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Z boson are calculated with NLO accuracy in QCD. They constitute a significant contribu-
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allows to conclude that rescaling the LO prediction by this K-factor leads to a reliable

NLO result and realistic error estimate due to missing higher-order perturbative effects.
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1 Introduction

With the recent observation of a new particle at the LHC [1, 2] and the related evidence at

the Tevatron [3], efforts to determine its identity are of highest priority. Among the most

important observables are the total and differential cross sections. First measurements of

these quantities indicate that the new particle is indeed the long-sought Higgs boson of the

Standard Model (SM). In order to definitely confirm or exclude this hypothesis, accurate

measurements and corresponding precision calculations of the cross section in the various

production modes are required.

The current theoretical knowledge of the SM cross sections is in general quite impressive

and documented in refs. [4, 5]. Subject of the current paper is a particular contribution to

the so-called Higgs-strahlung process pp → HV (V = W,Z). While it has been a major

search mode for Higgs bosons at the Tevatron, it used to be considered of minor importance

at the LHC due to its small cross section and large background. However, it belongs to the

channels that were analysed by the ATLAS and the CMS experiments already with the first

data. The signal-to-background ratio for Higgs-strahlung can be significantly enhanced

when cutting on events where the Higgs boson is produced at large pT,H [6].
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The leading-order (LO) cross section for this process can be written as a convolution

of the cross section for the Drell-Yan process pp→ V ∗ with the decay rate for V ∗ → HV ,

where V ∗ denotes an off-shell gauge boson of momentum k:

σHV,DY(pp→ HV ) =

∫
dk2 σDY(pp→ V ∗)

dΓ(V ∗ → HV )

dk2
. (1.1)

This relation holds exactly through next-to-leading order (NLO) QCD, i.e. O(αs), and

approximately through next-to-next-to-leading order (NNLO). The QCD effects of eq. (1.1)

are therefore strongly dominated by the Drell-Yan corrections to the cross section σDY;

they are known through NNLO QCD for the total HW/HZ cross sections [7–9], and for

HW production also differentially [10]. Typical Feynman diagrams for the Drell-Yan type

contribution are shown in figure 1 (a-f). They contribute to the cross section at order g4αns
(n = 0, 1, 2) and increase it by about 30% with respect to LO. Here and in what follows,

αs = g2s/(4π), with gs the strong and g the weak coupling constant.

Apart from the Drell-Yan-like QCD corrections at NNLO, there are top-loop-induced

contributions such as the ones shown in figure 1 (g-j). Their interference with the LO and

the real-emission NLO amplitude is of order λtg
3α2

s , with λt the top Yukawa coupling, and

their numerical impact is at the percent level [11].

In contrast to the NLO QCD and dominant NNLO QCD corrections, electroweak (EW)

corrections do not respect a factorization into Drell-Yan-like production and decay, since

irreducible (box) corrections to qq(′) → HV already contribute at NLO. The NLO EW

corrections have been evaluated in ref. [12] for the total HV cross sections, where they

amount to −(5−10)%, and in ref. [13] for differential distributions as part of the HAWK

Monte Carlo program, which fully includes all decays and off-shell effects of the weak boson

V = W,Z. In distributions the EW corrections can grow to −(10−20)%. As suggested

in ref. [14], NLO EW and Drell-Yan-like NNLO QCD corrections can be conveniently com-

bined in factorized form, where the EW corrections modify the QCD prediction by a relative

correction factor that is rather insensitive to the parton luminosities.

Recently, QCD corrections to the H → bb̄ decay have been considered as

well [15]. These final-state corrections should be carefully taken into account in the

Higgs reconstruction.

In this paper we focus on another type of contribution which is specific to HZ produc-

tion, namely gluon fusion, mediated by top- and bottom-quark loops. Typical diagrams

of this channel are shown in figure 2. Owing to the initial-state gluons, it cannot inter-

fere with the LO amplitude and therefore contributes to the cross section at order λ2tg
2α2

s .

For MH = 125 GeV, at leading, i.e., one-loop order it amounts to about 4% (6%) of the

total Higgs-strahlung cross section at the LHC with 8 TeV (14 TeV) [9]. Since it has no

lower-order correspondence, it is separately gauge invariant and IR and UV finite. The

two initial-state gluons lead to a rather strong renormalization and factorization scale de-

pendence of about 30%, thus increasing the theoretical uncertainty of the HZ relative to

the HW process, where the gg channel does not exist (at this order). Experience from

the gluon-fusion process gg→ H shows, however, that the LO scale uncertainty drastically

underestimates the actual size of the higher-order corrections. Owing to the similarity of

– 2 –



J
H
E
P
0
2
(
2
0
1
3
)
0
7
8

the gg → H and the gg → HZ processes in their QCD structure (same initial states and

colour structure, both loop-induced), we expect a similar phenomenon in the latter.

The goal of the present paper is to improve on the theory uncertainty of the gg→ HZ

process by calculating its NLO QCD corrections. Note that they are of order α3
s and thus

formally contribute to the N3LO corrections of the Higgs-strahlung process. Technically the

described NLO calculation involves massive, multi-scale two-loop diagrams that are beyond

present calculational techniques, so that we are forced to employ asymptotic expansions in

the limit of a large top-quark mass. We note that the same strategy was already successfully

applied to the calculation of NLO corrections to the related process of Higgs pair production

via gluon fusion, gg→ HH [16].

The paper is organized as follows: In section 2 we briefly outline the problem, before

describing the details of our calculation in section 3. Our numerical results are discussed

in section 4, and our conclusions given in section 5.

2 Outline of the problem

2.1 Leading order

At LO and in covariant Rξ gauge, the Feynman diagrams contributing to the gluon-induced

Higgs-strahlung process can be divided into three types, shown in figure 2:

1. Box diagrams for gg→ HZ: Only massive quarks run in the loop due to the propor-

tionality to the respective Yukawa coupling. Note, however, that these graphs tend

to zero also in the heavy-quark limit.

