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Abstract Let S be a semi direct product S = N � A where N is a connected and
simply connected, non-abelian, nilpotent meta-abelian Lie group and A is isomor-
phic with R

k, k > 1. We consider a class of second order left-invariant differential
operators on S of the form Lα = La + �α, where α ∈ R

k, and for each a ∈ R
k, La is

left-invariant second order differential operator on N and �α = � − 〈α,∇〉, where
� is the usual Laplacian on R

k. Using some probabilistic techniques (skew-product
formulas for diffusions on S and N respectively, the concept of the derivative of a
measure, etc.) we obtain an upper bound for the derivatives of the Poisson kernel for
Lα. During the course of the proof we also get an upper estimate for the derivatives
of the transition probabilities of the evolution on N generated by Lσ(t), where σ is a
continuous function from [0,∞) to R

k.
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1 Introduction

Let S be a semi direct product S = N � A where N is a connected, simply con-
nected, non-abelian, nilpotent, meta-abelian, group and A is isomorphic with R

k.1

Specifically, we assume that

N = M � V,

where M and V are abelian Lie groups with the corresponding Lie algebras m and
v. Then there are bases {X1, . . . , Xm} and {Y1, . . . , Yn} for m and v respectively such
that {X1, . . . , Xm, Y1, . . . , Yn} forms a Jordan-Hölder basis for the Lie algebra n of
N which diagonalizes the ada action on n (a is the Lie algebra of A). We assume that
these bases are ordered so that the matrix of adZ is strictly lower triangular for all
Z ∈ n. We use these bases to identify m and v with R

m and R
n respectively and we

use the exponential map to identify M, V and A with the corresponding Lie algebras.
In what follows the Euclidean space R

k is endowed with the usual scalar product
〈·, ·〉 and the corresponding �2 norm ‖ · ‖. For the vector x ∈ R

k we write x2 = x · x =
〈x, x〉 = ∑k

i=1 x2
i . By ‖ · ‖∞, we denote the �∞ norm ‖x‖∞ = max1≤i≤k |xi|.

For g ∈ S we let z(g) = z ∈ N and a(g) = a ∈ A denote the components of g in
N � A so that g = (z, a). Similarly, for z ∈ N we let x(z) = x ∈ M and y(z) = y ∈ V
denote the components of z in M � V. The dimension k of A is called the rank of S.

Let

� ={ξ1, . . . , ξm},
� ={ϑ1, . . . , ϑn}

be the roots of the ada action on m and v respectively corresponding to the given
bases. Let


 = � ∪ �.

Hence, for all H ∈ a,

adH Xi = [H, Xi] = ξi(H)Xi, 1 ≤ i ≤ m,

adH Y j = [H, Y j] = ϑ j(H)Y j, 1 ≤ j ≤ n.
(1.1)

Let q = m + n. For 1 ≤ i ≤ q we set

λi =
{

ξi, 1 ≤ i ≤ m,

ϑi−m, m + 1 ≤ i ≤ q.

The principal object of study in this work is the left-invariant differential operator
on S,

Lα = �α +
m∑

j=1

e2ξ j(a) X2
j +

n∑

j=1

e2ϑ j(a)Y2
j , (1.2)

1The case where N is abelian can be analyzed by considerably simpler methods which we do not
consider here.
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Derivatives of the Poisson Kernel

where, for α = (α1, . . . , αk) ∈ R
k,

�α =
k∑

i=1

(∂2
ai
− 2αi∂ai),

and the Yi and X j are considered as left invariant differential operators on N. We
assume that for all i,

λi(α) > 0. (1.3)

In particular, none of the λi are identically 0. Hence the {λi}1≤i≤q span a∗ since their
joint nullspace consists of vectors annihilated by ada.

We set

A+ = Int{a ∈ R
k : λi(a) ≥ 0 for 1 ≤ i ≤ q}.

Thus inequality (1.3) means that α ∈ A+.

We study the Poisson kernel for the operators (1.2). To describe this concept let
χ be the modular function for left invariant Haar measure on S. Thus for all g ∈ S,

∫

S
f (sg)ds = χ(g)−1

∫

S
f (s)ds,

where ds is left-invariant Haar measure on S. Then

χ(g) = det(Ad(g)) = eρ(a), (1.4)

where

ρ =
q∑

j=1

λ j. (1.5)

Assumption (1.3) together with [5] implies there exists a Poisson kernel ν for Lα.

That is, there is a C∞ function ν on N such that every bounded Lα-harmonic function
F on S may be written as a Poisson integral against a bounded function f on the
quotient space A \ S = N,

F(g) =
∫

A\S
f (gz)ν(z)dz =

∫

N
f (z)ν̌a(z−1zo)dz, g = (zo, ao),

where

ν̌a(z) = ν̌(a−1za)χ(a)−1 and ν̌(z) = ν(z−1). (1.6)

Conversely the Poisson integral of any f ∈ L∞(N) is a bounded Lα-harmonic
function.

For I = (i1, . . . , im) ∈ (N ∪ {0})m, let |I| = i1 + . . . + im, and

X I =
m∏

j=1

X
i j

i

thought of as an element of the universal enveloping algebra A(m) of m. Similarly,
for J = ( j1, . . . , jn) we define Y J ∈ A(v).
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Our goal in this work is to obtain growth estimates for the functions

X IY Jν(z), z ∈ N,

for general multi-indices I and J in the rank S > 1 case. In the rank one case, the
growth estimates for both of ν(z) and its derivatives are well understood, even for
general nilpotent N, due to a number of works such as [4, 6–8, 13]. However, virtually
nothing seems to be known about the growth estimates for the derivatives of the
Poisson kernel in higher rank. The techniques used in the above mentioned works
do not seem to generalize to higher rank groups, even for the I = J = 0 case.

In [11, 12] the authors introduced some new techniques for studying the growth
of the Poisson kernel in higher rank cases. At that time we had hoped that these
techniques could finally yield insights into the growth of the derivatives of the
Poisson kernel in the higher rank case. This hope is, in a sense, validated by the
current work. However, the analysis of the growth of the derivatives, even given
the work in [12], has forced the introduction of a host of new, and we feel exciting,
techniques. (See Section 2 for an outline of some of these techniques.)

To describe our main result, we identify
(
R

k
)∗

with R
k. This allows us to write

λi = (λi,1, . . . , λi,k). (1.7)

We say that positivity holds if all of the λi, j are non-negative.
To state our main result we require some notation. If F ⊂ 
 is any set of roots

and a ∈ R
k, let

amin
F = min

λ∈F
{λ j(a)}, amax

F = max
λ∈F

{λ j(a)}, aF = amax
F − amin

F
amin
F

,

and

κ(I, J) = |J| + ρ�(|I| + 2|J|),
λ(I, J) = ∑m

�=1 i�λ� + ∑n
�=1 j�λ�+m.

Let T = {τ1, . . . , τ�} be an orthogonal family of vectors in R
k such that α · τi > 0 for

all i. Let

d(T ) = 2−�+3
√

2 min
{

α · v
‖α‖ ‖v‖ | v = τi1 + · · · + τi j, 1 ≤ i j ≤ �, 1 ≤ j ≤ �

}

.

