Considering hypersurfaces in toric varieties, this condition can be satisfied for non-trivial three-forms

arising from singular Riemann surfaces. This allows us to choose a symplectic basis with respect to a certain

divisor for the three-forms.
4Note that for convenience we have set κ2 = 1.

– 6 –
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have used the modified field strength F̌4 = F̌4− Č1∧ Ȟ3. Here and in the following we will

use a check to indicate ten-dimensional fields.

The background solution around which we want to consider the effective theory is taken

to be of the form M1,1×Y4, where M1,1 is the two-dimensional Minkowski space-time, and

Y4 is a Calabi-Yau fourfold with properties introduced in section 2. As pointed out there

such a manifold admits one complex covariantly constant spinor of definite chirality. This

spinor can be used to dimensionally reduce the N = (1, 1) supersymmetry of Type IIA

supergravity to obtain a two-dimensional N = (2, 2) supergravity theory. In particular, the

two ten-dimensional gravitinos of opposite chirality reduce to two pairs of two-dimensional

Majorana-Weyl gravitinos with opposite chirality. We will have more to say about the

supersymmetry properties of the two-dimensional action in section 3.2. Furthermore, recall

that Y4 admits a Ricci-flat metric g
(8)
mn and one can thus check that a metric of the form

dš2 = ηµνdx
µdxν + g(8)

mndy
mdyn , (3.2)

solves the ten-dimensional equations of motion in the absence of background fluxes.5 Note

that in (3.2) we denote by xµ the two-dimensional coordinates of the space-time M1,1,

whereas the eight-dimensional real coordinates on the Calabi-Yau fourfold Y4 are de-

noted by ym.

The massless perturbations around this background both consist of fluctuations of the

internal metric g
(8)
mn that preserve the Calabi-Yau condition as well as the fluctuations of

the form fields B̌2, Č1, Č3 and the dilaton φ̌IIA. The metric fluctuations give rise to the

real Kähler structure moduli vA, A = 1, . . . , h1,1(Y4) that preserve the complex structure

and are given by

gi̄ + δgi̄ = −iJi̄ = −ivA (ωA)i̄, (3.3)

where J is the Kähler form on Y4 and ωA comprises a real basis of harmonic (1, 1)-forms

spanning H1,1(Y4). The Kähler structure moduli appear also in the expression of the total

string-frame volume V of Y4 given by

V ≡
∫
Y4

∗1 =
1

4!

∫
Y4

J ∧ J ∧ J ∧ J . (3.4)

In addition to the Kähler structure moduli one finds a set of complex structure moduli

zK , K = 1, . . . , h3,1(Y4). These fields parameterize the change in the complex structure

of Y4 preserving the class of its Kähler form J . Infinitesimally they are given by the

fluctuations δzK as

δgı̄̄ = − 1

3|Ω|2
Ω

lmn
ı̄ (χK)lmn̄ δz

K , (3.5)

where Ω is the (4, 0)-form, the χK form a basis of harmonic (3, 1)-forms spanning H3,1(Y4),

and |Ω|2 was already given in (2.1).

5The inclusion of background fluxes complicates the reduction further. In particular, it requires to

introduce a warp-factor. The M-theory reduction with warp-factor was recently performed in [29–31].
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The Kaluza-Klein ansatz for the remaining fields takes the form

B̌2 = bAωA , Č1 = A , (3.6)

Č3 = V A ∧ ωA +NlΨ
l + N̄lΨ̄

l ,

where Ψl is a basis of harmonic (1, 2)-forms spanning H1,2(Y4) as introduced in (2.5). A

discussion of the properties of Ψl was already given in section 2. Finally, we dimensionally

reduce the Type IIA dilaton by dropping its dependence on the internal manifold Y4. It

turns out to be convenient to define a two-dimensional dilaton φIIA in terms of the ten-

dimensional dilaton φ̌IIA as

e2φIIA ≡ e2φ̌IIA

V
. (3.7)

In summary, we find in the two-dimensional N = (2, 2) supergravity theory the 2h1,1(Y4)+1

real scalar fields vA(x), bA(x), φIIA(x) as well as the h3,1(Y4)+h2,1(Y4) complex scalar fields

zK , Nl. In addition there are h1,1(Y4)+1 vectors A, V A, which carry, however, no physical

degrees of freedom in a two-dimensional theory if they are not involved in any gauging.

Since the effective action considered here contains no gaugings, we will drop these in the

following analysis.

To perform the dimensional reduction one inserts the expansions (3.3), (3.5), (3.6),

and (3.7) into the Type IIA action (3.1). It reduces to the two-dimensional action

S(2) =

∫
e−2φIIA

(
1

2
R ∗ 1 + 2dφIIA ∧ ∗φIIA −GKL̄ dzK ∧ ∗dz̄L −GAB dtA ∧ ∗dt̄B

)
− 1

2
vAdA

lkDNl ∧ ∗DNk −
i

4
dA

lkdbA ∧ (NlDNk −DNlN̄k) . (3.8)

We note that the NS-NS part, which is summarized in the first line of (3.1), reduces to the

first line of (3.8), while the R-R part, i.e. the second line of (3.1), reduces to the second

line of (3.8).

Let us introduce the various objects appearing in the action (3.8). First, we have

defined the complex coordinates

tA ≡ bA + ivA , (3.9)

which combine the Kähler structure moduli with the B-field moduli. Furthermore, we have

introduced the metric6

GAB =
1

4V

∫
Y4

ωA ∧ ∗ωB = − 1

8V

(
KAB −

1

18V
KAKB

)
, (3.10)

where V, KA and KAB are given in terms of the quadruple intersection numbers KABCD as

KABCD =

∫
Y4

ωA ∧ ωB ∧ ωC ∧ ωD , (3.11)

V =
1

4!
KABCDvAvBvCvD , KA = KABCDvBvCvD , KAB = KABCDvCvD .

6The second equality follows from the cohomological identity ∗ωA = − 1
2
ωA∧J ∧J + 1

36
V−1KAJ ∧J ∧J .
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With these definitions at hand, we can further evaluate the metric GAB and show that it

can be obtained from a Kähler potential as

GAB = −∂tA∂t̄B log V . (3.12)

Also the metric GKL̄ is actually a Kähler metric. It only depends on the complex structure

moduli zK and takes the form

GKL̄ = −
∫
Y4
χK ∧ χ̄L∫
Y4

Ω ∧ Ω̄
= −∂zK∂z̄L log

∫
Y4

Ω ∧ Ω̄ . (3.13)

Note that both GAB and GKL̄ are actually positive definite and therefore define physical

kinetic terms in (3.8). Both terms scale with the dilaton φIIA and it is easy to check that

this dependence cannot be removed using a Weyl-rescaling of the two-dimensional metric.

We will show in section 3.2 that this is consistent with the form of the N = (2, 2) dilaton

supergravity.

Let us now turn to the R-R part of the action (3.1) and discuss the couplings appearing

in the second line of (3.8). First, we introduce the coupling function

dA
lm ≡ i

∫
Y4

ωA ∧Ψl ∧ Ψ̄m = −
∫
Y4

ωA ∧Ψl ∧ βm = −1

2
(Ref)lnCAn

m , (3.14)

where we have used (2.6) to evaluate the second equality, and (2.9), (2.10) to show the

third equality. One also checks the relation

H lm ≡
∫
Y4

Ψl ∧ ∗Ψ̄m = i

∫
Y4

J ∧Ψl ∧ Ψ̄m = vAdA
lm , (3.15)

where we have used (2.7) for the (1,2)-forms Ψl. This contraction gives precisely the

positive definite metric of the complex scalars Nl in (3.8). It turns out to be convenient

to write

H lm = vAdA
lm = −1

2
(Ref)lnvACAn

m ≡ −1

2
(Ref)ln Rehmn , (3.16)

where hmn = −itACAnm. Note that H lm thus depends non-trivially on the complex struc-

ture moduli zK through the holomorphic functions fkl and on the Kähler structure moduli

tA through the holomorphic function hmn . Second, we note that the modified derivative

DNl appearing in (3.8) is a shorthand for

DNl = dNl − 2ReNm(Ref)mn∂zK (Refnl)dz
K . (3.17)

Using this expression one easily reads off the coefficient function in front of dNl ∧ ∗dzK

and checks that it can be obtained by taking derivatives of a real function. In the next

subsection we show that this is true for all terms in (3.8) and discuss the connection with

two-dimensional supersymmetry.
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3.2 Comments on two-dimensional N = (2, 2) supergravity

Having performed the dimensional reduction we next want to comment on the supersym-

metry properties of the action (3.8). As pointed out already in the previous subsection the

counting of covariantly constant spinors on the Calabi-Yau fourfold suggests that the two-

dimensional effective theory admits N = (2, 2) supersymmetry. It was pointed out in [17]

that, at least in the case of h2,1(Y4) = 0 one expects to be able to bring the action (3.8)

into the standard form of an two-dimensional N = (2, 2) dilaton supergravity. In this

work the dilaton supergravity action was constructed using superspace techniques. Earlier

works in this direction include [18–20]. In the following we comment on this matching for

h2,1(Y4) = 0 and then discuss the general case in which h2,1(Y4) > 0.