2. Triangle diagrams for gg → Z∗ → HZ: Owing to Furry’s theorem, all contributions

from vector couplings compensate each other, so that only the axial-vector coupling

of the Z boson needs to be taken into account. Since the axial-vector coupling is

proportional to the third component of the weak isospin of the quark (±1
2), the

contribution of a single quark generation vanishes in the equal-mass case. Assuming

massless quarks in the first two fermion generations, this leaves a non-vanishing

contribution only from the third generation. The amplitudes tend to zero in the

heavy-quark limit.

It is interesting to note that only the longitudinal part of the Z-boson propagator

contributes, while all contributions of the transverse part vanish. This consequence

of the Landau-Yang theorem [17, 18] can be used at NLO to facilitate the calculation

significantly, as will be described below.

3. Triangle diagrams for gg→ G0 → HZ: Only the massive-quark loops contribute here,

where G0 is the would-be Goldstone boson partner to the Z boson. The graphs are

both proportional to the respective Yukawa coupling and to the third component of

the weak isospin of the quark and tend to a constant in the heavy-quark limit.

While the box diagrams (a) are gauge-parameter independent in the Rξ gauge, both the

vertices (b) and (c) depend on the gauge-parameter of the Z boson. The sum of (b) and

(c) for each quark generation is, of course, gauge-parameter independent.
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V ∗

q̄
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(h)
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(i)

t
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Figure 1. Representative diagrams to hadronic HZ production of Drell-Yan type up to NNLO

(a-f) and non-Drell-Yan-like NNLO graphs with Higgs radiation off top-quark loops; both types of

corrections (up to NNLO) are not considered in this publication.

The full result for the LO amplitudes for the process gg → HZ can be found

in ref. [19, 20]; the hadronic cross section can be easily obtained using the program

vh@nnlo [9, 21]. We have rederived the LO cross section with the full dependence on

the top- and bottom-quark masses as a basic ingredient of our NLO calculation.

2.2 Next-to-leading order

The Feynman diagrams for the NLO QCD corrections to the gg→ HZ process are obtained

from the LO gluon-fusion diagrams shown in figure 2 (a-c) by attaching virtual and real

gluons and quarks to internal and external quark and gluon lines in all possible ways:

• For the real corrections, this results in triangle diagrams with two massive exter-

nal momenta, figure 2 (g,h), box diagrams with one or three massive external mo-

menta, figure 2 (i) and (d,e), and pentagon diagrams with two massive external mo-

menta, figure 2 (f) (counting off-shell gluons as massive lines). Note that figure 2 (e)

is a crossed version of figure 1 (j), for example; as pointed out above, it can interfere at
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t

(a)

t, b
Z∗

(b)

t
G0

(c)

t

(d)

t

(e)

t

(f)

t, b
Z∗, G0

(g)

t, b
Z∗, G0

(h)

q

Z∗, G0

(i)

t

(j)

t

t, b

(k)

t, b
Z∗

(l)

t
G0

(m)

Figure 2. Representative diagrams to hadronic HZ production via quark-loop-induced gluon

fusion. It is understood that crossed diagrams have to be taken into account as well.

O(λtg
3α2

s ) with the NLO real-emission Drell-Yan type amplitude, which has already

been taken into account in ref. [11]. In the present paper, we work at O(λ2tg
2α3

s ) and

need to evaluate the square of such terms.

• For the virtual corrections, we encounter two-loop vertex and box dia-

grams, figure 2 (j,l,m), as well as one-particle-reducible diagrams with two one-loop

triangle insertions, figure 2 (k).
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3 Details of the calculation and effective-field-theory approach

While the majority of the integrals could be calculated using well-known techniques, a

general result for the massive double-box integrals shown in figure 2 (j) is beyond current

technology. However, motivated by observations made in refs. [22–29], for example, we

follow a strategy that has been successfully applied to higher-order corrections to Higgs

production via gluon fusion. Instead of calculating the Feynman integrals in full generality,

we determine the perturbative correction factor

K =
σNLO

σLO
(3.1)

in the limit of infinite top-quark and vanishing bottom-quark masses (referred to as “effec-

tive theory” in what follows). For the gluon-fusion process, both inclusive and differential,

it turns out that this factor is rather insensitive to the top-quark mass effects [22–29].

Using asymptotic expansion of Feynman diagrams [30, 31], the heavy-top limit can be

interchanged with the loop integration, which simplifies the calculation enormously.

LO amplitude. At LO, the diagrams with top-quark loops reduce to vacuum diagrams

(integrals with vanishing external momenta) in the effective theory. Because already at

LO the loop integrals are UV divergent, some care is needed in the calculation of the Dirac

traces that involve the matrix γ5. Both at LO and NLO, we consistently use the ’t Hooft-

Veltman scheme [32, 33], where γ5 anticommutes with the first four, but commutes with

all other Dirac matrices. In practice, we insert γ5 = − i
4!εµνρσγ

µγνγργσ (ε0123 = +1), keep

the ε-tensor outside of the D-dimensional integration, and project onto four dimensions

only after all divergent terms have cancelled among each other.

The result for the LO amplitudeM0 and its polarization- and colour-averaged square is

M0 = − αsα

s2wc
2
wMZ

δabε(ε1, ε2, p1, p2)
pH · ε∗Z
ŝ

,

|M0|2 =
α2
sα

2

256s4wc
4
wM

4
Z

λ(ŝ,M2
H,M

2
Z),

(3.2)

with MH the Higgs mass and MZ the Z mass, α and αs the electromagnetic and the

strong coupling constants, s2w = 1 − c2w the sine squared of the weak mixing angle, and

λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc. In eq. (3.2) we make use of the momentum

assignment ga(p1)+gb(p2)→ H(pH)+Z(pZ), with a, b denoting colour indices and ŝ = (p1+

p2)
2 the usual Mandelstam variable. The polarization vectors εi(pi) (i = 1, 2) correspond

to the respective incoming gluons, and ε∗Z(pZ) to the outgoing Z boson. The shorthand

ε(ε1, ε2, p1, p2) stands for the contraction of the ε-tensor with the 4-vectors in the argument.

NLO virtual corrections. In the limit mt → ∞, the top quark can be integrated

out of the theory, resulting in effective operators that couple gluons to the Higgs boson,

to the electroweak Goldstone boson G0, and to the Z boson. An NLO calculation then

requires the evaluation of the physical matrix elements including these effective operators

at the one-loop level. In addition, the coefficients for the matching of the effective to the
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full theory are needed at NLO. Such an approach is mostly useful when one aims at a

renormalization-group-improved result due to a separation of different scales.