We assume the positivity condition—i.e., the λi, j in Eq. 1.7 are non-negative. Let

di = d({λi,1e1, . . . , λi,kek} \ {0}), 1 ≤ i ≤ q,

and define,

d = min
1≤i≤q

di/2.

We also assume that for 1 ≤ � ≤ k,

α� > (κ(I, J)/2 + |I|)λi,�, 1 ≤ i ≤ m, and

α� > |J|λ j,�, m + 1 ≤ j ≤ q,

‖α‖ > 4 max{κ(I, J), 2(|I| + |J|), 4d}/d.

(1.8)
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Theorem 1.1 Let K ⊂ N = M � V be a compact set not containing the identity
element e ∈ N. Suppose that the positivity condition below Eq. 1.7 holds for all λi,

1 ≤ i ≤ q. Then, under the assumptions (1.3) and (1.8), there is a C > 0 such that for
all z ∈ K and for all a ∈ A+,

|X IY Jν(aza−1)| ≤ Ce−a·(ρ+λ(I,J))+amax
� (1+ρ�/2)(|I|+|J|),

where |I| + |J| �= 0.

For t ∈ R
+ and a ∈ A+, let

δa
t = Ad((log t)a)

∣
∣

N.

Then t �→ δa
t is a one parameter group of automorphisms of N for which the

corresponding eigenvalues on n are all positive. It is known [9] that then N has a
δa

t -homogeneous norm: a non-negative continuous function | · |a on N such that
|z| = 0 if and only if z = e and

|δa
t z|a = t|z|a.

Corollary 1.2 Let a ∈ A+ be given. Then, under the assumptions of Theorem 1.1, for
all |z|a ≥ 1,

|X IY Jν(z)| ≤ C|z|−a·(ρ+λ(I,J))+amax
� (1+ρ�/2)(|I|+|J|)

a .

1.1 Example

Consider N = Hn, the (2n + 1)-dimensional Heisenberg group, which we realize as
R

n × R
n × R with the Lie group multiplication given by

(x1, y1, z1)(x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1 · y2),

where · denotes the scalar product in R
n.

The corresponding Lie algebra hn is then spanned by the left invariant vector fields

X j = ∂x j, Y j = ∂y j + x j∂z, 1 ≤ j ≤ n,

and

Xn+1 = ∂z

which satisfy

[Xi, Y j] = δi, jXn+1, 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n.

Let a = R
n and let {A1, . . . , An} be the standard basis for R

n and let the correspond-
ing dual basis for (Rn)∗ be {e1, . . . , en}. We define an a action on hn, the Lie algebra
of Hn, by

[Ai, X j] = δi, jX j, 1 ≤ i, j ≤ n,

[Ai, Y j] = δi, jY j, 1 ≤ i, j ≤ n,

[Ai, Xn+1] = 2Xn+1, 1 ≤ i ≤ n.
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Exponentiation yields a group action of A = R
n on Hn and a solvable Lie group

S = Hn � R
n. Then

ξi = ϑi = ei, 1 ≤ i ≤ n,

ξn+1 = 2
n∑

i=1

ei = ρ/2,

λ(I, J) = I + J.

It is clear that the positivity condition below Eq. 1.7 holds.
Let α = (α1, . . . , αn) where 0 < α1 ≤ α2 · · · ≤ αn. It is easily checked that

d = dn+1

2
= d({2e1, . . . , 2en}) = 2−n+ 5

2
α1

‖α‖ .

(Note that for any positive increasing sequence βi,
√

�β1 ≤ ∑�
1 βi.)

Now let a = tρ. Then ρ� = 0 and amax
� = 4t. Hence

−a · (λ(I, J)) + amax
� (1 + ρ�/2)(|I| + |J|) = 0.

Thus Theorem 1.1 gives

|X IY Jν(aha−1)| ≤ Ce−t‖ρ‖2 = e−16nt, h ∈ K ⊂ Hn,

for all α satisfying Eq. 1.8.
Corollary 1.2 states that under the same assumptions for all h ∈ Hn with |h|ρ ≥ 1,

|X IY Jν(h)|ρ ≤ C|h|−16n
ρ .

We do not expect that this estimate is optimal since the rate of decay should
depend on α, I, and J.

2 Outline of the Proofs of the Main Results

In this section we introduce some notation and describe for the reader’s convenience
the main idea of the proofs of the results stated above.

Our proofs make use of a well known probabilistic formula for νa on a general N A
group. Specifically, the diffusion σ(t) on R

k generated by �α, is the k-dimensional
Brownian motion with drift −2α, i.e., σ(t) = b(t) − 2αt.

Let

Lσ,t =
m∑

j=1

e2ξ j(σ (t)) X2
j +

n∑

j=1

e2ϑ j(σ (t))Y2
j ,

thought of as a time dependent family of left invariant operators on N. This family
gives rise to a diffusion which is described by a family of convolution kernels P σ

t,s(z),

s ≤ t, z ∈ N, which satisfy the Chapman-Kolmogorov equations with respect to
convolution on N. (See [12, Section 2.3].) We let P σ

t = P σ
t,0. We also typically drop

the interval (0, t) in our notation so that, for example, the symbols A σ
V, j(0, t) and


η(0, t) introduced below will usually be denoted by A σ
V, j and 
η, respectively.
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Derivatives of the Poisson Kernel

It follows from formula (5.3) of [12] that

νa(z) = lim
t→∞ Ea P̌ σ

t (z), (2.1)

where the expectation is with respect to the Wiener measure Wa on the set of
continuous paths in R

k starting at a.
From Eqs. 1.1 and 1.6, for z ∈ N and a ∈ A,

(X IY Jν)(a−1za) = ea·λ(I,J)(X IY Jνa)(z)χ(a)

= ea·(ρ+λ(I,J)) lim
t→∞ Ea X IY J P̌ σ

t (z). (2.2)

Corollary 2.1 For z ∈ N and a ∈ A+,

|X IY Jν(z)| ≤ |z|−a·(ρ+λ(I,J))
a max

{|zo|a=1}
lim

t→∞ |E−(log |z|a)a X IY J P̌ σ
t (zo)|.

Proof Let zo = δa
|z|−1

a
z. Then |zo|a = 1 and

|X IY Jν(z)| = |X IY Jν(δa
|z|a(zo))|

= e−(log |z|a)a·(ρ+λ(I,J))|X IY Jν−(log |z|a)a(zo)|
= |z|−a·(ρ+λ(I,J))

a lim
t→∞ |E−(log |z|a)a X IY J P̌ σ

t (zo)|.
��

To bound the expectation in Corollary 2.1, we make use of a formula that
expresses P σ

t as a kind of skew product of kernels on M and V. Specifically, the
family of left-invariant, time dependent operators on V

LV,σ,t =
n∑

j=1

e2ϑ j(σ (t))Y2
j (2.3)

gives rise to diffusion on V in the same manner as Lσ,t defines a diffusion on N. This
diffusion may be described by a process Xt with state space R

n and, for each starting
point a ∈ R

n, a probability measure WV,σ
a on C([0,∞), R

n) which may be explicitly
computed since V is abelian (see Proposition 3.1). More generally, for each T > 0
we obtain a probability measure WV,σ,T

a on C([0, T], R
n).