In order to display the supergravity actions we first have to introduce two sets of

multiplets containing scalars in two-dimensions: (1) a set of chiral multiplets with complex

scalars φκ, (2) a set of twisted-chiral multiplets with complex scalars σA. In a superspace

description these multiplets obey the two inequivalent linear spinor derivative constraints

leading to irreducible representations.

To discuss the actions we first focus on the case h2,1(Y4) = 0 and follow the con-

structions of [17]. For simplicity we will not include gaugings or a scalar potential. The

superspace action used in [17] is given by

S
(2)
dil =

∫
d2xd4θE−1e−2V−K . (3.18)

Here E−1 is the superspace measure, V is a real superfield with V | = ϕ as lowest component,

and K is a function of the chiral and twisted-chiral multiplets with lowest components φκ

and σA, respectively. To display the bosonic part of the action (3.18) we first set

e−2ϕ̃ = e−2ϕ−K , (3.19)

where K(φκ, φ̄κ, σA, σ̄A) is evaluated as a function of the bosonic scalars. With this defini-

tion at hand one finds the bosonic action

S
(2)
dil =

∫
e−2ϕ̃

(
1

2
R ∗ 1 + 2dϕ̃ ∧ ∗dϕ̃−Kφκφ̄λ dφκ ∧ ∗dφ̄λ +KσAσ̄B dσA ∧ ∗dσ̄B

−Kφκσ̄B dφκ ∧ dσ̄B −KσAφ̄λ dφ̄λ ∧ dσA
)
, (3.20)

where Kφκφ̄λ = ∂φκ∂φ̄λK, Kφκσ̄A = ∂φκ∂σ̄AK with a similar notation for the other coef-

ficients. It is now straightforward to compare (3.20) with the action (3.8) for the case

h2,1(Y4) = 0, i.e. in the absence of any complex scalars Nl. One first identifies

ϕ̃ = φIIA , φK = zK , σA = tA , (3.21)

and then infers that

K = − log

∫
Y4

Ω ∧ Ω̄ + logV . (3.22)

Note that we find here a positive sign in front of the logarithm of V. This is related

to the fact that there is an extra minus sign in the kinetic terms of the twisted-chiral
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fields σA in (3.20). Clearly, the kinetic terms of the complex structure deformations zK

and complexified Kähler structure deformations tA in the action (3.8) have both positive

definite kinetic terms.7

Let us now include the complex scalars Nl. It is important to note that the action (3.8)

cannot be brought into the form (3.20). In fact, we see in (3.8) that the terms independent

of the two-dimensional metric do not contain an φIIA-dependent pre-factor, while the terms

of this type in (3.20) do admit an ϕ̃-dependence. Any field redefinition in (3.8) involving the

dilaton seems to introduce new undesired mixed terms that cannot be matched with (3.20)

either. However, we note that the action (3.8) actually can be brought to the form

S(2) =

∫
e−2ϕ̃

(
1

2
R ∗ 1 + 2dϕ̃ ∧ ∗dϕ̃− K̃φκφ̄λ dφ

κ ∧ ∗dφ̄λ + K̃σAσ̄B dσ
A ∧ ∗dσ̄B

− K̃φκσ̄B dφ
κ ∧ dσ̄B − K̃σAφ̄λ dφ̄

κ ∧ dσA
)
, (3.23)

where K̃ is now allowed to be dependent on ϕ̃ and given by

K̃ = K + e2ϕ̃S , (3.24)

Similar to K, the new function S is allowed to depend on the chiral and twisted-chiral

scalars φκ, σA, but is taken to be independent of ϕ̃. The action (3.23) trivially reduces

to (3.20) for S = 0. Note that the new terms induced by S do not scale with e−2ϕ̃.

Comparison with (3.8) reveals that one can identify

ϕ̃ = φIIA , φκ = (zK , Nl) , σA = tA , (3.25)

and introduce the generating functions

K = − log

∫
Y4

Ω ∧ Ω̄ + logV , (3.26)

S = H lk ReNl ReNk , H lk ≡ vAdAlk .

To show this, it is useful to note that dA
lk can be evaluated as in (3.14) and depends on

the complex structure moduli through the holomorphic function fmn(z) only.

Let us close this subsection with two remarks. First, note that (3.23) is expected to be

compatible with N = (2, 2) supersymmetry and gives an extension of the two-dimensional

dilaton supergravity action (3.18). A suggestive form of the extended superspace action is

S(2) =

∫
d2xd4θE−1

(
e−2V−K + S

)
, (3.27)

where S is now evaluated as a function of the chiral and twisted-chiral superfields. It would

be interesting to check that (3.27) indeed correctly reproduces the bosonic action (3.23)

with K̃ as in (3.24).

Second, the action (3.23) with the identification (3.25) can also be straightforwardly

obtained by dimensionally reducing M-theory, or rather eleven-dimensional supergravity,

7Our discussion differs here from the one in [17], where the sign in front of log V was claimed to

be negative.
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first on Y4 and then on an extra circle of radius r. The reduction of M-theory on Y4 was

carried out in [12, 13]. We give the resulting three-dimensional action in (5.5) and briefly

recall this reduction in section 5.1 when considering applications to F-theory. Using the

standard relation of eleven-dimensional supergravity on a circle and Type IIA supergravity,

one straightforwardly identifies

r = e−2φIIA , e2φIIAvA =
vAM
VM
≡ LA , (3.28)

where vAM and VM are the analogs of vA and V used in the M-theory reduction. Note that

the scalars LA are the appropriate fields to appear in three-dimensional vector multiplets.

Inserting the identification (3.28) into (3.24) together with (3.25), (3.26) one finds

K̃M = − log

∫
Y4

Ω ∧ Ω̄ + log

(
1

4!
KABCDLALBLCLD

)
+ LAdA

lk ReNl ReNk , (3.29)

where we have dropped the logarithm containing the circle radius. Indeed K̃M agrees

precisely with the result found in [12, 13, 15] from the M-theory reduction. The general

discussion of the circle reduction of a three-dimensional un-gauged N = 2 supergravity

theory to a two-dimensional N = (2, 2) supergravity theory can be found in appendix A.

3.3 Legendre transforms from chiral and twisted-chiral scalars

In this subsection we want to introduce an operation that allows to translate the dynamics

of certain chiral multiplets to twisted-chiral multiplets and vice versa. More precisely, we

will assume that some of the scalars, say the scalars λl, in the N = (2, 2) supergravity

action have continuous shift symmetries, i.e. λl → λl + cl for constant cl. These scalars

therefore only appear with derivatives dλl in the action. By the standard duality of massless

p-forms to (D− p− 2)-forms in D dimensions, one can then replace the scalars λl by dual

scalars λ′ l. Accordingly, one has to adjust the complex structure on the scalar field space

by performing a Legendre transform. In the following we will give representative examples

of how this works in detail. We will see that this duality, in particular as described in the

first example, becomes crucial in the discussion of mirror symmetry of section 4.

As a first example, let us consider the above theory with complex scalars zK , Nl in

chiral multiplets and complex scalars tA in twisted-chiral multiplets. The kinetic potential

for these fields K̃ was given in (3.24) with (3.26). Two facts about this example are crucial

for the following discussion. First, the fields Nl admit a shift symmetry Nl → Nl+icl in the

action, i.e. the kinetic potential K̃ given in (3.26) is independent of Nl − N̄l. Second, the

Nl only appear in the term S of the kinetic potential and thus carry no dilaton pre-factor

in the action. One can thus straightforwardly dualize Nl − N̄l into real scalars λ′ l. The

new complex scalars N ′ l are then given by

N ′ l =
1

2

∂S
∂ReNl

+ iλ′ l , (3.30)

where we have included a factor of 1/2 for later convenience. Furthermore, the new kinetic

potential K̃ ′ is now a function of zK , tA, N ′ l and given by the Legendre transform

K̃ ′ = K̃ − 2 e2ϕ̃ReN ′ lReNl , (3.31)
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where ReNl has to be evaluated as a function of ReN ′ l and the other complex fields by

solving (3.30) for ReNl. One now checks that the scalars N ′ l actually reside in twisted-

chiral multiplets. Using the transformation (3.30) and (3.31) in the action (3.23) simply

yields a dual description in which certain chiral multiplets are consistently replaced by

twisted-chiral multiplets. It is simple to evaluate (3.30), (3.31) for S given in (3.26) to find

N ′ l = H lm ReNm + iλ′ l , (3.32)

K̃ ′ = K − e2φIIAHkl ReN ′ k ReN ′ l , (3.33)

where H lm is the inverse of the matrix Hlm introduced in (3.15), (3.16). It is interesting

to realize that upon inserting (3.32) into (3.33) one finds that K̃ ′ evaluated as a function

of Nk only differs by a minus sign in front of the term linear in e2φIIA from the original K̃.