In this paper, we pursue a different method, the so-called large-mass expansion [30, 31],

in which the matrix elements and the matching coefficients are calculated simultaneously.

Formulated in terms of the “method of regions”, it states that the loop integrand is to

be Taylor-expanded in all relevant regions of loop momenta, and the final result of each

diagram is the sum over all those expansions. If a single internal mass m is considered

large, a loop momentum qµi can either be large, |qµi | ∼ m, or small, |qµi | � m, while

external momenta pµi are always small, |pµi | � m. In this way, the virtual NLO (two-

loop) diagrams with top-quark loops reduce to either massive two-loop vacuum integrals

or products of massless one-loop triangles with massive one-loop vacuum integrals. As a

result of the large-mass expansion, all one-particle irreducible two-loop graphs involving

top-quark loops vanish, except for the ones with corrections to the ggG0 vertex. Note that

the latter as well as the axial vector part of the ggZ vertex each receive an anomalous

counterterm [34] to restore chiral symmetry in the massless-quark limit in the ’t Hooft-

Veltman scheme [32, 33] for γ5, in the following denoted as δZP5 and δZA5 , respectively.

Since we set mq = 0 for q 6= t both in the propagators and in the Yukawa couplings, the

set of diagrams to be evaluated with internal massless quarks does not contain any two-loop

box diagrams. The only genuine two-loop integrals with non-vanishing external momentum

are three-point functions as the one shown in figure 2 (l). As their LO counterparts at one

loop, their contribution to the cross section vanishes when working in Landau gauge, where

the Z propagator Dµν(k) is proportional to the polarization sum
∑

λ for a physical vector

particle Z∗ of mass k2,

Dµν(k) ∝ −gµν +
kµkν

k2
=
∑
λ

εµ(λ)(k)∗εν(λ)(k) . (3.3)

The ggZ∗ subamplitude therefore corresponds to the decay of a massive into two massless

vector particles which is forbidden due to the Landau-Yang theorem [17, 18].

In summary, the one-particle-irreducible two-loop diagrams comprise only non-

vanishing contributions from top-quark loops in the ggG0 vertex and massless quark loops

in the ggZ∗ vertex. Since the contribution of the latter vanishes in Landau gauge for the

Z boson, the genuine two-loop calculation is particularly simple in that gauge. It is, how-

ever, instructive to inspect the situation in general Rξ gauge for the Z boson as well, a task

that is pursued in the appendix.

In the Landau gauge, the bulk of the contributions is thus given by the production of a

Goldstone boson and its subsequent “decay” into a Higgs and a Z boson. The corrections,

thus, have a structure and size that is similar to the one observed for the direct production

of a pseudo-scalar Higgs boson [22, 28, 35–38], and analyses about the origin of the size of

the QCD corrections could be carried out along the same lines (see, e.g., ref. [39]).

The reducible two-loop graphs, see figure 2(k), involve the product of the one-loop

induced gg∗H and gg∗Z vertices and can be calculated with conventional one-loop tech-

niques. These graphs by themselves form a gauge-invariant, UV-finite and IR-finite subset

of diagrams.

– 7 –
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In practice, we have performed two completely independent calculations of all loop

contributions. Version 1 follows basically the strategy described in ref. [16] for the related

process of scalar-pseudoscalar Higgs-boson pair production. Here the Feynman diagrams

are generated with the program FeynArts [40], and the large-mass expansion of the dia-

grams involving top-quark loops is performed by inhouse Mathematica routines. The cal-

culation is carried out in Landau gauge, so that no two-loop diagrams with massless-quark

loops contribute. In the second calculation, the diagrams are generated by QGRAF [41]

and expanded using EXP/Q2E [42, 43]. The massive two-loop vacuum integrals resulting

from top-quark loops are calculated using MATAD [44]. This calculation is carried out

both in Landau and in unitarity gauge. In the latter, the Goldstone bosons are absent, but

massless-quark loops contribute to the ggZ∗ vertex; these graphs are calculated with the

program MINT [45]. While the results of the two different calculations in Landau gauge

are in mutual agreement term by term, for the calculation in unitarity gauge only the full

result agrees (after the renormalization procedure).

Including all required counterterms, the virtual contribution is given by1

σvirt =

∫
dPS2

[
|M0(ε)|2(1 + 2δZ + δCS) + 2Re

{
M1(ε)M0(ε)∗

}]
, (3.4)

where M0(ε) is the LO amplitude in D = 4 − 2ε dimensions, M1(ε) the amplitude of

the virtual corrections at NLO, and dPS2 denotes the 2-particle phase-space element. We

renormalize the strong coupling in the MS scheme assuming nf = 6 flavours, and the

top-quark mass in the on-shell scheme. Note that the renormalization factor is gauge

dependent; in Landau gauge, it is

δZ = Z2
gZ3Z

−2ε
m ZP5 − 1

= 2δZg + δZ3 − 2εδZm + δZP5 ,

δZg =
αs

π

(
− 11

6
CA +

2

3
TRnf

)
1

4ε
,

δZ3 = −αs

π
TR

1

3

(
1

ε
+ ln

(
µ2

m2
t

))
,

δZm = −αs

π

(
CF

3

4ε
+O(1)

)
,

δZP5 = −2
αs

π
CF,

(3.5)

where CF = 4
3 , TR = 1

2 , and CA = 3 are the QCD colour factors, and µ is the renormalization

scale. In unitary gauge, the mass counterterm δZm is absent, but δZA5 = −αs
π CF [34] is

needed for the ggZ vertex instead of δZP5 .

The term δCS,

δCS =
αs

π

(
µ2

ŝ

)ε[
CA

(
1

ε2
− π2

3

)
+

(
1

ε
+ 1

)(
11

6
CA −

2

3
TRnl

)
+

(
67

18
− π2

6

)
CA −

10

9
TRnl

](
1− π2

12
ε2
)
,

(3.6)

1Note that we consistently suppress terms involving ln 4π and γE, which accompany poles in ε, because

they cancel in the UV-finite result as usual.
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in eq. (3.4) needs to be added according to the dipole subtraction method [46], where nl = 5

denotes the number of light flavours.