Similarly, for all η ∈ C([0,∞), R
m), the family of time dependent operators

LM,η,σ,t =
m∑

j=1

e2ξ j(σ (t)) (
Ad(η(t))Y j

)2 (2.4)

gives rise to a diffusion having transition probabilities described by convolution
kernels PM,η,σ

t,s (x) on M which again may be explicitly computed (see formula (4.2)).
Corollary 3.6 of [11] implies that for all ψ ∈ Cc(V), t ≤ T, and a.e. σ,

∫

V
P σ

t (x, y)ψ(y) dy =
∫

PM,η,σ
t (x)ψ(η(t))WV,σ

0 (dη)

=
∫

PM,η,σ
t (x)ψ(η(t))WV,σ,T

0 (dη). (2.5)
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More generally let X̃i denote Xi considered as a right-invariant differential
operator on N. Then for all multi-indices I, and t ≤ T,

∫

V
X̃ I P σ

t (x, y)ψ(y) dy =
∫

X I PM,η,σ
t (x)ψ(η(t))WV,σ,T

0 (dη). (2.6)

(Note that since M is abelian, on M, X I = X̃ I .) We provide upper bounds on
X I PM,η,σ

t (x) in Section 4.
For the operators Y I the situation is more complicated. Here we make use of

the concept of the derivative of a measure [2, 10]. Let V be a vector space with a
σ -algebra F of subsets of V which is invariant with respect to the shifts along a given
vector h ∈ V , i.e., if A ∈ F then A + th ∈ F for every t ∈ R. In this case we define

∂hμ = lim
t→0

t−1(μth − μ)

provided this exists in the weak topology. It follows almost by definition that if f is a
C∞ function on V then

∫

∂h f dμ = −
∫

f d∂hμ.

In Eq. 2.6, we are integrating

φ(η) = ψ(η(t))

against the measure

μI
T(η) = X I PM,η,σ

t (x)WV,σ,T
0 (η).

Let

γi(t) = A σ
V,i(0, t)Yi, (2.7)

where

A σ
V,i(s, t) =

∫ t

s
e2ϑi(σ (u)) du.

Since

∂γi(φ(η)) = A σ
V,i(0, t)(Yiψ)(η(t))

we see
∫

V
Yi X̃ I P σ

t (x, y)ψ(y) dy = −
∫

V
X̃ I P σ

t (x, y)Yiψ(y) dy

= − (
A σ

V,i

)−1
∫

∂γiφ(η)dμI
T(η)

=
∫

φ(η)Dt,i(dμI
T(η)),

where

Dt,i =
(

A σ
V,i

)−1
∂γi .
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On the other hand

Dt,iμ
I
T(η) =

(
Dt,i X I PM,σ,η

t (x)
)

WV,σ,T
0 (η) + X I PM,σ,η

t (x)Dt,i

(
WV,σ,T

0 (η)
)

.

In Section 5.2 we show:

Proposition 2.2 For all T > 0 and 1 ≤ i ≤ n, the measure WV,σ,T
0 (dη) is dif ferentiable

along γi and

∂γi W
V,σ,T
0 (dη) = ηi(T)WV,σ,T

0 (dη).

From this point on we assume that T = t. To consider Y J , let Qn(y, z) be the
rational function on R

2 defined by

Qn(y, z) = z−n
(

z
d

dy
+ y

)n

(1).

It follows from Proposition 2.2 and induction that for any multi-index J = (i1, . . . , in)

of length n,

DJ
t WV,σ,t

0 (dη) = QJ(η(t), A σ
V)WV,σ,t

0 ,

where DJ
t and QJ(z, y) are defined by

QJ(y, z) =
n∏

j=1

Qi j(y j, z j), DJ
t =

n∏

j=1

(
Dt, j

)i j
, (2.8)

and A σ
V = (A σ

V,1, . . . , A σ
V,n).

Then
∫

V
Y J X̃ I P σt (x, y)ψ(y) dy =

∫

φ(η)DJ
t (dμI

t (η))

=
∑

R+S=J

CR,S

∫

φ(η)
(

DR
t X I PM,σ,η

t (x)
)

×QS(A σ
V , η(t))WN,σ,t

0 (η).

We bound the integrands in Section 5.2 and then obtain an upper bound
(Theorem 6.1) for

|X̃ IY J P σ
t (x, y)| (2.9)

by estimating the expectations (with respect to the distribution of η).
Finally, in Section 7, we use Eq. 2.1, to get the estimate for derivatives of the

Poisson kernel ν, that is we take the limit (as t → ∞) of the expectation (with respect
to σ ) of the upper bound of the quantity in Eq. 2.9.
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3 The Diffusion on V

Let

Lt = 1
2

n∑

i, j=1

aij(t)∂i∂ j (3.1)

be a differential operator on C∞(Rn), where ∂i = ∂xi and a(t) = [aij(t)] is a symmetric,
positive definite matrix with entries belonging to C([0,∞), R). Proposition 2.9 of
[12] states that for such an operator the transition functions are given by convolution
against

Pt,s(x) = D(A(s, t))e−
1
2 (A(s,t)−1x·x), (3.2)

where

A(s, t) =
∫ t

s
a(u) du, (3.3)

and, for an n × n invertible matrix A we set

D(A) = (2π)−
n
2 (det A)−

1
2 .

Specifically, if we choose a basis of R
n so that Yi corresponds with ∂xi then for the

operator (2.3) the functions corresponding to a and A are, respectively,

a σ
V(t) = 2 diag

[
e2ϑ1(σ (t)), . . . , e2ϑn(σ (t))] ,

A σ
V(s, t) = 2 diag

[
A σ

V,1(s, t), . . . , A σ
V, j(s, n)

]
,

where

A σ
V, j(s, t) =

∫ t

s
e2ϑ j(σ (u))du.

Hence, by Eq. 3.2 the corresponding transition probabilities PV,σ
t,s (x, dy) satisfy

PV,σ
t,s (x, dy) = (4π)−

n
2

n∏

j=1

(A σ
V, j(s, t))−

1
2 exp

⎛

⎝−
n∑

j=1

(x j − y j)
2

4A σ
V, j(s, t)

⎞

⎠ dy j

=
n∏

j=1

pA σ
V, j(s,t)(x j, dy j),

where pt(x, y) is a classical Gaussian kernel,

pt(x, y) = 1√
4π t

e−
(x−y)2

4t .

The kernel pt(x, y) is the transition function for the one dimensional Brownian
process.2

2Our normalization of the Brownian motion b(s) is different than that typically used by probabilists
who tend to assume that Var b(s) = s.
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Thus the process η(t) generated by LV,σ,t has coordinates η j(t) which are indepen-
dent Brownian motions with time changed according to the clock governed by σ.

We may use this observation to realize our process. Let T > 0 and σ be fixed. Let

T j = A σ
V, j(0, T), 1 ≤ j ≤ n.

Let WT
0 be the product Wiener measure on the space

VT
1 =

n∏

j=1

C([0, T j], R), (3.4)

i.e.,

WT
0 = WT1,R

0 ⊗ . . . ⊗ WTn,R
0 ,

where WT j,R

0 is the Wiener measure on C([0, T j], R), and let

VT
2 = (C([0, T], R))

n = C([0, T], R
n).