This simple transformation arises from the fact that K̃ is only quadratic in the Nk. This

observation will be crucial again in the discussion of mirror symmetry in section 4.

As a second example, we briefly want to discuss a dualization that transforms all

multiplets containing scalars to become chiral. The detailed computation for a general

N = (2, 2) setting can be found in appendix B. For the example of section 3.2 we focus

on the twisted-chiral multiplets with complex scalars tA. These admit a shift symmetry

tA → tA + cA for constant cA, such that Re tA only appears with derivatives in the action.

Accordingly, the kinetic potential K̃ is independent of tA+ t̄A as seen in (3.24) with (3.26).

Due to the shift symmetry we can dualize the scalars tA + t̄A to scalars ρA. However, note

that by using the kinetic potential (3.24), (3.26) there are couplings of tA in (3.23) that

have a dilaton factor eϕ̃, and others that are independent of eϕ̃. This seemingly prevents us

from performing a straightforward Legendre transform to bring the resulting action to the

form (3.23) with only chiral multiplets. Remarkably, the special properties of the kinetic

potential (3.24), (3.26), however, allow us to nevertheless achieve this goal as we will see

in the following.

The action (3.23) for a setting with only chiral multiplets with complex scalars M I

takes the form

S(2) =

∫
e−2ϕ̃

(
1

2
R ∗ 1 + 2dϕ̃ ∧ ∗dϕ̃−KMIM̄J dM I ∧ ∗dM̄J

)
, (3.34)

where KMIM̄J = ∂MI∂M̄JK. In other words, the potential K is in this case actually

a Kähler potential on the field space spanned by the complex coordinates M I . For our

example (3.24), (3.26) the scalars M I consist of zK , Nl, and TA, where TA are the duals

of the complex fields tA. We make the following Ansatz for the dual coordinates TA

TA = e−2ϕ̃ ∂K̃

∂Im tA
+ iρA = e−2ϕ̃ ∂K

∂Im tA
+

∂S
∂Im tA

+ iρA , (3.35)

and the dual potential K

K = K̃ − e2ϕ̃ReTAIm tA . (3.36)

These expressions describe the standard Legendre transform for Im tA, but crucially contain

dilaton factors e2ϕ̃. This latter fact allows to factor out e−2ϕ̃ as required in (3.34), but
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requires to perform a two-dimensional Weyl rescaling as we will discuss below. Using (3.24)

with (3.26) one straightforwardly evaluates

TA = e−2φIIA
1

3!

KA
V

+ dA
kl ReNl ReNk + iρA , (3.37)

K = − log

∫
Y4

Ω ∧ Ω̄ + logV . (3.38)

Clearly, upon using the map (3.28) this result is familiar from the study of M-theory

compactifications on Calabi-Yau fourfolds [12, 13, 15]. Also note that the contribution

S present in the kinetic potential (3.24) is removed by the Legendre transform in K and

reappears in a more involved definition of the coordinates TA.

At first it appears that (3.35) induces new mixed terms involving one dϕ̃ due to the

dilaton dependence in front of the derivatives of K. Interestingly, these can be removed by

a two-dimensional Weyl rescaling if K satisfies the conditions

KtA Kt
A t̄B Kt̄B = k , KvA dImtA = df , (3.39)

for some constant k and some real field dependent function f . In this expression KtA t̄B is the

inverse of KtA t̄B and KvA ≡ ∂Im tAK. In fact, one can perform the rescaling g̃µν = e2ωgµν ,

which transforms the Einstein-Hilbert action as∫
e−2ϕ̃ 1

2
R̃ ∗̃1 =

∫
e−2ϕ̃

(
1

2
R ∗ 1− 2dω ∧ ∗dϕ̃

)
, (3.40)

while leaving all other terms invariant. Using (3.40) to absorb the mixed terms one needs

to chose

ω = −k
2
ϕ̃− f

2
. (3.41)

The details of this computation can be found in appendix B. Indeed, for the example (3.26)

one finds f = log V and k = −4. Remarkably, the condition (3.39) essentially states that

K has to satisfy a no-scale like condition. A recent discussion and further references on

the subject of studying four-dimensional supergravities satisfying such conditions can be

found in [32].

4 Mirror symmetry at large volume/large complex structure

In section 3 we have determined the two-dimensional action obtained from Type IIA super-

gravity compactified on a Calabi-Yau fourfold. We commented on its N = (2, 2) supersym-

metry structure which relies on the proper identification of chiral and twisted-chiral mul-

tiplets in two dimensions. In this section we are exploring the action of mirror symmetry.

More precisely, we consider pairs of geometries Y4 and Ŷ4 that are mirror manifolds [4–6].

From a string theory world-sheet perspective one expects the two theories obtained from

string theory on Y4 and Ŷ4 to be dual. This implies that after finding the appropriate iden-

tification of coordinates the two-dimensional effective theories should be identical when

considered at dual points in moduli space. We will make this more precise for the large
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volume and large complex structure point in this section. Note that in contrast to mirror

symmetry for Calabi-Yau threefolds the mirror theories encountered here are both arising

in Type IIA string theory.8

4.1 Mirror symmetry for complex and Kähler structure

Mirror symmetry arises from the observation that the conformal field theories associated

with Y4 and Ŷ4 are equivalent. It describes the identification of Calabi-Yau fourfolds Y4,

Ŷ4 with Hodge numbers

hp,q(Y4) = h4−p,q(Ŷ4) . (4.1)

Note that this particularly includes the non-trivial conditions

h1,1(Y4) = h3,1(Ŷ4) , h3,1(Y4) = h1,1(Ŷ4) , (4.2)

h2,1(Y4) = h2,1(Ŷ4) . (4.3)

The first identification (4.2) together with the observations made in section 3 implies that

mirror symmetry exchanges Kähler structure deformations of Y4 (Ŷ4) with complex struc-

ture deformations of Ŷ4 (Y4). Accordingly one needs to exchange chiral multiplets and

twisted-chiral multiplets in the effective N = (2, 2) supergravity theory. The second iden-

tification (4.3) seems to suggest that for the fields Nl the mirror map is trivial. However,

as we will see in section 4.2 this is not the case and one has to equally change from a chiral

to a twisted-chiral description.

To present a more in-depth discussion of mirror symmetry we first need to introduce

some notation. All fields and couplings obtained by compactification on Y4 are denoted as

in section 3. To destinguish them from the quantities obtained in the Ŷ4 reduction we will

dress the latter with a hat. In particular for the fields we write

Y4 : φIIA , t
A , zK , Nl , (4.4)

Ŷ4 : φ̂IIA , t̂
K , ẑA , N̂l .

Note that we have exchanged the indices on t̂K and ẑA in accordance with the fact that

complex structure and Kähler structure deformations are interchanged by mirror symmetry.