In order to be consistent with the currently available PDF sets, we express our final

result in terms of α
(5)
s , the strong coupling with five active flavours using the matching

relation [47]

α(5)
s (µ) = α(6)

s (µ)

[
1 +

α
(6)
s (µ)

π

(
− 1

6
ln

(
µ2

m2
t

))
+O(α2

s )

]
, (3.7)

so that the logarithmic dependence on mt vanishes. This procedure is equivalent to decou-

pling the top quark in the αs renormalization by subtraction of the top-quark loop in the

gluon self energy at zero-momentum transfer, instead of using the MS prescription. In the

remainder of this paper, we set αs ≡ α(5)
s .

Inserting the QCD colour factors, the final result for the virtual contribution can be

written as

σvirt =

[
1 +

αs(µ)

π

(
164

9
+

23

6
ln

(
µ2

ŝ

))]
σLO + σ(virt,red), (3.8)

where

σLO =

∫
dPS2 |M0|2, (3.9)

(cf. eq. (3.2)) and σ(virt,red) denotes the contribution from the type of reducible diagrams

shown in figure 2 (k). It is not proportional to σLO; as a function of the partonic Mandel-

stam variables ŝ = (p1 + p2)
2, t̂ = (p1 − pZ)2, and û = (p1 − pH)2, it reads

σ(virt,red) =

∫
dPS2

(
αs

π

)3 α2π2

768s4wc
4
wM

4
Z

1

ŝ−M2
Z

×
{(
ŝM2

ZM
2
H + ŝM4

Z − ŝ2M2
H − 2ŝ2M2

Z + ŝ3
)

×
(
− 2 + ln

(−û
M2

Z

)
M2

Z

û−M2
Z

+ ln

( −t̂
M2

Z

)
M2

Z

t̂−M2
Z

)
+
(
− ŝM2

ZM
2
H + ŝM4

Z + ŝ2M2
H − 2ŝ2M2

Z + ŝ3
)

×
( −M2

Z

t̂−M2
Z

+
−M2

Z

û−M2
Z

+ln

(−û
M2

Z

)
M4

Z

(û−M2
Z)2

+ln

( −t̂
M2

Z

)
M4

Z

(t̂−M2
Z)2

)}
.

(3.10)

NLO real corrections. The real corrections are induced by the partonic channels gg→
HZg, gq → HZq, gq̄ → HZq̄, and qq̄ → HZg, where in the channels involving external

quarks only the squares of the diagrams with closed quark loops are taken into account.

At first sight, the most complicated one-loop diagrams are pentagon graphs with a top-

quark loop. However, in the large-top-mass limit, these graphs vanish. The algebraically

most complicated diagrams are the box graphs with external Z∗ggg fields; they are the

only ones that receive contributions from the vector-coupling of the Z boson, while all

– 9 –
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other diagrams (summed in pairs of opposite charge flow in the loop) depend only on the

Z-boson axial-vector coupling.

The actual calculation of the diagrams can be performed using standard one-loop cal-

culational techniques and has been carried out in three completely independent ways. The

first approach builds on graphs from FeynArts 1.0 [40] and reduces or expands the full

amplitudes with inhouse Mathematica routines, which produce output in the form of

Fortran code. The occurring one-loop tensor and scalar integrals are numerically evalu-

ated with the (not yet public) library Collier that is based on the results of refs. [48–53].

The second calculation is based on the program packages FeynArts 3.2 [54] and Form-

Calc/LoopTools [55, 56], as far as the calculation of one-loop graphs is concerned that

do not involve top-quark loops. The large-mass expansion of the top-quark loops here

again is carried out using inhouse routines (independent from the ones of version 1).

The third approach again uses the QGRAF/EXP/Q2E/MATAD-setup for the generation

and expansion of the diagrams and the evaluation of the massive vacuum diagrams. The

calculation of the massless triangle and box diagrams is performed by an extended version

of the FORM [57] routine previously used in ref. [11], which implements algebraic Passarino-

Veltman reduction [49] and analytic results of the scalar integrals given in ref. [58]. Here

we explicitly verified the gauge invariance of the result with respect to the Z propagator

as well as to the external gluons. For the latter, we assumed a general axial gauge, where

the polarization sum reads

∑
λ

εµ,a(λ)(pi)
∗εν,b(λ)(pi) = δab

(
−gµν +

pµi n
ν + pνi n

µ

pi · n

)
(i = 1, 2, 3) (3.11)

with an arbitrary light-like vector n which drops out in the squared amplitude.

All real-emission channels contain IR singularities in their integration over phase space.

More precisely, gg→ HZg becomes IR singular if the emitted gluon becomes soft or collinear

to one of the incoming gluons. The other channels involve only collinear singularities.

The separation of the IR singularities in the phase-space integration is achieved using the

standard dipole subtraction method [46], where an auxiliary cross section is subtracted from

the full real-emission part and added back after an analytical integration (in D dimensions)

over the one-particle emission phase space that contains the IR singularity (cf. eq. (3.6)).

4 Numerical results

4.1 Input values

We use the following input parameters:

MZ = 91.1876 GeV, MW = 80.399 GeV, Gµ = 1.16637 · 10−5 GeV−2,

mb = 4.75 GeV, mt = 172 GeV.
(4.1)

In the effective-theory approximation, we set mt → ∞ and mb = 0, as discussed above.

For the electromagnetic coupling constant α we employ the Gµ scheme, where the coupling

– 10 –



J
H
E
P
0
2
(
2
0
1
3
)
0
7
8

 0.01

 0.1

 1

 10

 200  300  400  500  600  700  800  900  1000√
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Figure 3. Comparison of the LO partonic cross section in the effective (labelled “LME”) and

the full theory for various, partly hypothetical values of the top-quark mass. The curve for mt =

3.44 TeV cannot be distinguished from the LME result.

constant is defined as

α =

√
2GµM

2
Ws

2
w

π
, s2w = 1− c2w = 1− M2

W

M2
Z

. (4.2)

As the default PDF sets, we use MSTW2008(N)LO [59] when evaluating a (N)LO quantity.