Consider the linear map

T T : VT
1 → VT

2 ,

given by formula,

T T(η)(u) = (
η1(A σ

V,1(0, u)), . . . , ηn(A σ
V,n(0, u))

)
, u ∈ [0, T]. (3.5)

The following proposition is clear:

Proposition 3.1 The dif fusion def ined by LV,σ,t starting at 0, 0 ≤ t ≤ T is realizable
as the process b t on VT

1 with the probability measure

WV,σ,T
0 = T T(WT

0 ).

We may of course apply the same ideas with the intervals [0, T] and [0, T j]
replaced by [0,∞) and [0, T j) respectively. In this case we omit the superscript T.

4 The Diffusion on M

From Section 3.1 of [12], the matrix [aij] from Eq. 3.1 for the operator defined in
Eq. 2.4 is

[aσ,η

M (t)] = 2[Ad(η(t))S σ (t)][Ad(η(t))S σ (t)]∗, (4.1)

where

Sσ (t) = diag
[
eξ1(σ (t)), . . . , eξm(σ (t))] ,

and the adjoint is in the y j coordinates.
Then from Eq. 3.2 the transition kernel PM,σ,η

t for the operator (2.4) satisfies

PM,σ,η
t (x) = D

(
Aσ,η

M

)
exp

(

−1
2

(
Aσ,η

M

)−1
x · x

)

, (4.2)

where Aσ,η

M = Aσ,η

M (0, t) is defined by Eq. 3.3. Recall that PM,σ,η
t denotes PM,σ,η

t,0 .
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Let


η(s, t) = sup
s≤u≤t

‖η(u)‖∞,

where ‖ · ‖∞ is the �∞-norm on R
n. We typically denote 
η(0, t) by 
η.

We set

C(σ ) = C(σ )(t) = ‖(Aσ,0
M (0, t))−1‖ ‖Aσ,0

M (0, t)‖.
Let ‖ · ‖ be any norm on the set of m × m matrices. We need an estimate

describing how ‖ (
Aσ,η

M

)−1 ‖ depends on 
η.

Proposition 4.1 There is a C > 0 such that

‖(Aσ,η

M )−1‖ ≤ C(1 + 
η)ρ�(1 + C(σ ))ρ�‖(Aσ,0
M )−1‖.

Proof We let C denote a generic constant depending only on m that can change from
line to line.

For Y ∈ v let

N(Y) = AdY
∣
∣
m
− Im.

Since

AdY
∣
∣
m
=

ko∑

j=0

(
adY

∣
∣
m

) j

j! (4.3)

we see that

‖N(Y)‖ ≤ C‖Y‖(1 + ‖Y‖)ko−1.

Let 
η = 
η(0, t) = �. Then for 0 ≤ u ≤ t,

aσ,η

M (u) = (I + N(η)) Ad(σ (u))2(I + N(η))∗,

aσ,η

M (u) − aσ,0
M (u) = N(η) Ad(σ (u))2 N(η)∗ + N(η) Ad(σ (u))2

+Ad(σ (u))2 N(η)∗,

‖Aσ,η

M − Aσ,0
M ‖ ≤ C(� + �2)(1 + �)2ko−2‖Aσ,0

M ‖.
Thus

‖I − (Aσ,0
M )−1 Aσ,η

M ‖ = ‖(Aσ,0
M )−1

(
Aσ,0

M − Aσ,η

M

)
‖

≤ C�(1 + �)2ko−1C(σ ). (4.4)

But


η−pρ ≤ �e−pρmin
� ,

(η−pρ denotes the action of −pρ on η). Choose p > 0 so that

Ce−pρmin
� �(1 + e−pρmin

� �)2ko(C(σ ) + 1) = 1/2, (4.5)
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where C is as in the last line of Eq. 4.4. It follows from the series expansion of
(I − Y)−1 that

‖(Aσ,η−pρ�

M )−1 Aσ,0
M ‖ ≤ C′.

But

(Aσ,η

M )−1 Aσ,0
M = Ad(pρ)(Aσ,η−pρ

M )−1 Aσ,0
M Ad(−pρ).

Hence

‖(Aσ,η

M )−1 Aσ,0‖ ≤ C′ep(ρmax
� −ρmin

� ) = C′
(

epρmin
�

)ρ�

.

However, from Eq. 4.5,

epρmin
� ≤ 22ko C(C(σ ) + 1)�

from which our result follows. ��

Lemma 3.3 of [12] implies the following result:

Lemma 4.2 There is a constant C > 0 such that

D
(

Aσ,η

M

) ≤ CD
(

Aσ,0
M

)
.

We note also the following result that is an immediate consequence of Eq. 4.3:

Lemma 4.3 There exists a constant C > 0 such that

‖Aσ,η

M ‖ ≤ C(1 + 
η)2ko‖Aσ,0
M ‖.

5 The Derivatives of P σ

In this section we estimate the derivatives of the evolution kernel P σ described in
formula (2.5). Let A σ be the q × q matrix

Aσ =
[

Aσ,0
M 0
0 Aσ

V

]

.

We define

D (Aσ ) = D(Aσ,0
M )D(Aσ

V).

For 0 �= y ∈ R
n given and ε > 0, let3

ψε(·) = ε−n1Bε(y)(·),

3By 1A we denote the characteristic function (or indicator function) of a given set A, i.e., 1A(x) = 1
if x ∈ A and is zero otherwise.
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where

Bε(y) =
n∏

j=1

B1
ε(y j) and B1

ε(y j) = [y j − ε/2, y j + ε/2].

Our estimates all follow from Theorem 5.5 which is a corollary of Proposition 5.1
below. Let, for a ≥ 0,

P̃σ,η,a
t (x) = D

(
Aσ,0

M

)
(1 + 
η)

a exp

(

− D′‖x‖2

(1 + 
η)2ko‖Aσ,0
M ‖

)

,

P̃σ,a
t (x, y) = lim sup

ε→0

(
Eη

0 P̃σ,η,a
t (x)ψε(ηt)

)
, (5.1)

where Eη
v denotes expectation with respect to WV,σ

v (dη). For k ∈ N, x ∈ M, and y ∈ V
we let

φk(x) =
( ‖x‖1/(k+1)

‖x‖1/(k+1) + 1

)2k

,

|(x, y)|k = ‖x‖1/(k+1) + ‖y‖. (5.2)

Proposition 5.1 For a ≥ 0 given, there are positive constants C, D such that

P̃σ,a
t (x, y) ≤ CBσ,a

t (x, y)(F1 + F2) exp
(

− D‖y‖2

‖A σ
V‖

)

, (5.3)

where

Bσ,a
t (x, y) = D (A σ ) (1 + |(x, y)|ko)

a(1 + ‖A σ
V‖)(a+1)/2,

F1 = exp

(

− D‖x‖2

(|(x, y)|ko + 1)2ko‖Aσ,0
M ‖

)

,

F2 = exp
(

− D‖x‖2/(ko+1)

‖A σ
V‖

)

.

Proof For k ∈ N and ε > 0, we let

Ak = {η ∈ C([0,∞), M) | k − 1 ≤ 
η(0, t) < k}
and

Sε = supp ψε(ηt).