In other words, K = 1, . . . , h1,1(Ŷ4) and A = 1, . . . , h3,1(Ŷ4) is compatible with the previous

notation due to (4.2). Similarly we will adjust the notation for the couplings. For example,

the functions introduced in (3.26) and (2.4), (2.5) are

Y4 : fmn(z) , Hmn(v, z) , (4.5)

Ŷ4 : f̂mn(ẑ) , Ĥmn(v̂, ẑ) . (4.6)

The functional form of the various couplings will in general differ for Y4 and Ŷ4. A match of

the two mirror-symmetric effective theories should, however, be possible when identifying

the mirror map, which we denote formally by M[·].
8This can be seen immediately when employing the SYZ-understanding of mirror symmetry as T-

duality [33]. Mirror symmetry is thereby understood as T-duality along half of the compactified dimensions,

i.e. Y4 is argued to contain real four-dimensional tori along which T-duality can be performed. Clearly, this

inverts an even number of dimensions for Calabi-Yau fourfolds.
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We want to focus on the sector of the theory independent of the three-forms. Recall

that in the two-dimensional effective theory obtained from Y4 the kinetic terms of the

complex structure moduli zK and Kähler structure moduli tA are obtained from the kinetic

potential (3.22), (3.26) as

K(Y4) = log

(
1

4!
KABCD Im tA Im tB Im tC Im tD

)
− log

∫
Y4

Ω ∧ Ω (4.7)

when used in the action (3.20). Mirror symmetry exchanges the Kähler moduli tK of

Y4 with the complex structure moduli ẑK of Ŷ4. The expression (4.7) was computed at

the large volume point in Kähler moduli space, i.e. with the assumption that Im tA � 1 in

string units. Accordingly one has to evaluate K(Ŷ4) at the large complex structure point as∫
Ŷ4

Ω̂ ∧ Ω̂ =
1

4!
KABCD Im ẑA Im ẑB Im ẑC Im ẑD , (4.8)

where now Im ẑA � 1. Similarly, one has to proceed for the Kähler moduli part of the

kinetic potential K(Ŷ4) and evaluate K(Y4) at the large complex structure point∫
Y4

Ω ∧ Ω =
1

4!
K̂KLMN Im zK Im zL Im zM Im zN , (4.9)

where K̂KLMN are now the quadruple intersection numbers on the geometry Ŷ4. Therefore,

at the large volume and large complex structure point the two effective theories obtained

from Y4 and Ŷ4 are identified under the mirror map

M
[
tA
]

= ẑA , M
[
zK
]

= t̂K , (4.10)

and

M
[
K(Y4)

]
= −K(Ŷ4) , M

[
φIIA

]
= φ̂IIA . (4.11)

It is important to stress that a sign change occurs when applying the mirror map to K.

This can be traced back to the fact that scalars in chiral and twisted-chiral multiplets

have different sign kinetic terms in the actions (3.20), (3.23). The quantum corrections

to K were discussed using mirror symmetry in [4–7] and localization in [8, 9] (using and

extending the results of [34–36]).

4.2 Mirror symmetry for non-trivial three-forms

Let us next include the moduli Nl arising for Calabi-Yau fourfolds Y4 with non-vanishing

h2,1(Y4). In section 3 we have seen that these complex scalars are part of chiral multiplets.

Their dynamics was described by the real function S in the kinetic potential K̃ given

in (3.24) and (3.26). For completeness we recall that

S(Y4) = H lk ReNl ReNk , H lk ≡ vAdAlk , (4.12)

where dA
lk is a function of the complex structure moduli of Y4. Mirror symmetry should

map the fields Nl to scalars N̂l arising in the reduction on the mirror Calabi-Yau fourfold

Ŷ4, i.e. one should have

M
[
Nl

]
= Ql(N̂ , ẑ, t̂) , (4.13)
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where we have allowed the image of Nl to be a non-trivial function that will be determined

in the following. In fact, note that the map cannot be as simple as M(Nl) = N̂l. As

already pointed out in [17] the mirror dualsM(Nl) need to be, in contrast to the Nl, parts

of twisted -chiral multiplets. To achieve this we need to use the results of section 3.3.

Let us therefore consider the reduction on Ŷ4 using the same notation as in section 3

but with hatted symbols. The two-dimensional theory will contain a set of complex scalars

N̂l that reside in chiral multiplets. We can transform them to scalars in twisted-chiral

multiplets using (3.32) and (3.33). In other words, we find a dual description with scalars

N̂ ′l defined as

N̂ ′ l = Ĥ lm Re N̂m + iλ̂′ l , (4.14)

where Ĥ lm is a function of the mirror complex structure moduli ẑA and Kähler moduli v̂K .

The dual kinetic potential takes the form

K̃ ′(Ŷ4) = K(Ŷ4)− e2φ̂IIAĤkl Re N̂ ′ k Re N̂ ′ l . (4.15)

The mirror map (4.10), (4.11) and (4.13) exchanges chiral and twisted-chiral states and

therefore has to take the form

M
[
Nl

]
= N̂ ′ l(N̂ , ẑ, t̂) , M

[
tA
]

= ẑA , M
[
zK
]

= t̂K , (4.16)

M
[
K̃(Y4)

]
= − K̃ ′(Ŷ4) , M

[
φIIA

]
= φ̂IIA . (4.17)

and is evaluated as a function of N̂l, ẑ
A and t̂K by using (4.14).

Using these insights we are now able to infer the mirror image of the function Hmn

appearing in K̃(Y4). To do that, we apply the mirror map to the kinetic potential K̃.

Note that

M
[
K̃(Y4)

]
= −K(Ŷ4) + e2φ̂IIAM

[
S(Y4)

]
, (4.18)

where we have used (4.11). Furthermore, we insert (4.17) into (4.12) to find

M
[
S(Y4)

]
=
∑
k,l

M
[
Hkl

]
Re N̂ ′k Re N̂ ′l . (4.19)

We next apply (4.17) together with (4.15) which requires∑
k,l

M
[
Hkl

]
Re N̂ ′k Re N̂ ′l

!
= Ĥkl Re N̂ ′ k Re N̂ ′ l , (4.20)

and thus enforces

M
[
Hkl

] !
= Ĥkl . (4.21)

We therefore find that the mirror map actually identifies Hkl with the inverse Ĥkl of Ĥkl.

This inversion is crucial and stems from the exchange of chiral an twisted-chiral multiplets

under mirror symmetry. In the final part of this section we evaluate the condition (4.21) at

the large complex structure point, since Hkl given in (4.12) was computed at large volume.
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Using the mirror map we are now able to determine the holomorphic function fkl
appearing in the definition of Hkl at the large complex structure point. Note that (3.16)

translates on Y4 and Ŷ4 to

H lm = −1

2
(Ref)ln Rehmn , hmn = −itACAnm , (4.22)

Ĥ lm = −1

2
(Ref̂)ln Re ĥmn , ĥmn = −it̂KĈKnm ,

where on the mirror geometry we introduced the intersection numbers

ĈKn
m =

∫
Ŷ4

ω̂K ∧ α̂n ∧ β̂m . (4.23)

Using (4.16), (4.17), (4.21), and (4.22) in the mirror map one infers that a possible identi-

fication is9

Refnm = ImzKĈKn
m . (4.24)

By holomorphicity of fnm we finally conclude

fnm = −izKĈKnm (4.25)

Having determined the function fmn at the large complex structure point we have estab-

lished a complete match of the two two-dimensional effective theories obtained from Y4

and Ŷ4 under the mirror map M[·]. The result (4.25) is not unexpected. In fact, from the

variation of Hodge-structures one could have expected a leading linear dependence on zK .

Furthermore, we will find agreement with a dual Calabi-Yau threefold result when using

the geometry Y4 as F-theory background and performing the orientifold limit. This will be

the task of the final section of this work.

5 Applications for F-theory and Type IIB orientifolds

In this section we want to apply the result obtained by using mirror symmetry to compacti-

fications of F-theory and their orientifold limit. The F-theory effective action is studied via

the M-theory to F-theory limit. Therefore, we will briefly review in section 5.1 the dimen-

sional reduction of M-theory on a smooth Calabi-Yau fourfold including three-form moduli.

This reduction was already performed in [13], but we will use the insights we have gained in

the previous sections to include the three-form moduli more conveniently. In section 5.2 we

will then restrict to a certain class of elliptically fibered Calabi-Yau fourfolds and perform

the M-theory to F-theory limit. This allows us to identify the characteristic data deter-

mining the four-dimensional N = 1 F-theory effective action in terms of the geometric

quantities of the internal space [15]. We note that for certain fourfolds the holomorphic

function fkl lifts to a four-dimensional gauge coupling function. Starting from these F-

theroy settings we will then perform the weak string coupling limit in section 5.3. In this

limit fkl can be partially computed by using mirror symmetry for Calabi-Yau threefolds

and we show compatibility with the fourfold result of section 4.

9Note that in general the basis (αl, β
k) might not directly map to (α̂l, β̂

k) on the mirror geometry Ŷ4.

In this expression we have assumed that there is no non-trivial base change under mirror symmetry.
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5.1 M-theory on Calabi-Yau fourfolds

In this subsection we review the dimensional reduction of M-theory on a Calabi-Yau fourfold

Y4 in the large volume limit without fluxes. The ansatz here is similar to the one used for

Type IIA supergravity in section 3.1.

We start with eleven-dimensional supergravity as the low-energy limit of M-theory. Its

bosonic two-derivative action is given by

S(11) =

∫
1

2
Ř ∗̌1− 1

4
F̌4 ∧ ∗̌F̌4 −

1

12
Č3 ∧ F̌4 ∧ F̌4 , (5.1)

with F̌4 = dČ3 the eleven-dimensional three-form field strength. This will be dimensionally

reduced on the background

dš2 = η(3)
µν dx

µdxν + g(8)
mndy

mdyn , (5.2)

where η(3) is the metric of three-dimensional Minkowski space-time M2,1 and g(8) the metric

of the Calabi-Yau fourfold Y4. This is the analog to (3.2) and, as we briefly discussed at the

end of section 3.2, the Type IIA supergravity vacuum can be obtained by a circle-reduction

of this Ansatz.