The corresponding input values for the strong coupling are given by αLO
s (MZ) = 0.13939

(αNLO
s (MZ) = 0.12018). The running of αs is performed to the order under consideration:

µ2
dαs

dµ2
= −

n∑
l=0

αl+2
s βl , (4.3)

with n = 0 (n = 1) at LO (NLO). Both the PDFs and the αs evolution are implemented

with the help of the LHAPDF library [60].

Our default choice for the renormalization and the factorization scales µR and µF is

the invariant mass of the HZ system:

µ0 =
√

(pH + pZ)2 . (4.4)

4.2 Leading-order considerations

In order to get an idea about the quality of the effective theory, we show some studies at

LO before presenting our NLO results. Figure 3 shows the partonic cross section both for
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Figure 4. Comparison of the LO hadronic cross section in the effective and the full theory for√
s = 8 TeV (dashed) and 14 TeV (solid).

the exact top-mass dependence and in the effective theory. The exact result exhibits a kink

at the top-quark pair threshold
√
ŝ = 2mt = 344 GeV which clearly cannot be reproduced

by the effective-theory approach. For larger values of
√
ŝ, we do not expect an expansion in

1/mt to converge. In fact, higher-order terms in this expansion would most likely worsen

the prediction in the region of larger
√
ŝ.

Taking into account the kinematical constraint
√
ŝ > MH +MZ, the region where the

effective theory is nominally applicable shrinks to zero for MH > 2mt −MZ ≈ 253 GeV.

Figure 4 (a) compares the total inclusive LO hadronic cross section at 8 TeV and 14 TeV

when the full top- and bottom-mass dependence is taken into account to the effective-

theory result. The behaviour is expected from the considerations above: The effective

theory works better for smaller Higgs masses, agreeing to the full results within 2% (25%)

for 8 TeV (14 TeV) at MH = 125 GeV. Note that the PDFs suppress the contribution from

larger ŝ, thus emphasising the region where the 1/mt expansion converges. For larger values

of MH, the effective-theory approximation deteriorates; at MH = 200 GeV, the deviation

to the full result is 74% (143%) for 8 TeV (14 TeV).

The situation becomes more problematic in the boosted regime which we study by

imposing a lower cut on the Higgs’ transverse momentum, requiring pT,H > 200 GeV,

see figure 4 (b). In this case, the minimal value for
√
ŝ is already above the top-quark

threshold when MH = 100 GeV. Consequently, the direct application of the effective-theory

approximation is off by almost a factor of five to ten, which is clearly unacceptable.

A direct evaluation of the NLO contribution in the effective theory is therefore not

possible. However, in refs. [22–29] it was shown for the process gg→ H at NLO and NNLO

that the perturbative correction factor, defined at NLO in eq. (3.1), depends only very

weakly on the top-quark mass. To some degree, this holds even far outside the convergence

region of the heavy-top expansion, as long as only the leading term in 1/mt is taken into

account. Motivated by this observation, we move on to NLO and present our results in the

next section.
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Figure 5. NLO hadronic cross section as obtained by using eq. (4.5) (upper), and NLO K-factor

(lower) for
√
s = 8 TeV (dashed) and 14 TeV (solid).

4.3 Next-to-leading order results

4.3.1 Correction factor

As outlined above, we evaluate the NLO hadronic cross section by rescaling the full LO

result by the perturbative K-factor calculated in the effective theory:

σNLO
approx(mt,mb) = σLO(mt,mb)K(mt →∞,mb = 0)

=
σLO(mt,mb)

σLO(mt →∞,mb = 0)
σNLO(mt →∞,mb = 0) .

(4.5)

Since we are aiming at a NLO quantity, it actually might be more appropriate to evaluate

the formally LO cross sections in eq. (4.5) with NLO PDFs. We checked that the effect

of this is much smaller than the uncertainty due to variations of the renormalization and

factorization scale, which is why we stick to LO PDFs in σLO.

Figure 5 shows the gluon-induced cross section obtained in this way for
√
s = 8 TeV and√

s = 14 TeV hadronic centre-of-mass energy, together with the corresponding perturbative

correction factor K. Part (a) of figure 5 shows the total inclusive cross section, while in

part (b) the boosted scenario with pT,H > 200 GeV is shown. In both cases, we observe

a K-factor of the order of two, almost independent of MH, with a slight increase towards

lower centre-of-mass energies. This behaviour is very similar to the one observed for gluon-

induced single-Higgs [22–29] and Higgs pair production [16]. The correction even slightly

exceeds the well-known correction factor for gg→ H.

A breakdown into individual contributions to K is shown in figure 6 for the total

inclusive cross section at
√
s = 14 TeV:
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Figure 6. Individual contributions to the NLO hadronic K-factor at
√
s = 14 TeV as described

in the main text.

• KLO — change of PDF sets from LO to NLO

• ∆Kggvirt — virtual corrections including integrated dipole terms according to ref. [46]

• ∆Kggreal — correspondingly regularized real corrections

• ∆Kqg,∆Kqq — contributions from qg and qq̄ initial states

The sum of all these terms results in Ktot, the total K-factor.

4.3.2 Residual scale uncertainty

As described in the introduction, the LO scale dependence for this purely gluon-induced

process is quite large. NLO corrections typically decrease this uncertainty. Let us recall

the situation in the gluon-fusion process gg → H, however: For the LO result, the usu-

ally adopted scale variation by a factor of two around the central scale leads to a gross

underestimation of the size of the higher-order effects. At NLO, the scale uncertainty is

not significantly smaller than at LO, but it does provide a good estimate of the NNLO

effects. Consistently, inclusion of the NNLO corrections leads to a significant reduction of

the scale uncertainty.

Expecting a similar behaviour for the gg → HZ process, it is not surprising to see

the result shown in figure 7: Both for the inclusive and the boosted scenario the scale

dependence decreases from more than 100% at LO to 60% at NLO when the renormalization
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Figure 7. Scale dependence of the hadronic LO and NLO cross section for
√
s = 8 TeV (dashed)

and 14 TeV (solid). The renormalization and factorization scales are varied simultaneously around

the central scale µ0 =
√

(pH + pZ)2. The Higgs mass is set to MH = 125 GeV.

and factorization scales are varied simultaneously by a factor of six around their central

value µ0, see eq. (4.4). As for the process gg → H, the behaviour in µ/µ0 is strictly

monotonous, and the LO and NLO curves do not intersect. Therefore, a preferred value for

µF and µR cannot be deduced from these plots. The radiative corrections increase with

µ/µ0, so there is a slight tendency towards choosing smaller values of µ. Nevertheless, in

our numerical analysis we stick to the “natural” value µ0 as the central choice.