Note that

η ∈ Sε ∩Ak ⇒ k ≥ ‖η(t)‖∞ ≥ ‖y‖∞ − ε/2.

It follows that

P̃σ,a
t (x, y) ≤ CD

(
Aσ,0

M

) ∑

k≥‖y‖∞
ka exp

(

− D‖x‖2

k2ko

)

Ek, (5.4)
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where

Ek = lim sup
ε→0+

ε−n
(

WV,σ
0 (Sε ∩Ak)

)
.

(See Lemma 4.3 of [12].)
Lemma 4.4 of [12], together with the reasoning above formula (4.7) of [12],

implies:

Lemma 5.2 Let no be the smallest integer such that no ≥ ‖y‖∞. There are constants
C, D > 0 such that

Ek ≤ CD
(

A σ
N

)
exp

(

− D‖y‖2

‖A σ
V‖

)

Fk,

where

Fk =
{

1 for k = no,

exp
(−(2‖A σ

V‖)−1((k − 1) − ‖y‖∞)2
)

for k > no.

The first term in Eq. 5.4 is dominated by

CD
(

Aσ,0
M

)
(1 + ‖y‖)aEno

which in turn is dominated by the term in Eq. 5.3 involving F1.
The F2 term comes from the following lemma upon setting c = ‖x‖1/(ko+1) and

E = (2‖A σ
V‖)−1.

Lemma 5.3 Let D, E, and a ≥ 0 be given. Then there is a C > 0, independent of D, E,

and a such that for all c ≥ 0,

∑

k≥‖y‖∞+1

ka exp
(

− D
k2ko

− E(k − (‖y‖∞ + 1))2
)

≤ (c + 1)(‖y‖∞ + a
1
2 E− 1

2 + 1)a exp
(

− D
(‖y‖∞ + c + 1)2ko

)

+ C(‖y‖∞ + a
1
2 E− 1

2 + 1)a E− 1
2 exp

(−Ec2/2
)
. (5.5)

Proof We first note the following lemma which is a simple calculus exercise.

Lemma 5.4 For all x ≥ b ≥ 0 and a > 0,

xae−(x−b)2 ≤
(

b + √
a/2

)a
.

We apply this lemma with a := 2a/E, and raise the resulting inequality to the E
2 th

power, concluding that the term on the left in Eq. 5.5 is dominated by

(a
1
2 E− 1

2 + ‖y‖∞ + 1)a
∑

k≥‖y‖∞+1

exp
(

− D
k2ko

− E
2

(k − ‖y‖∞ − 1)2
)

. (5.6)
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We split the sum in Eq. 5.6 into two parts corresponding to:

‖y‖∞ + 1 ≤ k ≤ ‖y‖∞ + 1 + c and k > ‖y‖∞ + 1 + c.

The first part is dominated by the first term on the right in Eq. 5.5. The second
summation is dominated by

∫ ∞

c
exp

(−Eu2/2
)

du = CE− 1
2

∫ ∞

c
√

E/2
exp

(−v2) dv

≤ CE− 1
2 exp

(−Ec2/2
)
.

Our lemma follows. ��

Thus, Proposition 5.1 is proved. ��

Now let φk be as in Eq. 5.2. The main result of this section is:

Theorem 5.5 There are C, D > 0 such that

P̃σ,a
t (x, y) ≤ CBσ,a

t (x, y) exp
(

− D‖x‖2/(ko+1)φk(x)

‖Aσ‖ − D‖y‖2

‖A σ
V‖

)

. (5.7)

Proof We note that

‖x‖2

(‖x‖1/(ko+1) + 1)2ko
= ‖x‖2− 2ko

ko+1

( ‖x‖1/(ko+1)

‖x‖1/(ko+1) + 1

)2ko

= ‖x‖ 2
ko+1 φko(x) ≤ ‖x‖ 2

ko+1 .

Thus the term in Eq. 5.3 coming from F2 is bounded by the right side of Eq. 5.7.
In the region ‖y‖ ≥ ‖x‖ 1

ko+1 , the result follows from the observation that

D‖y‖2

‖A σ
V‖

≥ D‖x‖ 2
ko+1

2‖A σ
V‖

+ D‖y‖2

2‖A σ
V‖

while in the region ‖y‖ ≤ ‖x‖ 1
ko+1 ,

|(x, y)|ko ≤ 2(1 + ‖x‖ 1
ko+1 )

and the result again follows. ��

5.1 Derivatives of PM,σ,η(x) with Respect to x

For an m × m symmetric matrix B let

fB(x) = exp
(

−1
2
(Bx) · x

)

.

Then for 1 ≤ i, j ≤ m,

Xi fB(x) = −λi(x) fB(x) and

X jXi fB(x) = (
λ j(x)λi(x) − βi, j

)
fB(x),
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where

λi(x) = (BXi) · x and

βi, j = (BXi) · (BX j).

In general

X I fB(x) = QI fB(x),

where QI is a polynomial in the variables λi(x), 1 ≤ i ≤ m, and β j,k, 1 ≤ j, k ≤ m.
Furthermore, it is easily seen that

|QI | ≤ C(1 + ‖x‖)|I|‖B‖|I|.
Hence, from Proposition 4.1,

Corollary 5.6 There is a C > 0 such that

X I PM,σ,η
t (x) ≤ C(1 + ‖x‖)|I|(C(σ ) + 1)ρ�|I|‖

(
Aσ,0

M

)−1 ‖|I| P̃σ,η,ρ�|I|
t (x),

where notation is as in Eq. 5.1.

The desired estimate on the function X I P σ
t (x, y) follows immediately from

Theorem 5.5.

5.2 Derivatives of X I PM,σ,η(x) with Respect to η

As mentioned in Section 2, we also require estimates on the derivatives in η along
the curves γi in Eq. 2.7 of the expression in equality (4.2). Our first result is:

Proposition 5.7 Let DJ
t be as in Eq. 2.8 and ρ ∈ A+. Then there is a C > 0 such that

|DJ
t X I PM,σ,η

t (x)| ≤ (C(σ ) + 1)κ(I,J) ‖(Aσ,0
M )−1‖|I|

(
1 + ‖(Aσ,0

M )−1‖
)|J|

× (1 + ‖x‖)|I|+2|J| P̃σ,η,q(I,J)
t (x),

where notation is as in Eq. 5.1.

Proof From Eq. 4.1, since V is abelian and γi = A σ
V,i,

Aσ,η+uγi
M =

∫ t

0
ead(uγi(v))aσ,η

M (v)
(
eu ad(γi(v))

)∗
dv,

Dt,i A
σ,η

M = ad(Yi)Aσ,η

M,i + Aσ,η

M,i (ad(Yi))
∗ ,

where

Aσ,η

M,i =
(

A σ
V,i

)−1
∫ t

0
γi(u)aσ,η

M (u) du.

In particular, since γi(t) is increasing,

‖Dt,i A
σ,η

M ‖ ≤ C‖Aσ,η

M ‖ ≤ C(1 + 
η)‖Aσ,0
M ‖.
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More generally, it follows by induction that

‖DJ
t Aσ,η

M ‖ ≤ C(1 + 
η)‖Aσ,0
M ‖.