To perform the dimensional reduction one inserts similar expansions of (3.3), (3.5)

and (3.6) into the eleven-dimensional action (5.1). For the metric deformations consisting

of Kähler and complex structure deformations, this is exactly the same as (3.3) and (3.5),

hence we obtain h1,1(Y4) real scalars vAM by expanding the M-theory Kähler form JM as

JM = vAMωA (5.3)

and h3,1(Y4) complex scalars zK in three dimensions. Since the eleven-dimensional three-

form Č3 is the common origin of the Type IIA fields B̌2, Č3, we expand

Č3 = V A ∧ ωA +NlΨ
l + N̄lΨ̄

l . (5.4)

This yields h2,1(Y4) three-dimensional complex scalars Nl and h1,1(Y4) vectors V A.

The latter combine with the real scalars vAM into three-dimensional vector multiplets,

whereas zK , Nl give rise to three-dimensional chiral multiplets. Combining the expan-

sions (3.3), (3.5) and (5.4) with the action (5.1) by using the notation of section 3.1 and

section 3.2 we thus obtain the three-dimensional effective action10

S(3) =

∫
1

2
R ∗ 1−GKLdz

K ∧ ∗dzL − 1

2
d logVM ∧ ∗d logVM −GM

ABdv
A
M ∧ ∗dvBM

− 1

2
vAM dA

lkDNl ∧ ∗DNk − V2
MG

M
ABdV

A ∧ ∗dV B

+
i

4
dA

lkdV A ∧
(
NlDNk −NkDNl

)
. (5.5)

Note the GM
AB takes the same functional form as (3.10), but uses the M-theory Kähler

structure deformations vAM.

10The action has been Weyl-rescaled to the three-dimensional Einstein frame by introducing gnewµν =

V−2goldµν .
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The three-dimensional action given in (5.5) is an N = 2 supergravity theory. The

proper scalars in the vector multiplets are denoted by LA and are expressed in terms of the

vAM as LA =
vAM
VM , as already given in (3.28). The complex scalars in the chiral multiplets

are collectively denoted by φκ = (zK , Nl). The action (5.5) can then be written using a

kinetic potential K̃M as

S(3) =

∫
1

2
R(3) ∗ 1 +

1

4
K̃M
LALBdL

A ∧ ∗dLB +
1

4
K̃M
LALBdV

A ∧ ∗dV B

− K̃M
φκφ̄λ dφ

κ ∧ ∗dφ̄λ + dV A ∧ Im(K̃M
LAφκdφ

κ) , (5.6)

where K̃M
LALB

= ∂LA∂LBK̃, K̃M
φκφ̄λ

= ∂φκ∂φ̄λK̃
M, and K̃M

LAφκ
= ∂LA∂φκK̃

M. Compar-

ing (5.5) with (5.6) the kinetic potential obtained for this M-theory reduction there-

fore reads

K̃M = − log

∫
Y4

Ω ∧ Ω̄ + log

(
1

4!
KABCDLALBLCLD

)
+ LAdA

lk ReNl ReNk , (5.7)

and was already given in (3.29). Recalling the discussion at the end of section 3.2 it is not

hard to check that (5.5) reduces to the Type IIA result found in section 3.1 upon a circle

compactification. The detailed circle reduction is performed for a general three-dimensional

un-gauged N = 2 theory in appendix A.

5.2 M-theory to F-theory lift

Let us now lift the result (5.6) of the M-theory reduction on a general smooth Calabi-Yau

fourfold Y4 to a four-dimensional effective F-theory compactification. To do so, we need

to restrict Y4 to be an elliptic fibration π : Y4 → B3 over a base manifold B3 which is a

three-dimensional complex Kähler manifold. This four-dimensional theory exhibits N = 1

supersymmetry. In the following we will not need to consider the full four-dimensional

theory, but will rather focus on the kinetic terms of the complex scalars and vectors without

including gaugings or a scalar potential. Supersymmetry ensures that these can be written

in the form [37]

S(4) =

∫
1

2
R ∗ 1−KF

MIM̄J dM
I ∧ ∗dM̄J − 1

2
Re fΛΣF

Λ ∧ ∗FΣ − 1

2
Im fΛΣF

Λ ∧ FΣ . (5.8)

In this expression we denoted by M I the bosonic degrees of freedom in chiral multiplets,

and by FΛ the field strengths of vectors AΛ. The metric KF
MIM̄J is Kähler and thus can

be obtained from a Kähler potential KF via KF
MIM̄J = ∂MI∂M̄JKF. The gauge-kinetic

coupling function fΛΣ is holomorphic in the complex scalars M I .

In order to determine the Kähler potential KF and the gauge coupling function fΛΣ

via M-theory one next would have to compactify (5.8) on a circle. The resulting three-

dimensional theory then has to be pushed to the Coulomb branch and all massive modes,

including the excited Kaluza-Klein modes of all four-dimensional fields, have to be inte-

grated out. The resulting three-dimensional effective theory can then, after a number of

dualizations, be compared with the M-theory effective action (5.5). Performing all these

steps is in general complicated. However, a relevant special case has been considered in [15]
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and will be the focus in the following discussion. Despite the fact that we could refer to [15]

we will try to keep the derivation of KF and fΛΣ in this subsection self-contained.

Let us therefore assume that Y4 is an elliptically fibered Calabi-Yau fourfold that

satisfies the conditions

h2,1(Y4) = h2,1(B3) , h1,1(Y4) = h1,1(B3) + 1 . (5.9)

It is not hard to use toric geometry to construct examples that satisfy these conditions

(see, for example, refs. [38, 39]). From the point of view of F-theory, or Type IIB string

theory, the first condition in (5.9) implies that all scalars Nl in (5.5) lift to R-R vectors

Al in four dimensions. In other words, one can compactify Type IIB on the base B3 and

obtain vectors Al by expanding the R-R four-form as

C4 = Al ∧ αI − Ãl ∧ βl + . . . . (5.10)

The vectors Ãl are the magnetic duals of the Al and can be eliminated by using the self-

duality of the field-strength of C4.

The second condition in (5.9) implies that there are no further vectors in the four-

dimensional theory, i.e. there are no massless vector degrees of freedom arising from seven-

branes. The two-forms used in (5.3) and (5.4) split simply as

ωA = (ω0, ωα) , (5.11)

where ω0 is the Poincaré-dual of the base divisor B3 and ωα is the Poincaré-dual of the

vertical divisors Dα = π−1(Dα
b ) stemming from divisors Dα

b of B3. Accordingly one splits

the three-dimensional vector multiplets in (5.6) as

LA = (R,Lα) , V A = (A0, Aα) . (5.12)

One can now evaluate the kinetic potential (5.7) for the special case (5.9). The only relevant

non-vanishing quadruple intersection numbers are given by

K0αβγ =

∫
Y4

ω0 ∧ ωα ∧ ωβ ∧ ωγ ≡ Kαβγ , (5.13)

which are simply the triple intersections Kαβγ of the base B3. Crucially, for an elliptic

fibration one has Kαβγδ = 0. Furthermore, note that due to (5.9) all non-trivial three-

forms come from the base B3 and we can chose the basis (αI , β
l) such that

C0m
k =

∫
Y4

ω0 ∧ αl ∧ βk = δkl , Cαm
k = CAmk = 0 , (5.14)

with CAm
k and CAmk introduced in (2.10). Inserting (5.13) and (5.14) into (5.7) one finds

K̃M = − log

∫
Y4

Ω∧ Ω̄ + log

(
1

3!
KαβγLαLβLγ

)
+ log(R)− 1

2
RRef lk ReNl ReNk , (5.15)

where we have used that LAdA
lk = −1

2L
AC lAmRefmk = −1

2RRef lk, and we have dropped

terms in the logarithm that are higher order in R.
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In order to compare this kinetic potential with the result of the circle reduction of (5.8)

we next have to dualize (Lα, Aα) into three-dimensional complex scalars Tα, and Nk into

three-dimensional vectors (ξk, Ak). Due to our assumption (5.9) leading to (5.14) we can

perform these dualizations independently. The change from (Lα, Aα) to ReTα = ∂LαK̃
M

is similar to (3.37). It is conveniently parameterized by the base Kähler deformations vαb
and the base volume Vb defined as [15, 26]

Lα =
vαb
Vb

, Vb =
1

3!
Kαβγvαb v

β
bv

γ
b . (5.16)

The dualization of the complex scalars Nk into three-dimensional vectors is similar to the

dualization yielding (3.30), (3.31) and (3.32), (3.33). First, one introduces

ξk = ∂ReNkK̃
M , K̃M→F = K̃M − ξkReNl , (5.17)

and then dualizes the field ImNk with a shift symmetry into the vector Ak. Together both

Legendre transforms yield

K̃M→F = − log

∫
Y4

Ω ∧ Ω̄− 2 log Vb + log R+
1

2R
Reflk ξ

lξk , (5.18)

which has to be evaluated as a function of zK , ξk and

Tα = ∂LαK̃
M + iρα =

1

2!
Kαβγvβbv

γ
b + iρα . (5.19)

The kinetic potential (5.18) is now in the correct frame to be lifted to four space-time

dimensions.