Note that, also similar to what is observed in gg → H, variation by a factor of two

would not lead to any overlap between the LO and the NLO predictions.

The similarity between the processes gg → H and gg → HZ suggests that the NLO

error estimate due to scale variation is quite reliable for the process gg→ HZ. In order to

take into account the fact that the effective theory is expected to work not quite as well in

gg→ HZ as in gg→ H, we determine this uncertainty by varying µ within a factor of three

rather than two around the central value µ0. The numerical results are listed in table 1.

4.3.3 Total inclusive cross section

In this section we provide the most up-to-date numbers for the total inclusive cross section

for the Higgs-strahlung process at the LHC with 8 and 14 TeV, including

• NNLO Drell-Yan terms σHV,DY of order g4αns (n = 0, 1, 2) [7–9];

• electroweak corrections which are applied as an overall factor to the Drell-Yan

terms [12, 14];

• top-loop-induced corrections of order O(λtg
3α2

s ) [11];

• gluon-induced terms of order λ2tg
2αns (n = 2, 3); n = 3 corresponds to the newly

calculated terms of this paper.
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√
s [TeV] MH[GeV] σLO

gg [fb] σNLO
gg [fb]

no pT,H cut

8 115 19.8+61%
−34% 39.3+32%

−24%

8 120 18.7+61%
−34% 37.2+32%

−24%

8 125 17.7+61%
−34% 35.1+32%

−24%

8 130 16.7+61%
−34% 33.1+32%

−24%

14 115 79.1+51%
−31% 152+27%

−21%

14 120 75.1+51%
−31% 144+27%

−21%

14 125 71.1+51%
−31% 136+27%

−21%

14 130 67.2+51%
−31% 129+27%

−21%

pT,H > 200 GeV

8 115 1.41+65%
−36% 2.94+34%

−25%

8 120 1.33+65%
−36% 2.79+33%

−26%

8 125 1.26+65%
−36% 2.63+34%

−25%

8 130 1.19+65%
−36% 2.48+33%

−25%

14 115 6.86+55%
−32% 13.8+29%

−22%

14 120 6.53+55%
−32% 13.1+28%

−22%

14 125 6.19+55%
−32% 12.5+29%

−22%

14 130 5.87+55%
−32% 11.8+29%

−22%

Table 1. Cross sections of HZ production via gluon fusion for LHC energies in the range of

phenomenologically preferred MH values. The scale uncertainty is given in percent. The latter

results from a rescaling of µR = µF by factors of 3 and 1/3 relative to µ0.

For the non-gluon-fusion part of the cross section, the scale variation is obtained by using

the MSTW2008NNLO PDF set and varying µF and µR independently within the interval

(µR, µF)/MH ∈ [1/3, 3] × [1/3, 3], which results in a cross section interval [σ
(−)
no-gg, σ

(+)
no-gg].

The central value of the total cross section is then obtained as

σcentral =
1

2

[
σ(+)
no-gg + σ(+)

gg + σ(−)no-gg + σ(−)gg

]
, (4.6)

where σ
(±)
gg are the boundaries of the scale uncertainty interval of the gluon-induced compo-

nent which can be obtained from table 1. Accordingly, the scale uncertainty is calculated as

∆scale =
[
σ(+)
no-gg + σ(+)

gg − σ(−)no-gg − σ(−)gg

]
/(2σcentral) . (4.7)
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√
s [TeV] MH [GeV] σ[pb] ∆scale[%] ∆PDF+αs [%] ∆total[%]

pp→ HW

8 115 0.926 ±0.6 ±2.3 ±2.9

8 120 0.805 ±0.6 ±2.5 ±3.1

8 125 0.705 ±0.6 ±2.3 ±3.0

8 130 0.617 ±0.7 ±2.4 ±3.1

14 115 1.97 ±0.6 ±2.0 ±2.6

14 120 1.73 ±0.7 ±1.8 ±2.5

14 125 1.52 ±0.7 ±2.2 ±2.9

14 130 1.34 ±0.6 ±2.0 ±2.6

pp→ HZ

8 115 0.540 ±2.6 ±2.4 ±5.0

8 120 0.475 ±2.8 ±2.4 ±5.1

8 125 0.419 ±2.9 ±2.4 ±5.3

8 130 0.371 ±3.1 ±2.3 ±5.4

14 115 1.24 ±3.5 ±1.8 ±5.3

14 120 1.10 ±3.7 ±1.6 ±5.3

14 125 0.983 ±3.9 ±1.6 ±5.4

14 130 0.880 ±4.0 ±1.9 ±5.9

Table 2. Total inclusive cross section for the processes pp → HW and pp → HZ. The latter

includes the newly calculated NLO gluon-induced terms. The evaluation of the scale and PDF+αs

uncertainties is described in the main text.

The influence of the newly evaluated NLO gluon-induced terms on the overall PDF+αs

uncertainty is rather small, since this contribution comprises only about 5% of the total

cross section, and will be neglected. Therefore, we base the estimate of the PDF+αs

uncertainty solely on what is currently contained in vh@nnlo (i.e., LO gluon-induced terms

are taken into account). Following the PDF4LHC recommendations [62] by using the NNLO

PDF sets from MSTW2008 [59], CT10 [63], and NNPDF23 [64], we obtain a cross section

interval [σ
(−)
PDF+αs

, σ
(+)
PDF+αs

] and calculate the resulting uncertainty as

∆PDF+αs =
σ
(+)
PDF+αs

− σ(−)PDF+αs

σ
(+)
PDF+αs

+ σ
(−)
PDF+αs

. (4.8)

Our results are shown in table 2. We find that the NLO gluon-induced terms calculated

in this paper increase the central values of the HZ cross section by about 4% (7%) at

8 TeV (14 TeV). Since the K-factor for these terms is of the order of two, and their scale

uncertainty decreases by roughly the same factor when going from LO to NLO (see table 1),

the overall scale uncertainty on the total inclusive cross section remains almost unaffected
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by the inclusion of the new terms. For completeness, we also include updated numbers

for HW production in table 2, even though they are not affected by the NLO gluon-fusion

terms calculated in this paper.