Differentiating Eq. 4.2 in η is complicated by the
(

Aσ,η

M

)−1 term. However, from
the proof of Proposition 2.9 of [12], the Fourier transform of PM,σ,η

t is
(

PM,σ,η
t

)
(̂ξ ) = exp

(

−1
2

Aσ,η

M ξ · ξ
)

.

Of course

Dt,i

(
PM,σ,η

t

)
(̂ξ ) = −1

2

[ (
Dt,i A

σ,η

M

)
ξ · ξ]

exp
(

−1
2

Aσ,η

M ξ · ξ
)

.

By a decomposition of the multi-index J we mean a finite set P of multi-indices
such that

J =
∑

J̃∈P
J̃.

Let PJ be the set of all decompositions of J. It follows by induction that

DJ
t

(
PM,σ,η

)
(̂ξ ) =

∑

J ∈PJ

CJ

⎛

⎝
∏

J̃∈J

[ (
DJ̃

t Aσ,η

M

)
ξ · ξ]

⎞

⎠ exp
(

−1
2

Aσ,η

M ξ · ξ
)

,

where the CJ are constants indexed by PJ . Forming the inverse Fourier transforma-
tion shows that DJ

t PM,σ,η(x) is a linear combination of terms of the form
⎛

⎝
∏

J̃∈J

[ ∑

1≤i, j≤m

(
DJ̃

t Aσ,η

M

)

i, j
Xi X j

]
⎞

⎠ PM,σ,η(x),

where J ∈ PJ .
Let J = {J1, . . . , J�}. Expanding this product and multiplying by X I shows that

DJ
t X I PM,σ,η is a linear combination of terms of the form

(
�∏

k=1

(
D

J j
t Aσ,η

M

)

ik, jk

)(
�∏

k=1

Xik X jk

)

X I PM,σ,η,

where 1 ≤ ik, jk ≤ m.
From Corollary 5.6 the above expression is bounded by a multiple of

(1 + 
η)�‖Aσ,0
M ‖�‖(Aσ,0

M )−1‖|I|+2�(C(σ ) + 1)ρ�(|I|+2�)

×(1 + ‖x‖)|I|+2� P̃σ,η,ρ�(|I|+2�)
t (x).

We note that

‖Aσ,0
M ‖�‖(Aσ,0

M )−1‖|I|+2� = C(σ )�‖(Aσ,0
M )−1‖|I|+�

≤ C(1 + C(σ ))|J|‖(Aσ,0
M )−1‖|I|

(
1 + ‖(Aσ,0

M )−1‖
)|J|

.

Proposition 5.7 follows. ��
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We conclude with the proof of Proposition 2.2:

Proof of Proposition 2.2 From Proposition 3.1

WV,σ,T
0 = T T(WT

0 ),

where T T is defined by Eq. 3.5. Let hi(t) = tYi, t ∈ [0, Ti]. Clearly T Ti(hi) = γi where
γi is as in Eq. 2.7. Hence, from [2, Proposition 3.3.13],

∂γi W
V,σ,T
0 = T T (

∂hi W
T
0

)
.

From Eq. 3.4,

∂hi W
T
0 =

⎛

⎝
⊗

k �=i

WTk
0

⎞

⎠ ⊗ ∂hWTi
0 ,

where h(t) = t, t ∈ [0, Ti]. But the derivatives of the classical Wiener measure over
a finite interval are known. It is clear from [1, 10] that h belongs to the Cameron-
Martin space H(WTi,R

0 ) and therefore is a differentiable vector. Also

(
∂hi W

Ti,R
0

)
(dηi) = −

(∫ Ti

0
h′

i(u)dηi(u)

)

WTi,R
0 (dηi)

= ηi(Ti)W
Ti,R
0 (dηi).

Proposition 2.2 follows. ��

6 The Derivatives of P σ
t (x, y)

The goal of this section is the proof of the following result.

Theorem 6.1 There is a C > 0 such that

|X IY J P σ
t (x, y)| ≤ C(C(σ ) + 1)κ(I,J) ‖(Aσ,0

M )−1‖|I|
(

1 + ‖(Aσ,0
M )−1‖

)|J|

× (1 + ‖A σ
V‖)(κ(I,J)+1)/2

×D(A σ )(1 + |(x, y)|ko)
(2ρ�+3ko+1)|I|

× exp
(

− D‖x‖2/(ko+1)φko(x)

‖Aσ‖ − D‖y‖2

‖A σ
V‖

)

.

Proof It is an immediate consequence of Proposition 5.7 and Theorem 5.5 that

|X̃ IY J P σ
t | ≤ C(C(σ ) + 1)κ(I,J) ‖(Aσ,0

M )−1‖|I|
(

1 + ‖(Aσ,0
M )−1‖

)|J|

× (1 + ‖x‖)|I|+2|J|Bσ,κ(I,J)
t (x, y) exp

(

− D‖x‖2/(ko+1)φk(x)

‖Aσ‖ − D‖y‖2

‖A σ
V‖

)

.
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Of course for f ∈ C∞(N),

Xi f (x, y) =
m∑

j=1

ci, j(y)X j f (x, y),

where the operator on the right acts only on x and

Ady(Xi) =
m∑

j=1

ci, j(y)X j.

From Eq. 4.3,

|Xi f (x, y)| ≤ C(1 + |y|)ko max
j

|X̃ j f (x, y)|

≤ C(1 + |(x, y)|ko)
ko max

j
|X̃ j f (x, y)|.

More generally,

|X I f (x, y)| ≤ (1 + |(x, y)|ko)
ko|I| max

| Ĩ|≤|I|
X̃ I f (x, y)|.

Also

1 + ‖x‖ ≤ (1 + |(x, y)|ko)
ko+1.

Theorem 6.1 follows. ��

7 The Derivatives of the Poisson Kernel

From Corollary 2.1 we need to bound limt→∞ Ea X IY J P̌ σ
t (go), where |go| = 1.

Theorem 6.1 bounds X IY J P σ
t by a function of the exponential functionals Aσ,0

M (0, t)
and Aσ

V(0, t). There is an exact formula for such an expectation for t = ∞ in the case
of independent Brownian motions. Specifically, let b(t) = (b 1(t), . . . , b n(t)) be an
n-dimensional Brownian motion normalized so that Var b j(t) = 2t and let α ∈ R

n.
Let τ ∈ R

n satisfy τ · α > 0. We define

σ τ (t) = τ · (b(t) − 2αt),


τ = max
0≤u<∞

τ · σ(u),

Aτ =
∫ ∞

0
eτ ·σ(u) du,

where Aτ and 
τ are thought of as random variables on C([0,∞), R
k).

Remark Note that our current use use of “
τ ” and “Aτ ” is a change of notation
from that of Section 4.
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Let {e1, . . . , ek} be the standard basis for R
k. Then {e1 · b(t), . . . , ek · b(t)} is a

family of independent, one-dimensional Brownian motions with Var(ei · b(t)) = 2t.
For b ∈ R

k and u ∈ (
R

+)k we define

ub =
∏

i

ubi
i .

The following result follows from Theorem 2.2 of [12].