To derive KF, fkl one reduces (5.8) on a circle of radius r with the usual Kaluza-Klein

ansatz the four-dimensional metric and vectors as

g(4)
µν =

 g
(3)
pq + r2A0

pA
0
q r2A0

q

r2A0
p r2

 , Akµ = (Akp +A0
pζ
k, ζk) , (5.20)

where we introduced the three-dimensional indices p, q = 0, 1, 2 and the Kaluza-Klein

vector A0. Note that we use for three-dimensional vectors the same symbol Ak as in four

dimensions. Furthermore, we introduced the new three-dimensional real scalars r, ζk into

the theory. We next define

R = r−2 , ξk̂ = (R,Rζk) , Ak̂ = (A0, Ak) . (5.21)

The three-dimensional theory obtained by reducing (5.8) has thus the field content: chiral

multiplets with complex scalars M I and vector multiplets (ξk̂, Ak̂). Its action can be

written in the form (5.6) with a kinetic potential

K̃(M, M̄, ξ) = KF (M, M̄) + log(R)− 1

R
Re fkl(M)ξkξl , (5.22)
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when replacing LA → ξk̂, V A → Ak̂, and φκ →M I . Finally, comparing (5.22) with (5.18)

implies that one finds M I = {Tα, zK}

KF = − log

(∫
Y4

Ω ∧ Ω

)
− 2 logVb , (5.23)

fkl =
1

2
fkl . (5.24)

In the next section, we want to derive the orientifold limit of this result relating the data

of F-theory on Y4 to Type IIB supergravity with O7/O3-planes on the closely related

Calabi-Yau three-fold Y3, a double cover of B3.

5.3 Orientifold limit of F-theory and mirror symmetry

In this final subsection we investigate the orientifold limit of the F-theory effective action

introduced above. More precisely, we assume that the F-theory compactification on the

elliptically fibered geometry Y4 admits a weak string coupling limit as introduced by Sen [24,

25]. This limit takes one to a special region in the complex structure moduli space of Y4 in

which the dilaton-axion τ = C0 + ie−φIIB , given by the complex structure of the two-torus

fiber of Y4, is almost everywhere constant along the base B3. The locations where τ is not

constant are precisely the orientifold seven-planes (O7-planes). In the weak string coupling

limit the geometry Y4 can be approximated by

Y4
∼= (Y3 × T 2)/σ̃ (5.25)

where we introduced the involution σ̃ = (σ,−1,−1) with σ being a holomorphic and

isometric orientifold involution such that Y3/σ = B3. The two one-cycles of the torus are

both odd under the involution, but its volume form is even. It was shown in [24, 25] that

the double cover Y3 of B3 is actually a Calabi-Yau threefold. The location of the O7-planes

in Y3 is simply the fixed-point set of σ.

In the limit (5.25) we can check compatibility of the mirror symmetry results of sec-

tion 4 with the mirror symmetry of the Calabi-Yau threefold Y3. By using the mirror

fourfold Ŷ4 of Y4 we have found that the function flk is linear in the large complex struc-

ture limit of Y4. Here we recall that the weak string coupling expression gives a compatible

result. Using the mirror Ŷ3 of Y3 one shows that the function flk is linear in the large

complex structure limit of Y3. This can be depicted as

F-theory on Y4
weak coupling−−−−−−−−−−−−→ Type IIB orientifolds Y3/σ

l physical mirror duality

Type IIA orientifolds Ŷ3/σ̂

(5.26)

Note that mirror symmetry of Y3 and Ŷ3 gives a physical map between Type IIB and Type

IIA orientifolds. The mirror map between Y4 and Ŷ4 has no apparent physical meaning

in F-theory. Nevertheless, using the geometry Y4 in Type IIA compactifications it can be

used to calculate flk as we explained in section 4.
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Let us now introduce the function flm for the geometry (5.25). In the orientifold

setting one splits the cohomologies of Y3 as Hp,q(Y3) = Hp,q
+ (Y3)⊕Hp,q

− (Y3), which are the

two eigenspaces of σ∗. We denote their dimensions as hp,q± (Y3). As reviewed, for example,

in [2] the complex structure moduli zK of Y4 split into three sets of fields at weak string

coupling. First, there is the dilaton-axion τ , which is now a modulus of the effective

theory. Second, there are h2,1
− complex structure moduli zκ of the quotient Y3/σ. Third,

the remaining number of complex structure deformations of Y4 correspond to D7-brane

position moduli. The last set are open string degrees of freedom and are not captured by

the geometry of Y3. For simplicity, we will not include them in the following discussion.

With this simplifying assumption one finds that the pure complex structure part of the

F-theory Kähler potential (5.23) splits as

− log

(∫
Y4

Ω ∧ Ω

)
= − log

[
− i(τ − τ̄)

]
− log

[
i

∫
Y3

Ω3 ∧ Ω̄3

]
+ . . . , (5.27)

where Ω3 is the (3, 0)-form on Y3 that varies holomorphically in the complex structure

moduli zκ. The dots indicate that further corrections arise that are suppressed at weak

string coupling −i(τ − τ̄) � 1. Taking the weak coupling limit for the Kähler poten-

tial (5.23) of the Kähler structure deformations is more straightforward. The deformations

are counted by h1,1
+ (Y3) and identified with the Kähler structure deformations vαb of the

base B3 introduced in (5.16). The orientifold Kähler potential for this set of deformations

is then simply the second term in (5.23) and the Kähler coordinates are given by (5.19).

Turning to the gauge theory sector, we note that the number of R-R vectors Al arising

from C4 as in (5.10) are counted by h2,1
+ (Y3) in the orientifold setting. The gauge coupling

function for these vectors is determined as function of the complex structure moduli zκ of

Y3 in [26].11 It is given by

fkl(z
κ) = −iFkl|(zκ) ≡ ∂zk∂zlF|(zκ) , (5.28)

where F is the pre-potential determining the moduli-dependence of the Ω3 of the geometry

Y3. To evaluate (5.28) one first splits the complex structure moduli of Y3 into h2,1
− (Y3) fields

zκ and h2,1
+ (Y3) fields zk. The pre-potential F(zκ, zk) of Y3 at first depends on both sets of

fields. Then one has to take derivatives of F with respect to zk and afterwards set these

fields to constant background values compatible with the orientifold involution σ. This

freezing of the zk is indicated by the symbol | in (5.28). Using mirror symmetry for Calabi-

Yau threefolds it is well-known that the pre-potential at the large complex structure point

of Y3 is a cubic function of the complex structure moduli zκ and zk. Taking derivatives

and evaluating the expression on the orientifold moduli space one thus finds

fkl(z
κ) = −izκK̂κkl , (5.29)

where K̂κkl =
∫
Ŷ3
ω̂κ∧ ω̂k∧ ω̂l are the triple intersection numbers of the mirror threefold Ŷ3.

This result agrees with the one for Type IIA orientifolds, which have been studied at large

11Note that we have slightly changed the index conventions with respect to [26] in order to match the

F-theory discussion.
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volume in [27]. Hence, we find consistency with the F-theory result (4.25) obtained by using

mirror symmetry for Y4 at the large complex structure point. To obtain a complete match

of the results the intersection matrix Ĉκk
l of Ŷ4 is identified with the triple intersection

K̂κkl of Ŷ3.