As a side remark, we note that the PDF+αs uncertainties of table 2 are significantly

smaller than in ref. [11]. This is due to the use of only NNLO PDF sets in this newer

version, while the previous numbers were based on a rescaling of the NNLO MSTW2008

uncertainty by the NLO PDF error. For HW production, also the scale uncertainty is

slightly smaller in table 2 than in ref. [11]. This is because these previous numbers were

obtained by linearly adding uncertainties of the “top-induced” terms to the rest, while here

we vary the scale in both contributions simultaneously. For the HZ cross section, this is

overcompensated by the uncertainty of the NLO gluon-fusion component, see above.

5 Conclusions

The gluon-induced corrections to the Higgs-strahlung process have been calculated through

NLO, i.e. O(α3
s ). The perturbative correction factor is obtained in the limit mt →∞ and

mb = 0, and then used to rescale the full LO cross section in order to obtain a prediction

for the NLO result. The behaviour of the perturbative series and the residual scale vari-

ation are found to be comparable to the gluon-fusion processes of single-Higgs and Higgs

pair production. The success of the effective-field-theory approach in describing correc-

tions to single-Higgs productions, where exact calculations for higher-order corrections are

available, gives confidence in a reliable prediction of the theoretical uncertainty due to

higher-order effects for gluon-induced HZ production.

Numerical results were provided for current and future LHC energies, both for the

fully inclusive cross section and for boosted Higgs kinematics. We use these results in

order to provide the most up-to-date predictions for the hadronic Higgs-strahlung process

at relevant collider energies. The large corrections on the gluon-induced terms, combined

with their large scale uncertainty, increases the overall uncertainty on the total HZ cross

section by about 1%.

In the near future, the results will be included in the publically available numerical

program vh@nnlo [21].

A Treating gg → HZ via the anomaly relation

In this appendix we sketch yet another way to calculate the genuine two-loop part upon

employing various tricks, such as the Landau-Yang theorem [17, 18], the Adler-Bell-Jackiw

(ABJ) anomaly relation [65], and the Adler-Bardeen theorem [66], in order to reduce the

calculation to a much simpler massless one-loop calculation. For definiteness we employ

the conventions of ref. [67] for the SM parameters and Feynman rules.

In section 3 we explained that the LO and NLO virtual amplitudes for the process

gg→ HZ have the following properties:

• Non-vanishing contributions originate only from loops of vertex types ggZ, ggG0,

and ggH, as illustrated in figure 2(b,c,k,l,m), while all graphs with more than three
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external legs attached to the loop vanish or compensate each other for mt →∞ and

mq 6=t = 0.

• At NLO the loop-induced ggH vertex is only relevant at the one-loop level within

reducible diagrams like the one shown in figure 2(k). Owing to their simplicity we

do not consider those reducible diagrams in the following.

• When the ggZ vertex is attached to an intermediate Z propagator, and only in this

case two-loop diagrams of this vertex become relevant, the Landau-Yang theorem

implies that only the longitudinal part of the Z propagator contributes.

Thus, the contribution of one-particle-irreducible (1PI) diagrams, i.e. the graphs in figure 2

(b,c,l,m), to the matrix elements Mn (n = 0, 1) is given by

M1PI
n (ε) = εµ1ε

ν
2 G

gagbZ
µνρ (p1, p2,−k)Dρσ

ξ (k)
eMZ

swcw
ε∗Z,σ

− iεµ1ε
ν
2 G

gagbG0

µν (p1, p2,−k)Dξ(k)
e

2swcw
(pZ + 2pH)σ ε∗Z,σ,

(A.1)

where we use an obvious notation for the external polarization vectors ε1, ε2, ε
∗
Z for the two

incoming gluons and the outgoing Z boson, a, b are the gluonic colour indices, k = p1+p2 is

the momentum of the intermediate Z or G0 lines, GgagbZ
µνρ (p1, p2,−k) and GgagbG0

µν (p1, p2,−k)

are the amputated Green functions for the ggZ/G0 vertices, and Dρσ
ξ (k) and Dξ(k) are the

Z/G0 propagators in the general Rξ gauge,

Dρσ
ξ (k) =

−i
(
gρσ − kρkσ

k2

)
k2 −M2

Z

− i
kρkσ

k2
ξ

k2 − ξM2
Z

, Dξ(k) =
i

k2 − ξM2
Z

. (A.2)

Inserting the latter into eq. (A.1) and exploiting the fact that the transversal part of Dρσ
ξ (k)

(first term in eq. (A.2)) does not contribute, we obtain

M1PI
n (ε) = − e

swcw

(pH · ε∗Z)

ŝ− ξM2
Z

εµ1ε
ν
2

×
[
ikρGgagbZ

µνρ (p1, p2,−k)
ξMZ

ŝ
−GgagbG0

µν (p1, p2,−k)

]
,

(A.3)

where we have used k = pZ + pH, pZ · ε∗Z = 0, and k2 = ŝ. The terms in square brackets

can be simplified using the well-known form of the ABJ anomaly.

To this end, we recall that the ABJ anomaly relation for the axial current jµf,5 =

ψfγ
µγ5ψf and the pseudo-scalar operator pf,5 = ψfγ5ψf for a quark q reads

∂µj
µ
q,5 = 2imqpq,5 −

αs

4π
F aµνF̃

a,µν , (A.4)

where F̃ a,µν = 1
2ε
µνρσF aρσ is the dual of the gluonic field-strength tensor F a,µν . Eq. (A.4)

is an operator relation, valid for bare quantities, expressing chiral symmetry. The Adler-

Bardeen theorem [66] states that it is correct to all orders in regularization schemes that

respect chiral symmetry. In regularizations that are not chirally symmetric, eq. (A.4) has to
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be restored by extra counterterms from evanescent operators. For the ’t Hooft-Veltman γ5
scheme [32, 33], which is employed in our calculation, these are the counterterms δZA5 and

δZP5 calculated in ref. [34] and already used in section 3. The relevant momentum-space

Feynman rules for the composite operators jµq,5, pq,5, and FF̃ are given by

jµf,5

f̄

f

iγµγ5 pf,5

f̄

f

iγ5

p1

p2

FF̃

ga,µ

gb,ν

4iδabǫµνρσp1,ρp2,σ

(A.5)

The dotted line in the Feynman rules indicate that the momentum p flows into the vertex.