Proposition 7.1 Let f be a continuous function on
(
R

+)k
. Then

Ea f (Ae1 , . . . , Aek) = Ce2a·α
∫

(R+)
k

f (u)u−2α exp

(

−
∑

i

eai

ui

)
du
u

,

where

du
u

=
k∏

1

dui

ui
.

Remarkably, the function τ �→ log(Aτ ) behaves in some respects as if it depended
linearly on τ . To explain this, let T = {τ1, . . . , τ�} be an orthogonal family of vectors
in R

k such that α · τi > 0 for all i. For u = α/‖α‖ let

d(T ) = 2−�+3
√

2 min
{

u · v
‖v‖ | v = τi1 + · · · + τi j, 1 ≤ i j ≤ �, 1 ≤ j ≤ �

}

.

We assume the positivity condition—i.e., the λi, j in Eq. 1.7 are non-negative. Let

di = d({λi,1e1, . . . , λi,kek} \ {0}), 1 ≤ i ≤ q.

We let

xi = Aei , 1 ≤ i ≤ k.

The following is a direct consequence of Corollary 7.11 which is proved in Section 7.1
below.

To simplify notation we write Wa instead of W∞,R
a to denote the Wiener measure

on C([0,+∞), R).

Proposition 7.2 For all a ∈ R
n, n ∈ Z, and 1 ≤ i ≤ q,

Wa({en−1 ≤ Aλi(xλi)−1 ≤ en}) ≤ Ce−
1
2 d‖α‖ |n|.

where x = (x1, . . . , xk) and d = min1≤i≤q di/2.

Theorem 7.3 Suppose that ‖α‖ > 4κ/d where κ = κ(I, J). Then for |z| = 1, and for
all a ∈ R

n,

(X IY Jν)(a−1za) ≤ Cea·(ρ+λ(I,J))e−amin
� (κ/2+|I|+|J|).
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Proof According to Eq. 2.2,

(X IY Jν)(a−1za) = ea·(ρ+λ(I,J)) lim
t→∞ Ea X IY J P σ

t (z).

Let

X�,n = {σ | en−� ≤ Aλi(xλi)−1 ≤ en, ∀ 1 ≤ i ≤ q},
Y�,n = X�,n \X�−1,n−1,

Z�,n = Y�,n \ Y�−1,n.

Then, almost certainly,

C([0,∞), R
k) =

⋃

�∈N,n∈Z

Z�,n.

For σ ∈ Z�,n,

∀ i, en−�xλi ≤ Aλi ≤ enxλi ,

∃ i, en−1 ≤ Aλi(xλi)−1 ≤ en,

∃ j, en−� ≤ Aλ j(xλ j)−1 ≤ en−�+1. (7.1)

In particular from Proposition 7.2,

Px(Z�,n) ≤ C min{e−d‖α‖ |n−�|, e−d‖α‖ |n|}.

Corollary 7.4 For � ∈ N and n ∈ Z,

Px(Z�,n) ≤ Ce−
d‖α‖

4 (|n|+�).

Proof This follows from the observation that for � ∈ N and n ∈ Z.

max{|n − �|, |n|} ≥ (|n| + �)/4.

��

Let

H(σ ) = D (A σ ) (C(σ ) + 1)κ ‖(Aσ,0
M )−1‖|I|

(
1 + ‖(Aσ,0

M )−1‖
)|J|

× (1 + ‖A σ
V‖)(κ+1)/2 exp

(

− D′

‖Aσ‖
)

,

where D′ > 0 and κ = κ(I, J). From Theorem 6.1, we need to bound

Ea H1Z�,n ≤ (Ea H21Z�,n)
1/2 Pa(Z�,n)

1/2.

For x = (x1, . . . , xk) ∈
(
R

+)k let

QM(x) =
m∑

i=1

xλi , QV(x) =
q∑

i=m+1

xλi ,

and

Q(x) = QM(x) + QV(x).
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We also set

x−1 = (x−1
1 , . . . , x−1

k ).

From Eq. 7.1, for σ ∈ Z�,n,

D (A σ ) ≤ Ce
(�−n)κ

2 x− ρ

2 ,

‖(Aσ,0
M )−1‖ ≤ Ce�−n QM(x−1) ≤ Ce� QM(x−1),

‖Aσ
V‖ ≤ Cen QV(x),

‖Aσ‖ ≤ Cen Q(x),

C(σ ) ≤ Ce� max
1≤i, j≤m

xλi x−λi ≤ Ce� QM(x)QM(x−1).

Hence, for some scalar C > 0,

H(σ )21Z�,n ≤e(2�−n)κ+2(�−n)|I|+2�|J| (1 + en(q+1)
)

x−ρ

× (QM(x)QM(x−1) + 1)κ QM(x−1)2|I| (1 + QM(x−1)
)2|J|

× (1 + QV(x))κ+1.

Thus

Ea H(σ )21Z�,n ≤ Ce2a·α+n(1−2|I|)+2�(|I|+|J|)

×
∫

x−2α QM(x−1)2|I|R(x)S(x) exp

(

−
∑

i

eai

xi

)
dx
x

,

where

R(x) = (QM(x) + 1)κ+2|I|(QV(x) + 1)2|J| and

S(x) = (QM(x−1) + 1)κ+2|J|.

For x, a ∈ R
k we define

eax = (ea1 x1, . . . , eak xk).

Clearly for b ∈ R
k,

(eax)b = ea·b xb .

Hence, for a ∈ −A+,

QM(eax) ≤ eamax
� QM(x) ≤ QM(x),

QM((eax)−1) ≤ e−amin
� QM(x−1),

1 + QM((eax)−1) ≤ e−amin
� (1 + QM(x−1)).

Analogous statements hold for QV .
We make the changes of variables

eau = x,
dx
x

= du
u
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followed by u = x obtaining

Ea H(σ )21Z�,n ≤ en(1−2|I|)+2�(|I|+|J|)e−amin
� (κ+2|I|+2|J|)

×
∫

x−2α QM(x−1)2|I|R(x)S(x−1) exp

(

−
∑

i

1
xi

)
dx
x

.

The convergence of this integral is clear for xi small. For large x the growth of the
integrand is determined by R(x). But

R(x) ≤ C

⎛

⎝1 +
m∑

i=1

x(κ+2|I|)λi +
q∑

j=m+1

x2|J|λ j

⎞

⎠ .

This integral will be finite provided for 1 ≤ � ≤ k

2α� − (κ + 2|I|)λi,� > 0, 1 ≤ i ≤ m and

2α� − 2|J|λ j,� > 0, m + 1 ≤ j ≤ q

which is implied by Eq. 1.8.
Then from Corollary 7.4,
(
Ea H(σ )21Z�,n

)1/2
Pa(Z�,n)

1/2 ≤ Ce−amin
� (κ/2+|I|+|J|)en(1−2|I|)+2�(|I|+|J|)e−

d‖α‖
4 (|n|+�).

Assumption (1.8) also implies

d‖α‖
4

> max{2(|I| + |J|), 1}.
Summing over � and n shows that

Ea H(σ ) ≤ Ce−amin
� (κ/2+|I|+|J|).

Our theorem follows. ��

7.1 Reduction to Independence

Theorem 2.17 on p. 135 of [8] implies the following three results.