To close this section we stress again that we have only discussed the matching with the

orientifold limit for special geometries satisfying (5.9). Furthermore, we have not included

the open string degrees of freedom on the orientifold side. Clearly, our result for flk obtained

in section 4 can be more generally applied. For example, a simple generalization is the

inclusion of h1,1
− (Y3) moduli Ga into the orientifold setting, which arise in the expansion

of the complex two-form C2 − τB2. In F-theory the same degrees of freedom appear from

the expansion (5.4) into non-trivial three-forms Ψa that have two legs in the base B3 and

one leg in the torus fiber, i.e. are not present in the geometries satisfying (5.9). In the

orientifold setting one finds that the fields Ga correct the complex coordinates (5.19). We

read off the result from [26] to find12

Tα =
1

2!
Kαβγvβbv

γ
b +

1

2 Imτ
Kαab ImGaImGb + iρα . (5.30)

Comparing this expression with (3.37) we read off that

Na = iGa , dαab =
1

2

1

Imτ
Kαab , fab(τ) = iτδab , (5.31)

in order to match the F-theory result as already done in [40]. Again we find that the result

is linear in one of the complex structure moduli, namely the field τ , of the Calabi-Yau

fourfold Y4 in the orientifold limit (5.25). It would be interesting to generalize these results

even further and also include the open string moduli into the orientifold setting.

6 Conclusions

In this paper we first studied the two-dimensional low-energy effective action obtained from

Type IIA string theory on a Calabi-Yau fourfold with non-trivial three-form cohomology.

The couplings of the three-forms were shown to be encoded by two holomorphic functions

fkl and hlk, where the former depends on the complex structure moduli and the latter on the

complexified Kähler structure moduli. Performing a large volume dimensional reduction of

Type IIA supergravity, we were able to derive hlk explicitly as a linear function. We argued

that fkl and hlk computed on mirror pairs of Calabi-Yau manifolds will be exchanged, at

least, if one considers the theories at large volume and large complex structure. In order

to show this, we investigated the non-trivial map between the three-form moduli arising

from mirror geometries and argued that it involves a scalar field dualization together with

a Legendre transformation. This can be also motivated by the fact that chiral and twisted-

chiral multiplets are expected to be exchanged by mirror symmetry. We thus established

a linear dependence of the function flk on the complex structure moduli near the large

complex structure point and determined the constant topological pre-factor.

12Note that compared with [26] we have redefined ρα to make the terms in Tα involving the Ga real.
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In this work we also included a discussion of the superymmetry properties of the

two-dimensional low-energy effective action. This action is expected to be an N = (2, 2)

supergravity theory, which we showed to extend the dilaton supergravity action of [17].

The bosonic action was brought to an elegant form with all kinetic and topological terms

determined by derivatives of a single function K̃ = K + e2ϕ̃S, where K and S can de-

pend on the scalars in chiral and twisted-chiral multiplets, but are independent of the

two-dimensional dilaton ϕ̃. In the Type IIA supergravity reduction the three-form scalars

only appeared in the function S and are thus suppressed by e2ϕ̃ = e2φIIA . In this analysis

the complex structure moduli and the three-form moduli were argued to fall into chiral

multiplets, while the complexified Kähler moduli are in twisted-chiral multiplets. How-

ever, due to apparent shift symmetries of the three-form moduli and complexified Kähler

moduli a scalar dualization accompanied by a Legendre transformation can be performed

in two dimensions. This lead to dual descriptions in which certain chiral multiplets are

replaced by twisted-chiral multiplets and vice versa. Remarkably, if one dualizes a subset

of scalars appearing in K, we found that the requirement to bring the dual action back to

the standard N = (2, 2) dilaton supergravity form imposes conditions on viable K. These

constraints include a no-scale type condition on K. The emergence of such restrictions arose

from general arguments about two-dimensional theories coupled to an overall e−2ϕ̃ factor.

For Calabi-Yau fourfold reductions we checked that these conditions are indeed satisfied.

It would be interesting to investigate this further and to get a deeper understanding of

this result.

Having shown that in the large complex structure limit the function fkl is linear in

the complex structure moduli, we discussed the application of this result in an F-theory

compactification. By assuming that the Calabi-Yau fourfold is elliptically fibered and

that the three-forms exclusively arise from the base of this fibration, we recalled that

fkl is actually the gauge-coupling function of four-dimensional R-R vector fields. This

gauge-coupling function was already evaluated in the weak string coupling limit in the

orientifold literature. In this orientifold limit one can double-cover the base with a Calabi-

Yau threefold. We found compatibility of the fourfold result with the expectation from

mirror symmetry for Calabi-Yau threefold orientifolds. In this analysis we only included

closed string moduli in the orientifold setting. Clearly, the results obtained from the Calabi-

Yau fourfold analysis are more powerful and it would be interesting to further investigate

the open string dependence in orientifolds using our results. Additionally we commented

briefly on the case in which the three-forms have legs in the fiber of the elliptic fibration.

In this situation the inverse of Reflk sets the value of decay constants of four-dimensional

axions [22]. Again we found compatibility in the closed string sector at weak string coupling

in which flk ∝ iτ . It would be interesting to include the open string moduli in the orientifold

setting and derive corrections to flk without restricting to the weak string coupling limit.

The latter task requires to compute flk away from the large complex structure limit for

elliptically fibered Calabi-Yau fourfolds.

In order to derive the complete moduli dependence of flk at various points in complex

structure moduli space it would be desirable to obtain differential equations obeyed by the

(2, 1)-forms. This should be possible by investigating the variations of Hodge structures
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and is expected to yield equations of second order in derivatives. The linear solutions found

in this work can then provide the boundary conditions for the complete solutions. It would

be important to develop the necessary tools for such an analysis and we hope to return to

this issue in a future publication.
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A Three-dimensional N = 2 supergravity on a circle

In this appendix we consider N = 2 supergravity compactified on a circle of radius r. Our

goal is to derive the resulting N = (2, 2) action. We also briefly discuss the dualization of

vector multiplets in three dimensions and point out the relation to appendix B.

We start with a three-dimensional N = 2 supergravity theory coupled to chiral multi-

plets with complex scalars φκ and vector multiplets with bosonic fields (LA, AA). HereLA

is a real scalar and AA a vector of an U(1) gauge theory. The bosonic part of the ungauged

N = 2 action takes the form

S(3) =

∫
1

2
R(3) ∗ 1− K̃φκφ̄λdφ

κ ∧ ∗dφ̄λ +
1

4
K̃LALBdL

A ∧ ∗dLB

+
1

4
K̃LALB dAA ∧ ∗dAB + dAA ∧ Im(K̃LAφκdφ

κ) (A.1)

where the kinetic terms of the vectors and scalars are determined by the single real kinetic

potential K̃.

We want to put this on a circle of radius r and period one, i.e. the background metric

is of the form

ds2
(3) = gµνdx

µdxν + r2dz2 (A.2)

where we already drop vectors, since in an un-gauged theory they do not carry degrees

of freedom in two dimensions. Similarly, the vectors AA are only reduced to real scalars

dAA = dbA ∧ dz. The resulting two-dimensional action thus reads

S(2) =

∫
1

2
rR ∗ 1− rK̃φκφ̄λdφ

κ ∧ ∗dφ̄λ +
1

4
rK̃LALBdL

A ∧ ∗dLB

+
1

4r
K̃LALBdb

A ∧ ∗dbB − dbA ∧ Im(K̃LAφκdφ
κ) , (A.3)

with a two-dimensional R and Hodge star ∗. Note that the last term is topological and

does not couple to the radius r of the circle. We can perform Weyl rescaling of the two-

dimensional metric setting g̃µν = e2ωgµν . This transforms the Einstein-Hilbert term as∫
1

2
rR̃ ∗̃1 =

∫
1

2
r R ∗ 1 + dω ∧ ∗dr , (A.4)
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while leaving all other terms in the action (A.3) invariant. We then find the action

S(2) =

∫
r

(
1

2
R ∗ 1 + d log r ∧ ∗dω − K̃φκφ̄λdφ

κ ∧ ∗dφ̄λ +
1

4
K̃LALBdL

A ∧ ∗dLB

+
1

4r2
K̃LALBdb

A ∧ ∗dbB
)
− dbA ∧ Im(K̃LAφκdφ

κ) (A.5)

To make contact with the N = (2, 2) dilaton supergravity action (3.23) we set

LA = r−1vA , r = e−2ϕ̃ , (A.6)

σA ≡ bA + ivA . (A.7)

Inserted into (A.5) we then obtain

S(2) =

∫
e−2ϕ̃

(
1

2
R ∗ 1− 2dϕ̃ ∧ ∗

(
dω − 1

2
K̃vAvBv

AdvB − 1

2
K̃vAvBv

AvBdϕ̃
)

(A.8)

− K̃φκφ̄λdφ
κ ∧ ∗dφ̄λ + K̃σAσ̄Bdσ

A ∧ ∗dσ̄B − dReσA ∧ Im(K̃vAφκdφ
κ)

)
.