The operator FF̃ induces Feynman rules with three and four gluon lines as well, but

those will not contribute in the following. The fermionic Feynman rules are related to the

couplings of Z/G0 to the quark:

Zµq̄q : −
ieI3w,q
2swcw

γµγ5 + vector part, G0q̄q : −
eI3w,q
sw

γ5, (A.6)

where I3w,q is the third component of the weak isospin of q.

Now we can make contact with the Green functions GgagbZ and GgagbG0
introduced

above. Since we consider only QCD corrections, in the relevant graphs the couplings of the

external Z/G0 lines to an internal quark line represent the only electroweak coupling in the

ggZ/G0 vertex functions. These electroweak couplings can be interpreted as the insertions

of the operators jµq,5 and pq,5, because the vector part of the Z coupling does not contribute,

as explained in section 2. Thus, we obtain

GgagbZ
µνρ =

∑
q

GgagbZ
µνρ

∣∣∣∣
q

, GgagbZ
µνρ

∣∣∣∣
q

= −
ieI3w,q
2swcw

G
gagbjq,5
µνρ ,

GgagbG0

µν =
∑
q

GgagbG0

µν

∣∣∣∣
q

, GgagbG0

µν

∣∣∣∣
q

= −
eI3w,q
swcw

mq

MZ
G

gagbpq,5
µν ,

(A.7)

which is valid up to NLO QCD, where GgagbZ/G0 |q denotes the contributions induced by

closed loops with quark q. Using this relation, eq. (A.4) implies:

ipρGgagbZ
µνρ (p1, p2, p)

∣∣∣∣
q

= −MZG
gagbG0

µν (p1, p2, p)

∣∣∣∣
q

+
ieI3w,q
2swcw

αs

4π
Ggagb(FF̃ )
µν (p1, p2, p), (A.8)

where we have restored the arguments of the incoming momenta. Keeping in mind that

p = −k, we thus can write the contribution of closed q-loops to M1PI
n (ε) in eq. (A.3) in
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two different ways:

M1PI
n (ε)|q =

e

swcw

(pH · ε∗Z)

ŝ
εµ1ε

ν
2

×
[
GgagbG0

µν (p1, p2,−k)

∣∣∣∣
q

+
ieI3w,q
2swcw

αs

4π

ξMZ

ŝ− ξM2
Z

Ggagb(FF̃ )
µν (p1, p2,−k)

]
,

=
e

swcw

(pH · ε∗Z)

MZŝ
εµ1ε

ν
2 (A.9)

×
[
ikρGgagbZ

µνρ (p1, p2,−k)

∣∣∣∣
q

+
ieI3w,q
2swcw

αs

4π

ŝ

ŝ− ξM2
Z

Ggagb(FF̃ )
µν (p1, p2,−k)

]
.

Now we exploit our approximation of mt →∞ and mq 6=t = 0, which implies kρGgagbZ|t = 0

and GgagbG0 |q 6=t = 0. The former result is taken from our diagrammatical large-mass

expansion, the latter is a trivial consequence of the vanishing Yukawa couplings of the

massless quarks. For the top quark we take the second form of the last equation of eq. (A.9)

and for the other quarks the first, and obtain

M1PI
n (ε) =

e

swcw

(pH · ε∗Z)

ŝ
εµ1ε

ν
2

[∑
q 6=t

ieI3w,q
2swcw

αs

4π

ξMZ

ŝ− ξM2
Z

Ggagb(FF̃ )
µν (p1, p2,−k)

+
ieI3w,t
2swcw

αs

4π

ŝ

ŝ− ξM2
Z

Ggagb(FF̃ )
µν (p1, p2,−k)

]

=
iααs

4s2wc
2
w

(pH · ε∗Z)

MZŝ
εµ1ε

ν
2 G

gagb(FF̃ )
µν (p1, p2,−k),

(A.10)

where the dependence on the gauge parameter ξ cancels, as it should be. For the LO matrix

element, the Green function Ggagb(FF̃ ) just has to be replaced by the Feynman rule for the

FF̃ operator with two external gluon legs, yielding

M0 = −δab ααs

s2wc
2
wMZ

(pH · ε∗Z)

ŝ
ε(ε1, ε2, p1, p2) (A.11)

in agreement with eq. (3.2). The NLO QCD corrections to Ggagb(FF̃ ) are induced by the

diagrams shown in figure 8. The actual calculation of these one-loop diagrams is very

simple. For on-shell gluons only the first two diagrams contribute and yield

M1PI,virt
1 (ε) =

3αs

2π

[
2− ŝC0(ŝ, 0, 0, 0, 0, 0, 0)

]
M0, (A.12)

where C0 is the one-loop scalar 3-point integral in the convention of refs. [51–53] (see

e.g. ref. [68] for the explicit result). This is the unrenormalized result for the virtual

correction which still has to be renormalized. As stated above, the anomaly equation (A.4)

is valid for bare quantities, so that the FF̃ term receives renormalization contributions

from αs and the gluon field. Since in our case only the two-gluon contribution of FF̃ is

relevant, we get the simple factorizing contribution to the NLO amplitude,

M1PI,ct
1 (ε) = (2δZg + δZ3)M0. (A.13)
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FF̃ F F̃

F F̃ F F̃ F F̃

Figure 8. NLO QCD diagrams for the Green function Ggagb(FF̃ ).

Combining the renormalized virtual amplitude M1PI,virt
1 +M1PI,ct

1 with the contribution

δCS, see eq. (3.6), of the Catani-Seymour I-operator of the subtraction function yields the

1PI part of the correction to the cross section, as given in eq. (3.8) by first term on the r.h.s.
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