Theorem 7.5 Let τ ∈ R
k. For all D > 0 there is a CD such that for all n ∈ Z,

W0({en−1 ≤ Aτ e−
τ ≤ en}) ≤ CDe−D|n|.

It is easily seen that this implies:

Corollary 7.6 Let τ ∈ R
k. Given d, D there is a CD such that for all n ∈ N,

W0({n − 1 ≤ | log(Aτ ) − 
τ | ≤ n}) ≤ CDe−Dn.

Since

{n ≤ | log(A σ ) − 
σ |} =
∞⋃

k=1

{n + k − 1 ≤ | log(A σ ) − 
σ | ≤ n + k}
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we see that:

Corollary 7.7 Let τ ∈ R
k. Given D there is a CD such that for all n ∈ N,

W0({n ≤ | log(Aτ ) − 
τ |}) ≤ CDe−Dn.

Let τ1, τ2 ∈ R
n be orthogonal – i.e., τ1 · τ2 = 0. Assume that τi · α = αi > 0. Then

σ i(t) = τi · σt is a pair of independent Brownian motions with drifts −2αi and

Var(σ i(t)) = 2t‖τi‖2.

Let 
i = 
τi and 
 = 
τ1+τ2 . For u = α/‖α‖, let

d = d({τ1, τ2}) = 2
√

2 min
{

u · τ1

‖τ1‖ ,
u · τ2

‖τ2‖ ,
u · (τ1 + τ2)

‖τ1 + τ2‖
}

(7.2)

Proposition 7.8 For d as in Eq. 7.2,

W0({n ≤ |
 − (
1 + 
2)|}) ≤ Ce−‖α‖dn. (7.3)

In the proof we will need the following very well known result (see e.g. [3] on
p. 197).

Lemma 7.9 Let w(t) be the one dimensional Brownian motion with negative drift, i.e.,
w(t) = b(t) − γ t with γ > 0. Then

W0(sup
t≥0

w(t) ≥ k) ≤ e−ck,

where

c = 2γ /
√

Var w(1).

Proof of Proposition 7.8 In order to prove Eq. 7.3 it is enough to show that

W0({n ≤ |
 − (
1 + 
2)| ≤ n + 1}) ≤ Ce−‖α‖dn (7.4)

with a constant C > 0 not depending on n.

First we note that the probability in Eq. 7.4 is bounded by

W0(n ≤ 
 − (
1 + 
2) ≤ n + 1) + W0(−n − 1 ≤ 
 − (
1 + 
2) ≤ −n). (7.5)

Now we estimate the first probability in Eq. 7.5.

W0(n ≤ 
 − (
1 + 
2) ≤ n + 1)

=
∞∑

k=1

W0(n − 
 ≤ −(
1 + 
2) ≤ n + 1 − 
 and k − 1 < 
 ≤ k)

≤
∞∑

k=1

W0(n − k ≤ −(
1 + 
2) ≤ n + 2 − k and k − 1 < 
 ≤ k).
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By the Cauchy-Schwarz inequality the above series is dominated by

∞∑

k=1

W0(−n − 2 + k ≤ 
1 + 
2 ≤ −n + k)1/2W0(k − 1 < 
)1/2.

Notice that since our process starts from 0 the first n terms (for k ≤ n) in the above
series are zero.

Furthermore, by Lemma 7.9, W0(k < 
) ≤ e−ck, where c = √
2(τ1 + τ2) · α/‖τ1 +

τ2‖. Hence, the first probability on the right in Eq. 7.5, can be estimated by

∞∑

k=n+1

W0(−n − 2 + k ≤ 
1 + 
2 ≤ −n + k)1/2e−c(k−1)/2

=
∞∑

l=−1

W0(l ≤ 
1 + 
2 ≤ l + 2)1/2e−c(l+n+1)/2

≤ e−cn/2
∞∑

l=−1

e−c(l+1)/2 ≤ Ce−cn/2.

Similarly, the second probability in Eq. 7.5 can be estimated by

∞∑

k=1

W0(n + k − 1 ≤ 
1 + 
2)1/2W0(k − 1 < 
 ≤ k)1/2

≤
∞∑

k=1

W0((n + k − 1)/2 ≤ 
1)1/2e−c(k−1)/2

+
∞∑

k=1

W0((n + k − 1)/2 ≤ 
2)1/2e−c(k−1)/2.

By Lemma 7.9, W0((n + k − 1)/2 ≤ 
i)1/2 ≤ e−ci(n+k−1)/4, where ci =
√

2τi · α/‖τi‖.
Hence the second probability in Eq. 7.5 is dominated by C1e−c1n/4 + C2e−c2n/4. ��

Let 
i = 
τi and 
 = 
τ where τ = ∑�
1 τi.

Corollary 7.10 For n ∈ N,

W0({n ≤ |
 −
�∑

i=1


i|}) ≤ Ced({τ1,...,τ�})‖α‖n.

Proof We reason by induction on �. The � = 1 case is trivial and Proposition 7.8 is
the � = 2 case so assume that � ≥ 3. Let

τ̃2 =
�∑

i=2

τi,


̃2 = 
τ̃2 .
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From Proposition 7.8 and induction

W0({n ≤ |
 − (
1 + 
̃2)|}) ≤ Ce−d({τ1,τ̃2})‖α‖n,

W0({n ≤ |
̃2 −
∑

i≥2


i|}) ≤ Ce−d({τ2,...,τ�})‖α‖n.

Clearly

1
2

min{d({τ1, τ̃2}), d({τ2, . . . , τ�})} ≥ d({τ1, . . . , τ�}).

Also


 −
�∑

i=1


i =
(

 − (
1 + 
̃2)

)
+

(


̃2 −
�∑

i=2


i

)

.

Hence

{n ≤|
 −
�∑

i=1


i|} ⊂ {n
2
≤ |
 − (
1 + 
̃2)|} ∪ {n

2
≤ |
̃2 −

�∑

i=2


i|}

from which the corollary follows. ��

Corollary 7.11 Let τ = ∑�
1 τi and let ei = τi/‖τi‖. For a ∈ R

k and n ∈ Z,

Wa({en−1 ≤ Aτ

(
�∏

1

(
Aei

)‖τi‖
)−1

≤ en}) ≤ Ce−
1
2 d({τ1,...,τ�})‖α‖ |n|.

Proof We may assume a = 0 since the probability of the stated set is clearly
independent of the starting point. If τ belongs to the set described in the left side
of the preceding inequality then

|n| − 1 ≤
∣
∣
∣ log Aτ −

�∑

1

|τi| log Aei

∣
∣
∣.

Of course

log Aτ −
�∑

1

|τi| log Aei

=
(


τ −
�∑

1


τi

)

+ (log Aτ − 
τ) +
(

�∑

1

|τi|
ei − |τi| log Aei

)

≡ B + C + D.
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Assume |n| > 1. Then

|n| − 1 ≤|B + C + D| ⇒
(

|B| ≥ |n| − 1
2

)

or
(

|C + D| ≥ |n| − 1
2

)

⇒
(

|B| ≥ |n| − 1
2

)

or
(

|C| ≥ |n| − 1
4

)

or
(

∃ i, |τi||
τi − log Aτi | ≥ |n| − 1
4�

)

.

Our corollary follows from Corollaries 7.7 and 7.10. ��
Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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