In order to match the action (3.23) one therefore has to find an ω such that

dω = −dϕ̃+
1

2
K̃vAvBv

AdvB +
1

2
K̃vAvBv

AvBdϕ̃ (A.9)

To solve this condition, we first notice that any term in K̃ that is linear vA drops out from

this relation, i.e. K̃ can take the form

K̃ = K + vASA , (A.10)

with an arbitrary function SA(φ, φ̄). Furthermore, we can solve (A.9) by assuming that

K = K1 + K2 splits into a vA-independent term K1(φ, φ̄) and a term K2(v) that only

depends on vA. Then (A.9) is satisfied if

vAKvA = −k , ω = −ϕ̃+
k

2
ϕ̃− K2(v)

2
, (A.11)

It is easy to check that the conditions (A.10) and (A.11) are actually satisfied for the

M-theory example (3.29) of K̃. One finds

K1(z) = − log

∫
Y4

Ω ∧ Ω̄ , K2(v) = logV , SA = e2ϕdA
lk̄ ReNl ReNk , (A.12)

such that k = −4. Finally, in order to show that (A.8) is indeed identical to the ac-

tion (3.23), we still have to complete the last term in (A.8) to Im(dσA ∧ K̃vAφκdφ
κ). In

order to do that we use

dImσA ∧ Re(K̃vAφκdφ
κ) =

1

2
dImσA ∧ dK̃vA , (A.13)

which follows from the fact that dK̃vA = 2Re(K̃vAφκdφ
κ) + K̃vAvBdv

B. This implies that

these terms simply yield a total derivative and shows that the reduction of N = 2 super-

gravity of the form (A.1) indeed yields the extended form of N = (2, 2) dilaton supergravity
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suggested in (3.23) coupled to the chiral multiplets with scalars φκ and twisted-chiral mul-

tiplets with scalars σA. Interestingly, we had to employ the conditions (A.10) and (A.11),

which hints to the fact that the action (3.23) might admit further interesting extensions.

Let us end this appendix by pointing out that we could also have first dualized the

vectors AA to real scalars in three dimensions and then performed the circle reduction. The

dual multiplets to the vector multiplets (LA, AA) are three-dimensional chiral multiplets

with bosonic parts being complex scalars TA given by

TA = ∂LAK̃ + iρA . (A.14)

The metric is determined now from a proper Kähler potential given by

K(T + T̄ ,M) = K − ReTA L
A , (A.15)

such that the final action reads

S(3) =

∫
1

2
R(3) ∗ 1−KMIM̄JdM I ∧ ∗dM̄J (A.16)

with M I = (TA, φ
κ). We can again reduce this theory on a circle (A.2) and perform a

Weyl-rescaling (A.4) to find

S(2) =

∫
1

2
rR ∗ 1 + dr ∧ ∗dω − rKMIM̄JdM I ∧ ∗dM̄J . (A.17)

With the choices r = e−2ϕ̃ and ω = −ϕ̃ this reads

S(2) =

∫
e−2ϕ̃

(
1

2
R ∗ 1 + 2dϕ̃ ∧ ∗dϕ̃−KMIM̄JdM I ∧ ∗dM̄J

)
. (A.18)

This result should also be obtainable from (A.8) by dualizing the chiral multiplets with

scalars σA. This is possible since bA appears only with its field-strength dbA. The details

of this dualization in two dimensions will be discussed in appendix B.

B Twisted-chiral to chiral dualization in two dimensions

In this appendix we present the details of the dualization discussed in section 3.3 of a

twisted-chiral multiplet to a chiral multiplet in two dimensions. The starting point is the

action

S
(2)
C-TC =

∫
e−2ϕ̃

(
1

2
R ∗ 1 + 2dϕ̃ ∧ ∗dϕ̃− K̃φκφ̄λ dφ

κ ∧ ∗dφ̄λ + K̃σAσ̄B dσ
A ∧ ∗dσ̄B

− K̃φκσ̄B dφ
κ ∧ dσ̄B − K̃σAφ̄λ dφ̄

λ ∧ dσA
)
, (B.1)

where K̃ is given by

K̃ = K + e2ϕ̃S . (B.2)
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In the following we use sub-scripts to indicate derivatives with respect to fields, e.g. K̃φκ ≡
∂φκK̃. K̃ depends on a number of chiral multiplets with complex scalars φκ and a number

of twisted-chiral multiplets with complex scalars σA.

In order to perform a dualization, we assume that Re σA has a shift symmetry and

only appears via dReσA in (B.1). This implies that Re σA can be dualized into a scalar

ρA by the standard procedure. One first replaces dReσA → FA in (B.1) and then adds a

Lagrange multiplier term promotional to FA∧dρA. Then FA can be consistently eliminated

from (B.1). Denoting the imaginary part of σA by vA = ImσA the resulting action reads

S
(2)
C =

∫
e−2ϕ̃

(
1

2
R ∗ 1 + 2dϕ̃ ∧ ∗dϕ̃− K̃φκφ̄λ dφ

κ ∧ ∗dφ̄λ +
1

4
K̃vAvB dv

A ∧ ∗dvB (B.3)

+ K̃vAvB
(
e2ϕ̃dρA − Im (K̃vAφκdφ

κ)
)
∧ ∗
(
e2ϕ̃dρB − Im (K̃vBφλdφ

λ)
))

To compute the dualized action we make the following ansatz for the Legendre trans-

formed variables TA

TA = e−2ϕ̃ ∂K̃

∂vA
+ iρA = e−2ϕ̃ ∂K

∂vA
+

∂S
∂vA

+ iρA , (B.4)

and the dual potential K

K = K̃ − e2ϕ̃ ReTA v
A . (B.5)

We want to derive the conditions on K̃ under which the action (B.3) can be brought to

the form

S
(2)
C =

∫
e−2ϕ̃

(
1

2
R ∗ 1 + 2dϕ̃ ∧ ∗dϕ̃−KMIM̄J dM I ∧ ∗dM̄J

)
, (B.6)

with M I = (φκ, TA).

We first determine from (B.4) and (B.5) that

∂vA

∂TB
=

1

2
e2ϕ̃K̃vAvB ,

∂vA

∂φκ
= −K̃vAvBK̃vBφκ , (B.7)

KTA = −1

2
e2ϕ̃vA , Kφκ = K̃φκ ,

where K̃vAvB is the inverse of K̃vAvB ≡ ∂vA∂vBK̃ = 4K̃σAσ̄B . Crucially, one also derives

from (B.4) that

dReTA = e−2ϕ̃
(
K̃vAvBdv

A + 2Re(K̃vAφκdφ
κ)− 2KvAdϕ̃

)
. (B.8)

Note that there is the additional dϕ̃-term, which is absent in the standard dualization

procedure. The conditions on K̃ arise from demanding that the dual action can be brought

to the form (B.1) and no additional mixed terms involving dϕ̃ appear. To evaluate (B.1)

one uses (B.7) to derive the identities

KTAT̄B
= −1

4
e4ϕ̃K̃vAvB , KTAφ̄κ

=
1

2
e2ϕ̃K̃vAvBK̃vB φ̄κ , (B.9)

Kφκφ̄λ = K̃φκφ̄λ − K̃φκvAK̃
vAvBK̃vB φ̄λ .
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Inserting (B.8), (B.9) into (B.6) one finds the following terms involving dϕ̃

S
(2)
dϕ̃ =

∫
e−2ϕ̃

((
2 +KvAKv

AvBKvB
)
dϕ̃ ∧ ∗dϕ̃+KvAdvA ∧ ∗dϕ̃

)
. (B.10)

These terms can be removed by a Weyl rescaling of the three-dimensional metric if certain

conditions on K are satisfied. To see this, we perform a Weil rescaling

g̃µν = e2ωgµν (B.11)

which transforms the Einstein-Hilbert term as∫
e−2ϕ̃ 1

2
R̃ ∗̃1 =

∫
e−2ϕ̃

(
1

2
R ∗ 1− 2dω ∧ ∗dϕ̃

)
, (B.12)

while leaving all other terms invariant. Hence we can absorb the extra terms in (B.10) by

a Weyl rescaling iff

− 2dω = KvAKv
AvBKvBdϕ̃+KvAdvA . (B.13)

Clearly, a simple solution to this equation is found if K satisfies

KvAKv
AvBKvB = k , K = K1(φ, φ̄) +K2(v) , (B.14)

for a constant k, a function K1(φ, φ̄) independent of vA, and a function K2(v) independent

of φκ. In this case one can chose

ω = −k
2
ϕ̃− 1

2
K2(v) . (B.15)

Note that (B.14) is satisfied for the result found in a Calabi-Yau fourfold reduction (3.26),

i.e. k = −4 and K2 = logV.
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